Stabilizing impact of high gradient of 5 on
microturbulence

C. Bourdelle), W. Dorland®, X. Garbet(), G. W. Hammett®),
M. Kotschenreuther®, G. Rewoldt®, E. J. Synakowski(®
(1) Association Euratom-CEA, France
@) University of Maryland, USA
() Princeton Plasma Physics Laboratory, USA
@) Inst. for Fusion Studies, Univ. of Texas at Austin, USA

December 16, 2002

Abstract

It is shown here that microturbulence can be stabilized in the
presence of steep temperature and density profiles. Indeed in high
B plasmas, pressure profile gradients are associated with high || =
—08/dp, where 3 = P/(B?/2u0) and p the square root of the toroidal
flux normalized to its edge value. We show here that high values of
|8'] have a stabilizing influence on drift modes. This may form the
basis for a positive feedback loop in which high core beta values lead
to improved confinement, and to further increase in 8. A gyrokinetic
electromagnetic flux tube code, GS2, is used for analyzing the mi-
crostability. In high 3 spherical tokamak plasmas, high |5’| rather
than low aspect ratio is a source of stabilization. Therefore, the effect
of high |B’| should be stabilizing in NSTX plasmas.

1 Introduction

In most tokamak plasmas, heat transport is mainly due to microtur-
bulence. In order to achieve efficient fusion plasmas, it is of prime



importance to reduce turbulent transport. Such reductions necessar-
ily lead to steepened density and temperature profiles. With this as
motivation, the stabilizing impact of |5’| on microstability is studied
here. Microstability analyses are performed using a gyrokinetic flux
tube code, GS2 [1, 2], in its linear version. The initial value code, GS2,
is benchmarked with the eigenvalue code FULL [6, 7] at high 5. The
analytically reconstructed Miller equilibrium [9], valid for non-circular,
finite aspect ratio magnetic surfaces as well as numerically computed
magnetic equilibria are used. We show that the curvature and the
V B drifts are strongly reduced by high |5/| Once the VB and curva-
ture drift direction is reversed by high |5/|, no drive remains for the
dominant interchange instability. As shown in this paper, it is impor-
tant to include the perturbations parallel to the magnetic field, 6By,
in the microstability analysis of high 8 plasmas, as already pointed
out in [3, 4] and recently in the context of spherical tokamak in [5].
Neglecting this component of the fluctuating magnetic field leads to a
severe underestimation of the instability growth rates. But even after
including 0 B||, the stabilizing effect of high |5/| can induce enhanced

temperature and density peaking, leading to even higher values of |5'|
As suggested in the case of E X B shear stabilization, there is a possi-
bility for entering a positive feedback loop with respect to turbulence
suppression, 8, and enhanced confinement. Finally it is shown that
in high 8 NSTX plasmas, high |8'| rather than low aspect ratio is
believed to be responsible for lower growth rates than in a tokamak
case at higher aspect ratio and lower 3. Therefore, high 5 NSTX plas-
mas are ideally suited for the study of a possible route to enhanced
confinement via positive feedback between |5,| and microstability. In
tokamaks, this effect might play a role in internal transport barriers
(ITBs) with locally very steep pressure profiles. Unlike E x B shear
stabilization, the 3’ stabilization mechanism has the advantages of be-
ing independent of the need for external momentum injection and of
p* effects. Therefore, 5’ stabilization may be particularly relevant for
reactor scales.



2 Microstability analysis code bench-
marking at high

The tool used for the microstability analysis is a linear gyrokinetic elec-
tromagnetic flux tube code, GS2 [1]. The gyro-averaged Vlasov equa-
tion, coupled to the Maxwell equations, is solved. The growth rates
of the unstable modes are computed. The electrons and ions, passing
and trapped, respond to the perturbed fields: d¢, 6 B) and B . This
implies that ion temperature gradient modes (ITG), trapped electron
modes (TEM) as well as electron temperature gradient modes (ETG)
are included. The magnetic modes known as kinetic ballooning modes
(KBM, also called Alfvén ion temperature gradients modes, AITG) are
also accessible, as well as micro-tearing modes. In gyro-averaging the
Vlasov equation, it is assumed that the Larmor radii and the banana
widths (symbolized by p) are much smaller than the characteristic
lengths of the plasma, such as the gradient length (symbolized by Lp).
The main limitation to flux tube codes is that they use the ballooning
representation, which is valid at wave lengths (A) much smaller than
any gradient length characteristic of the studied plasma. Therefore:

p<<Lp
A << Lp (1)

Two of the existing linear gyrokinetic electromagnetic flux tube codes
are benchmarked for high values of 8 which are relevant for NSTX
plasmas. Good agreement is found with these codes, each of which
uses a different computational method. FULL [6, 7] implements an
eigenvalue calculation whereas GS2 [1] uses an initial value approach
to find the fastest growing mode. A previous benchmark of these two
codes has been published in [1]. Figure 5 of [1] shows good agreement
between the two codes for 5 values up to 2%, including the effects of d¢
and ¢B) only. In figure 1, the benchmarking exercise is extended in-
cluding 5B|| and values of 8 over 2%. The plasma is a TFTR L-mode,
shot 49982, at r = 38 cm. An ’s-@’ model MHD equilibrium is used.
Together with the main ions and the electrons, a carbon impurity
species is included and a hot deuterium species representing the neu-
tral beam fast ions is also included. Electron collisions are included,

but ions collisions are neglected. The complete set of parameters used
can be found in [1]. For reference here, R/L,. = —E% = 1.48,
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Figure 1: Results from the initial value and eigenvalue calculations: the

growth rates 7 and the frequencies w, in units of w;, versus the local total

B normalized to a (. of 2%.
parameter «. Fixed kgp; = 0.4.

[ is proportional to the MHD equilibrium

7. = 4.683, ¢ = 2.2515 and s = 1.1025. For 3 around its critical value
B¢, the drift branch becomes stable and the kinetic ballooning modes
[3, 7, 16, 17] are destabilized by interchange with an Alfvénic wave at
sufficiently large pressure gradient. For the drift branch, good agree-
ment between the two calculations is found, with | A w|/|w| < 6%. On
the KBM branch, the agreement is also good with | A w|/|w] < 15%

(Fig. 1).

3 Impact of 8 on drift modes

The magnitude and direction of the curvature and VB drifts are of
prime importance. If they follow the direction of the diamagnetic
drift they are responsible for the dominant interchange instability.



On the other hand, if their direction is opposite to the diamagnetic
drift no interchange type instability appears no matter how steep the
density and temperature profiles. For a simple picture of curvature-
driven instabilities see reference [18]. Low or negative magnetic shear
is known to reduce significantly the amplitude of the curvature and
VB drifts. In the following we will show that high |3'| also does
so. The stabilizing |5/| effect is particularly interesting since it is
enhanced by steeper pressure profile, allowing for positive feedback
between steep plasma pressure and turbulence suppression.

In the ballooning or field-line following limit, we assume that the
perturbed quantities A vary as:

A = A(6) exp(ino) (2)

where b.Vo = 0 and o = (¢ — q(v)8), with ¢ and 6 respectively the
toroidal and poloidal angles (using a coordinate system in which field
lines are straight), and ¢ the safety factor. The exponential factor
exp(ino) represents the rapid cross-field variation with a perpendicu-
lar wave vector k; = nVo. The factor 121(0) gives the slow variation
of the mode along the field line. An important parameter affecting
stability is the drift frequency wy = vy - EJ_, which is
Vi
Wy = —nw, +
We mw,

nwy B (3)

where the normalized curvature and V B drifts are w, = bx (BVB) Vo
and wyp = (l; x VB -Vo)/B. Here, w, is the cyclotron frequency. b
is the direction of the magnetic field line and B is the magnetic field
strength.

The so-called s — « analytical equilibrium is valid at low 8 and
high aspect ratio for circular concentric magnetic surfaces; s is the
magnetic shear and o = —¢?Rf' = —¢?RB(OP/dr)/P. In this case
the normalized VB and curvature drifts are identical:

wyp =we = (bx VB -Vo)/B x cosh + (s — asinf)sind  (4)

In this simplified geometry, a high value of |5'| (i.e., high a) lowers
the surface average of the curvature and VB drifts, and therefore
lowers the destabilizing impact of the interchange instability. From
the similar ways in which « and s enter this equation, one can see
that the stabilizing effect of high a can be thought of as being similar



to a local negative shear. Note that neither s nor a have any effect
in the center of the bad-curvature region at § = 0, but by shearing
adjacent field lines they can have a significant effect on wy and the
structure of the eigenfunction in the vicinity of # = 0. A nice physical
picture of the stabilizing influence of negative magnetic shear is in
Ref.[8].

In a high 8 plasma, the form given in Eq. 4 is not valid anymore.
Using the equilibrium relation Vp = }X B and vector identities, one
can show that wyp becomes

1+
wVB:wK—§b><V5-VU (5)

where we are using the shorthand notation V3 = (2u0/B?)Vp. There-
fore the total drift frequency becomes

Vi b
_(l_}_uB)nwﬁ_uBnébXVp'vg (6)

mw. 2 p

Using a numerical NSTX magnetic equilibrium computed by EFIT
[10], one may vary |5’| and the magnetic shear s independently to find
a family of solutions, all of which satisfy the Grad-Shafranov equation
[11, 12]. In figures 2 and 3, the impact of magnetic shear reversal
on the curvature and VB drifts is compared to the impact of higher
|5’|. When the curvature and VB drifts are positive, they are able to
destabilize the interchange. When they are negative, their direction
is opposite to the diamagnetic direction and no interchange destabi-
lization is possible. For the curvature drift, as seen for a simplified
‘s-a’ equilibrium, the stabilization by a higher |3’| is similar to the
stabilization by negative magnetic shear. Moreover, as it can be seen
in Eq. 5, in the case of a high § numerical equilibrium, the VB drift
is strongly decreased by high |3| (Fig. 3).

The stabilizing effect of high |5’| on the VB drift is known as the
effect of the ‘self-dug’ magnetic well. At long wavelengths (k1 p; < 1)
and low frequencies (w < ;) this effect is of limited importance [13].
This is because compressional motion acts to maintain perpendicular
force balance dp —|—B05B||/,u0 =0, with the consequence that there is
a significant cancellation between the diamagnetic drift and the part
of the grad-B drift proportionnal to VP in the vorticity equation [See
Ref. [4], Eq. (63) for details]. Therefore, if one does not include B
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Figure 2: Curvature drift versus the poloidal angle 6. The effects of multi-
plying 5’ x 10 and s x (—1) are compared.
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Figure 3: VB drift versus the poloidal angle . § = 0 is on the low field side.
The effects of multiplying 8’ x 10 and s x (—1) are compared.



at high 3, the self-dug well stabilizing impact is artificially overesti-
mated. Hence, it is of prime importance to include 4By for high 3
microstability analysis. Nevertheless, for finite k) p;, some stabiliza-
tion from the self-dug well remains possible [3, 13, 5]. Even in cases
where the self-dug well effects are mostly cancelled, high |3’| still has
a stabilizing effect on the curvature drift (as seen in Figure 2) via the
negative local magnetic shear [8] it induces.

In figures 4 and 5, a scan of 3’ at fixed 8 and at fixed 7 is shown
for a case with ion modes only (VT./T. = 0 and Vn./n. = 0) and
for another case with electron modes only (VT;/T; = 0 and Vn;/n; =
0). The equilibrium used is computed by TRANSP for the NSTX
discharge 106382 at 210 ms. At r/a = 0.34 where the local total
B is 30%. The magnetic shear is fixed at 1.3. In this exercise, |§’|
is increased by increasing the pressure gradient |V P/P|, keeping all
of the other equilibrium parameters fixed while always satisfying the

Grad-Shafranov equation. In these scans, 8’ = f(a/L,)(1 + 1) and

n= ?aaz;é?: = L, /L7 is kept fixed and equal to 3. Despite the steeper

pressure profiles, the drift modes (ITG, TEM and ETG) are ultimately
stabilized by higher |8’|. This indicates that steep pressure profiles can
be stabilizing, causing steeper pressure profiles. However, the KBM
remain unstable at high |5’| and thus may limit the achievable |5’

As expected, the comparison between the 3’ scans in figures 4 and
5 with and without ¢ B)| shows that neglecting B) in high 3 plasmas
leads to a clear underestimation of the growth rates as well as an
overestimation of the stabilizing 3" impact.

The magnetic shear is then reduced from 1.3 to 0.3; 0.3 being
actually the value given by the EFIT equilibrium at the chosen radius.
The same B’ scan at fixed 5 is performed. On figure 6, the 2 scans for
s = 1.3 and s = 0.3 are compared. One can see that the 2 stabilizing
effects of low magnetic shear and high |3’| combine, making it either
for high values of 3’| to be stabilizing.

In summary of this section, the mechanism leading to microturbu-
lence stabilization through high |5’| is similar to the impact of mag-
netic shear reversal. However, unlike the case of magnetic shear, 8’
is reinforced by steeper pressure profiles, opening the door to positive
feedback between steep plasma pressure and good confinement. This
is similar to the situation with increased rotational shear stabilization

by increased pressure gradients. We have also shown that neglecting
0B) when analyzing high 3 plasmas leads to an underestimation of
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Figure 6: Growth rates versus |f3’| as for figure 4. Full line, s = 1.3, dashed
line: s = 0.3.
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the growth rates.

4 (' impact on the microstability of a
spherical tokamak

The main differences between spherical tokamak (ST) and standard
tokamak equilibria are the aspect ratio (A), 5 and 51. The NSTX as-
pect ratio is 1.3 compared to DIII-D’s aspect ratio of 2.7. The highest
volume average toroidal 8 obtained in NSTX is about 34%, whereas
in standard tokamaks it is typically below 3%, but can occasionnally
reach up to 11% as it has been the case in DIII-D [14]. Since we want
to elucidate the separate impact of 3 and A as well as 3/, we cannot use
a realistic numerical MHD equilibrium verifying the Grad-Shafranov
equation. We therefore use an analytical equilibrium. The tokamak
case and the ST case match realistic equilibrium values from DIII-D
and NSTX EFIT equilibria at mid-radius. But the intermediate cases
where A, 8 and 3’ are varied one by one do not match realistic equi-
libria. The Miller model is used for the poloidal cross-section of the
magnetic surface [9]. Collisions are not included here. The parameters
for the Miller model are:

r/la=05 A"=(0A/dp)/a= —0.25
s=1.5 q=1.5
k=15 k' '=0k/dp=10.25
0=0.1 8 = d8/dp =0.08
T. =T, =1.5keV ne = n; = 2.109m=3

1 10T

an

dp

‘:a/LT:4 1

p is the normalized square root of the toroidal flux, A is the Shafranov
shift normalized to the minor radius, k is the elongation and ¢ is the
triangularity. Note that the density and temperature values given here
are more relevant for NSTX mid-radius plasmas, but will nevertheless
be used for the DIII-D like case in order to isolate the key parameters
A, Band 5.

For the DITI-D like case, A = 2.8, 8 = 1.2% (B = 2 T) and
B = —0.072. For the NSTX like case, A = 1.4, § =30% (B = 0.4 T)
and B = —1.8. It is interesting to note that the radial gradient of the
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Shafranov shift (A’) is similar for both equilibria. For a low 3, high A
equilibrium, (A’),—, = —%(8, + %). This formula is not accurate for
an ST plasma. Nevertheless, the fact that A’ is not higher in an ST
is likely due to similar poloidal magnetic field values in an ST and in
a tokamak. In NSTX, the plasma current ranges from 0.5 to 1.5 M A,
similar to tokamak values, whereas the toroidal magnetic field ranges
between 0.3 to 0.45 T, below tokamak values. Therefore, a higher A’ is
not a clear source of stabilization in an ST despite what was proposed
in the conclusion of reference [19]. The main results in [19] used a full
numerical equilibrium including both A’ and 3’ stabilization effects,
and are so still correct for the TF'TR cases investigated there.

We go from the DIII-D like case to the NSTX like case by changing
first A only, then A and 3, and finally A, 8 and ', as shown in figure
7. Since B’ = —B(a/Lt + a/L,) rigorously, it may seem inconsistent
to vary these separately. But these parameters enter the gyrokinetic
equations in various ways representing different physics, so it is useful
to vary them one at a time. 3’ enters the equilibrium and thus w, as
described earlier. 5 enters Ampere’s law and thus affects the relative
magnitude of magnetic and electric fluctuations, while a/L,, and a/Lp
appear in the definitions of the diamagnetic drifts.

We observe that lowering the aspect ratio stabilizes the modes
above kgp; = 10, the ETG modes. This is due to the effect of passing
particles spending more time on the good curvature side at low aspect
ratio, as already pointed out in the case of passing ions in [15]. The
modes between kgp; = 1 and kgp; = 10 are slightly destabilized by
a lower aspect ratio. These modes are dominated by trapped elec-
trons (TEM). At low aspect ratio, the depth of the magnetic well is
larger since %BT ~ Agf_ll. Therefore the fraction of trapped particles
is higher. Finally modes below kgp; = 1 are almost unaffected; in this
range trapped and passing ions are expected to be the dominating res-
onating particles. In this case, the stabilizing effect through passing
particles and the destabilizing effect through trapped particles anni-
hilate each other when going to lower A. When § is also increased
from 1.2% to 30%, kinetic ballooning modes are destabilized at low
ko whereas the upper part of the spectrum is stabilized. In [5], it is
shown that when KBM are not destabilized, I'TG modes are not af-
fected by a lower A, if 8 remains at a fixed fraction of the ideal MHD
B limit, which is higher in an ST than in a standard tokamak. Finally,
when |5/| is increased, all the modes are clearly strongly stabilized.

12
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Figure 8: Enlargement of figure 7 in the low kgp; zone for the tokamak like
case, dashed line, and the ST like case, solid line.
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Figure 9: Normalized maximum growth rates for kgp; < 1 as a function of
normalized temperature gradient. Solid line and crosses: the temperature
gradient is increased consistently with 3’. Solid line and dots: the tempera-
ture gradient is increased with 3’ fixed at the value it had for a/Ly = 0.

Therefore, the main mechanism responsible for the more stable modes
obtained with an ST-like set of equilibrium parameters is due to a
higher value of |3'|. As detailed in part 3, the stabilizing impact of
high |5'| is due to lower drive from curvature and VB drifts for the
interchange instability.

5 Possible experimental test of ﬁl im-
pact in NSTX

The fact that the plasma becomes more stable with higher |5/| opens
a wider window towards positive feedback between a steep pressure
profile and good confinement.

In figures 9 and 10, the normalized temperature gradient (a/L7) is in-
creased consistently with 5. 5 is fixed and 7 varies, unlike in figures
4 and 5 which were obtained at fixed 1. Note here that the effect of
collisions is not included. A steeper temperature profile is likely to be
accompanied by a higher temperature, and therefore a lower collision-
ality that might enhance the role of trapped particles. Nevertheless,
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Figure 10: Normalized maximum growth rates for kgpp; < 1 as a function
of normalized temperature gradient. The temperature gradient is increased
consistently with 8'. Solid line and crosses: for the ST like configuration,
solid line and dots: for the tokamak-like configuration as defined in figure 7.

the collisions being stabilizing, we are presenting here an upper limit
of the growth rates. In figure 9, the consistent temperature gradient
scan is compared with a scan where 8’ is artificially kept fixed. In the
latter case, the growth rates reach much higher values when a/Lt is
increased. In particular, the KBM are destabilized. Therefore, 3’ sta-
bilization allows us to avoid triggering KBM. Figure 10 shows that the
growth rates in an ST plasma increase less with higher temperature
gradients and higher n than for a tokamak case. This happens thanks
to higher 3, and therefore higher |5'|, in the ST case. In the ST case,
the growth rates increase at low values of /Lt due to a more impor-
tant role of trapped particles when 1 < 1. Since the trapped particle
fraction is more important in the ST configuration, the ST growth
rates become similar to the tokamak ones. Above a/Lt = 2, the in-
crease of the temperature gradient is destabilizing, but much less so in
the ST case than in the tokamak case. Therefore, in the ST case, the
stabilization of these low kg modes by the E x B shear is made easier
by lower growth rates. At fixed 7, in figure 4 and 5, it is shown that
positive feedback on the confinement due to |8'| alone can be reached
for sufficiently high |5/| Very likely a combination of density peaking
and |B'| stabilization would even be more efficient. And as we have
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shown on figure 6, a combination of magnetic shear reversal and high
|3'| is expected to make easier the |3'| stabilization. This possibility of
positive feedback is very similar to the one proposed by M. Beer [19]
to explain the Enhanced Reversed Shear modes obtained in TFTR,
except that the stabilizing mechanism triggering the improvement was
due to higher A’, whereas here it is due to higher |5'].

To test experimentally the 3’ impact on microturbulence one would
ideally need a set of plasmas where 1;/T,, Z.s¢, s, q, p*, B, as well
as the E x B shearing rate, are kept fixed while |8'| (i.e. |VP|/P)
is increased. More generally, the clearest demonstration of the role
of 8 would arise if the E x B shear and 8 could be decorrelated.
These constraints are practically impossible to realize in a 8 scan.
Nevertheless, there are some ways to approach such a scan: by using
pellet injection in order to peak the density, by applying some early
heating in the current ramp-up phase to increase the Shafranov shift
and therefore the pressure gradient or by performing a power scan of
balanced NBI at fixed By and I,. The 3’ stabilization might be used
to trigger an improved confinement regime on its own, but more likely
by lowering the growth rates with respect to the E x B shearing rate.
Indeed, similarly, RI modes and certain I'TB regimes are believed to
be triggered by respectively higher Z.;; and magnetic shear reversal
and then maintained by E x B shear [20].

6 Conclusions

The behavior of microinstabilities with 8° has been investigated with
a gyrokinetic electromagnetic flux tube code, GS2. It is found that
the stability of all types of drift modes (ITG, TEM, ETG) is strongly
increased by high values of |3']. Tt is shown that high |3'| reduces the
drive of the VB and curvature drifts responsible for the interchange
instability. This stabilizing impact is overestimated by about a factor
of two in high § plasmas if the magnetic perturbations parallel to the
field (5B||) are neglected. In high S experimental spherical tokamak
plasmas, it is shown that ' has more impact than low aspect ratio
itself on the linear microstability. Experimental tests of this impact
are needed, by either fruitfully exploiting the easier E x B shear sta-
bilization due to lower growth rates, or by reaching a |5/| high enough
to lead to positive feedback without the help of E x B shear, but
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likely with the help of magnetic shear reversal or density peaking.
Initial results from NSTX [21] indicate that thermal ion confinement
is exceptionnally good, and the role of B is being assessed.

The stabilizing impact of high |3'| might also be relevant in low f3
tokamak plasmas when a locally steep pressure gradient is maintained
without external momentum injection [22, 23].
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