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We consider the problem of incompressible, forced, nonhelical, homogeneous, and isotropic MHD
turbulence with no mean magnetic field and large magnetic Prandtl number. This type of MHD
turbulence is the end state of the turbulent dynamo, which generates folded fields with small-scale
direction reversals. We propose a model in which saturation is achieved as a result of the velocity
statistics becoming anisotropic with respect to the local direction of the magnetic folds. The model
combines the effects of weakened stretching and quasi-two-dimensional mixing and produces mag-
netic-energy spectra in remarkable agreement with numerical results at least in the case of a one-scale
flow. We conjecture that the statistics seen in numerical simulations could be explained as a super-
position of these folded fields and Alfvén-like waves that propagate along the folds.
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tical in the inertial range and have Kolmogorov k�5=3 resistive scale, the dynamo-generated fields are not at
In this Letter, we consider what is perhaps the oldest
formulation of the MHD turbulence problem dating back
to Batchelor’s work in 1950 [1]: incompressible, randomly
forced, nonhelical, homogeneous, isotropic MHD turbu-
lence described by

@tu� u � ru � ��u�rp� B � rB� f; (1)

@tB� u � rB � B � ru� ��B: (2)

The pressure p (determined from r � u � 0) and the
magnetic field B are rescaled by � and �4	��1=2, respec-
tively (� is density). Turbulence is excited by the random
external forcing f. No mean field is imposed. We are
primarily interested in the case of the large magnetic
Prandtl number Prm � �=� which is appropriate for the
warm interstellar medium, and cluster plasmas [2].
Numerical evidence suggests that the popular choice
Prm � 1 is in many respects similar to the large-Prm
regime [3]. Prm � 1 implies that the resistive scale
‘� 	 Pr�1=2

m ‘� is much smaller than the viscous scale
‘�. Thus, the problem has two scale ranges: the hydro-
dynamic (Kolmogorov) inertial range ‘0 � ‘ �
‘� 	 Re�3=4‘0 (‘0 is the forcing scale) and the subviscous
range ‘� � ‘ � ‘�.

For a moment, let us consider the traditional view of
fully developed incompressible MHD turbulence in the
presence of a strong, externally imposed mean field. This
view is based on the idea of Iroshnikov [4] and Kraichnan
[5] that it is a turbulence of strongly interacting Alfvén-
wave packets. This phenomenology, modified by
Goldreich and Sridhar [6] to account for the anisotropy
induced by the mean field, predicts steady-state spec-
tra for magnetic and kinetic energies that are iden-
0031-9007=04=92(8)=084504(4)$22.50 
scaling. An essential feature of this description is that it
implies scale-by-scale equipartition between magnetic
and velocity fields: indeed, uk � Bk in an Alfvén
wave. Simulations appear to confirm Alfvénic equi-
partition provided there is an imposed strong mean field
B0 � urms [7].

In the case of zero mean field, it has been widely as-
sumed that essentially the same description applies, ex-
cept it is the large-scale magnetic fluctuations that play
the role of effective mean field along which smaller-scale
Alfvén waves can propagate. However, numerical simu-
lations of isotropic MHD turbulence do not show scale-
by-scale equipartition between kinetic and magnetic en-
ergies. There is a definite and very significant excess of
magnetic energy at small scales. This is true both for
Prm > 1 and Prm � 1 (Fig. 1). This result persists at the
highest currently available resolution (10243; see [8]).

Let us consider the genesis of the magnetic field in
isotropic MHD turbulence. As there is no mean field,
all magnetic fields are fluctuations generated by the
small-scale dynamo. This type of dynamo is a funda-
mental mechanism that amplifies magnetic energy in
chaotic 3D flows with sufficiently large magnetic
Reynolds numbers and Prm * 1. The amplification is
due to random stretching of the magnetic-field lines by
the velocity field. During the kinematic (weak-field)
stage of the dynamo, the magnetic energy grows expo-
nentially in time, its spectrum is peaked at the resistive
scale, k� 	 Pr1=2m k�, and grows self-similarly [3,9,10].
The growth rate is of the order of the turnover rate of
the fastest eddies, which, in Kolmogorov turbulence,
are the viscous-scale ones.

Although the bulk of the magnetic energy is at the
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FIG. 1 (color online). Energy spectra in simulations with
Prm � 1, Re� ’ 155 and with Prm � 10, Re� ’ 45 (bold lines).
The thin lines are our model-predicted spectra of the folded
field component (normalized to have the same energy as the
numerical spectra).
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all randomly tangled, but rather organized in folds within
which the field remains straight up to the scale of the flow
and reverses direction at the resistive scale [3,11–13]. One
immediate implication of the folded field structure is the
criterion for the onset of nonlinearity. For incompressible
MHD, backreaction is controlled by the Lorentz tension
force B � rB	 kkB

2. This quantity depends on the par-
allel gradient of the field and does not know about direc-
tion reversals (kk 	 k� [13]). Balancing B � rB	 u � ru,
we find that the backreaction is important when the mag-
netic energy becomes comparable to the energy of the
viscous-scale eddies. Clearly, some form of nonlinear
suppression of stretching motions at the viscous scale
must then occur. However, the eddies at larger scales
are still more energetic than the magnetic field and con-
tinue to stretch it at their (slower) turnover rate.When the
field energy reaches the energy of these eddies, they are
also suppressed and it is the turn of yet larger and slower
eddies to exert dominant stretching. The folded structure
is preserved with folds elongating to the size ‘s of the
dominant stretching eddy. The key question is whether ‘s
can increase all the way to the outer scale or stabilizes just
above the viscous scale [14].

The nonlinear suppression of stretching motions does
not mean complete elimination of all turbulence: only the
b̂b b̂b :ru component of the velocity-gradient tensor leads
to work being done against the Lorentz force and, there-
fore, must be suppressed. It is then natural to expect a
local anisotropization of the velocity field. In this Letter,
we demonstrate how a simple model accounting for this
nonlinearly induced local anisotropy can produce solu-
tions that are in remarkably good agreement with nu-
merically observed magnetic-energy spectra.
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The idea is to use the standard Kazantsev [9] model
velocity, Gaussian and white in time, hui�t;x�uj�t0;x0�i �
�t� t0��ij�x� x0�, but let �ij depend on the local direc-
tion of the magnetic field, b̂b � B=B. In the Lagrangian
frame (with local rotation transformed out), b̂b orients
itself along the stretching Lyapunov direction of the
flow, which stabilizes exponentially in time [15].
Therefore, in this frame, b̂b can be assumed to vary slowly
with time. In the presence of one preferred direction
defined by b̂bib̂bj, the velocity correlator in k space has
the following form:

�ij�k� � ��i��k; j�j��ij � k̂kik̂kj� � ��a��k; j�j�

� �b̂bib̂bj ��2k̂kik̂kj ��b̂bik̂kj ��k̂kib̂b
j�; (3)

where k̂k � k=k, � � k̂k � b̂b. Let us ignore the spatial
dependence of all quantities that vary at the flow scale
and slower. The velocity enters only via its gradient ui

j �
@ju

i, which is now a function of time only with statistics
hui

m�t�u
j
n�t0�i � �t� t0�

R
d3kknkm�ij�k�. We can assume

that b̂b also depends on time only, because it always enters
via the tensor b̂bib̂bj, which varies at the scale of the flow
(because of the folded structure of the magnetic field, the
field’s curvature is very small [3,13], so the fast spatial
variation of b̂b is limited to sign reversals and cancels in
b̂bib̂bj). With these assumptions, the solution to Eq. (2) can
be written as (cf. [12,16])

B �t;x� � b̂b�t�
Z

d3k0 ~BB�t;k0�e
ix�~kk�t;k0�; (4)

where ~kk�0;k0� � k0 and

@t
~BB � b̂bib̂bmui

m
~BB� �~kk2 ~BB; (5)

@t
~kkm � �ui

m
~kki; (6)

@tb̂b
i � b̂bmui

m � b̂blb̂bmul
mb̂b

i: (7)

Equations (5)–(7) are a modification of the so-called
zero-dimensional model of the dynamo [17]. A closed
equation can be obtained for the joint probability density
function (PDF) of ~BB, ~kk, and b̂b, P � ~BB; ~kk;b̂b���jb̂bj2�1��
�b̂b � ~kk��4	2 ~kk��1P� ~BB; ~kk�, via an averaging procedure
analogous to, e.g., the one in Ref. [13]. The magnetic-
energy spectrum M�k� � �1=2�

R
1
0 dBB2P�B; k� is then

found to satisfy

@tM�
1

8
�?

@
@k

�
�1�2�k�k

2@M
@k

��1�4�?�10�k�kM
�

�2��?��k��?M�2�k2M; (8)

where �? �
R
d3kk2?�?, �? � �1=�?�

R
d3kk2

k
�?, �k �

�1=�?�
R
d3kk2

k
�k, k? � k�1��2�1=2, kk � k�, �? �

�1=2��ij � b̂bib̂bj��ij, �k � �1=2�b̂bib̂bj�ij, and �ij is defined
in Eq. (3). In the isotropic case, ��i� � ��i��k�, ��a� � 0,
which gives �? � 2=3, �k � 1=6. Equation (8) then re-
duces to the standard equation for the magnetic-
energy spectrum in the kinematic dynamo [9,10]. With a
084504-2
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zero-flux boundary condition imposed at low k [14],
Eq. (8) has an eigenfunction (in the limit � ! �0)

M�k� ’ kse�tK0�k=k��; (9)

where K0 is the Macdonald function, k����1�2�k��?=
16��1=2, s�2��?�2�k�=�1�2�k�, and ����?=8��
�16��?��k���1�2�?�6�k�

2=�1�2�k��. As mag-
netic backreaction makes velocity more anisotropic, the
values of �?; �k drop compared to the isotropic case,
and so does the growth rate � — until the dynamo is
shut down (for a purely two-dimensional velocity, �? �
�k � 0 and � � ��?=8). Thus, saturation can be
achieved purely by anisotropizing the statistics of the
velocity field.

How do we make connection from a theory based on
the -correlated model velocity to the real turbulence,
which has a finite correlation time? The simplest pre-
scription is to get finite expressions for equal-time veloc-
ity correlators by replacing the  function by 1="c:
hui�k�uj��k�i � Iij�k� � "�1

c �ij�k�. We take the cor-
relation time "c of a given type of motions to be their
‘‘turnover time’’: defining I? and Ik analogously to
�? and �k, we write k2?�? � C??��1

? k2?I?, k2
k
�? �

Ck?��?�?�
�1I?, and k2

k
�k � Ckk��k�?�

�1Ik, where
C??, Ck?, and Ckk are adjustable constants. Then
�? � �C??

R
d3kk2?I?�1=2, �? � ��2=3�

R
d3kk2

k
I?=R

d3kk2?I?�
1=2, and �k ���1=6�

R
d3kk2

k
Ik=

R
d3kk2?I?�1=2,

where we have set Ck? � �2=3�C??, Ckk � �1=6�C?? to
ensure that �? � 2=3 and �k � 1=6 in the isotropic case.
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In order to model gradual anisotropization of the ve-
locity statistics by the backreaction, we define the stretch-
ing wave number ks�t� such that the total magnetic energy
W�t� at time t is equal to the energy of the hydrodynamic
eddies at k > ks (before they feel the nonlinearity). We
assume that the eddies at k < ks remain isotropic (unaf-
fected by backreaction), while those at k > ks are two
dimensionalized. Specifically, for k0 < k< ks�t�, let

4	k2I�i��k; j�j� � E�k�; I�a��k; j�j� � 0; (10)

while for ks�t�< k< k�,

4	k2I�i��k; j�j� � 2r2DE�k����; (11)

4	k2I�a��k; j�j� � 2 ~EE�k����: (12)

Here ks�t� is defined by c2
Rk�

ks�t�
E�k� � W�t�, I�i� and I�a�

are coefficients of Iij analogous to ��i� and ��a� [Eq. (3)],
k0 and k� are the forcing and viscous wave numbers, and
c2 and r2D are adjustable parameters. We take E�k� �
CK*2=3k�5=3 (with CK � 1:5) for k 2 �k0; k��. The spe-
cific form of E�k� will affect only details of the transient
time evolution, not the saturated state. ~EE�k� will not figure
in what follows, because it multiplies ���� in all rele-
vant expressions. Coefficients in Eq. (8) now depend on
W�t�: a straightforward calculation gives

�?�t� �
6

5
���
�
1�

1

�1�W0=W��
2

�
�1=2

���t��1=2; (13)
�?�t� � 4�k�t� �
2

3

�
1

�1�W�t�=W��
2 �

1

�1�W0=W��
2

�
1=2

���t���1=2; (14)

��t� �
1

�1�W�t�=W��
2 �

1

�1�W0=W��
2 �

5

4
r2D

�
1�

1

�1�W�t�=W��
2

�
;

where ��� � c1�
Rk�

k0
dkk2E�k��1=2, c1 � ��5=18�C??�

1=2, the

viscous-eddy energy is W�=c2 � �3=2�CK*
2=3k�2=3

� , and
the total energy of the velocity field (before suppression)

is W0=c2 �
Rk�

k0
dkE�k�. Equations (13) and (14) repre-

sent a generalization of the model first introduced in
Ref. [14] and reduce to it when r2D � 0. They include
the effect of quasi-2D mixing of the folded magnetic
fields by eddies whose stretching component has been
suppressed. The spectrum of these mixing motions is
modeled by Eq. (11), where r2D parametrizes the strength
of the mixing relative to the original unsuppressed 3D
turbulence.

The behavior of our model is easy to predict. The
kinematic growth stage [�? � �6=5� ���, �? � 2=3, �k �

1=6, and s � 3=2, � � �3=4� ��� in Eq. (9)] lasts until the
total magnetic energy reaches the energy of the viscous-
scale eddies, W 	W�. After that, the velocity is gradu-
ally anisotropized, stretching is weakened, but mixing
continues at k > ks�t�. A steady solution is reached as
soon as �? and �k have decreased enough to render
��0 in Eq. (9). This gives �?�4�k ’0:078. The corre-
sponding spectral exponent in the interval k� � k � k�
is s ’ 0:23. This solution is valid in the limit k� � k�
(Prm � 1), but convergence in Prm is only logarithmic. In
practice, the numerical solution of Eq. (8) shows that a
scale separation of many decades is required for the
scaling to be discernible. This is not achievable in direct
numerical simulations. We have, therefore, solved Eq. (8)
with the same parameters as those used in our simulations
[3]. There are three adjustable constants: c1, c2, and r2D.
The solution does not, however, depend very strongly on
them: c2 is irrelevant as it amounts to overall rescaling of
energy, r2D has to vary by an order of magnitude to cause
significant change, and even c1 (which affects the value of
k�) does not require very fine tuning. We have compared
the model solutions for the same fixed values c1 � 1=3
and r2D � 4=5 with the (normalized) spectra obtained in
numerical simulations. A sequence of runs with large Prm
084504-3



FIG. 2 (color online). The bold lines are the normalized
saturated energy spectra for simulations in the viscosity-
dominated regime [3]. The thin lines are the spectra predicted
by our model.
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and low Re (the so-called viscosity-dominated limit: a
necessary compromise at current resolutions [3]) is well
fitted by our model in both kinematic (not shown) and
nonlinear (Fig. 2) regimes (except at k=2	 � 1; 2, where
finite-box effects are important). Note that the velocity
field in these runs is random [because of random forcing,
Eq. (1)], but, unlike in real turbulence, spatially smooth
and one-scale.

It is extraordinary that our minimal model has repro-
duced nonasymptotic numerical spectra so well. We do
not claim that it constitutes a quantitative theory of non-
linear dynamo. It does, however, provide a simple dem-
onstration that the available numerical data are consistent
with magnetic-energy spectra exhibiting a very flat posi-
tive spectral exponent in the interval k� � k � k� if
sufficiently large scale separations were resolved.

It is clear that the viscosity-dominated simulations
(low Re) are described very well by our model. The
case Re � 1, Prm � 1 is much harder to tackle. If mix-
ing by velocities at k 2 �ks; k�� remains efficient [as im-
plied by our 2D approximation (11) and (12)], then ks
stabilizes at a value 	k� and saturated magnetic energy
scales with Re as the energy of the viscous eddies, hB2i 	
Re�1=2hu2i. This outcome does not appear to be borne out
by the available numerical evidence, which rather sug-
gests hB2i & hu2i [8] (though limited resolutions preclude
a definitive statement). In our runs with Prm � 10 and
Taylor-microscale Reynolds number Re� ’ 45 (Re	 100)
and with Prm � 1, Re� ’ 155 (Re	 400), our model in its
present form overestimates the magnetic energy at large k,
but underestimates it at low k (Fig. 1): an indication of too
much mixing in the model [18]. Indeed, when Re � 1,
the nature of the anisotropized velocities in the interval
�ks; k�� can be very different from the interchangelike
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motions that give the 2D mixing in the viscosity-
dominated case. In Ref. [14], we argued that the interval
�ks; k�� is populated by Alfvén waves that propagate along
the folds. The saturated spectrum is then the result of a
superposition of waves and folds (which accounts for the
large amount of small-scale magnetic energy). Since the
Alfvén waves are dissipated by viscosity, they can exist
only if the stretching scale becomes much larger than the
viscous scale: possibly as large as the outer scale (ks 	 k0;
cf. [3]). This is allowed only if the waves do not mix
magnetic field as efficiently as the interchange motions
do. For our model, the required modification would be
that the mixing rate �? should decrease with ks. The
dynamo saturation would then be due to a balance be-
tween stretching and mixing by partially anisotropized
motions at the stretching scale.

Detecting Alfvén waves along folds is a challenge for
future numerical work. The main conclusion of the
present study is that the nonlinear dynamo in a random
one-scale flow can be described by a simple model where
saturation is achieved via partial anisotropization of the
ambient velocity, a result quantitatively supported by
agreement with direct numerical simulations.
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