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Abstract

A
dvanced numerical algorithms for gyrokinetic simulations are explored for

more effective studies of plasma turbulent transport. The gyrokinetic equa-

tions describe the dynamics of particles in 5-dimensional phase space, averaging

over the fast gyromotion, and provide a foundation for studying plasma microtur-

bulence in fusion devices and in astrophysical plasmas. Several algorithms for Eu-

lerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme

based on numerical approximations of the plasma response is developed. This

method reduces the long time needed to set-up implicit arrays, yet still has larger

time step advantages similar to a fully implicit method. Various model precon-

ditioners and iteration schemes, including Krylov-based solvers, are explored. An

Alternating Direction Implicit algorithm is also studied and is surprisingly found

to yield a severe stability restriction on the time step. Overall, an iterative Krylov

algorithm might be the best approach for extensions of core tokamak gyrokinetic

simulations to edge kinetic formulations and may be particularly useful for studies

of large-scale ExB shear effects.

The effects of flux surface shape on the gyrokinetic stability and transport of

tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with an-

alytic equilibria based on interpolations of representative JET-like shapes. High
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shaping is found to be a stabilizing influence on both the linear ITG instability and

nonlinear ITG turbulence. A scaling of the heat flux with elongation of χ ∼ κ−1.5

or κ−2 (depending on the triangularity) is observed, which is consistent with previ-

ous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a

significant fraction, but not all, of the empirical elongation scaling. The remainder

of the scaling may come from (1) the edge boundary conditions for core turbu-

lence, and (2) the larger Dimits nonlinear critical temperature gradient shift due

to the enhancement of zonal flows with shaping, which is observed with the GS2

simulations.

Finally, a local linear trial function-based gyrokinetic code is developed to aid

in fast scoping studies of gyrokinetic linear stability. This code is successfully

benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well

as in the more general electromagnetic description with higher-order Hermite basis

functions.
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Chapter 1

Introduction

D
rift waves are commonly believed to be responsible for anomalous cross-

field transport and the resulting anomalously high heat and particle loss in

tokamaks. Anomalous transport refers to that which is larger than neoclassical

transport, generally by several orders of magnitude. While neoclassical transport is

due to the Coulomb collisions of particles undergoing drift-orbit motion in toroidal

magnetic field geometry, anomalous transport ultimately results from microturbu-

lent fluctuations in the electric and magnetic fields, driven by drift waves, which

cause fluctuations in the particles’ velocities and positions. Although drift wave-

induced plasma microturbulence is not catastrophic in the sense of macroscopic

magnetohydrodynamic turbulence, which can disrupt the plasma, plasma micro-

turbulence can significantly degrade the confinement properties of a tokamak by

enhancing the diffusion of heat, particles, and momentum across magnetic surfaces.

Thus, understanding the underlying driving mechanisms of plasma microturbulence

and the means to suppress it is critical in developing more efficient fusion reactors.

1



2

The gyrokinetic equation provides a theoretical, first-principles based founda-

tion for studying drift-like microinstability driven turbulence in magnetized plas-

mas. In a typical low β tokamak plasma, i.e. one which is characterized by an

average plasma pressure which is much smaller than the average magnetic pres-

sure, drift waves are essentially ion acoustic waves that are destabilized by density

and temperature inhomogeneities in the plasma. They are characterized by low

frequencies (compared to the cyclotron frequency) and small spatial scales (relative

to the size of the tokamak). These basic properties of drift waves define the physical

model used in gyrokinetic theory.

Gyrokinetic simulations of plasma microturbulence and transport could be used

in the near future to design the next generation of experimental tokamaks with

optimal confinement properties. However, solving the full nonlinear, 5D integro-

differential gyrokinetic equation in realistic geometry with full physics, including

non-adiabatic electron dynamics with trapped and passing electron physics, impu-

rity species, collisionality, and electromagnetic fluctuations, can be computationally

intensive, requiring hundreds of hours of computing time on massively parallel ma-

chines. Thus, this work focuses on the design of advanced numerical schemes and

order-reduction methods for Eulerian gyrokinetic solvers that significantly improve

their accuracy and time efficiency for more effective studies of plasma microturbu-

lence. Algorithms such as these can improve our fundamental physics understand-

ing of the driving mechanisms behind anomalous transport in tokamaks, enhance

the study of transport in existing experiments, and ultimately provide predictive

capabilities, which in turn will enable the design of future fusion reactors that

would follow ITER (a proposed next generation international experimental burn-

ing plasma tokamak) with optimal confinement properties. Furthermore, these
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algorithms may aid in advances beyond core turbulence studies, such as the devel-

opment of a multiscale transport model based on nonlinear gyrokinetic simulations

and the coupling of core kinetic simulations to edge kinetic formulations.

In addition to studies of algorithms for gyrokinetics, as an application of using

gyrokinetic simulations to develop a further understanding of the mechanisms lead-

ing to improved confinement in tokamak plasmas, this work also explores the effects

of flux surface shape on the gyrokinetic stability and turbulent transport of toka-

mak plasmas. These studies are performed using the GS2 code (a 5D, nonlinear,

flux tube-based gyrokinetic code) as well as a new local linear trial function-based

gyrokinetic code.

1.1 Background

1.1.1 The Gyrokinetic Equation

The gyrokinetic equation is derived from a fundamental kinetic description of the

plasma consisting of the Boltzmann-Maxwell equations and is generally applica-

ble for a wide range of low frequency plasma phenomena. The nonlinear gyroki-

netic equation was first derived by Frieman and Chen [FRIEMAN and CHEN,

1982], followed by a number of interesting papers with alternate derivations and

extensions (such as [DUBIN et al., 1983; LEE, 1983; LEE, 1987; HAHM et al.,

1988; BRIZARD, 1992; QIN et al., 2000]; see also the recent review of nonlinear

gyrokinetic theory in [BRIZARD and HAHM, 2006] and a derivation in a simple

local limit in [HOWES et al., 2006]).

Here we briefly summarize the derivation of the gyrokinetic equation, basically

following the Frieman and Chen approach. The starting point for the derivation is
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the Boltzmann equation, given as follows, which, in the absence of the RHS collision

term, is simply an expression of 6D phase space conservation:

(

∂

∂t
+ ~v · ∇+

Zse

ms

(

~E + ~v × ~B
)

· ∂
∂~v

)

F =

(

∂F

∂t

)

coll

(1.1)

The key steps in the derivation are as follows:

1. A coordinate transformation from phase space coordinates to guiding center

coordinates is performed, i.e. (~x,~v)→ ( ~R,E, µ, ζ), where ~R is the guiding cen-

ter position such that ~x = ~R+ ~ρ, E = v2/2 is the particle energy, µ = v2
⊥
/2B

is the gyrocenter magnetic moment, and ζ is the gyrophase angle. Here, the

Larmor radius vector is given by ~ρ = (b̂×~v)/Ω, and the velocity vector is given

by ~v = v‖b̂+ ~v⊥, such that v2
‖

= 2(E − µB) and ~v⊥ = v⊥(cos(ζ)ê1 + sin(ζ)ê2),

where ê1 and ê2 are orthogonal unit vectors such that ê1 × ê2 = b̂.

2. A hierarchical set of equations is derived by expanding the distribution func-

tion as F = F0 + F1 + . . . (where F0 is the equilibrium distribution function

and F1 is the fluctuating distribution function) and applying the gyrokinetic

ordering assumptions:

F1

F0

∼ eΦ

T
∼ A‖

Bρ
∼ δB‖

B
∼ ω

Ω
∼ ρ

L
≡ ε� 1 (1.2)

k‖L ∼ k⊥ρ ∼ O(1) (1.3)

where ω is the characteristic fluctuation frequency, Ω is the cyclotron fre-

quency (Ωs = ZseB/msc), ρ is the gyroradius (ρs = vts/Ωs, where the

thermal speed is given by v2
ts = Ts/ms), L is the macroscopic equilibrium
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length scale, B is the equilibrium magnetic field, and k‖ and k⊥ are charac-

teristic wavenumbers parallel and perpendicular to the equilibrium magnetic

field. Φ, A‖, and δB‖ represent the fluctuating fields; specifically Φ is the

perturbed electrostatic potential, A‖ is the component of the perturbed mag-

netic vector potential parallel to the equilibrium magnetic field (such that

δ ~B⊥ = b̂×∇⊥A‖, where b̂ is the unit vector in the direction of the equilibrium

magnetic field), and δB‖ is the magnetic perturbation along the equilibrium

magnetic field. The gyrokinetic ordering captures the essential properties of

drift waves, namely small amplitude perturbations, slow time scales compared

to the gyromotion, large equilibrium scales compared to the gyroradius, and

strong anisotropy (i.e. large perpendicular gradients relative to the parallel

gradients).

3. The gyrokinetic equation, which describes the evolution of the gyrophase in-

dependent component of F1 (which we will denote as a non-adiabatic part

h plus an adiabatic part), results from solving the hierarchical equations in

the expansion up to O(ε2), imposing the gyrophase average as the solubility

condition. This averaging essentially reduces the dimensionality of the equa-

tions from 6D to 5D by eliminating the gyrophase angle ζ. Since ζ defines the

instantaneous position of the particle on a gyro-ring, the gyrokinetic equation

basically describes the evolution of an ensemble of rings of charge.

The gyrokinetic equation can be written in the following form:

(

d

dt
+ v‖b̂ · ∇+ iωdv

)

hs + C(hs) =

(

iω∗T +
∂

∂t

)

ZseFMs

T0s
χ (1.4)

Over the next few pages, we will define the various terms in this equation in the
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thin flux tube (or thin annulus) limit [HAMMETT et al., 1993; BEER et al., 1995],

followed by a description of the flux tube simulation domain and spatial coordinates.

In Eq. (1.4), h(kx, ky, θ, E, µ, t) is the 5D perturbed non-adiabatic part of the

species’ distribution function. For the equilibrium distribution function F0, note

that the gyrokinetic ordering expansion yields that F0 = F0(~R⊥, E, µ) = F0(x, E, µ),

so F0 is gyrophase independent and b̂ · ∇F0 = 0. It is commonly further assumed,

as we do here, that F0 is Maxwellian with isotropic pressure, i.e. F0s = FMs ≡

n0s/(
√

2πvts)
3e

−µB/v2ts+v2
‖
/2v2ts . The 3D generalized gyroaveraged electromagnetic

potential is represented in Eq. (1.4) as χ(kx, ky, θ, t) [ANTONSEN and LANE,

1980], defined as:

χ ≡ J0(γs)
(

Φ− v‖

c
A‖

)

+
J1(γs)

γs

msv
2
⊥

Zse

δB‖

B
(1.5)

where Φ(kx, ky, θ, t) is the perturbed electrostatic potential, A‖(kx, ky, θ, t) is the

parallel component of the perturbed magnetic vector potential, δB‖(kx, ky, θ, t) is

the parallel magnetic perturbation, and the argument of the Bessel functions is

given by γs = k⊥v⊥/Ωs. These field perturbations are computed self-consistently

from the gyrokinetic Poisson-Ampere equations as follows:

−k2
⊥Φ = 4π

∑

s

Zse
∫

d3v
(−ZseFMs

T0s
Φ + J0(γs)hs

)

(1.6)

−k2
⊥
A‖ = −4π

c

∑

s

Zse
∫

d3v (v‖J0(γs)hs) (1.7)

δB‖

B
= − 4π

B2

∑

s

∫

d3v

(

msv
2
⊥

J1(γs)

γs
hs

)

(1.8)
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Overall, the gyrokinetic system of equations describes the evolution of the per-

turbed part of a species’ distribution function along the trajectories of the species’

guiding center. The main driving terms as represented in Eq. (1.4) are the v‖b̂ · ∇

term, which represents the fast convective-like motion along the field line, the ωdv

term (ωdv = ((v2
‖
/v2

ts)ωd,‖ + (µB/v2
ts)ωd,⊥)), which contains the combined curvature

and ∇B drift frequencies:

ωd,‖ =
ρsvts
B2

~k⊥ · ~B × b̂ · ∇b̂ (1.9)

ωd,⊥ =
ρsvts
B2

~k⊥ · ~B ×∇B (1.10)

and the RHS ω∗T term, which is related to the temperature and density gradients:

ω∗T = ω∗

[

1 + ηs

(

v2
‖

2v2
ts

+
µB

v2
ts

− 3

2

)]

(1.11)

where ηs = Lns/LTs is the ratio of equilibrium density to temperature scale lengths

(L−1
ns = − (ρs/n0s) ~k⊥ · b̂ × ∇n0s and L−1

Ts = − (ρs/T0s) ~k⊥ · b̂ × ∇T0s) and the dia-

magnetic frequency is given by ω∗ = −ρsvts

Lns
. C(hs) represents a general linearized

collision operator (e.g. for pitch angle scattering and energy diffusion). The nonlin-

ear term, which couples the perpendicular spectral modes, is contained within the

convective part of the total time derivative in Eq. (1.4), i.e. dhs

dt
= ∂hs

∂t
+ c

B
[χ, hs],

where [ , ] is the perpendicular Poisson bracket, defined as [P,Q] ≡ ∂P
∂x

∂Q
∂y
− ∂P

∂y
∂Q
∂x

.

The nonlinearity comes from

c

B
[χ, hs] =

c

B
b̂×∇χ · ∇hs ≡ δ~vE · ∇hs (1.12)
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where

δ~vE =
c

B
b̂×∇J0(γs)Φ−

v‖

B
b̂×∇J0(γs)A‖ +

c

B

ms

Zse
v2
⊥
b̂×∇J1(γs)

γs

δB‖

B
(1.13)

in which the first term describes the ExB drift advection, the second term describes

particle motion along the perturbed field lines δB⊥ = b̂×∇⊥A‖ = ∇⊥ × (b̂A‖) (i.e.

magnetic flutter transport), and the third term describes the ∇B drift due to the

perturbed magnetic field.

In the gyrokinetic equation in Eq. (1.4), we have adopted flux tube geometry

using the field-line following spatial coordinate system developed by [BEER et al.,

1995], denoted as (x, y, θ), rather than the physical toroidal coordinates (r, θ, φ).

Field-aligned or ballooning geometry is derived from the Clebsh representation of

the magnetic field [KRUSKAL and KULSRUD, 1958], i.e. B = ∇α × ∇ψ, where

ψ = (1/2π)2
∫

dτ ~B · ∇θ is the poloidal flux, α = φ− q(ψ)θ − ν(ψ, θ, φ) (where the

function ν is 2π periodic in θ and φ), and θ is the physical poloidal angle. Thus,

in the non-orthogonal curvilinear coordinate system described by (ψ, α, θ), ψ (the

radial-like coordinate) and α (the field line label) remain constant along a field line,

while θ represents the distance along the field line. The advantage of field-aligned

coordinates is that, since turbulent structures are highly elongated along the field

lines (i.e. k⊥/k‖ � 1), a much coarser grid can be used in the coordinate that varies

only along field lines. That is, a relatively coarse grid can be used in the θ direction

in the field-aligned coordinates (ψ, α, θ).

In the thin flux tube limit, perturbed quantities are expanded using a Fourier
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series in the perpendicular directions as follows:

A(ψ, α, θ, t) =
∞
∑

j=−∞

∞
∑

k=−∞
Âj,k(θ, t)e

ijπ(ψ−ψ0)/∆Ψ+ikπ(α−α0)/∆α (1.14)

and thus periodicity is assumed in ψ and α with periodicity lengths 2∆ψ and 2∆α.

The choice of ∆α = π/N , where N is a positive integer, corresponds to simulating

a flux tube/annulus that covers 1/N of the full torus in the toroidal direction. For

small scale turbulence in the small ρ∗ = ρ/L∗ limit, where ρ is the gyroradius (the

radial correlation length of the turbulence typically scales with ρ) and L∗ is the

length scale over which plasma gradients are changing), it should be sufficient to

choose the toroidal width of the simulation domain to be much smaller than the full

toroidal extent, as long as it is a few times the decorrelation length of the turbulence.

The assumption of periodicity at the boundaries in ψ and α is a natural way of

modeling the interaction of turbulence in the simulation domain with turbulence

in adjacent regions of the full torus. One can always check convergence by varying

∆ψ and ∆α. If the results are not converging as the simulation domain gets larger,

then the assumption that small scale turbulence dominates is breaking down, or

effects such as scale-free avalanches are becoming important. (Global gyrokinetic

codes such as GYRO relax the radial periodicity assumption and use a radial grid

for ψ, while still using a spectral representation in α.)

A physical function A(r, θ, φ) is 2π periodic in the poloidal and toroidal angles

θ and φ, so the function A(ψ, α, θ, t) in the coordinate-transformed space is 2π/N

periodic in α (and thus satisfies the physical periodicity in φ) but is not periodic

in θ at fixed ψ and fixed α. Ensuring physical periodicity in θ at fixed r and fixed

φ leads to the following boundary condition in θ in field-line following coordinates:
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A(ψ, α − q(ψ)2π, θ + 2π, t) = A(ψ, α, θ, t). This leads to a more complicated θ

boundary condition on Âj,k(θ) in Eq. (1.14) which couples together modes with

different radial mode numbers. This boundary condition is explained in detail

in [BEER et al., 1995]. (An explanation in a simpler slab limit can be found in

[HAMMETT et al., 1993].)

The notation is simplified using the new variables x and y, defined as:

x =
q0
B0r0

(ψ − ψ0) , y = −r0
q0

(α− α0) (1.15)

where ψT = (1/2π)2
∫

dτ ~B · ∇φ is the toroidal flux, q(ψ) = dψT/dψ, such that

q0 = q(ψ0), B0 is the magnetic field at the magnetic axis, and r0 is the distance

from the magnetic axis to the center of the box at the midplane. Thus, Eq. (1.14)

becomes:

A(x, y, θ, t) =
∞
∑

kx=−∞

∞
∑

ky=−∞
Âkx,ky(θ, t)e

ikxx+ikyy (1.16)

where kx = j2π/Lx and ky = −k2π/Ly for Lx = 2q0∆ψ/B0r0 and Ly = 2r0∆α/q0.

The magnitude of the perpendicular wave number (k2
⊥

= k2
r + k2

θ) is given in field-

aligned coordinates by k2
⊥
(θ) = k2

x∇x ·∇x+2kxky∇x ·∇y+k2
y∇y ·∇y. Relating kx

and ky to the physical k-space coordinates kr and kθ, in the ŝ-α limit (i.e. the high

aspect ratio limit in circular geometry) we find that kθ = ky and kr = kx + θŝky, so

that k2
⊥(θ) = k2

y + (kx + θŝky)
2.

The spatial simulation domain in flux tube geometry is a rectangular box of

size Lx and Ly in the perpendicular dimensions which is extended along the field

lines (typically for −π < θ < π, such that Lz = 2πq0R0) and which twists due to

the magnetic shear as it wraps around the torus. As mentioned earlier, the parallel

boundary conditions at θ = ±π are more complicated than the simple periodic
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conditions for x and y, and involve coupling different kx modes. The flux tube

formulation usually assumes that the perpendicular dimensions of the flux tube Lx

and Ly are much smaller than the minor radius of the tokamak, so that gradients

and background equilibrium quantities are assumed to be constant (at their local

values at r0) across the radial width of the flux tube. Flux tube geometry is ap-

propriate for large tokamaks in the gyro-Bohm limit of small ρ∗. (The GYRO code

generalizes these thin flux tube/annulus assumptions by retaining the radial varia-

tions of the background quantities, and thus can handle arbitrary ρ∗. Convergence

studies have shown that GYRO agrees with the flux tube code GS2 in the small ρ∗

limit [CANDY et al., 2004].) For the linear terms in the gyrokinetic equation, there

is no explicit dependence on x or y, so the linear gyrokinetic equation reduces to a

1D equation in θ (each (kx, ky) mode is independent) for a chosen magnetic surface,

just like the 1D equation for MHD ballooning modes. (Note: The most unstable

linear modes often occur at kx = 0 (i.e. centered in the “bad-curvature” region

of the tokamak, discussed in section 1.1.2, so most linear gyrokinetic simulations,

including those in this thesis, focus only on these modes.)

1.1.2 Drift Wave Microinstabilities

The sources of free energy for driving drift wave microinstabilities are the equi-

librium temperature and density gradients. For a general overview of drift waves,

see the review article by [TANG, 1978] or more recent articles by [CONNOR and

WILSON, 1994] and [HORTON, 1999]. The most significant classes of drift waves

described by the gyrokinetic model for core tokamak plasmas are:

• ion/electron temperature gradient-driven modes (ITG/ETG): driven by tem-

perature gradients.
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• trapped electron modes (TEM): driven by trapped electron toroidal precession

resonances and can be driven more unstable by increased density gradients.

• kinetic ballooning mode (KBM): driven by temperature or density gradients

in the presence of finite β.

ITG-driven modes and TEMs are electrostatic instabilities which are unstable in

the limit of large wavelengths (k⊥ρi ∼ 1) and have frequencies which scale as vti/L.

Within this regime, the presence of perturbed electromagnetic dynamics can lead

to finite β corrections to ITG turbulence (which can be stabilizing) and coupling to

the KBM at β > βc, where βc is the threshold for the ideal MHD ballooning limit.

ETG-driven modes are analogous to ITG-driven modes, with the role of ions and

electrons reversed, and thus have much smaller length scales (k⊥ρe ∼ 1) and faster

frequencies (ω ∼ vte/L).

Many useful references are available on the linear stability regimes for these

tokamak drift waves. Notable for background include analytic derivations of linear

threshold conditions for the ITG mode (with adiabatic electrons) by [ROMANELLI,

1989], [HAHM and TANG, 1989], and [BIGLARI et al., 1989]. An analogous for-

mula for the linear threshold of toroidal ETG modes based on comprehensive linear

gyrokinetic simulations is given in [JENKO et al., 2001]. Analytic dispersion rela-

tions coupling the ITG mode and TEM are given in [TANG et al., 1986] (in the

weak density limit) and more generally in [ROMANELLI and BRIGUGLIO, 1990].

Extensive corresponding numerical results from early linear gyrokinetic simulations

can be found in [REWOLDT and TANG, 1990]. A more recent article by [ERNST

et al., 2004] presents an interesting comprehensive numerical stability analysis of

TEM turbulence, including a map of the R/Ln vs. R/LT stability boundaries in
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the ITG/TEM regime using hundreds of linear gyrokinetic simulations as well as

analysis of the nonlinear critical density gradient for TEM turbulence. Finite β

effects on the ITG mode and the coupling to the KBM are analyzed analytically

in a local fluid limit and numerically with a linear gyrokinetic code in [KIM et al.,

1993]. Finally, an interesting article by [REWOLDT et al., 1987] presents an ana-

lytical and numerical analysis of the effects of collisionality on all of these modes.

A review of advances in studies of the stability of tokamak drift-wave turbulence

using nonlinear gyrokinetic simulations are presented in the next section of this

thesis.

Overall, while ITG turbulence is believed to be the primary drive for turbu-

lent ion thermal transport in the core region of a tokamak and the trapped elec-

tron response to ITG modes often explains much of the observed electron ther-

mal transport, the study of additional driving mechanisms for electron thermal

transport is presently an active area of research. Based on mixing length esti-

mates (i.e. χ ∼ (∆x)2/∆t ∼ γ/k2
⊥
, where γ is the linear growth rate), the ther-

mal diffusivity resulting from ETG turbulence is much smaller than that resulting

from TEM turbulence, specifically χe,ETG/χe,TEM ∼
√

me/mi ∼ 1/60. However,

gyrokinetic simulations have recently shown that, because of the difference be-

tween ITG and ETG zonal flows (unlike for ITG turbulence, the zonal flow mode

for ETG turbulence is also adiabatic, effectively slowing the zonal flow growth),

ETG turbulence can lead to the formation of radially elongated convective cells

called streamers, which essentially increase the radial correlation length scale and

thus can enhance the transport above the mixing length estimate [JENKO et al.,

2000; DORLAND et al., 2000; JENKO and DORLAND, 2002]. (Note: The KBM

can also lead to significant electron thermal transport. However, 2nd stability effects
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can occur at high β, depending on the value of the equilibrium β radial gradient

(∂r/aβ =
∑

s

∂r/aβs = −
∑

s

βs(R/Lns +R/LTs)(a/R), where the total βtotal is given

by the sum over the β for each species, i.e. βtotal =
∑

s

βs for βs = 8πn0sT0s/B
2).)

ETG turbulence is actively being explored in particular as a candidate for ex-

plaining anomalous electron thermal transport in internal transport barriers (ITBs).

An ITB is a region inside a tokamak plasma marked by steep temperature and/or

density gradients. It has been experimentally observed that within an ITB, ion

thermal transport is reduced to neoclassical levels, while electron thermal trans-

port remains anomalous [STALLARD et al., 1999]. The reduction of ion thermal

transport within an ITB is believed to be due to large-scale equilibrium ExB shear

flows, which suppress ITG modes and TEMs generally when the shearing rate γExB

exceeds the maximum ITG linear growth rate in the absence of flow shear γITG,max.

This “quenching rule” has been shown previously with gyro-Landau-fluid simula-

tions in [WALTZ et al., 1995] and more recently with nonlinear gyrokinetic simula-

tions in [KINSEY et al., 2005]. In contrast, equilibrium-scale ExB shear flows most

likely do not affect ETG modes due to their large growth rates. Further support-

ing ETG turbulence as a driving mechanism for ITB anomalous electron transport

is the fact that ETG modes drive negligible ion thermal transport, since the ion

response is essentially adiabatic in the small spatial scales of ETG turbulence.

While understanding the driving mechanisms in internal transport barriers may

be critical in obtaining good confinement in tokamaks, ETG turbulence is difficult

to resolve computationally due to its small spatial scales and fast time scales, and

thus ETG turbulence has presently only been studied in the context of adiabatic

ions. Specifically, ETG physics coupled with ITG/TEM physics is presently compu-

tationally intractable with realistic ion-to-electron mass ratios. While this partially
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motivates the need for advanced algorithms for gyrokinetics as explored in this the-

sis research, ETG physics is not a focus here. Rather, this thesis research explores

the regime of ITG/TEM/KBM turbulence, focusing specifically on the effects of

non-adiabatic electron dynamics and electromagnetic perturbations. This regime

is described in more detail below in the context of electrostatic gyrokinetic theory.

Here we investigate the stability of ITG modes via simplifications of the gyroki-

netic equation for the case of a single ion species and electrons. We consider the

linear, collisionless, electrostatic limit. With these assumptions, the kinetic and

field equations become:

(

∂

∂t
+ v‖b̂ · ∇+ iωdv

)

hs =

(

iω∗T +
∂

∂t

)

ZseFMs

T0s

J0(γs)Φ (1.17)

Φ
∑

s

Z2
se

2n0s

T0s

=
∑

s

Zse
∫

d3vJ0(γs)hs (1.18)

where we have also used the assumption of small Debye length (i.e. k⊥λDi � 1,

where λ2
Di = T0i

4πn0iZie2
) to simplify the Poisson equation. For convenience, we elimi-

nate the time derivative on the RHS of the kinetic equation by rewriting it in terms

of the gyroaveraged fluctuating particle distribution function fs(kx, ky, θ, E, µ, t),

i.e. fs = hs − ZseFMs

T0s
J0(γs)Φ (recall that hs is the non-adiabatic part). Thus, our

equations now become:

(

∂

∂t
+ v‖b̂ · ∇+ iωdv

)

fs =
(

iω∗T − v‖b̂ · ∇ − iωdv
) ZseFMs

T0s

J0(γs)Φ (1.19)

Φ
∑

s

Z2
s e

2n0s

T0s

(1− Γ0(bs)) =
∑

s

Zse
∫

d3vJ0(γs)fs (1.20)
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where Γ0(bs) = e−bsI0(bs) and bs = (k⊥vth/Ωs)
2. Assuming a time and θ space

dependency of e−iωt+ik‖qRθ for the perturbed quantities, we find that

fs = −
(

ω∗T − k‖v‖ − ωdv
ω − k‖v‖ − ωdv

)

ZseFM
T0s

J0(γs)Φ (1.21)

We adopt this distribution function as a kinetic treatment of the ion species.

For the electrons, however, we assume an adiabatic response, i.e. fe = eFMe

T0e
J0(γe)Φ.

To find the ion charge density, we need to integrate Eq. (1.21) over velocity-space.

Here we simplify to the local limit, where we treat ωd,‖, ωd,⊥, k‖, k⊥, and B as

constants. Specifically, we use ωd,‖ = ωd,⊥ = −kyρivts/R (where R is the major

radius). We further simplify using the following ordering assumptions:

ωd
ω
∼ k‖vti

ω
∼ k⊥ρi = ε� 1 (1.22)

This allows us to expand the denominator of Eq. (1.21). We would like to re-

tain finite k‖ effects in this order, so we also assume that ω∗T

ωd
, which scales as

∼
(

R
Ln

+ R
LT

)

, is O(1). With these assumptions, the perturbed ion charge density

becomes:

δni ≡ Zie
∫

d3vJ0(γi)fi

≈ Φ
Z2
i e

2n0i

T0i

[

1

ω
(2ωd − ω∗) +

1

ω2

(

k2
‖v

2
ti − 2ωdω∗ (1 + ηi) + 7ω2

d

)

]

(1.23)

Substituting this and the adiabatic electron response in the RHS of the Poisson

equation in Eq. (1.20) yields the following dispersion relation:

ω =
(2ωd − ω∗)

2
(

1
Zi

T0i

T0e
+ k2

⊥ρ
2
i

)
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±

√

(2ωd − ω∗)
2 + 4 1

Zi

T0i

T0e

(

k2
‖
v2
ti − 2ωdω∗ (1 + ηi) + 7ω2

d

)

2
(

1
Zi

T0i

T0e
+ k2

⊥
ρ2
i

) (1.24)

This expression is accurate to O(ε2) for ηi ≤ O(1). In the high ηi limit (ηi, R/LT i �

1), it reduces to the standard purely unstable “ηi mode”:

ω = ±i
√

2ωdω∗ηi
√

1
Zi

T0i

T0e
+ k2

⊥ρ
2
i

= ±ikyρi

√

2 R
LTi

√

1
Zi

T0i

T0e
+ k2

⊥ρ
2
i

vti
R

(1.25)

Eq. (1.25) shows that the linear ITG growth rate scales as γ ∼ vti/R. Thus,

since R/L ∼ O(1), the standard gyro-Bohm mixing length estimate for the thermal

diffusivity is apparent from this equation, i.e. χITG ∼ γ/k2
⊥
∼ ρ2

i vti/L. (Note: There

are subtleties about the k2
⊥ scaling assumptions; here we have used the standard

gyrokinetic ordering assumption that k⊥ρi ∼ O(1) for simplicity.)

Note that Eq. (1.25) has the same form as the classic magnetic curvature-driven

MHD interchange instability (γinterchange = vti/
√

RLp, where L−1
p = −∇p/p is

related to the gradient length scale of the pressure), but with k⊥ρi terms since

Eq. (1.25) represents an electrostatic drift-type mode that depends on FLR effects.

While the driving effect of the temperature gradient on the ITG mode is clearly

evident in Eq. (1.25), from Eq. (1.24) we can also see that there is a competing

stabilizing effect of driving a parallel sound wave. Thus, we can solve for the critical

temperature gradient at which the ITG mode is stabilized:

(

R

LT i

)

c

=
1

8





1
1
Zi

T0i

T0e
+ k2

⊥
ρ2
i





(

2− R

Lni

)2

+
7

2
− R

Lni
+
k2

‖
v2
ti

2ω2
d

(1.26)

The presence of non-adiabatic electrons both modifies the ITG instability and

introduces a new class of drift waves, the TEM. The effect of non-adiabatic electron
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dynamics on the ITG instability can most simply be seen by dividing the perturbed

electron density response as:

δne = ftδne,trapped + (1− ft)δne,circulating (1.27)

where δne,trapped is the density response of the trapped electrons, δne,circulating is the

density response of the free electrons, and ft is the fraction of trapped particles. For

the circulating electrons, we assume an adiabatic response, since there is nothing to

prevent the free electrons from thermalizing. For the trapped electrons, we consider

the bounce-average of the gyrokinetic equation in Eq. (1.19). Most significantly,

the parallel convective term is eliminated, since trapped particles have zero bounce-

averaged parallel velocity. For the bounce-averaged Φ and ωd, we assume the θ = 0

local limit values. Thus, using the ansatz e−iωt+ik‖qRθ for the perturbed quantities,

we obtain:

fe,trapped = −
(

ω∗T,e − ωdv,e
ω − ωdv,e

)

(1.28)

Integrating over velocity-space using the simplification of the ordering assumptions

of Eq. (1.22) to expand the denominator, we find that

δne ≈ Φ e2n0e

T0e

[

ft
1

ω
(2− ωde − ω∗e)

+ft
1

ω2

(

−2ωdeω∗e(1 + ηe) + 7ω2
de

)

+(1− ft)
]

(1.29)

Using Eq. (1.23) and Eq. (1.29) for the RHS density response in the Poisson equation

in Eq. (1.20) (note that ion trapping is ignored and is often negligible due to the
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long bounce time for ions), we find that:

ω = ±i2 (ω∗iωdiηi + ftω∗eωdeηe)

(1− ft) 1
Zi

T0i

T0e
+ k2

⊥
ρ2
i

(1.30)

where we have assumed the large η limit for simplicity.

The dispersion relation in Eq. (1.30) basically represents the coupled ITG/TEM

regime in a simple limit. Overall, instability requires that ωds and ω∗s have the

same sign. (Note that ωde = −Zi T0e

T0i
ωdi and ω∗e = −Zi T0e

T0i

R/Lne

R/Lni
ω∗i, i.e. the signs

are reversed for electrons.) Physically, this requires that the equilibrium pressure

gradient ∇p0 = ∇(n0T0) point in the same direction as ∇B, which occurs on the

outer midplane of the tokamak and hence is referred to as the “bad curvature”

region.

Comparing Eq. (1.30) with the pure “ηi mode” growth rate in Eq. (1.25), we

see that the effect of the nonadiabatic electrons is to increase the ITG growth rate.

Physically, trapped electrons are destabilizing since they are unable to respond

adiabatically to local variations in Φ and thus cannot participate in charge cancel-

ing. Note then that collisional effects are significant for TEMs, since pitch angle

collisions can result in the trapping/detrapping of electrons. While non-adiabatic

electron dynamics are required for simulations with magnetic perturbations, inclu-

sion of non-adiabatic electron dynamics and collisionality is generally essential for

an accurate model of combined ion and electron anomalous transport driven by

drift wave turbulence in the ITG/TEM/KBM regime.
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1.1.3 Advances of Nonlinear Gyrokinetic Simulations

The first nonlinear simulations of drift wave-induced plasma microturbulence in

toroidal geometry were done with gyrofluid codes. The gyrofluid equations are

derived from velocity moments of the gyrokinetic equation, using carefully chosen

closure models to capture key kinetic effects. (There were also pioneering nonlin-

ear toroidal simulations by C. Z. Cheng and H. Okuda in the 1970’s, but these

were full particle simulations before the development of the nonlinear gyrokinetic

equation or the δf algorithm and the resulting resolution on those early computers

was fairly coarse [CHENG and OKUDA, 1977].) The key nonlinear gyrofluid sim-

ulations were performed in the early to mid 1990’s. The most significant result of

these gyrofluid simulations was to show that turbulence-generated ExB shear flows

play an important role in the nonlinear saturation of ITG turbulence, first shown

in slab geometry [DORLAND, 1992] and later in toroidal geometry [HAMMETT et

al., 1993; WALTZ et al., 1994; WALTZ et al., 1995; BEER, 1995]. Gyrofluid simu-

lations were also the first microturbulence codes to nonlinearly incorporate trapped

electron dynamics [BEER, 1995] and electromagnetic dynamics [SNYDER, 1999],

as well as to show the stabilizing effects of large-scale equilibrium ExB shear flows

on ITG turbulence [WALTZ et al., 1995; WALTZ et al., 1998]. Significant advances

in theory-based turbulent transport modeling (discussed in more detail in the next

section), such as the development of the IFS-PPPL model [KOTSCHENREUTHER

et al., 1995b] and the GLF23 model [WALTZ et al., 1997], were also made based

on these nonlinear gyrofluid simulations.

Fully gyrokinetic nonlinear simulations of ITG/TEM turbulence soon followed

the gyrofluid codes, using δf particle-in-cell (PIC) algorithms. Specifically, in the

mid 1990’s, the independently-developed PIC codes ORB [PARKER et al., 1993]
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and PG3EQ [DIMITS et al., 1994; DIMITS et al., 1996] were performing electro-

static gyrokinetic simulations of ITG turbulence (in the adiabatic electron limit).

ORB used full cross-section global geometry, while PG3EQ used flux tube geom-

etry. PG3EQ was the first code to show numerically the importance of a linearly

undamped residual component of the purely poloidal (ky = 0) zonal flows [ROSEN-

BLUTH and HINTON, 1998] in saturating the level of the turbulence near marginal

stability, leading to an upshift in the nonlinear critical temperature gradient [DIM-

ITS et al., 2000]. (The gyrofluid codes had been the first to emphasize the impor-

tance of zonal flows in regulating the turbulence, but the initial gyrofluid closures

had too much damping of this component of the zonal flows.) For more recent work

on the PIC approach, see [PARKER et al., 2004] or [WANG et al., 2006].

While one approach to solving the gyrokinetic equations is the Lagrangian PIC

method used in the references in the above paragraph, another approach uses Eu-

lerian or “continuum” methods. Eulerian solvers are actually a class of algorithms

which can employ a variety of modern methods that have been developed for com-

putational fluid dynamics, such as pseudo-spectral techniques, high-order upwind

or WENO (weighted essentially non-oscillatory) differencing, higher-order Gaus-

sian integration, or implicit methods. Such Eulerian methods are the focus of this

thesis research. The main present-day continuum-based gyrokinetic codes are GS2

[KOTSCHENREUTHER et al., 1995a; DORLAND et al., 2000], GENE [JENKO,

2000], and GYRO [CANDY and WALTZ, 2003a].

The nonlinear flux tube GS2 code was the first implementation of the fully elec-

tromagnetic nonlinear gyrokinetic-Poisson-Ampere system of equations, including

trapped and passing particle dynamics. (GS2 is still the only major nonlinear
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gyrokinetic code which includes finite δB‖ effects, which are believed to be partic-

ularly important in high β spherical torus plasmas [BOURDELLE et al., 2003].)

Prior to this, the GENE code had been the first code developed to solve the drift-

kinetic equation for electrons with fluid ions for edge drift-Alfvén turbulence stud-

ies. GENE has since been upgraded, first to include gyrokinetic ions (ignoring

trapping) and later to include trapping [JENKO et al., 2000]. Presently, GENE

and GS2 contain similar gyrokinetic physics models. GS2 and GENE were recently

the first codes to simulate ETG-driven turbulence (with adiabatic ions, such that

ion-scale turbulence is neglected), which identified the existence of radially extended

eddies called streamers which can significantly enhance anomalous electron thermal

transport above mixing length estimates [JENKO et al., 2000; DORLAND et al.,

2000; JENKO and DORLAND, 2002].

To date, the most comprehensive gyrokinetic code for tokamak microturbulence

simulations is the GYRO code. This code was originally modeled after GS2 but has

since been extended to include global effects, specifically profile variation in the den-

sity gradients, including equilibrium-scale ExB shear rotation. Most significantly,

GYRO has been used to show the importance of including equilibrium ExB shear in

modeling low confinement L-mode discharges [CANDY and WALTZ, 2003b], which

are experimentally observed to have a Bohm-like scaling (i.e. χB ∼ ρscs) [MCKEE

et al., 2001], rather than a gyro-Bohm scaling (i.e. χGB ∼ χBρs/a), as observed

for high confinement H-mode discharges [PETTY et al., 1995]. This may explain

why previous GS2 simulations of H-mode discharges in Alcator C-Mod, which had

helped to identify the importance of including non-adiabatic electron dynamics and

finite collisionality in accurately recovering the nonlinear upshift of the critical tem-

perature gradient, were successful [MIKKELSEN et al., 2002], while GS2 studies
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of L-mode discharges in DIII-D yielded energy losses which were 2-3 times larger

than the experimental values [ROSS and DORLAND, 2002].

Overall, GYRO simulations have identified “full physics” necessary for accurate

core tokamak plasma simulations, including, in addition to equilibrium ExB shear,

non-adiabatic electron dynamics with trapped and passing electron physics, colli-

sionality, and electromagnetic fluctuations. However, presently “routine” nonlinear

gyrokinetic simulations are mostly performed in the electrostatic limit, sometimes

with adiabatic electrons, to reduce the computational intensity. Thus, faster algo-

rithms for gyrokinetic solvers, such as those explored in this thesis, would be useful

for more efficient studies of plasma microturbulence.

The next generation of gyrokinetic simulations will incorporate multiscale dy-

namics, such as bridging the ITG/TEM regime with the ETG regime, connecting

the slow time scales of macroscopic transport with the fast dynamics of gyrokinetics

(described further in the next section), studying the slow evolution of neoclassical

tearing modes (which depend sensitively on the effects of gyrokinetic turbulence

in flattening the pressure profile around the island), and coupling core tokamak

simulations with the plasma edge region. The edge region is particularly compli-

cated due to existence of low and high collisionality regimes and steep gradients,

such that particle drift orbit widths can be comparable to the equilibrium radial

gradient scale lengths. Presently, most edge plasma simulations are done with fluid

simulation models, such as the BOUT code [XU et al., 2000], so kinetic extensions

are needed. A large initiative in this direction is being undertaken by the Center

for Edge Plasmas [NEVINS et al., 2004], and this has partially motivated the ex-

ploration of advanced implicit algorithms for Eulerian gyrokinetic solvers in this

thesis.
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1.1.4 Turbulent Transport Models

While gyrokinetics allows us to study the nature of low-frequency microscopic drift

instabilities and to compute key properties of the turbulence which result from these

instabilities (such as thermal, momentum, and particle transport coefficients), the

ultimate goal of gyrokinetic simulations is to aid in the building of a turbulent

transport model. Previous theoretical models of anomalous thermal and particle

transport have been based on linear gyrokinetic and nonlinear gyrofluid turbu-

lence simulations, generally in a circular flux surface limit. The most widely used

of these drift wave theory-based transport models include the IFS-PPPL model

[KOTSCHENREUTHER et al., 1995b], the GLF23 model [WALTZ et al., 1997],

and the Multi-mode model [BATEMAN et al., 1998].

The IFS-PPPL thermal transport model consists of an analytic formula for the

ion heat coefficient based on interpolations of scans over nine parameters (R/LT ,

R/Ln, q, ŝ, T0i/T0e, r/R, νei, nb/ne, and Zeff) using a nonlinear, toroidal, flux

tube-based gyrofluid code with adiabatic electrons. Calculations of χ using this

code were supplemented with linear gyrokinetic ballooning calculations with non-

adiabatic electron physics to account for gyrokinetic electron dynamics and to im-

prove the accuracy of critical temperature gradient predictions. Radial tempera-

ture profiles obtained from coupling the IFS-PPPL model with the 1D steady-state

power balance code HYPED exhibited good quantitative agreement with data from

TFTR L-mode discharges in the core confinement region. Good agreement was

also found with data from the enhanced-confinement, high temperature, supershot

regime [ERNST et al., 1998] as well as with L-mode and H-mode discharges from

shaped tokamaks [MIKKELSEN et al., 1998] using an updated version of the IFS-

PPPL model which includes ExB shear suppression effects and a relatively weak
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elongation scaling factor of χ ∼ 1/(1 + ((κ − 1)q/3.6)2), based on linear gyroki-

netic and nonlinear gyrofluid simulations of moderately shaped (κ < 1.6) plasmas

[DORLAND et al., 1996].

Inspired by the success of the IFS-PPPL model, the subsequent GLF23 model

consists of a linear, trial function-based gyrofluid code with quasi-linear transport

coefficients in an s-α circular flux surface limit [WALTZ et al., 1997]. To normalize

the saturation level of the fluctuating quantities in the quasi-linear flows, this model

uses a mixing rate rule tuned to fit full nonlinear, single ion species, gyrofluid

simulations of ITG-driven transport. Overall, the GLF23 model is comparable to

the IFS-PPPL model for L-modes and H-modes in the core confinement regime.

It does, however, attempt to better predict enhanced core transport barriers by

including the stabilizing effects of negative magnetic shear and high Shafranov

shift gradients (i.e. the MHD α parameter). ExB shear stabilization effects (which

are often dominant) are also more accurately modeled in the GLF23 model than

in the IFS-PPPL model, in which flow shear corrections generally appear to be too

strong. However, problems with the GLF23 model’s original treatment of high α

and negative shear have recently been found and some interim improvements have

been made, while trying to find a way to include more realistic geometry effects

[STAEBLER et al., 2005]. It is notable that both the IFS-PPPL model and the

GLF23 model tend to be very stiff (more than fluid models like the Multi-mode

model described below) in that the transport rises very rapidly once the critical

gradient is exceeded. A general overview of the development of the GLF23 model,

its application in predicting transport in DIII-D plasmas, and outstanding physics

issues can be found in [KINSEY et al., 2005]. A significant upgrade of the GLF23

model based on an extensive database of nonlinear simulations from the global
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gyrokinetic code GYRO over a wide range of operating parameters is presently

under development [WALTZ, 2005].

Similar to the GLF23 model, the Multi-mode model is based on quasi-linearized

fluid equations describing ITG modes and TEMs [BATEMAN et al., 1998]. A fur-

ther approximation includes the use of only one typical value of ky in the quasi-linear

model, rather than a more accurate spectrum of modes. Although the Multi-mode

model is based on circular plasmas, it does include an empirically-based κ−4 factor

in all transport calculations as an attempt to account for the effects of elongation on

transport. Additional tuning coefficients (also based on fits to experimental data)

are used to account for fast ion and Shafranov shift effects. While a coupling of the

Multi-mode model with the BALDUR transport code has yielded results which are

in good agreement with both L-mode and H-mode discharges, the main limitation

of this model is that it lacks the effects of ExB velocity shear.

Turbulent transport models based directly on nonlinear simulations of gyroki-

netic simulations of plasma turbulence are not yet fully tractable, but are an active

area of research. One possibility would be to iteratively couple a transport code

with a gyrokinetic code. The basic idea is that thermal and particle transport

coefficients from a number of independent flux tube/annulus GS2 or GYRO mi-

croturbulence simulations, each of which is simulating a different radial region of

the plasma (i.e. one turbulence simulation for the region 0.1 < r/a < 0.2, another

for the region 0.2 < r/a < 0.3, etc.) can be patched together to approximate the

full radial dependence. These can then subsequently be used in a transport code

to compute the evolution of plasma temperature and density profiles given time-

dependent boundary conditions, which can iteratively be fed back into a gyrokinetic
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code. At least for steady state problems, and assuming a fixed boundary condi-

tion inside the top of the edge pedestal, this is a challenging but seemingly feasible

goal by using the latest in massively parallel computers. Such an approach would

benefit from projective integration [GEAR and KEVREKIDIS, 2003a; GEAR and

KEVREKIDIS, 2003b] and advanced implicit methods to stabilize the iteration be-

tween the long time scale transport code and the short time scale microturbulence

code. (Alternatively, with advances in computing within the next few years, it

might become feasible to run GYRO for a full tokamak cross-section.)

For a complete predictive model of tokamak behavior, one would also want to

couple to a comprehensive edge turbulence simulation. Because of various special

features of edge turbulence (e.g. both weak and strong collisional regimes, open

and closed field lines, wall interactions, strong atomic physics effects, etc.), for

which present core gyrokinetic microturbulence codes are not well suited and would

require significant upgrades, there are initiatives to build new gyrokinetic codes to

specifically simulate edge turbulence.

In any case, the types of fast iterative implicit solvers that we explore in this

thesis research could be useful to enhance the time efficiency of both the present

core microturbulence gyrokinetic codes and future edge microturbulence gyroki-

netic codes. However, even with these computational savings, such direct coupling

between a transport code and gyrokinetic codes would still be computationally very

expensive, and one would want to have faster alternatives for scoping studies. One

alternative would be a transport model based on the reduced-order trial function

code which we develop in this thesis, which could then be fit to nonlinear gyrokinetic

simulations. This would be a kind of kinetic extension of the GLF23 model.



1.2. Motivation 28

1.2 Motivation

To summarize, the contribution of this thesis is the development of advanced algo-

rithms for gyrokinetics which aid in more effective studies of plasma microturbu-

lence and the driving mechanisms of anomalous transport in tokamaks. Accurate

simulations of core tokamak plasmas which captures the physics of ITG, TEM,

KBM, and ETG physics require gyrokinetic ions, non-adiabatic electron dynam-

ics, trapped electron physics, finite β physics, collisions, impurity species, shaped

plasma geometry, and equilibrium-scale ExB shear. The algorithms studied in this

work focus on the regime of ITG/TEM/KBM physics and are particularly designed

for faster simulations with the inclusion of non-adiabatic electron dynamics (which

increase the time step restrictions of standard explicit algorithms by a factor of
√

mi/me in order to resolve fast parallel electron dynamics) and with electromag-

netic perturbations (which increase the time step restrictions of standard algorithms

by a factor of β−1/2 in order to resolve the fast Alfvén waves). The latter is particu-

larly important for extending core kinetic simulations to edge kinetic formulations,

where an Alfvén wave which is even faster than the thermal electron motion exists

in the low β edge/scrape-off region. Overall, this research may aid in the future

building of an integrated gyrokinetic-based turbulent transport model incorporat-

ing slow macroscopic transport time scales with the driving microscopic gyrokinetic

fast dynamics, as well as more generally in developing gyrokinetic simulations as

a predictive tool for designing future tokamaks based on extensive optimizational

design wrappers. Furthermore, in this direction, studies of the effects of shap-

ing on gyrokinetic stability and transport in this thesis research contribute in the

near-term to an extensive database of stability properties over a range of operating

parameters, recently begun by the GYRO users group, which may be essential in
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understanding existing experiments and in ultimately achieving a burning plasma

in ITER.

1.3 Overview of this Thesis

This thesis focuses on two main themes: advanced algorithms for gyrokinetics

(Chapters 2-3) and applications of gyrokinetics to study the effects of flux surface

shape on the stability and transport of tokamak plasmas (Chapters 4-5).

Chapter 2 explores various possible improved numerical algorithms for initial

value Eulerian gyrokinetic solvers. The algorithms explored include semi implicit-

explicit schemes (which treat the distribution function terms in the gyrokinetic

equation implicitly, while the field terms are treated explicitly) and iterative implicit

schemes (which are based on numerical approximations of the plasma response as

a model preconditioner combined with standard iterative schemes, such as Krylov

solvers). For this work, we focus on the time-advancement algorithm combined

with GS2’s 2nd order compact finite differencing of spatial derivatives, though the

difficulties with this spatial differencing are discussed.

In Chapter 3, the implementation of an Alternating Direction Implicit (ADI)

algorithm for a gyrokinetic problem is explored and a stability analysis for a test

problem of a shear kinetic Alfvén wave is performed. While ADI algorithms are

robustly stable for many types of problems, we show that for gyrokinetic problems

the ADI algorithm has a very severe time step limitation that would lead to a

surprising numerical instability if violated. Comparisons with some fully explicit

and semi implicit-explicit schemes are also made. This chapter is based closely on

a recent paper as published in [BELLI and HAMMETT, 2005].
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In Chapter 4, the effects of flux surface shape and other plasma parameters on

the gyrokinetic stability and transport of tokamak plasmas is investigated using

GS2. Studies of the scaling of nonlinear ITG turbulence with shaping parameters

are performed starting with a representative JET-like flux surface and artificially

varying elongation, triangularity and their radial gradients together using the Miller

analytic equilibrium formalism [MILLER et al., 1998] to approach the circular limit

via linear interpolation. Comparisons are made with empirical experimentally-

based elongation scalings. The effects of shaping on the Dimits upshift of the

nonlinear critical temperature gradient as well as the effects of electromagnetic

dynamics in the presence of shaping are also explored.

Chapter 5 formulates a reduced-order local model for linear gyrokinetics to aid

in fast scoping studies of shaping effects. This model includes the effects of plasma

shaping, magnetic shear, and toroidal geometry by using representative values of the

equilibrium parameters averaged over a Gaussian trial eigenfunction, using the same

geometrical information available in the full GS2 gyrokinetic code. Benchmarks

with GS2 in the linear, collisionless, electrostatic limit for a range of shaped flux

surface equilibria are presented. Extensions to include magnetic fluctuations via

coupling to higher-order Hermite basis functions are also described.

Finally, Chapter 6 summarizes the main results from this thesis and presents

possible new continuing areas of research based on this work.



Chapter 2

Semi-Implicit and Iterative

Implicit Algorithms for Eulerian

Gyrokinetic Solvers

T
he main numerical approaches to gyrokinetic simulations are particle-in-cell

(PIC) solvers and Eulerian solvers. PIC (or Lagrangian) solvers integrate the

gyrokinetic equations of motion for millions of particles, while Eulerian (or contin-

uum) solvers use finite difference and/or spectral methods on a discrete grid. The

first nonlinear toroidal gyrokinetic codes were only of the PIC type [DIMITS et al.,

1996; SYDORA et al., 1996; PARKER et al., 1999] primarily because the gyroki-

netic equation is presented in characteristic form when derived with Hamiltonian

formalism and the algorithms are easier to code relative to Eulerian solvers. For

many years, nonlinear gyrokinetic PIC simulations were generally limited to electro-

static fluctuations or to very low β, though recent work has demonstrated a success-

ful way to implement electromagnetic extensions at higher β [CHEN and PARKER,

31
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PIC Eulerian
Local PG3EQ GS2

Geometry (Dimits et al.) (Kotschenreuther, Liu, & Dorland)
GEM

(Chen & Parker)
Global GTC GYRO

Geometry (Lin) (Candy & Waltz)

Table 2.1: The main gyrokinetic codes currently supported by the U.S. fusion
program and their primary authors. Presently, all of these codes except GTC
contain electromagnetic dynamics.

2003]. Eulerian gyrokinetic simulations are relatively recent, with the first nonlinear

simulations done in the local flux tube/annulus limit [JENKO, 2000; DORLAND et

al., 2000] and, more recently, with nonlocal effects [CANDY and WALTZ, 2003a].

(There is also a pre-gyrokinetic history of Eulerian Vlasov simulations, including

early work by Cheng and Knorr [CHENG and KNORR, 1976], though the Eule-

rian algorithms in use today have evolved since then.) The main gyrokinetic codes

presently supported by the U.S. fusion program are given in table 2.1.

There are two approaches to linear Eulerian simulations: an initial value ap-

proach and an eigenvalue approach. An initial value code solves for the distribution

function using a finite difference in time. In contrast, an eigenvalue code Laplace

transforms in time, which leads to an integro-differential system of equations where

the frequency is an eigenvalue. This system of equations can be converted into

a matrix equation by expanding the unknown perturbed electrostatic and electro-

magnetic potentials in terms of chosen basis functions. The eigenvalue approach

allows one to find multiple linear modes with different frequencies, while the ini-

tial value approach is usually restricted to finding the fastest growing (or least

damped) eigenmode. The main benefit of the initial value approach compared with



33

the eigenvalue approach is that initial value codes can be more easily generalized for

nonlinear simulations. In this work, we focus on initial value Eulerian simulations.

There are two general schemes for time differencing a partial differential equation

for use in an initial value code: implicit schemes and explicit schemes. An implicit

scheme is one in which the evaluation of the unknown function fn+1 at the new

time level tn+1 depends on some function of fn+1. In contrast, in a fully explicit

scheme, the evaluation of fn+1 depends only on functions of fm which are known

from previous time steps, i.e. m < n + 1. In general, implicit schemes are more

computationally intensive per time step than explicit schemes since implicit finite

differencing converts the differential equation into an algebraic equation for the

vector of discrete unknowns fn+1
i , where the subscript i denotes the grid indexing

with respect to the non-temporal independent variables (e.g. spatial dimensions

and velocity dimensions). In the case of the gyrokinetic equation, this algebraic

equation is a matrix equation of the form A~x = ~b, which must be solved for ~x

at each time step. However, the advantage of implicit schemes is that they are

generally unconditionally stable, thus allowing for larger time steps than an explicit

scheme.

For example, consider a general implicit finite difference time advancement

scheme for the PDE ∂f
∂t

= Lf , where L is some arbitrary linear operator. The

finite difference form of this equation (ignoring the non-temporal grid indexing)

with 1st order accuracy in time is:

1

∆t

(

fn+1 − fn
)

= L
(

rfn+1 + (1− r)fn
)

(2.1)
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where r is the time-centering parameter, such that 0 ≤ r ≤ 1, where r = 0 repre-

sents a fully explicit scheme, r = 1 represents a fully implicit scheme, and r = 1/2

represents a time-centered 2nd order accurate implicit scheme. Defining an ampli-

fication factor A such that fn+1 = Afn and substituting this into Eq. (2.1), we find

that

A =
1 + λL∆t(1− r)

1− λL∆tr
(2.2)

where we have assumed that L is diagonalizable, with eigenvalues given by λL.

For a fully explicit scheme (r = 0), A = 1 + λL∆t and, thus, even if λL = iω

with real ω for stable oscillations, |A| > 1 for ∆t > 0, i.e. the finite difference

scheme is numerically unstable for undamped waves with purely imaginary λL for

all ∆t. For a fully implicit scheme (r = 1), however, A = (1− λL∆t)−1, and thus

numerical stability is guaranteed if all of the eigenvalues of L have zero or negative

real part. For the special case where the eigenvalues of L are purely imaginary,

while the fully implicit scheme is numerically stable, the centered implicit scheme

(r = 1/2) has the additional advantage of unitary |A|, just like the exact solution

fn+1 = e−iω∆tfn, and thus has perfect stability with no artificial dissipation.

Many Eulerian codes use explicit or semi-implicit time stepping algorithms. For

example, the GENE code [JENKO, 2000], which has been useful for studying var-

ious regimes of drift-Alfvén and ETG turbulence [JENKO et al., 2000], originally

used an explicit Lax-Wendroff finite difference technique for the linear terms with

a multi-dimensional, 2nd order upwind method due to Colella [COLELLA, 1990]

for the nonlinear terms. (Some of the algorithms in GENE have recently been

upgraded to employ 4th and 6th order compact finite differencing with 3rd order

explicit Runge-Kutta time stepping [JENKO et al., 2005].) The initial algorithm

of the global GYRO code [CANDY and WALTZ, 2003a] used a fully explicit, 5
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stage, 4th order Runge-Kutta scheme with higher-order upwind differencing. How-

ever, this algorithm was found to be numerically unstable at small k⊥ρi even at

time steps well below the electron advective Courant limit (v‖∆t/∆L � 1) since

it was mathematically connected with the electrostatic Alfvén branch. Recent

implementation of a 2nd order Implicit-Explicit Runge-Kutta splitting scheme in

GYRO [CANDY and WALTZ, 2003b] using precomputed plasma response matrices

for the parallel dynamics (a variant of GS2’s approach studied here) has yielded

improved stability by naturally cutting off high frequency oscillations, while still

asymptotically preserving accuracy in the stiff limit, unlike some higher-order split-

ting schemes. The Eulerian flux tube-based GS2 code [KOTSCHENREUTHER et

al., 1995a; DORLAND et al., 2000] was the first implementation of the fully elec-

tromagnetic, nonlinear 5D gyrokinetic equations including trapped and passing

particle dynamics. (The GENE code preceded GS2 in some aspects, as it was the

first code developed to solve the drift-kinetic equation for electrons with fluid ions

for edge drift-Alfvén turbulence studies. In [JENKO et al., 2000] it was upgraded

to include gyrokinetic ions (ignoring trapping) and has recently been further up-

graded to include trapping.) GS2 employs a fully implicit treatment of all of the

linear terms (parallel dynamics, ω∗ diamagnetic terms, and magnetic drifts), and

thus has no time restrictions on stability in the linear limit. Of course there is a

stability limit from the explicit treatment of the nonlinear terms, but the implicit

treatment of the linear terms is still a significant advantage because they contain

high frequency waves that do not interact much with the turbulence of interest but

still need to be treated in a numerically stable way.

While these various Eulerian gyrokinetic codes have been quite successful, there

is some overhead in the precomputation of the plasma response implicit matrices,
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so there is interest in exploring faster semi-implicit algorithms. Thus, here we

present studies of various improved numerical algorithms for continuum/Vlasov

gyrokinetic codes. While at times we focus on implementation of these algorithms

in the GS2 code, the methods that we discuss are more generally applicable and

may be useful in more global codes, such as GYRO. Faster implicit algorithms may

be particularly useful for edge gyrokinetic simulations, which must cope with a wide

range of collisional and wave time scales.

2.1 Implicit Schemes

The starting equations that we would like to solve are the coupled gyrokinetic-

Poisson-Ampere equations (Eqs. (1.4) and (1.6) - (1.8)), given as follows in the

linear, collisionless, δB‖ = 0 limit for simplicity:

∂fs
∂t

+
v‖

qR

∂fs
∂θ

+ iωdvfs =

(

iω∗T − iωdv −
v‖

qR

∂

∂θ

)

eZsFMs

T0s
J0(γs)Φ

−
(

iω∗T +
∂

∂t

)

eZsFMs

T0s
J0(γs)

v‖

c
A‖ (2.3)

∑

s

n0se
2Z2

s

T0s
(1− Γ0(bs))Φ = ρdens[Φ, A‖] (2.4)

c

4π
k2

⊥A‖ = ρcurr[Φ, A‖] (2.5)

where fs (kx, ky, θ, v‖, v⊥, t) is the 5D perturbed part of the species’ distribution

function (fs = hs − ZseFMs

T0s
J0(γs)Φ, where hs is the perturbed non-adiabatic com-

ponent), Φ (kx, ky, θ, t) is the perturbed electrostatic potential, A‖ (kx, ky, θ, t) is

the parallel component of the perturbed magnetic vector potential, γs = k⊥v⊥/Ωs,

Γ0(bs) = e−bsI0(bs), and bs = (k⊥vth/Ωs)
2. The plasma charge and current densities
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are given by

ρdens[Φ, A‖] =
∑

s

eZs

∫

d3vJ0(γs)fs (2.6)

ρcurr[Φ, A‖] =
∑

s

eZs

∫

d3vv‖J0(γs)fs (2.7)

Note that, in the linear limit, each (kx, ky) mode is independent.

As noted before, the GS2 algorithm [KOTSCHENREUTHER et al., 1995a] is

unique among gyrokinetic codes in that it is fully implicit linearly. (The nonlinear

term is treated pseudo-spectrally in space (perpendicular to the field lines) with an

explicit 2nd order Adams-Bashforth time stepping scheme.) To do this efficiently,

GS2 uses a variation of the Beam-Warming algorithm [BEAM and WARMING,

1976]. (Note: A version of the Beam-Warming algorithm also appears earlier in

the work of Wendroff [WENDROFF, 1960].) The Beam-Warming algorithm is

equivalent to 2nd order compact finite differencing. Compact finite differencing is

usually used to achieve higher-order accuracy. (Refer to [DURRAN, 1998] for more

details on compact finite differencing.) However, in GS2 the 2nd order variant is

used because it leads to an implicit algorithm that needs only a relatively simple

bi-diagonal matrix inversion to advance the distribution function (though the im-

plicit solver for the fields is more complicated). (As an aside, we should note that

the implicit 2nd order compact finite differencing algorithm that we refer to as the

Beam-Warming algorithm is different than another advection algorithm also at-

tributed to Beam-Warming. This other Beam-Warming advection algorithm is an

explicit 2nd order upwind-biased algorithm with conventional non-compact finite

differencing [LEVEQUE, 2002].)

The essence of the Beam-Warming 2nd order compact differencing algorithm is
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illustrated with the following example. Consider the simple 1D advection problem

∂f

∂t
+ v

∂f

∂x
= 0 (2.8)

Denoting fni as the discretized value of f at position xi and time tn, the Beam-

Warming algorithm differences this equation as:

fn+1
i+1/2 − fni+1/2

∆t
+ v

f
n+1/2
i+1 − fn+1/2

i

∆x
= 0 (2.9)

Evaluating f halfway between grid points by simple averaging gives:

fn+1
i+1 + fn+1

i −
(

fni+1 + fni
)

2∆t
+ v

fn+1
i+1 + fni+1 −

(

fn+1
i + fni

)

2∆x
= 0 (2.10)

A graphical template illustrating the grid differencing for this scheme is given in

figure 2.1. Note that this algorithm is centered in both space and time and thus is

2nd order accurate. (A more general form of the Beam-Warming algorithm which

allows for upwind biasing is given by:

fn+1
i+s − fni+s

∆t
+ v

fn+r
i+1 − fn+r

i

∆x
= 0 (2.11)

where r ∈ [0, 1] is the time-centering parameter, such that r = 1/2 represents

a time-centered 2nd order accurate implicit scheme and r = 1 is equivalent to

implicit backward Euler, and s ∈ [1/2, 1] is the spatial-centering parameter, such

that s = 1/2 is the standard space-centered 2nd order accurate scheme and s = 1

is fully upwinded.)

The Beam-Warming algorithm’s treatment of the space and time discretization
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Figure 2.1: Graphical illustration of the grid differencing for the Beam-Warming
2nd order compact finite differencing algorithm.

on an equal footing, as shown in Eq. (2.10), is somewhat unique compared to many

other algorithms. It is fully implicit and absolutely stable for arbitrarily large time

step. Although the algorithm requires the solution of a matrix equation of the form

Aijf
n+1
j = bi due to its implicit nature, the matrix A is bi-diagonal and thus can

be inverted trivially. Specifically, solving Eq. (2.10), we have:

fn+1
i+1 = fni +

1− v∆t/∆x
1 + v∆t/∆x

(

fni+1 − fn+1
i

)

(2.12)

This can be solved by sweeping from i = 2..Nx, starting with the boundary condi-

tion that specifies fn+1
1 at the left boundary for v > 0. For v < 0, the boundary

condition for f is on the right boundary (i.e. at i=Nx), and the equation is solved

by sweeping from right to left (i.e. from i = Nx − 1 down to i = 1).
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Considering application of the Beam-Warming 2nd order compact finite differ-

encing algorithm to the gyrokinetic-Poisson-Ampere problem given by Eqs. (2.3) -

(2.5), the finite difference form using space-centering can be represented generically

for a given (kx, ky) mode as

C1f
n
i + C2f

n
i+1 +D1f

n+1
i +D2f

n+1
i+1

= F1Φ
n
i + F2Φ

n
i+1 +G1Φ

n+1
i +G2Φ

n+1
i+1

+H1A
n
‖,i +H2A

n
‖,i+1 +K1A

n+1
‖,i +K2A

n+1
‖,i+1 (2.13)

∑

s

n0se
2Z2

s

T0s

(1− Γ0s,i) Φn+1
i = ρdens,i[Φ

n+1, An+1
‖

] (2.14)

c

4π
k2

⊥,iA
n+1
‖,i = ρcurr,i[Φ

n+1, An+1
‖

] (2.15)

where the superscript n denotes the temporal index and the subscript i denotes the

θ grid index. C, D, F , G, H, and K are generic matrix operators.

From these equations, we can see that, for an implicit scheme, implicitness arise

in two parts: the finite difference scheme for computing the distribution function

and the field solution algorithm. Generically, Eqs. (2.13) - (2.15) can be written

as Aijf
n+1
j = bi, but, unlike the 1D advection problem, A is no longer a sparse

bi-diagonal matrix since Φn+1
i and An+1

‖,i involve integrals of fn+1 over all velocities.

Thus, a brute-force implicit solve of the gyrokinetic-Poisson-Ampere equations for

a given (kx,ky) linear mode as given by Eqs. (2.13) - (2.15) would require solving an

Ntotal×Ntotal matrix problem, where Ntotal = NspeciesNλNENθ (where Nspecies is the

number of species, Nλ is the number of pitch angle grid points, NE is the number

of energy grid points, and Nθ is the number of θ grid points). That is, because

of the integro-differential nature of the system of equations, causing the implicit
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matrix to be dense, a direct solve is very inefficient. Specifically, the number of

operations involved in solving this system scales as 1
3
N3
total for initial inversion of the

implicit matrix and 1
2
N2
tot for subsequent solutions (assuming LU decomposition).

For typical simulation parameters (Nspecies ∼ 3, Nλ ∼ 30, NE ∼ 16, Nθ ∼ 97 for

32 θ grid points per 2π and a simulation domain covering [−3π, 3π]), Ntotal ∼ 105

per (kx,ky) linear mode, so the computational cost per time step is on the order of

1010. Thus, a direct implicit solve of the gyrokinetic-Poisson-Ampere equations is

not practical.

2.1.1 Kotschenreuther’s Implicit Solution

Kotschenreuther developed a trick that greatly speeds up the solution of the large

matrix equation that results from applying the Beam-Warming algorithm to the

gyrokinetic equation [KOTSCHENREUTHER et al., 1995a]. This algorithm is

based on breaking-up the distribution function into two pieces: an inhomoge-

neous piece (which depends only on the fields at the previous time step) and a

homogeneous piece (which depends only on the fields at the new time step), i.e.

fn+1
i = fn+1

inhomo,i+f
n+1
homo,i. This allows the charge and current densities to be written

as:

ρdens,i[Φ
n+1, An+1

‖
] = ρdens,i[Φ

n+1 = 0, An+1
‖

= 0] +M1
ijΦ

n+1
j +M2

ijA
n+1
‖,j (2.16)

ρcurr,i[Φ
n+1, An+1

‖
] = ρcurr,i[Φ

n+1 = 0, An+1
‖

= 0] +M3
ijΦ

n+1
j +M4

ijA
n+1
‖,j (2.17)
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where the first term on the RHS is the contribution from the inhomogeneous part

of the distribution function, while the second and third terms make up the contri-

bution from the homogeneous part of the distribution function. This latter contri-

bution is written in terms of plasma response matrices, defined as:

M1
ij ≡

∑

s

eZs

∫

d3vJ0s,i
δfn+1

i

δΦn+1
j

(2.18)

M2
ij ≡

∑

s

eZs

∫

d3vJ0s,i
δfn+1

i

δAn+1
‖,j

(2.19)

M3
ij ≡

∑

s

eZs

∫

d3vv‖J0s,i
δfn+1

i

δΦn+1
j

(2.20)

M4
ij ≡

∑

s

eZs

∫

d3vv‖J0s,i
δfn+1

i

δAn+1
‖,j

(2.21)

where
δfn+1

i

δΦn+1

j

is obtained by solving the gyrokinetic equation for f n+1
i for all i using

Φn+1
i = δij (where δij is the standard Kronecker delta) and all other perturbed

quantities equal to 0. Likewise,
δfn+1

i

δAn+1

‖,j

is obtained by solving the gyrokinetic equation

for fn+1
i for all i using An+1

‖,i = δij and all other perturbed quantities equal to 0.

Note that this is fundamentally a Green’s function formalism.

As an aside, note that a similar approach is used in Friedman et al.’s Vlasov

equation analog of the direct implicit algorithm for particle codes [FRIEDMAN

et al., 1981], which is a semi-implicit algorithm that treats the parallel electron

advection and parallel electrostatic potential force implicitly in the ∆tv‖/∆z � 1

limit. This leads to a kind of local approximation of the plasma response function,

while in Kotschenreuther’s algorithm the full linear plasma response (including all

species and including ωdv as well as parallel dynamics) is kept in calculation of the

fields and is done for arbitrary time step ∆t.

As an example of Kotschenreuther’s implicit solution, ignoring the θ grid index
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in Eq. (2.13) for simplicity, the gyrokinetic equation becomes:

Cfn +Dfn+1
inhomo = FΦn +HAn

‖
(2.22)

Dfn+1
homo = GΦn+1 +KAn+1

‖
(2.23)

The plasma response functions can be obtained from the latter equation, i.e.

δfn+1

δΦn+1
= D−1G(1) (2.24)

δfn+1

δAn+1
‖

= D−1K(1) (2.25)

Note that the response matrices can be pre-computed for a single constant

value of ∆t. Though, unlike the brute-force implicit matrix which is of size Ntotal,

Kotschenreuther’s matrix M is of the reduced size NfieldsNθ (where Nfields is the

number of perturbed fields, i.e. 1 for electrostatic, 3 for fully electromagnetic).

Furthermore, subsequent solutions of the gyrokinetic equation are also simplified.

This can be done as follows:

1. Compute fn+1
inhomo from the gyrokinetic equation using fn, Φn, An

‖
, and Φn+1 =

An+1
‖ = 0.

2. Solve the Poisson-Ampere equations for Φn+1 and An+1
‖

by solving the matrix

equations that result from inserting Eqs. (2.16) and (2.17) into Eqs. (2.14)

and (2.15). Note that this uses fn+1
inhomo from step 1.

3. Compute fn+1
homo from the gyrokinetic equation using fn, Φn+1, An+1

‖ , and

Φn = An
‖

= 0.

4. Sum to get the new distribution function: fn+1 = fn+1
inhomo + fn+1

homo.
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(Note: The actual implementation of this algorithm in GS2 differs slightly from that

as described in [KOTSCHENREUTHER et al., 1995a] and outlined here. Details

of the GS2 algorithm and its equivalence to Kotschenreuther’s original published

algorithm are given in Appendix A.)

Considering the computational work involved using this algorithm, solving for

the fields Φn+1 and An+1
‖

requires (NfieldsNθ)
2 operations, while each solution of the

gyrokinetic equation for fn+1
inhomo or fn+1

homo requires NspeciesNλNENθ operations (since

the space-centered gyrokinetic equation has become a simple bi-diagonal Nθ × Nθ

matrix equation). Thus, the total computational cost per time step for a given

(kx,ky) linear mode is (NfieldsNθ)
2 + 2NspeciesNλNENθ. For typical parameters

(Nspecies ∼ 3, Nλ ∼ 30, NE ∼ 16, Nθ ∼ 97 for 32 θ grid points per 2π and a

simulation domain covering [−3π, 3π]), the computational cost per time step is

then reduced from order 1010 (for the direct implicit solve) to order 105.5.

While this is a very significant speed-up and is feasible in practice, the overhead

in computing the response matrices M given by Eqs. (2.18) - (2.21) is large, par-

ticularly for high resolution nonlinear runs. Calculating a response row Mij vs. θi

requires solving one time step of the gyrokinetic equation to calculate the response

of the plasma at position θi due to perturbations of each field at position θj. But

the effective range of θj that we have to cover is not simply [−π, π]. In linear calcu-

lations, an extended ballooning angle is used. In nonlinear simulations, the primary

domain is θ ∈ [−π, π], but the boundary conditions at θ = ±π in field-line follow-

ing coordinates gives rise to a coupling between different kx modes [BEER et al.,

1995], separated by kx1 − kx2 = ky2πŝp (where p = ±1,±2, . . .). So a perturbation

in a field at one position θj and radial mode kx1 can induce plasma charges and

currents not only at other θi but also at other kx2. Thus, the number of columns
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of M that have to be calculated in a nonlinear simulation is NfieldsNθper2πNconnect,

where Nconnect = 2kx,max/(ky,min2πŝ) is the maximum number of kx modes that are

coupled together. For typical parameters, Nθper2π ∼ 32 while Nconnect ∼ 10 − 20

(or larger at higher resolution). So the computational cost of the initializing the

response matrices for a nonlinear simulation is on the order of 103 times more ex-

pensive than a single step of the gyrokinetic equation. (Note that this essentially

limits how often one would want to recalculate M due to changing the time step

∆t, or due to time-dependent twisting of the coordinates by large-scale equilibrium

ExB shear.) Overall, this large overhead for initializing M has motivated the explo-

ration of improved algorithms, which we present here, for more efficiently treating

the field solve while retaining the large time step advantages of Kotschenreuther’s

fully implicit algorithm.

2.2 Semi Implicit-Explicit Schemes

The use of a semi implicit-explicit algorithm for gyrokinetics is explored here within

the context of GS2’s space-centered finite differencing. We are interested in schemes

which treat the distribution function terms in the gyrokinetic equation implicitly,

while the field terms are treated explicitly since these terms are difficult to invert.

Here we analyze the stability of such semi implicit-explicit routines using forward

Euler differencing, Adams-Bashforth schemes, and a two-step predictor-corrector

scheme. We demonstrate that, while these algorithms worked well for our local trial

function code with a fixed k‖ (as described in section 5.2 in Chapter 5 of this thesis),

they are all numerically unstable when combined with GS2’s 2nd order compact

finite differencing of spatial derivatives. This has motivated the search in section
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2.3 for better iterative implicit algorithms.

Consider the following simplified gyrokinetic equation in the collisionless, elec-

trostatic limit at small k⊥ρi:

∂fs
∂t

+
v‖

qR

∂fs
∂θ

= −eZs
T0s

FMs
v‖

qR

∂Φ

∂θ
(2.26)

Applying a space-centered, time-centered finite difference scheme and using a spec-

tral numerical analysis in the spatial dimension, i.e. fnj = f̂neik‖qRθj (where n

denotes the time index and j denotes the theta grid index), the time derivative

becomes:

∂f

∂t
=

1

∆t

(

fn+1
j+1/2 − fnj+1/2

)

=
1

∆t

(

f̂n+1 − f̂n
)

eik‖qR∆θ(j+1/2) cos(k‖qR∆θ/2) (2.27)

while the spatial derivative becomes:

∂f

∂θ
=

1

∆θ

(

f
n+1/2
j+1 − fn+1/2

j

)

=
2i

∆θ
f̂n+1/2eik‖qR∆θ(j+1/2) sin(k‖qR∆θ/2) (2.28)

Often the fastest growing numerical instabilities occur at the highest k‖. Using the

maximum k‖ in the system, which occurs at the Nyquist limit (i.e. k‖qR∆θ = π),

we find that the time derivative given by Eq. (2.27) vanishes, so f at the new time

step is determined only by the spatial derivative terms. Specifically, we find that

f̂n+1 = −f̂n − eZs
T0s

FMs

(

Φ̂n+1
∗ + Φ̂n

)

(2.29)
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where Φ̂n+1
∗ represents the prediction for Φ̂n+1, e.g.

• forward Euler: Φ̂n+1
∗ = Φ̂n

• 2nd order Adams-Bashforth: Φ̂∗
n+1

= 2Φ̂n − Φ̂n−1

• 3rd order Adams-Bashforth: Φ̂∗
n+1

= 17
6
Φ̂n − 8

3
Φ̂n−1 + 5

6
Φ̂n−2

We consider a single gyrokinetic ion species with the cases of adiabatic electrons

and gyrokinetic electrons. For the case of adiabatic electrons, the Poisson equation

to lowest order in k⊥ρi is given as:

n0e
eΦ

T0e
= Zi

∫

d3vfi (2.30)

Discretizing this equation and substituting Eq. (2.29), we find that

Φ̂n+1 + 2Φ̂n + Φ̂n+1
∗ = 0 (2.31)

where the assumptions that Zi = 1 and T0i = T0e have been applied for simplicity.

We define an amplification factor as A ≡ Φ̂n+1

Φ̂n , such that modes with |A| > 1 denote

numerical instability with a growth rate given by γ∆t = ln|A|max. Substituting the

Φn+1
∗ explicit predictions into Eq. (2.31) yields a polynomial equation for A of order

1 for the forward Euler scheme, 2 for the 2nd order Adams-Bashforth scheme, and 3

for the 3rd order Adams-Bashforth scheme. Solution of these equations surprisingly

yields an unstable branch for all three explicit schemes, the growth rates for which

are given in table 2.2.

Similarly, for the case of gyrokinetic electrons, the Poisson equation to lowest
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γ∆t, γ∆t,
adiabatic electrons gyrokinetic electrons

Forward Euler ln(3) = 1.099 ln
∣

∣

∣

∣

4
k2
⊥
ρ2i

+ 1
∣

∣

∣

∣

= 5.994 at k⊥ρi=0.1
= 3.258 at k⊥ρi=0.4

2nd order Adams-Bashforth ln(2 +
√

5) = 1.444 ln

∣

∣

∣

∣

6
k2
⊥
ρ2i

+ 4
3

∣

∣

∣

∣

= 6.399 at k⊥ρi=0.1
= 3.659 at k⊥ρi=0.4

3rd order Adams-Bashforth 1.679 6.644 at k⊥ρi = 0.1
3.904 at k⊥ρi = 0.4

Table 2.2: The growth rates of the numerically unstable mode (γ∆t = ln|A|max)
for various semi implicit-explicit time stepping schemes. Solution of the 3rd order
Adams-Bashforth polynomial equation was found numerically.

order in k⊥ρi is given as:

n0ieZ
2
i k

2
⊥ρ

2
i

eΦ

T0i
=
∑

s

eZs

∫

d3vfs (2.32)

from which we obtain the following discretized equation using Eq. (2.29):

2Φ̂n+1
∗ + k2

⊥ρ
2
i Φ̂

n+1 +
(

2 + k2
⊥ρ

2
i

)

Φ̂n = 0 (2.33)

where the assumptions that Zi = 1 and T0i = T0e have likewise been applied.

Solutions of the polynomial equations for A using the Φn+1
∗ explicit fields predictions

in Eq. (2.33) also yield unstable branches for all three schemes, as shown in table

2.2.

Historically, we had tried these algorithms in GS2 first before performing the

analysis of their numerical stability, discovered that the code was numerically un-

stable, and then later developed the analytic estimates of the numerical instabilities
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given above. Here we show these results from implementation of the semi implicit-

explicit schemes in the full GS2 code and compare them with the analytic results

from the reduced gyrokinetic equation. The local parameters for the numerical

test problem are based on the generic equilibrium of [WALTZ and MILLER, 1999]

in concentric circular geometry in the collisionless, electrostatic limit: r/a = 0.5,

R/a = 3.0, q = 2, ŝ = 1, ∂r/aβ = 0, R/LT = 6, R/Ln = 3, T0i/T0e = 1. Runs

were performed in the linear limit at small and moderate kyρi values of 0.1 and

0.4, corresponding to physical ITG modes with (ω, γ) = (0.059, 0.054)vti/a and

(ω, γ) = (0.314, 0.188)vti/a respectively for the case of adiabatic electrons and

(ω, γ) = (0.034, 0.102)vti/a and (ω, γ) = (0.345, 0.342)vti/a respectively with the

inclusion of gyrokinetic electrons.

Figure 2.2 shows the variation of the mode frequency and growth rate with

time step size for the case of adiabatic electrons using the semi implicit-explicit

GS2 scheme. In agreement with the analytical analysis, the results show a nu-

merical instability with real frequency |ω∆t| = π. Note that the growth rate of

the numerical instability approaches the analytical predictions of table 2.2 as ∆t

increases and kyρi decreases.

In figure 2.3, the runs were performed with a small amount of upwind biasing

in the direction along the field line (spatial-centering parameter s = 0.55), which

introduces a small amount of diffusion. For this case, while the schemes are still

unstable for large ∆t, all 3 schemes stabilize (matching the ITG growth rate com-

puted by the fully implicit scheme) as ∆t is decreased. Note that the forward Euler

scheme exhibits a larger stability threshold (∆tvti/a ≤ 0.05 for the kyρi = 0.1 case

and ∆tvti/a ≤ 0.1 for the kyρi = 0.4 case) than 2nd order Adams-Bashforth scheme,

which in turn has a larger stability threshold than the 3rd order Adams-Bashforth
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Figure 2.2: Mode frequency and linear growth rate for test case parameters with
adiabatic electrons using various semi implicit-explicit schemes. The dashed lines
show the predicted growth rate of the numerically unstable mode as given in table
2.2.

scheme.

Aside from upwinding, it was also found that some time step regimes for a case

with no trapped particles were also numerically stable. This is shown in figure 2.4

where, for the kyρi = 0.4 case, the forward Euler scheme is stable in the regime

0.01 ≤ ∆tvti/a ≤ 0.05. This stabilizing effect is not seen, however, for the kyρi = 0.1

case nor for the Adams-Bashforth schemes. This is interesting since the finite

difference form for the gyrokinetic equation is the same for trapped and passing

particles. The primary difference is in the treatment of the boundary conditions.

For passing ions, the boundary condition is f=0 at the incoming boundary. This

means that the highest k‖ mode, which was most unstable analytically, is forced
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Figure 2.3: Mode frequency and linear growth rate for test case parameters with
adiabatic electrons and with slight upwind diffusion using various semi implicit-
explicit schemes. The dashed lines show the predicted growth rate of the numer-
ically unstable mode as given in table 2.2. Note the stable regime for the semi
implicit-explicit schemes, matching the ITG mode of the fully implicit scheme, at
small ∆t.
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Figure 2.4: Mode frequency and linear growth rate for test case parameters with adi-
abatic electrons and no particle trapping (r/a = 0.001) using various semi implicit-
explicit schemes. The dashed lines show the predicted growth rate of the numeri-
cally unstable mode as given in table 2.2. Note the stable regime for the forward
Euler scheme, matching the ITG mode of the fully implicit scheme, for the case of
kyρi = 0.4 in the range 0.01 ≤ ∆tvti/a ≤ 0.05.

to be 0 since this mode oscillates sign between adjacent grid points. For trapped

ions, however, there is a periodicity condition which allows the highest k‖ mode

to survive. This can be tested by performing GS2 simulations with no trapped

particles and ŝ = 0 and forcing self-periodic boundary conditions so that every

mode is periodic with itself. As shown in figure 2.5, these results clearly show the

existence of the numerical instability with γ∆t constant vs. ∆t, in agreement with

the analytical predictions.

The results with inclusion of gyrokinetic electrons are shown in figure 2.6. As

expected, the plots show a numerical instability for all 3 schemes, with growth rates
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Figure 2.5: Mode frequency and linear growth rate for test case parameters with
adiabatic electrons, no particle trapping (r/a = 0.001), and self-periodic boundary
conditions with ŝ = 0 using various semi implicit-explicit schemes. The dashed
lines show the predicted growth rate of the numerically unstable mode as given in
table 2.2.
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Figure 2.6: Mode frequency and linear growth rate for test case parameters with
gyrokinetic electrons included using various semi implicit-explicit schemes. The
dotted lines denote results from the inclusion of slight upwind diffusion. The dashed
lines show the predicted growth rate of the numerically unstable mode as given in
table 2.2.

which approach the analytical predictions of table 2.2 as ∆t increases. However,

unlike with the case of adiabatic electrons, a small amount of upwinding was not

found to be stabilizing with inclusion of gyrokinetic electrons within the range of

∆t which was tested.

A two-step predictor-corrector algorithm has also been explored to improve the
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stability of the semi implicit-explicit scheme. This algorithm is basically a two-

iteration scheme in which the solution of Φn+1 from the single-step semi implicit-

explicit algorithm is used as the prediction for a second solution of the gyrokinetic-

Poisson equations. Thus, Eq. (2.29) becomes:

f̂n+1,p+1 = −f̂n − eZs
T0s

FMs

(

Φ̂n+1,p + Φ̂n
)

(2.34)

where p is the iteration index (p = 0, 1) such that Φ̂n+1,0 is the prediction Φ̂n+1
∗

as for the single-step scheme, Φ̂n+1,1 results from the Poisson integration of f̂n+1,1,

and the final solution Φ̂n+1,2 results from the Poisson integration of f̂n+1,2. Using

Eq. (2.34), the discretized Poisson equation for adiabatic electrons becomes:

Φ̂n+1,p+1 + 2Φ̂n + Φ̂n+1,p = 0 (2.35)

and the discretized Poisson equation for gyrokinetic electrons becomes:

2Φ̂n+1,p + k2
⊥
ρ2
i Φ̂

n+1,p+1 +
(

2 + k2
⊥
ρ2
i

)

Φ̂n = 0 (2.36)

We again compute the amplification factors using the predictions for Φ̂n+1
∗ from

the forward Euler and 2nd order Adams-Bashforth schemes in Eqs. (2.35) and

(2.36). The results are shown in table 2.3. For the adiabatic electron case, we find

that, unlike the single-step algorithm, the predictor-corrector algorithm is numer-

ically stable for both schemes. In fact, A = 1, indicating that the algorithm is

perfectly stable with no artificial dissipation, at least for the k‖qR∆θ = π mode

analyzed here. However, for the case of gyrokinetic electrons, we again find that

the schemes are numerically unstable. Note that further iterations of Eq. (2.36)
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γ∆t, γ∆t,
adiabatic electrons gyrokinetic electrons

Forward Euler (stable) ln
∣

∣

∣

∣

8
k4
⊥
ρ4i

∣

∣

∣

∣

= 11.290 at k⊥ρi=0.1
= 5.744 at k⊥ρi=0.4

2nd order Adams-Bashforth (stable) ln

∣

∣

∣

∣

12
k4
⊥
ρ4i

∣

∣

∣

∣

= 11.695 at k⊥ρi=0.1
= 6.150 at k⊥ρi=0.4

Table 2.3: The growth rates of the numerically unstable mode (γ∆t = ln|A|max)
for various predictor-corrector semi implicit-explicit time stepping schemes.

will not help, as each iteration will amplify errors by a factor of 2
k2
⊥
ρ2i

.

Results from the implementation of the predictor-corrector algorithm in GS2

are shown in figures 2.7 and 2.8. In agreement with the analytic predictions, the

predictor-corrector algorithm is numerically stable for the case of adiabatic elec-

trons, yielding the physical ITG instability growth rate in agreement with the fully

implicit GS2 scheme over the range of ∆t tested, even in the absence of upwind

diffusion. However, for the case of gyrokinetic electrons, the results show numerical

instability over the entire range of ∆t as predicted, with instability growth rates

asymptotically approaching those from the analytical analysis in table 2.3. Thus,

even with a predictor-corrector algorithm, a semi implicit-explicit scheme which

uses an explicit treatment of the linear field dynamics combined with GS2’s 2nd

order compact differencing is infeasible for practical gyrokinetic simulations. This

has motivated the search for a more implicit treatment of the field dynamics, which

we turn to next.
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Figure 2.7: Mode frequency and linear growth rate for test case parameters with
adiabatic electrons using various predictor-corrector semi implicit-explicit schemes.
Note that the semi implicit-explicit schemes are numerically stable, matching the
ITG mode of the fully implicit scheme, for both the case of kyρi = 0.1 and kyρi =
0.4.
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Figure 2.8: Mode frequency and linear growth rate for test case parameters with gy-
rokinetic electrons included using various predictor-corrector semi implicit-explicit
schemes. The dotted lines denote results from the inclusion of slight upwind diffu-
sion. The dashed lines show the predicted growth rate of the numerically unstable
mode as given in table 2.3
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2.3 Iterative Implicit Schemes

We have developed a fast iterative implicit algorithm for continuum/Vlasov gyroki-

netic codes based on numerical or analytic approximations of the plasma response.

This method reduces the long time needed to set-up implicit arrays, yet still has

larger time step advantages similar to a fully implicit method compared with tra-

ditional explicit methods. Comparisons between various model preconditioners,

initializers, and iteration schemes are presented.

Our starting field equations are the gyrokinetic Poisson-Ampere equations (in

the δB‖ = 0 limit for simplicity), given by Eqs. (2.14) and (2.15) and using

Kotschenreuther’s response matrix representation as defined by Eqs. (2.16) and

(2.17). The largest expense of Kotschenreuther’s algorithm is in calculating all

of the elements of the response matrix M , since each row of M requires inde-

pendently solving the gyrokinetic equation (and subsequently integrating the so-

lution over velocity-space) and there are NfieldsNθ rows for each (kx, ky) mode.

Although it is computationally expensive to calculate all of the elements of M ,

it is relatively fast to calculate the matrix-vector product of M with a generic

field vector ~x, since this is equivalent to one solution of the gyrokinetic equa-

tion for a specific value of the fields ~x and its velocity-space integrations, as is

shown in section 2.3.4. This suggests that a “matrix-free” iterative algorithm,

which avoids explicitly calculating the elements of M , may be ideal. However,

we can further benefit from developing a fast approximation to M . (Note that

once we have M or an approximation to it, computing its inverse is relatively

fast. For example, for a given linear (kx, ky) mode, the total computational time

to compute the inverse (via LU decomposition) scales as TinvertM ∼ 1
3
(NfieldsNθ)

3,

while the total computational time to compute all of the elements of M scales
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as TinitializeM ∼ C(NfieldsNθ)(NspeciesNλNENθ), where C is a large constant fac-

tor. This yields TinvertM/TinitializeM ∼ (N2
fieldsNθ)/(3CNspeciesNλNE) which scales

as 1/(5C) for typical simulation parameters (Nspecies ∼ 3, Nλ ∼ 30, NE ∼ 16,

Nθ ∼ 97 for 32 θ grid points per 2π and a simulation domain covering [−3π, 3π]).

Thus, our algorithmic approach is to develop a fast “matrix-free” iterative implicit

scheme based on approximations to the plasma response matrices which are accu-

rate enough to ensure good convergence properties yet computationally inexpensive

relative to computing the exact plasma response.

Numerical results presented here are based on implementation of the iterative

implicit algorithm within the framework of the GS2 code. The test case parameters

are based on a circular geometry version of a JET-like plasma (shaping effects on

this case are studied in Chapter 4) in the linear, collisionless limit: r/a = 0.80,

R/a = 3.42, ∂rR0 = −0.14, q = 2.03, ŝ = 1.62, ∂r/aβ = −0.0084, R/LT = 10.81,

R/Ln = 3.50, T0i = T0e. Runs were performed as typical with time-centering

parameter r = 0.55 and slight upwind diffusion (spatial-centering parameter s =

0.55). Figure 2.9 shows the variation of the linear ITG growth rate with kyρi using

the test parameters with GS2’s fully implicit scheme. Use of the iterative scheme

is considered with inclusion of gyrokinetic electrons and electromagnetic dynamics.

2.3.1 Simple Iteration

The simplest iterative algorithm is based on a perturbation expansion in the error

of the homogeneous charge and current densities. Our field equations, given by

Eqs. (2.14) and (2.15) using Eqs. (2.16) and (2.17) for the RHS charge and current
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Figure 2.9: Real frequency and linear growth rate vs. kyρi for test case parame-
ters for the iterative implicit scheme. The results were obtained using GS2’s fully
implicit linear scheme. For the electromagnetic case, β = 1.0× 10−3.
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densities, can be written generically as

M~xn+1 = −~ρ[~xn+1 = 0] (2.37)

where ~xn+1 =
(

Φn+1, An+1
‖

)

represents the field vector, M =









M1
GS2 M2

GS2

M3
GS2 M4

GS2









is

the response matrix (where MGS2 is defined in Appendix A as the response matrix as

implemented in GS2), and ~ρ[~xn+1 = 0] represents the inhomogeneous source term

such that the total (homogeneous + inhomogeneous) charge and current source

vector is given by ~ρ[~xn+1] = ~ρ[~xn+1 = 0] + (M + C)~xn+1, where C is a constant

matrix independent of ~x and time:

C ≡











∑

s

n0se
2Z2

s

T0s

(1− Γ0(bs)) 0

0 c
4π
k2

⊥











(2.38)

Since computation of the exact M is to be avoided in our algorithm, an approx-

imation is introduced as follows:

Mapprox~x
n+1 + (M −Mapprox)~x

n+1 = −~ρ[~xn+1 = 0] (2.39)

Assuming that (M −Mapprox) is small, the second term on the LHS can be treated

perturbatively using ~x from a previous iteration, i.e.

Mapprox~x
n+1,p+1 = −~ρ[~xn+1 = 0]− (M −Mapprox)~x

n+1,p (2.40)

where the superscript p denotes the iteration index. Noting that ~ρ[~xn+1 = 0] +
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M~xn+1,p = ~ρ[~xn+1,p]− C~xn+1,p, we find that

Mapprox

(

~xn+1,p+1 − ~xn+1,p
)

= −~ρ[~xn+1,p] + C~xn+1,p (2.41)

from which we can directly solve for ~xn+1,p+1. Thus, starting with an initial guess ~x0,

Eq. (2.41) can be iterated until the solution converges within a specified tolerance.

However, the convergence rate depends on the accuracy of Mapprox and convergence

is not always guaranteed. Writing that ~xn+1,p = ~xn+1 + ~εp, where ~εp is the error

vector at the p-th iteration, we find that

~εp+1 =
(

I −M−1
approxM

)

~εp (2.42)

Thus, if the modulus of all of the eigenvalues of
(

I −M−1
approxM

)

is < 1, then our

iterative scheme is guaranteed to converge.

A template for the generic simple iteration algorithm is given in Appendix B.

Below we outline this algorithm as applied to the gyrokinetic problem for compar-

ison with the fully implicit algorithm given in section 2.1.1. In iterative form, our

field equations become:

M1
approx

(

Φn+1,p+1 − Φn+1,p
)

+M2
approx

(

An+1,p+1
‖

− An+1,p
‖

)

= −ρdens[Φn+1,p, An+1,p
‖

] +
∑

s

n0se
2Z2

s

T0s
(1− Γ0(bs))Φ

n+1,p (2.43)

M3
approx

(

Φn+1,p+1 − Φn+1,p
)

+M4
approx

(

An+1,p+1
‖

− An+1,p
‖

)

= −ρcurr[Φn+1,p, An+1,p
‖ ] +

c

4π
k2

⊥A
n+1,p
‖ (2.44)
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Thus, the simple iteration gyrokinetic algorithm is given as follows:

1. Precompute the approximate inverse plasma response matrices M−1
approx.

2. For each time step:

(a) Make an initial guess for Φn+1,0 and An+1,0
‖ .

i. Solve the gyrokinetic equation for fn+1,0 using fn, Φn, An‖ , Φn+1 =

Φn+1,0, and An+1
‖

= An+1,0
‖ .

(b) For p = 0, 1, 2, . . .

i. Solve the iterative field equations (2.43) and (2.44) for Φn+1,p+1 and

An+1,p+1
‖ .

ii. Solve the gyrokinetic equation for fn+1,p+1 using fn, Φn, An‖ , Φn+1 =

Φn+1,p+1, An+1
‖

= An+1,p+1
‖ .

iii. Check if the solutions for Φn+1 and An+1
‖

are converged; continue if

necessary.

Note that if this algorithm is run using the exact response matrix, then the num-

ber of iterations should be exactly two since it is equivalent to Kotschenreuther’s

fully implicit algorithm. This provides a test for the implementation of the simple

iteration algorithm in GS2 as well as a test of the properties of the response ma-

trix, specifically by indicating that the matrix is not poorly conditioned and can

be inverted accurately. Overall, this algorithm serves as a base template for our

iterative implicit scheme upon which an optimal preconditioner and initializer can

be determined and against which more robust and complex iterative schemes can

be compared.
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2.3.2 Preconditioners

As noted above, the success of an iterative scheme often depends on developing a

good preconditioner Mapprox. We ultimately need a preconditioner which is accu-

rate enough to enhance convergence yet simple compared with the computational

intensity of computing the exact implicit response matrix. Below we describe the

development of various analytic and numerical gyrokinetic-based preconditioners

and compare them in practice using the simple iteration algorithm.

For insight for our preconditioner model, we first consider simple analytical

approximations for the plasma response. We consider as our simplified starting

equations the gyrokinetic equation in the linear, collisionless limit in slab geometry

with a uniform magnetic field and uniform background Maxwellian particles at

small k⊥ρi:

∂fs
∂t

+
v‖

qR

∂fs
∂θ

= −eZs
T0s

FMs

(

v‖

qR

∂Φ

∂θ
+
v‖

c

∂A‖

∂t

)

(2.45)

Using a space-centered, variable time-centered finite difference scheme, such as that

which is used in GS2, we obtain:

1

2∆t

[

fn+1
i − fni + fn+1

i+1 − fni+1

]

+
v‖

qR∆θ

[

r
(

fn+1
i+1 − fn+1

i

)

+ (1− r)
(

fni+1 − fni
)]

= −eZs
T0s

FMs
v‖

qR∆θ

[

r
(

Φn+1
i+1 − Φn+1

i

)

+ (1− r)
(

Φn
i+1 − Φn

i

)]

−eZs
T0s

FMs
v‖

2c∆t

[

An+1
‖,i − An‖,i + An+1

‖,i+1 − An‖,i+1

]

(2.46)

where i is the θ index, n is the time index, and r is the time-centering parameter.

This equation will be used as the starting equation for developing an approximation

for the plasma response functions δf
δΦ

and δf
δA‖

to gain insight about the form of the



2.3. Iterative Implicit Schemes 66

response matrices as defined by Eqs. (2.18)-(2.21).

We begin by Fourier transforming Eq. (2.46) with respect to the parallel spatial

dimension, i.e. applying a spectral analysis (fnj = f̂neik‖qR∆θj) we find that

[

g(k‖) + irk̂‖v‖∆t
]

f̂n+1

=
[

g(k‖)− i(1− r)k̂‖v‖∆t
]

f̂n

−eZs
T0s

FMsik̂‖v‖∆t
[

rΦ̂n+1 + (1− r)Φ̂n
]

−eZs
T0s

FMsg(k‖)
v‖

c

[

Ân+1
‖
− Ân

‖

]

(2.47)

where k̂‖ ≡ sin(k‖qR∆θ/2)

qR∆θ/2
and g(k‖) ≡ cos(k‖qR∆θ/2). From this, we can determine

the plasma response due to a change in Φ ( δf
δΦ

) and the plasma response due to a

change in A‖ ( δf
δA‖

) in k‖ space:

δf

δΦ
(k‖) = −eZs

T0s
FMs

ik̂‖v‖∆tr

g(k‖) + irk̂‖v‖∆t
(2.48)

δf

δA‖

(k‖) = −eZs
T0s

FMs
g(k‖)v‖/c

g(k‖) + irk̂‖v‖∆t
(2.49)

For simplicity we assume the high resolution limit (i.e. k‖qR∆θ → 0), upon which

the discrete Fourier sums are replaced by continuous Fourier integrals. We then

use Padé approximations to match transformed solutions of the velocity integrals

in the limits of low and high k‖vts∆t, obtaining:

M1
ij ≈

∑

s

n0sZ
2
se

2

T0s
(Gij − δij) (2.50)

M2
ij ≈

∑

s

n0sZ
2
se

2

T0s

(

−vts
c
sgn(zi − zj)Gij

)

(2.51)

M3
ij ≈

∑

s

n0sZ
2
se

2

T0s

(vtsGijsgn(zi − zj)) (2.52)
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M4
ij ≈

∑

s

n0sZ
2
se

2

T0s

(

−v2
tsGij

)

(2.53)

where z ≡ qRθ and Gij ≡ ∆z
2vts∆tr

e−|zi−zj |/(vts∆tr). Consider these results for a

response row Mij vs. θi, i.e. the current and density responses for a perturbation

applied in the fields at a particular grid point θj. The above equations show that

the response falls off very rapidly, or specifically exponentially, the farther away

we are from where the perturbation is applied. While it is intuitive that the grid

points most affected by the perturbation are the ones that are closest to where it

is applied, these results suggest that, when we are computing the response rows

exactly, we may be spending a lot of time computing the less significant tail end of

the responses.

In practice, we have implemented this analytic preconditioner in our iterative

code only in the electrostatic limit for testing. (We found that it wasn’t sufficiently

accurate and so did not implement the electromagnetic version.) However, in this

implementation, we would like to preserve the property of density conservation, i.e.
∑

i

M1
ij = 0. The analytic approximation for M 1

ij preserves this property in the

limit of ∆z � 2vts∆tr for which

∑

i

Gij ≈
1

2vts∆tr

∫ ∞

−∞
dze−|z−zj |/(vts∆tr) = 1 (2.54)

We can reformulate Gij to ensure density conservation on a finite discrete grid. We

first define

Gij,i 6=j =
1

2vts∆tr

∫ zi+∆z/2

zi−∆z/2
e−|z−zj |/(vts∆tr)

=
1

2

[

e−(|zi−zj |−∆z/2)/(vts∆tr) − e−(|zi−zj |+∆z/2)/(vts∆tr)
]

(2.55)
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Then we define

Gii ≡ 1−
∑

i6=j
Gij (2.56)

Note that this also fixes the singularity in Mii as ∆t→ 0. Eqs. (2.55) and (2.56) in

Eq. (2.50) thus define our electrostatic analytic preconditioner using physics-based

Padé approximations of species-dependent response functions as implemented and

tested in GS2.

We can compare this model representing the continuous or transformed limit

with consideration of Eq. (2.45) in its numerically discrete form. Specifically, ap-

proximations for the plasma response due to a change in Φ ( δfi

δΦj
) and for the plasma

response due to a change in A‖ ( δfi

δA‖,j
) can be obtained based directly on Eq. (2.46):

δfi+1

δΦj
= − δfi

δΦj

(

1− bv‖

1 + bv‖

)

+
eZs
T0s

FMs (δij − δi+1,j)

(

bv‖

1 + bv‖

)

(2.57)

δfi+1

δA‖,j
= − δfi

δΦj

(

1− bv‖

1 + bv‖

)

− eZs
T0s

FMs (δij + δi+1,j)

(

v‖/c

1 + bv‖

)

(2.58)

where b ≡ 2∆tr
qR∆θ

and δij is the standard Kronecker delta.

The boundary conditions for ballooning coordinates require that the distribution

function must vanish as θ → ±∞ [KOTSCHENREUTHER et al., 1995a]. This can

be applied by dividing the distribution function into two parts, i.e. fi = gi+hi, where

gi is the part of fi corresponding to v‖ > 0 and hi is the part of fi corresponding

to v‖ < 0. For a computational grid extending from −nθ to nθ, the boundary

conditions become: {h−nθ = 0, gnθ = 0}. The distribution function can then be

found by solving for hi starting at i = −nθ, using the first boundary condition, and

moving to the right across the θ grid; while g is determined by starting at i = nθ,

using the second boundary condition, and moving to the left across the θ grid.



2.3. Iterative Implicit Schemes 69

Using this scheme for our plasma response function equations, we find that

electrostatic response matrix is given by:

i = j :

M1
ij =

∑

s

−2Z2
s e

2

T0s

∫

v‖>0
d3vFMs

bv‖

1 + bv‖

(2.59)

i = −nθ . . . j − 1, j + 1 . . . nθ :

M1
ij =

∑

s

2Z2
se

2

T0s

∫

v‖>0
d3vFMs

bv‖

(1 + bv‖)2

(

(−1)
1− bv‖

1 + bv‖

)|i−j|−1

(2.60)

We simplify to the limit of
√

2bvts � 1 (or ∆z � 2
√

2∆trvts), where our continuous

non-conserving model begins to break down forMii. (In principle, we could also find

approximations in the limit of ∆z � 2
√

2∆trvts and form a complete discrete-based

analytical model using Padé approximations as we did for the continuous equations.

However, a good simple analytical approximation in the large ∆tvts/∆z limit is

difficult to find due to an interchange of limits in the velocity integral function

between large ∆tvts/∆z and large |i − j − 1|. Furthermore, the resolution of a

typical simulation uses ∆θ = π/16, giving ∆z/a = 1.4 for our test case parameters.

This is larger than a typical normalized time step in a nonlinear GS2 simulation:

∆tvti/a ∼ 0.01− 0.1.) In the small ∆tvts/∆z limit, we find that

M1
ij ≈

∑

s

−n0sZ
2
s e

2

T0s
(−1)|i−j|





√

2

π

2vts∆tr

∆z
− 2|i− j|

(

2vts∆tr

∆z

)2


 (2.61)

to first order for M 1
ii and to 2nd order for M 1

ij, i 6= j. Preserving this accuracy yet

ensuring that
∣

∣

∣M1
ij

∣

∣

∣ uniformly decays as |i− j| increases, we modify this as

M1
ij ≈

∑

s

−n0sZ
2
se

2

T0s
(−1)|i−j|





√

2
π
(2vts∆tr)/∆z

1 + |i− j|
√

2π(2vts∆tr)/∆z



 (2.62)
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Note that since the dependence of M 1
ij on |i − j| enters in only with higher-order

terms, this approximation becomes less accurate as |i − j| increases relative to

∆z/(2vts∆tr).

Figure 2.10 compares the continuous, density conserving response rows as given

by Eqs. (2.55) and (2.56) in Eq. (2.50) with the discrete-based response rows as

given by Eq. (2.62). In the small time step limit, for which the discrete approxi-

mation is derived, we see that, while the continuous-based response rows approach

the correct value of zero as ∆t → 0, the model overestimates the rate of decay.

A further problem with the continuous preconditioner model is in capturing the

Nyquist modes, which have k‖qR∆θ = π and thus g(k‖) = 0, since the high resolu-

tion assumption of k‖∆θ � 1 yields g(k‖) = 1. The problem of g(k‖) → 0 (which

can cause the response matrix to decay very slowly as (i − j) → ±∞) is a result

of the 2nd order compact finite differencing of the Beam-Warming algorithm and

would not be an issue for other algorithms, including higher-order compact finite

differencing algorithms. The discrete preconditioner model also has a major disad-

vantage, namely its limited time step size range. Thus, ultimately, development of

a numerical preconditioner may be more practical, as we would like to accurately

capture a large range of spatial and temporal resolutions as well as to account for

physical effects neglected in the analytic approximations, such as the finite Larmor

radius effects represented by the Bessel functions.

One simple numerical approximation involves computing a single exact response

row, i.e. the exact Mij vs. i for a single value of j = j0, and assuming that other

rows can be calculated by translation as follows:

Mij = Mi−j+j0,j0 (2.63)
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Figure 2.10: Electrostatic response row values as a function of the time step size
∆t relative to the parallel spatial step size ∆z comparing analytic approximations
of the plasma response based on a numerically discrete form of the gyrokinetic
equation and the continuous or spatially transformed limit.
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Computationally, this approach reduces the number of gyrokinetic equation solves

needed to pre-compute the response matrix by a factor of Nθ. The physical basis

for this idea is that it is exact for an infinite uniform plasma, though in a real

tokamak there are some spatial variations, which this model would not capture.

Thus, we would like to develop a model which incorporates both the idea of

translation and the insight from the analytic models. Here we describe such a model,

which we will refer to as multiM. Recall that to compute a row of Mij exactly, we

set Φn+1
i = 1 at i = j and 0 otherwise and then one gyrokinetic equation-Poisson-

Ampere solve is done to compute the response. The multiM model is based on

computing approximate values for Mij vs. i at various j simultaneously (since we

know from the continuous analytic approximation that the responses decay quickly

as we move away from where the perturbation is applied). The response around a

perturbation point j can then be retained for its corresponding response row, while

the tail end of the response row can be computed using extrapolation between the

retained responses and a translated response from a single exact response row Mi,j0

vs. i. The pseudo-code for this is given as follows:

For nstart = 1 .. nstride

• Set Φn+1
j = (±)1 at every j = nstride-th grid point starting at nstart;

Φn+1
i = 0 otherwise.

• Solve the gyrokinetic and field equations for the response row Ri.

For i = (j − nipts) .. (j + nipts)

• Set Mij = (±)Ri

For i = imin .. j − (nipts + 1)
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• Set Mij = (Mi−j+j0,j0/Mj0−nipts,j0)Mj−nipts,j

For i = j + (nipts + 1) .. imax

• Set Mij = (Mi−j+j0,j0/Mj0+nipts,j0)Mj+nipts,j

Thus, we apply perturbations at multiple grid points equally spaced apart (by

nstride), yet alternate the sign of the perturbations to minimize the effect of one

perturbation on another. The response of the distribution function to this pertur-

bation is then computed via solution of the gyrokinetic equation. The grid points

around where a perturbation was applied are then used for that grid point’s re-

sponse row. For the tail end of the response row, we extrapolate based on the

retained values and a single computed exact response row. Note that this method

requires Nfields(nstride + 1) gyrokinetic equation solves to compute the approxima-

tion for M . Thus, one advantage of this preconditioner is that the resolution can

easily be adapted to minimize the computational efficiency of the preconditioner

relative to the enhancement in iteration convergence that the preconditioner pro-

vides. Furthermore, it can be extrapolated to the exact response (if nstride = Nθ

and nipts = Nθ − 1). A graphical illustration of multiM preconditioning is given

in figure 2.11. For notation, we will denote the method as “multiM (x,y)”, where

x = nstride is the number of grid spacings between the points where the perturba-

tions are applied simultaneously and y = nipts is the one-sided number of retained

points around the perturbation points.

(Aside: After developing and testing our multiM algorithm, we learned that it

can be thought of as a variation of an algorithm known in the numerical methods

literature as “probing” a matrix or graph “coloring”. “Probing” refers to the process

of determining a Jacobian (which in our case is the Green’s function or plasma
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Figure 2.11: Graphical illustration of the multiM (4,1) preconditioner.

response matrix) by numerical differentiation. “Coloring” refers to the trick of

calculating many elements of the Jacobian simultaneously by partitioning space

into subdomains that do not interact (or, in our case, weakly interact) in a single

application of the function. This is analogous to using colors to distinguish different

territories in a geographical map, which is how the well-known Four-Color Map

Theorem arose.)

Now that we have developed several preconditioner models, we can compare

them in practice. First, figure 2.12 compares the response rows for the analytically-

based continuous approximation, the numerically-based translated approximation,

and the numerically-based multiM approximation with the exact plasma response

matrix. Qualitatively, the approximations agree well with the exact matrix, even

for perturbations applied near the boundaries of the θ grid at θ = ±3π. Note that
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the analytic approximation is purely real. The exact plasma response shows that

the imaginary component is nonzero but negligible compared to the real part.

Although the errors |MGS2,approx − MGS2,exact| look small in figure 2.12, what

really matters for the convergence rate of an iterative algorithm is the maximum

eigenvalue of |I −M−1
GS2,approxMGS2,exact| (related to the error vector in Eq. (2.42)),

which is plotted in figure 2.13. The errors expressed by the results in figure 2.13

appear quite large compared to what one might have expected at first from look-

ing at figure 2.12. (Recall that the simple iteration algorithm is not guaranteed

to converge if max |λ| ≥ 1.) But if MGS2,approx has a nearly null eigenvalue for

an eigenvector that is in a slightly different direction than a nearly null eigen-

vector of MGS2,exact, then |I −M−1
GS2,approxMGS2,exact| could get large even though

|MGS2,approx −MGS2,exact| looks small.

Figure 2.13 also compares the convergence of the methods using simulations with

the test case parameters in the electrostatic limit and the simple iteration algorithm.

Overall, the results show that the numerical preconditioners are generally more

accurate and likewise show better convergence than the analytic preconditioner.

Note, in particular, the inaccuracy of the analytic preconditioner for ∆tvti/a �

(∆z/a)(1/2r) = 1.2, shown by the increased maximum eigenvalue for the smallest

time step sizes and, likewise, by the increasing iteration count for the smallest time

step sizes in the kyρi = 0.5 and 0.1 cases. (As an aside, it was also necessary

to lower the iteration tolerance for the analytic preconditioner by a factor of 100

compared with that for the numerical preconditioners to ensure that ω converges

in the same number of total time steps as the fully implicit scheme. More details

about the iteration convergence criterion and the choice of the iteration tolerance

are discussed in section 2.3.3 on initializers.) Comparing the numerical models,
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Figure 2.12: Electrostatic response rows for test case parameters at kyρi = 0.1 and
∆tvti/a = 0.1 comparing the exact response matrix with various preconditioners:
numerically-based multiM, numerically-based translate, and an analytically-based
continuous approximation for the plasma response.

while the eigenvalue plots consistently show the multiM preconditioner to be more

accurate than the translated preconditioner, this is not significantly shown in the

convergence test runs until the largest time step sizes for the kyρi = 0.1 case, when

the number of iterations for the translated preconditioner case rapidly increases. In

general, the number of iterations for an iterative algorithm depends not only on the

maximum eigenvalue λ, but also on the amplitude of the projection of the initial

error in the direction of the corresponding eigenvector. Presumably, the initial error

is small for small ∆t and so requires fewer iterations. (Note that, even for a perfect

preconditioner MGS2,approx = MGS2,exact so λ = 0, there will still be 2 iterations.)

For future tests, we will use the multiM preconditioner. The optimum choice
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Figure 2.13: Maximum eigenvalue |λ| of |I −M−1
GS2,approxMGS2,exact| vs. normalized

time step size and average number of gyrokinetic solves per time step vs. normalized
time step size for test case parameters in the electrostatic limit using an iterative
implicit scheme with simple iteration and a two-point iteration initializer comparing
various preconditioners: numerically-based multiM, numerically-based translate,
and a analytically-based continuous approximation for the plasma response. (Note
that the analytic preconditioner uses an iteration tolerance which is 100 times
smaller than the standard iteration tolerance).
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of nstride = 16 and nipts = 7 used in the tests above was chosen empirically. Note

that for the test case parameters, the number of θ grid points is 32 per 2π in θ,

or a total of 97 grid points for a grid extending from −3π to 3π. Thus multiM

(97,96) is equivalent to computing the exact fully implicit response matrix, so mul-

tiM (16,7) does approximately 6 times fewer gyrokinetic-Poisson-Ampere solves in

the initialization. Figures 2.14 and 2.15 compare the electromagnetic response rows

for multiM (20,9), (16,7), (12,5), and (8,3) at a moderate kyρi of 0.5 and a moderate

time step ∆t(vti/a) of 0.1 for a perturbation applied near the center of the θ grid at

θ = 0+∆θ and for a perturbation applied near the right boundary at θ = 3π−∆θ.

On the scale shown, the agreement between the multiM preconditioner response

rows and the exact response rows is good for all 4 matrices M 1
GS2 - M4

GS2. The

close agreement in the curves in the non-extrapolated points around the applied

perturbations suggests that the effects of nearby simultaneously applied perturba-

tions is minimal, though a slight deviation of the curves, particularly for the multiM

(8,3) preconditioner, can be seen at θ(i) = θ(j ± (nipts + 1)) where the extrapo-

lation begins. Perhaps, in future work, an extrapolation based on a higher-order

polynomial could smooth this transition for lower resolution preconditioners.

Figures 2.16 and 2.17 compare the multiM preconditioners quantitatively, show-

ing the maximum eigenvalue of |I −M−1
GS2approxMGS2exact| and the average number

of iteration per time step with the test case parameters in the electrostatic limit

using simple iteration for the cases of adiabatic electrons and gyrokinetic electrons

respectively. Overall, for both cases, while general enhanced convergence is seen as

nstride increases as expected, there is not much improvement from (16,7) to (20,9),

perhaps even less than the enhancement compared with increasing the resolution

from (12,5) to (16,7). For the case of adiabatic electrons, the performance of the
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Figure 2.14: Response rows M 1
GS2,ij and M2

GS2,ij vs. θ(i) for test case parameters
at kyρi = 0.5 and ∆tvti/a = 0.1 comparing the exact response matrix with the
numerically-based multiM of varying resolution (nstride, nipts).
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GS2,ij vs. θ(i) for test case parameters
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numerically-based multiM of varying resolution (nstride, nipts).
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iterative scheme is particularly good across the entire range of time step widths.

Specifically, multiM (20,9) - multiM (8,3) perform less than ∼ 3 iterations per time

step even at the largest time step width of ∆tvthi/a = 1 for all kyρi test cases. Even

multiM (4,1) performs less than 5 iterations per time step.

Considering a given time step width in the results with adiabatic electrons shown

in figure 2.16, note that as kyρi decreases, the maximum eigenvalue increases but

not much change is seen in the number of iterations. This is interesting compared

with the results with gyrokinetic electrons in figure 2.17, which shows both an

increase in the maximum eigenvalue and a consistent increase in the number of

iterations as kyρi decreases for a given time step width. Note that the number of

iterations begins to increase above 2 iterations near the limit where the time step

width normalized with respect to vte is comparable to the parallel spatial width

∆z, i.e. for ∆tvte/a ∼ (∆z/a)(1/2r), which corresponds to ∆tvti/a ∼ 0.021 for the

test case parameters. For the adiabatic electron case, the analogous relevant time

step limit is where the time step width normalized with respect to vti is comparable

to the parallel spatial width ∆z, i.e. ∆tvti/a ∼ (∆z/a)(1/2r), which corresponds

to 1.2 for the test case parameters. So this limit is slightly beyond the time step

range in figure 2.16. But, looking at the multiM (20,9) and (16,7) cases, the figure

does show that the iteration curves are beginning to increase above 2 iterations just

below the end of the range at ∆tvti/a = 1.

Figure 2.18 shows analogous results to figure 2.17 with the inclusion of electro-

magnetic dynamics. Here we see a more significant increase in the number of iter-

ations as ∆t increases (particularly as kyρi decreases) and, unlike the electrostatic

case, a limitation of the time step width (above which the maximum eigenvalue

approaches 1 and the algorithm fails to converge) In fact, the kyρi = 0.1 results
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Figure 2.16: Maximum eigenvalue |λ| of |I −M−1
GS2,approxMGS2,exact| vs. normalized

time step size and average number of gyrokinetic solves per time step vs. normalized
time step size for test case parameters in the electrostatic limit with adiabatic
electrons using an iterative implicit scheme with simple iteration and a two-point
iteration initializer comparing numerically-based multiM preconditioners of varying
resolution (nstride, nipts).



2.3. Iterative Implicit Schemes 83

10
−2

10
−1

10
0

0

0.5

1
k

y
 ρ

i
 = 0.5

∆ t v
ti
 / a

10
−2

10
−1

10
0

0

5

10

15

20

25

∆ t v
ti
 / a

10
−2

10
−1

10
0

0

0.5

1
k

y
 ρ

i
 = 0.1

∆ t v
ti
 / a

10
−2

10
−1

10
0

0

5

10

15

20

25

∆ t v
ti
 / a

10
−2

10
−1

10
0

0

0.5

1

∆ t v
ti
 / a

M
ax

 |λ
|

k
y
 ρ

i
 = 0.8

(20,9)
(16,7)
(12,5)
(  8,3)
(  4,1)

10
−2

10
−1

10
0

0

5

10

15

20

25

∆ t v
ti
 / a

N
um

 G
K

 it
er

at
io

ns

Figure 2.17: Maximum eigenvalue |λ| of |I −M−1
GS2,approxMGS2,exact| vs. normalized

time step size and average number of gyrokinetic solves per time step vs. normalized
time step size for test case parameters in the electrostatic limit using an iterative
implicit scheme with simple iteration and a two-point iteration initializer comparing
numerically-based multiM preconditioners of varying resolution (nstride, nipts).



2.3. Iterative Implicit Schemes 84

indicate that a resolution of at least (12,5) is needed in practice, since the lower

resolution preconditioners do not converge at even the smallest ∆t for this case.

Overall, the result that there is a fairly sharp time step limitation for the elec-

tromagnetic cases is somewhat surprising and not fully understood. Considering

the electromagnetic response row plots shown in figures 2.14 and 2.15, the response

rows for the preconditioner models do not qualitatively appear more inaccurate for

M2
GS2, M

3
GS2, and M4

GS2 than for the full electrostatic response of M 1
GS2. Recall

again that these plots correspond to the case of kyρi = 0.5 and ∆tvti/a = 0.1.

Although the number of iterations for multiM (20,9) and (16,7) is approximately

the same electrostatically and electromagnetically at this time step width, multiM

(12,5) averages 6 and 9 iterations respectively while multiM (8,3) does larger than

max iterations (> 300) electromagnetically compared with 8 electrostatically.

Figure 2.19 thus addresses the issue of whether simply any nonzero β signifi-

cantly affects convergence. In this figure, for multiM (20,9), (16,7), and (12,5) at

kyρi = 0.5, we compare the maximum eigenvalue and number of iterations as a

function of ∆t as β is varied from the electrostatic limit of β = 0 to β = 2× the

test case value of 1.0× 10−3. In these curves, the multiM (20,9) case does not show

a significant decrease in performance until β = 5.0× 10−4, while both the multiM

(16,7) and (12,5) cases show a significant deviation from the electrostatic case even

for β = 2.5 × 10−4. However, considering a given ∆t, while for all 3 models the

maximum eigenvalue and number of iterations increases as β increases, for β larger

than that for which max iterations is exceeded, there does not appear to be a sig-

nificant shift in (∆tvti/a)max as β is increased further, at least for the limited range

of β tested.

Here we further consider the nature of this sharp time step limitation for the
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Figure 2.18: Maximum eigenvalue |λ| of |I − M−1
GS2,approxMGS2,exact| vs. normal-

ized time step size and average number of gyrokinetic solves per time step vs.
normalized time step size for test case parameters with electromagnetic dynamics
(β = 1.0 × 10−3) using an iterative implicit scheme with simple iteration and a
two-point iteration initializer comparing numerically-based multiM preconditioners
of varying resolution (nstride, nipts).
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Figure 2.19: Maximum eigenvalue |λ| of |I −M−1
GS2,approxMGS2,exact| vs. normalized

time step size and average number of gyrokinetic solves per time step vs. normalized
time step size for test case parameters at kyρi = 0.5 with electromagnetic dynamics
and various β using an iterative implicit scheme with simple iteration and a two-
point iteration initializer comparing numerically-based multiM preconditioners of
resolution (nstride, nipts)=(20,9), (16,7), and (12,5).
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electromagnetic cases. It is clear from figure 2.18 that the time step at which the

maximum eigenvalue approaches 1, corresponding to non-convergence, decreases as

the resolution of the preconditioner model (specified by nstride) decreases and as

kyρi decreases. (The scaling of the time step limitation with kyρi is shown more

clearly for the multiM (16,7) model in figure 2.20.) We have found empirically from

these electromagnetic results that the maximum time step for convergence scales

as

(∆tvte/a)max ∼ (∆z/a)(1/2r) ∗ (nstride) ∗ (kyρi) (2.64)

where nstride∆z is the bandwidth of the response used for the multiM precondi-

tioner. In the finite β electromagnetic results in figure 2.18, the number of iterations

increases very rapidly if this time step is exceeded, effectively putting a stringent

limit on the time step, while in the β = 0 electrostatic results in figure 2.17 the

required number of iterations increases at a more modest rate if this time step is

exceeded. This is surprising considering the analytic dispersion relation for the

kinetic Alfvén wave, given as follows for long wavelengths:

ω2 =
k2

‖
v2
A

1 + 2
βe

me

mi
k2

⊥ρ
2
s

=
k2

‖
v2
te

βe

2
mi

me
+ k2

⊥ρ
2
s

(2.65)

which shows that ω/(k‖vte) should decrease as β increases. So one would have

thought that the higher β case would be easier, not harder, than the β = 0 limit.

However, an unusual feature of the Beam-Warming finite-differencing algorithm is

that the ∂A‖/∂t in the gyrokinetic equation is evaluated half-way between adjacent

grid points:
∂A‖

∂t
= ∂

∂t

(

A‖,j+1+A‖,j

2

)

. Considering Fourier modes A‖,j ∼ eik‖qRθj , we

see that the ∂A‖/∂t operator vanishes for modes with the highest k‖ allowed on

the grid, i.e. at the Nyquist limit k‖qR∆θ = π. The Nyquist mode oscillates sign
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from one grid point to the next (A‖,j ∼ (−1)j), so averaging it between adjacent

grid points always gives 0. This means that the discrete system of equations always

approaches the electrostatic β = 0 limit, but it does not explain why the finite β case

actually requires more iterations. This behavior, i.e. that problems get more difficult

at higher β and lower k⊥, is somewhat reminiscent of the “Ampere cancellation”

problem that affected other algorithms (but not GS2’s fully implicit algorithm)

and was eventually fixed by careful treatment of two potentially large terms in

the Ampere equation that should cancel each other [HAMMETT and JENKO,

2001; CANDY and WALTZ, 2003a; CHEN and PARKER, 2003]. It is possible

that further investigation of this issue could lead to an improved preconditioner

or modification of the treatment of some of the terms in the iteration that would

provide better convergence performance for simple iteration for low kyρi modes.

We leave this to future work. Another option for future work would be to explore a

more standard version of the compact finite differencing algorithm, which is usually

implemented with 4th or 6th order accuracy, or even other non-compact finite

differencing algorithms, since it is only the 2nd order version of compact finite

differencing that has the problem of the ∂/∂t operators vanishing for modes at the

Nyquist scale k‖qR∆θ = π.

For this work, however, we will use the simple iteration results of figures 2.17 -

2.20 and the multiM (16,7) preconditioner as a base case standard in the next two

sections of this chapter in which we explore choice of an optimal iteration initializer

and compare more robust and complex iterative schemes.
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Figure 2.20: Maximum eigenvalue |λ| of |I −M−1
GS2,approxMGS2,exact| vs. normalized

time step size and average number of gyrokinetic solves per time step vs. normalized
time step size for test case parameters with electromagnetic dynamics (β = 1.0 ×
10−3) using an iterative implicit scheme with simple iteration, a two-point iteration
initializer, and multiM (16,7) preconditioner. The right plot shows the maximum
time step (after which the number of iterations exceeds max iterations) vs. kyρi for
this data. The dashed line shows the empirical scaling given in Eq. (2.64).
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2.3.3 Initializers

The choice of initialization for the fields for the 0th iteration at the beginning of

each time advance was also explored. While the convergence or divergence of the

iterative process does not depend on the initial guess (this depends rather on the

character of the matrix), a good initializer can reduce the number of iterations.

Here we compare the following initializer extrapolators:

• simple one-point: Φn+1,0 = Φn

• linear two-point: Φn+1,p=0 = 2Φn − Φn−1

• polynomial three-point: Φn+1,p=0 = 3Φn − 3Φn−1 + Φn−2

• polynomial four-point: Φn+1,p=0 = 4Φn − 6Φn−1 + 4Φn−2 − Φn−3

Note that the results shown in section 2.3.2 used the linear two-point initializer.

The results presented in this section use the simple iteration algorithm and the

multiM (16,7) preconditioner.

Figures 2.21 and 2.22 compare the performance of the initializers for the elec-

trostatic and electromagnetic cases respectively. Overall, the linear two-point ex-

trapolator generally provides the fastest convergence rate. However, we note that

the polynomial three-point and four-point initializers required the use of a smaller

iteration tolerance (with respect to the ω tolerance) for convergence. For solution

of our generic equation d~x
dt

= −iL~x, where ~x is the field vector (Φ, A‖) and L is some

linear operator with a spectrum of eigenvalues ω, we define the eigenfrequency of

the fastest growing mode based on the L2-norm of the finite differenced equation,

i.e.

ω(kx, ky) =
i

∆t

〈~xavg | ~xn+1 − ~xn〉
〈~xavg | ~xavg〉

(2.66)
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where ~xavg = r~xn+1 +(1− r)~xn. GS2 uses the simple convergence criterion that the

ratio of the sample variance to the sample mean of ω for a specified time-averaging

period be less than the specified ω tolerance. The iteration convergence criterion is

likewise defined based on the L2-norm but relative to the instantaneous iteration:

〈~xn+1,p+1 − ~xn+1,p | ~xn+1,p+1 − ~xn+1,p〉
〈~xn+1,p | ~xn+1,p〉 < (iter tol)2 (2.67)

Typical results use an iteration tolerance which is set to be 1/4 of the ω tolerance

(ω tol = 1.0 × 10−5). This ratio value was chosen empirically using the criterion

that the iteration scheme yield the same number of total time steps to converge

in ω as the fully implicit code for general test cases. With the three-point and

four-point polynomial initializers, however, while the iteration converges on each

time step using the standard iteration tolerance, ω does not converge in the same

number of total time steps. Thus, the iteration tolerance was lowered according

to this criterion, yielding iter tol/ω tol = 1/100 for the three-point initializer and

iter tol/ω tol = 1/10000 for the four-point initializer. This lowering of the iteration

tolerance of course increases the number of gyrokinetic solves per time step. To see

this effect, in figures 2.21 and 2.22 the blue dashed and dotted lines show the results

using the linear two-point initializer with an iteration tolerance of 1.0× 10−7 and

1.0×10−9 respectively. Comparing these curves with the three-point and four-point

curves, we see that, for a given iteration tolerance, the higher-order polynomial

schemes perform better.

For future work, a better approach may be to measure the iteration error relative

to (~xn+1 − ~xn) rather than to ~xn+1. To see this, consider the uncertainty in ω.
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Figure 2.21: Average number of gyrokinetic solves per time step for test case pa-
rameters in the electrostatic limit using an iterative implicit scheme with simple
iteration and multiM (16,7) preconditioner and comparing various iteration initial-
izer extrapolators. The dashed lines use an iteration tolerance of 1.0 × 10−7 and
the dotted lines use an iteration tolerance of 1.0 × 10−9 (The standard iteration
tolerance is 2.5× 10−6).
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Figure 2.22: Average number of gyrokinetic solves per time step for test case pa-
rameters with electromagnetic dynamics (β = 1.0×10−3) using an iterative implicit
scheme with simple iteration and multiM (16,7) preconditioner and comparing var-
ious iteration initializer extrapolators. The dashed lines use an iteration tolerance
of 1.0 × 10−7 and the dotted lines use an iteration tolerance of 1.0 × 10−9 (The
standard iteration tolerance is 2.5× 10−6).
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Considering the electrostatic limit for simplicity, Eq. (2.66) becomes

ω =
i

∆t

〈Φavg | Φn+1 − Φn〉
〈Φavg | Φavg〉

(2.68)

From this, the relative instantaneous uncertainty in ω is given by

δω

ω
=
〈rδΦn+1 + (1− r)δΦn | Φn+1 − Φn〉+ 〈Φavg | δΦn+1 − δΦn〉

〈Φavg | Φn+1 − Φn〉

−〈rδΦ
n+1 + (1− r)δΦn | Φavg〉
〈Φavg | Φavg〉

−〈Φavg | rδΦn+1 + (1− r)δΦn〉
〈Φavg | Φavg〉

(2.69)

Using Eq. (2.68) to rewrite the first term on the RHS, we can simplify Eq. (2.69)

as:

δω

ω
= 1

〈Φavg|Φavg〉

[ 〈

rδΦn+1 + (1− r)δΦn | Φavg

〉

(2.70)

+
i

ω∆t

〈

Φavg | δΦn+1 − δΦn
〉

−2Re
(〈

Φavg | rδΦn+1 + (1− r)δΦn
〉) ]

(2.71)

Taking the absolute value, we find that the error is bounded by

|δω|
|ω| ≤

1
〈Φavg |Φavg〉

[ ∣

∣

∣r
〈

δΦn+1 | Φavg

〉∣

∣

∣+ |(1− r) 〈δΦn | Φavg〉|

+
1

|ω∆t|
(〈

Φavg | δΦn+1
〉

+ 〈Φavg | δΦn〉
)

+2
〈

Φavg | rδΦn+1 + (1− r)δΦn
〉 ]

(2.72)
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where the relation |A+ A∗| ≤ 2|A| has been used to further bound the last term on

the RHS. Assuming that |δΦn| ≤ |δΦn+1|, the bound in the relative error becomes:

|δω|
|ω| ≤

|〈Φavg | δΦn+1〉|
〈Φavg | Φavg〉

(

3 +
2

|ω∆t|

)

(2.73)

Substituting from Eq. (2.68) that Φavg = − 1
iω∆t

(Φn+1 − Φn) and simplifying using

the Cauchy-Schwarz inequality (i.e. |〈A | B〉| ≤ |A||B|), we obtain

|δω|
|ω| ≤

|δΦn+1|
|Φn+1 − Φn| (2 + 3 |ω∆t|) (2.74)

Thus, in order to achieve an instantaneous relative error tolerance in ω (i.e. |δω|
|ω| ≤

ω tol), the relative error in the change in Φ must be below a certain threshold. If

we iterate until the error δΦn+1 is sufficiently small, i.e.

|δΦn+1|
|Φn+1 − Φn| < iter tol (2.75)

then the iteration error will not affect the frequency convergence (and will thus

ensure that that the iterative solver converges to the same frequency in the same

number of time steps as the fully implicit solver) as long as we set iter tol < ω tol/4

(assuming that |ω∆t| < 2/3).

We can relate this bound to our approach of measuring the error in Φ as in Eq.

(2.67), i.e. relative to Φn+1 rather than to (Φn+1 − Φn). We can write the relative

error convergence criterion in Eq. (2.75) as

|Φn+1,p+1 − Φn+1,p|
|Φn+1,p+1 − Φn| < iter tol rel (2.76)
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where iter tol rel denotes the iteration tolerance measured with respect to the rel-

ative error. Equivalently, this equation can be written as:

|Φn+1,p+1 − Φn+1,p|
|Φn+1,p| < (iter tol rel)

|Φn+1,p+1 − Φn|
|Φn+1,p| (2.77)

In our present approach (given by Eq. (2.67)), we require that the LHS be smaller

than iter tol. This is equivalent to Eq. (2.77) if we choose iter tol equal to the RHS,

i.e.

iter tol = (iter tol rel)
|Φn+1,p+1 − Φn|
|Φn+1,p| (2.78)

Using Eq. (2.68) in the limit of small ∆t, we can approximate this as

iter tol = (iter tol rel) |ω∆t| (2.79)

which requires that iter tol decrease as ∆t decreases. Thus, considering a given

iter tol rel as required to achieve a desired relative error in ω, when using the

iteration convergence as defined by Eq. (2.67) one must use a smaller iteration

tolerance because of the dependence on ∆t; even though, at larger ∆t, iter tol

could have been larger and still ensured achieving the same ω as the fully implicit

code. Overall, the effect of the quantity with respect to which the convergence

is measured is a topic of future research. While this may improve performance,

it does not effect the overall lack of robustness of the simple iteration scheme for

large ∆t with electromagnetic dynamics, since the number of iterations to achieve

a constant iter tol rises very rapidly with ∆t above a certain threshold (such as in

figure 2.22).
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Referring back to the general results comparing the initializers in figures 2.21

and 2.22, the fact that the linear extrapolator performs better than the one-point

extrapolator reflects its higher accuracy in determining the smooth modes in the

system. However, the degradation in performance with the higher-order polynomial

extrapolators due to the necessary smaller iteration tolerance may represent a com-

peting effect between more accurately representing the smoother or well-resolved

modes in the system yet more inaccurately representing the high frequency Nyquist

modes in the system, which oscillate sign each time step and are not well resolved.

To see this, consider the initial step relative error of the iteration:

(rel err)0 =
|Φn+1,0 − Φn+1|
|Φn+1 − Φn| (2.80)

With the one-point extrapolator, (rel err)0 = 1 and thus it may require many

iterations to reduce the relative error down to the required iter tol. Compare this

with the initial step relative error using the two-point extrapolator:

(rel err)0 =
|2Φn − Φn−1 − Φn+1|
|Φn+1 − Φn| (2.81)

We define the mode amplification factor for well-resolved modes as A ≡ Φn+1

Φn , which,

from Eq. (2.68), we can write as A = 1−iω∆t(1−r)
1+iω∆tr

. Thus, in terms of A, Eq. (2.81)

becomes

(rel err)0 =

∣

∣

∣

∣

A− 1

A

∣

∣

∣

∣

=
|ω∆t|

|1− iω∆t(1− r)| (2.82)

In the limit of small |ω∆t|, (rel err)0 ∼ |ω∆t|+O(|ω∆t|2), which is much smaller

than the (rel err)0 of 1 found for the one-point initializer. Thus, for well-resolved

modes, it is expected that the two-point initializer will converge more quickly than
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the one-point initializer. (However, note that in the limit of very large |ω∆t|,

which we discuss below, A → −1 and (rel err)0 → 2, requiring many iterations).

Similarly, we can show that the initial relative error of the three-point initializer is

given by

(rel err)0 =

∣

∣

∣

∣

∣

(A− 1)2

A2

∣

∣

∣

∣

∣

=
|ω∆t|2

|1− iω∆t(1− r)|2
(2.83)

which, in the small |ω∆t| limit, varies as |ω∆t|2 + O(|ω∆t|3), thus yielding an

even faster convergence than the two-point initializer. These results agree with our

simulation results of figures 2.21 and 2.22 which show that, for a given iter tol, the

number of iterations per time step decreases as the order of the polynomial of the

initializer increases.

However, a problem occurs for the high frequency Nyquist modes which os-

cillate sign each time step. To see this, consider a high frequency mode for which

|ω∆t| � 1, so the centered implicit Beam-Warming algorithm gives Φn proportional

to (−1)n. Then the linear two-point initializer (Φn+1,p=0 = 2Φn − Φn−1) predicts

Φn+1,p=0 = 3, which is 3 times the true value of |Φn+1| = 1 for a Nyquist mode.

Thus, the Nyquist modes are amplified by a factor of 3 for the two-point initializer

and even higher by the higher-order polynomial initializers, e.g. by a factor of 7 for

the three-point initializer and by a factor of 15 for the four-point initializer. (Only

the one-point initializer does not amplify the Nyquist mode.) This means that

choice of the optimum order of the initializer is then a competing effect between

accurately predicting both the well-resolved modes and the poorly resolved high

frequency modes. That is, there will always be some small component of errors in

the high frequency modes, and one needs to ensure that these modes are not am-

plified so much by the initial predictor step that the increased number of iterations

needed to reduce the error in the high frequencies offsets the reduction of iterations
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needed for low frequency modes made possible by the improved prediction for low

frequencies.

In the centered Beam-Warming algorithm, modes at the Nyquist limit in spatial

frequency (k‖qR∆θ = π) will also be at the Nyquist limit in temporal frequency

(ω∆t = π). Thus, we can consider spatial smoothing of the initializer to improve

performance. Specifically, we have also implemented a two-point initializer with

spatial smoothing, defined as

φn+1,p=0
j = 2





(

Φn
j−1 + 2Φn

j + Φn
j+1

)

4



−




(

Φn−1
j−1 + 2Φn−1

j + Φn−1
j+1

)

4



 (2.84)

This initializer is designed to vanish at the spatial Nyquist mode: using a spectral

numerical analysis in the spatial dimension, i.e. Φn
j = Φ̂neik‖qRθj , we find that

(

Φn
j−1 + 2Φn

j + Φn
j+1

)

becomes 2Φ̂neik‖qRθj (1 + cos(k‖qR∆θ)), which vanishes for

k‖qR∆θ = π.

Test cases with this initializer are also shown in figures 2.21 and 2.21. While the

results do not show a significant difference in convergence compared with the stan-

dard two-point initializer in the electrostatic limit (showing slightly decreased per-

formance at small time steps, though slightly enhanced performance at the largest

time steps), for the case of kyρi = 0.5 with electromagnetic dynamics, we see that

the spatial smoothing initializer is the only method which converges in a feasible

number of gyrokinetic solves at large time steps (but it still failed for the case of

kyρi = 0.1 if ∆t is too large). While the Nyquist mode is one of the important

high frequency modes in our system, it is not the only one (for example, our equa-

tions also contain electrostatic Alfvén waves which can be high frequency even at

k‖ less than the maximum k‖ on the grid), and spatial smoothing will not help with
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these modes. Thus, for all subsequent reported results, we use the standard linear

two-point extrapolator as the initializer.

2.3.4 Iteration Schemes

Various iteration schemes were considered as the basis for our algorithm. In ad-

dition to simple iteration, which we found to be not robust with electromagnetic

dynamics, these include more complex schemes, such as steepest descent as well

as the Krylov-based solvers of conjugate gradient, bi-conjugate gradient stabilized

(Bi-CGSTAB), and generalized minimal residual (GMRES). Below we first briefly

summarize the general ideas behind these methods and then provide a general

performance comparison using the test case parameters with the multiM (16,7)

preconditioner and linear two-point initializer. Templates ( or pseudo-code) of the

algorithms discussed here can be found in Appendix B.

We consider solution of a general linear system of equations M~xn+1 = −~ρ,

where M is a square nonsingular complex matrix. We will also be considering a

transformed left preconditioned linear system given as

M−1
approxM~xn+1 = −M−1

approx~ρ (2.85)

where M−1
approx is the preconditioner, since a good preconditioner often aids with en-

hanced convergence in iterative schemes. We are particularly interested in “matrix-

free” schemes, i.e. those for which the matrix M itself is never directly accessed.

For problems such as solution of the gyrokinetic equations, M (and its conjugate

transpose) is computationally expensive to compute, particularly since M is large

and sparse. So we would like to avoid computing its elements and instead use a
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scheme in which only implicit operations with M , such as the matrix-vector product

of M with a generic vector ~v, are needed.

We start with the simple iteration method as a basis for the iterative schemes

that we will consider. With this method, we found that successive approximate

iterative solutions follow a path given by

~xn+1,p+1 = ~xn+1,p + λp+1~sp+1 (2.86)

where λ = 1 for each iteration p and the search direction ~s is found from Eq. (2.40)

to be

~sp+1 = M−1
approx~r

p = M−1
approx

[

−~ρ−M~xn+1,p
]

(2.87)

where ~r is the error residual of the original unpreconditioned matrix system. Thus,

the search direction is simply the error residual of our initial preconditioned matrix

equation. Note that the residual itself can also be updated with respect to the

search direction analogous to Eq. (2.86) as

~rp+1 = ~rp − λp+1M~sp+1 (2.88)

Simple iteration is known as a type of stationary iterative method since the compu-

tations involved in finding the updated iterative solution do not involve information

that changes at each iteration but rather basically only involve iterative refinement.

Stationary methods are generally less complex and easier to implement than non-

stationary methods, though non-stationary methods can be more effective. The

other methods that we consider here are non-stationary methods.

Simple iteration can be thought of as basically an unnormalized steepest descent
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method. The steepest descent method is based on the idea of moving from a point

P p with position vector ~xn+1,p to a point P p+1 with position vector ~xn+1,p+1 by

minimizing some scalar error residual function f(~x) along the line extending from

P p in the direction of the local downhill gradient −∇f(P p). Thus, successive

approximate iterative solutions follow a path which uses the same search direction

as simple iteration yet now with an optimal step size λ.

We define our scalar function with respect to theM−1-norm of the error residual,

i.e.

f(~x) ≡
〈

~r |M−1~r
〉

(2.89)

Note that this definition of f(~x) is equivalent to minimization of the M-norm of the

true error, i.e. 〈~xn+1,p+1 − ~xn+1,∗ |M (~xn+1,p+1 − ~xn+1,∗)〉, where ~xn+1,∗ = −M−1~ρ is

the exact solution of the original matrix equation. In the steepest descent method,

the optimal step size is obtained from the single parameter local minimization of

F (λp+1) = f(~xn+1,p + λp+1~sp+1), i.e. via solution of

0 =
dF

dλp+1
(~xn+1,p+1) =

〈

∇f | ∂~x
n+1,p+1

∂λp+1

〉

(~xn+1,p+1) (2.90)

The solution of this equation then yields that

λp+1 =
〈~rp | ~sp+1〉
〈~sp+1 |M~sp+1〉 =

〈

~rp |M−1
approx~r

p
〉

〈~sp+1 |M~sp+1〉 (2.91)

where we have used the assumption that M is Hermitian (i.e. M = MH , where

the superscript H denotes the conjugate transpose). Note that, with the Hermitian

assumption, the direction of the downhill gradient at ~xn+1,p is indeed in the direction

of the error residual ~rp. Convergence is, of course, faster if the search direction is
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closer to the actual error (~xn+1,∗ − ~xn+1,p) = M−1~rp, so the search direction for

the preconditioned system is instead chosen as in Eq. (2.87), since M−1
approx ≈M−1.

Furthermore, the steepest descent algorithm in this form is generally applicable

only to Hermitian matrices which are also positive definite (i.e. 〈~v|M~v〉 > 0 for

all nonzero vectors ~v ∈ Cn) since it is then guaranteed that there exists a unique

solution ~x∗ to the minimization of f(~x). This follows from the fact that, for a

Hermitian matrix M , the Hessian D2f(~x) is M and thus, if M is also positive

definite, then f(~x) is strictly convex.

The gyrokinetic response matrix is, however, not exactly a Hermitian matrix

(though inspection of figures 2.12 and 2.14-2.15 shows that it is close to Hermitian,

at least for these test case parameters). Although a modified steepest descent

algorithm without the Hermitian assumption can be derived analogous with the

above standard formulation, it turns out that this modified algorithm is then not

“matrix-free”. Thus, a common alternative to the steepest descent method for use

with non-Hermitian systems involves minimizing the L2-norm of the error residual

rather than the M−1-norm. This method yields an optimal step size of

λp+1 =
〈~sp+1 |M~rp〉
〈M~sp+1 |M~sp+1〉 =

〈

M−1
approx~r

p |M~rp
〉

〈M~sp+1 |M~sp+1〉 (2.92)

which is independent of the conjugate transpose of M and for which the assumption

that M is Hermitian is not necessary. However, with this minimization, the true

direction of the downhill gradient isMH~rn+1,p+1, though the method is often applied

using the error residual as the search direction since MH is often unavailable. Thus,

this method is not a true “steepest descent” method.

Here we will consider only implementation of the standard steepest descent
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method, though, of course, without the Hermitian and positive definite properties,

convergence is not guaranteed. It is still anticipated, however, that the steepest

descent method as applied to our gyrokinetic system will be an improvement over

simple iteration since it uses the same search direction but of a size based on infor-

mation from previous iterations. But even for Hermitian positive definite systems,

it should be noted that the steepest descent method often has the general disad-

vantage of relatively slow convergence, particularly for functions with long narrow

valleys (for which the method yields a long zig-zag path to the bottom). So more

complex iteration solvers, such as Krylov solvers, will also be explored.

Krylov solvers are often more robust than simple iteration and steepest descent

methods. Rather than using a simple line-search, Krylov methods are projection

methods based on the idea of constructing an approximate solution by projecting

onto an expanding set of Krylov subspaces Km (M,~v) ≡ span {v,Mv, . . . ,Mm−1v}

and then minimizing over those subspaces. For an N-dimensional matrix problem,

the exact solution can be obtained after N steps since the Krylov subspaces have

then expanded to fill the entire domain.

The simplest Krylov solver is the conjugate gradient method [HESTENES and

STIEFEL, 1952]. This method is based on the idea of minimizing along a set

of conjugate directions (from the Krylov subspace), rather than along the local

gradient. It thus has better convergence properties than the steepest gradient

algorithm, particularly for functions with long narrow valleys. However, like the

steepest descent method, the standard “matrix-free” conjugate gradient method

which we will describe is based on the assumption that M is a Hermitian matrix.

For the conjugate gradient method, λ is still chosen as before, to minimize the

scalar function f(~x), but now the new search direction is chosen so that the solution



2.3. Iterative Implicit Schemes 105

remains optimal relative to all previous search directions. Specifically, the search

directions are updated as

~sp+1 = M−1
approx~r

p + βp~sp (2.93)

where βp is chosen such that the search directions are M-conjugate (i.e. 〈~si |M~sj〉 =

0, i 6= j). Note that this is equivalent to the residuals being M−1
approx conjugate, or

〈

~ri |M−1
approx~r

j
〉

= 0, i 6= j. Thus, we find that

λp+1 =

〈

~rp |M−1
approx~r

p
〉

〈~sp+1 |M~sp+1〉 (2.94)

βp =

〈

~rp |M−1
approx~r

p
〉

〈

~rp−1 |M−1
approx~r

p−1
〉 (2.95)

As for the steepest descent method which also minimizes f(~x), the conjugate

gradient algorithm is generally applicable only to Hermitian matrices which are also

positive definite. In this case, it can easily be shown that the search directions ~si are

linearly independent and thus {~s0, . . . , ~sN−1} spans CN and the conjugate gradient

algorithm is guaranteed to converge in at most N steps. Relating the conjugate

gradient algorithm as a Krylov solver, it can be shown via induction [GOLUB and

VAN LOAN, 1983] that

span{~s1, . . . , ~sp+1} = span{M−1
approx~r

0, . . . ,M−1
approx~r

p}

= span{M−1
approx~r

0, (M−1
approxM)M−1

approx~r
0,

. . . , (M−1
approxM)pM−1

approx~r
0}

≡ Kp+1

(

M−1
approxM,M−1

approx~r
)

(2.96)
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Thus, the conjugate gradient algorithm overall constructs the solution at the (p+1)-

th iterate as the vector from the Krylov subspace Kp+1 which minimizes the M-norm

of the true error. An important property of the conjugate gradient algorithm (com-

pared, in particular, with the GMES algorithm discussed below) is that it does

not require storage of the Krylov basis vectors and thus has overall minimal stor-

age requirements. Implementation of the steepest descent and conjugate gradient

algorithms in GS2 follows the template in [BARRETT et al., 1994].

The methods of bi-conjugate gradient stabilized (Bi-CGSTAB) [VAN DER

VORST, 1992] and generalized minimal residual (GMRES) [SAAD and SCHULTZ,

1986] are designed to work better for non-Hermitian matrices. Instead of requir-

ing minimization along conjugate directions, GMRES minimizes the residual in a

Krylov subspace, i.e. by requiring ~xn+1,p+1 to minimize the L2-norm of the error

residual ~rp+1 = −~ρ −M~xn+1,p+1 for every ~xn+1,p+1 in ~xn+1,0 + Kp+1. This is done

by first constructing an orthonormal basis {~v1, ~v2, . . . , ~vp+1} for the Krylov sub-

space Kp+1 using the Arnoldi process [ARNOLDI, 1951]. Then any ~z ∈ Kp+1 can

be written as ~z =
∑p+1
i=1 yi~vi. Thus the iterative solution can be constructed as

~xn+1,p+1 = ~xn+1,0 + ~z where the coefficient vector ~y minimizes ||~rp+1||2 and is thus

the solution of the least squares problem

min
~y∈Cp+1

∣

∣

∣

∣

∣

∣~r0 −MV p+1~y
∣

∣

∣

∣

∣

∣

2
(2.97)

where the matrix V p+1 = [~v1~v2 . . . ~vp+1]. (The advantage of the Arnoldi process is

that, by using a Gram-Schmidt procedure for formation of the orthonormal basis,

the least squares problem of Eq. (2.97) can be represented more efficiently such that

no additional matrix-vector products are required.) Though GMRES converges in
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at most N steps even for non-Hermitian matrices, the primary disadvantage is the

large storage requirements, since the basis for the Krylov space must be stored at

each iteration and thus storage costs (and the computational work) increase linearly

as N increases. In practice, GMRES is then restarted: if the solution has not

converged after m iterations, then the algorithm is restarted using the initial guess

~xn+1,0 = ~xn+1,m. However, GMRES(m) is not guaranteed to converge. For general

m, the restarted method can stagnate, though if (M +MH)/2 is positive definite,

it can be proved that GMRES(m) converges for any m ≥ 1 [SAAD, 2003]. We will

explore the effects of restart for our test case gyrokinetic problem. Implementation

of the GMRES method in GS2 uses a modification of the package of [FRAYSSE et

al., 2003].

The Bi-CGSTAB algorithm is based on Lanczos bi-orthogonalization as an ex-

tension of the Bi-CG algorithm [FLETCHER, 1975]. Bi-CG is basically a gen-

eralization of the conjugate gradient algorithm for non-Hermitian systems which

creates two sequences of residuals: one for the residual of M (as does the conjugate

gradient algorithm) and also one for the residual of MH . Rather than enforcing a

minimization requirement, bi-orthogonality is enforced between the residuals and

bi-conjugacy is enforced between the search directions. Thus, for the iterative so-

lution ~xn+1,p+1 = ~xn+1,p + λp+1~sp+1, the residuals are updated as

~rp+1 = ~rp − λp+1M~sp+1

~vp+1 = ~vp − λp+1MH~tp+1 (2.98)
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where the search directions are updated as

~sp+1 = M−1
approx~r

p + βp~sp

~tp+1 = M−H
approx~v

p + βp~tp (2.99)

By enforcing the bi-orthogonality condition (
〈

M−1
approx~r

i | ~vj
〉

= 0, i 6= j) and the

bi-conjugacy condition (
〈

~ti |M~sj
〉

= 0, i 6= j), we find that

λp+1 =

〈

M−1
approx~r

p | ~vp
〉

〈

~tp+1 |M~sp+1
〉 (2.100)

βp =

〈

M−1
approx~r

p | ~vp
〉

〈

M−1
approx~r

p−1 | ~vp−1
〉 (2.101)

This algorithm is not used in practice, however, because, not only does it require

knowing the Hermitian conjugate, but it also exhibits erratic behavior. Bi-CGSTAB

is thus an improvement of the Bi-CG algorithm. Representing the residuals as

generic polynomial sequences, note that Bi-CG generates the sequences

~rp = Pp(M)~r0

~vp = Pp(MH)~v0 (2.102)

where choice of ~v0 is arbitrary and generally ~v0 = ~r0 is chosen. Bi-CGSTAB instead

generates the second residual sequence as

~vp = Qp(M)Pp(M)~r0 (2.103)



2.3. Iterative Implicit Schemes 109

where

Qp+1(M) =
p
∏

i=1

(1− ωiM) (2.104)

and ωi is chosen to minimize ~vp. (Bi-CGSTAB actually builds on the conjugate

gradient squared algorithm [SONNEVELD, 1989] which is based on the idea of

constructing ~vp = P2(M)~r0, yet which can be even more irregular than Bi-CG.)

Overall, Bi-CGSTAB can be thought of as a blend of Bi-CG and repeatedly ap-

plied GMRES(1) [BARRETT et al., 1994]. Implementation of Bi-CGSTAB in GS2

follows the template in [BARRETT et al., 1994].

Use of these solvers as applied to our general left-preconditioned matrix problem

requires implementation of four basic operations:

• matrix-vector multiplication: ~z ←M~v

• inner product operations: α← 〈~v | ~w〉

• left preconditioning operations: ~z ←M−1
approx~v

• vector updates: ~z ← α~v + ~w

Table 2.4 gives a comparison of the computational work per iteration and storage

requirements for the various iteration schemes as corresponding to the standard

implementations outlined in the templates in Appendix B. Note that for GMRES,

the computational operations and storage increase as more iterations are done.

Matrix-vector products are generally the most expensive operations, though each

algorithm is required to do one per iteration (plus an additional one to compute

the initial residual ~r0 = −~ρ −M~xn+1,0 given an initial guess ~xn+1,0). Though the

table shows that Bi-CGSTAB requires 2 matrix-vector multiplications per iteration,

note that the Bi-CGSTAB algorithm has two stopping conditions such that, upon
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Iterative ~z ←M~v α← 〈~v | ~w〉 ~z ←M−1
approx~v ~z ← α~v + ~w storage

Scheme

Simple 1 0 1 2 M+4V
Iteration
Steepest 1 2 1 2 M+5V
Descent
Conjugate 1 2 1 3 M+6V
Gradient
Bi-CG 2 4 2 6 M+10V
STAB
GMRES 1 p+1 1 p+1 M+(p+5)V

Table 2.4: Computational requirements per iteration for various iterative schemes.
The last column gives the storage requirements in terms of the number of N × N
matrices (M) (which may be sparse and thus require much less than N 2 storage)
and the number of N × 1 vectors (V ).

convergence, some final operations (including 1 matrix-vector multiplication) may

be eliminated on the final iteration. But, of course, the effect of this on the total

computational work is trivial unless the total number of iterations for convergence is

very small. It is also notable from the table that simple iteration does significantly

less total operations than Bi-CGSTAB and GMRES. This suggests that, with a

good enough preconditioner to ensure convergence in a moderate number of total

iterations, the low overhead of simple iteration could make it a more feasible and

efficient choice than the more complex Krylov solvers.

As noted previously, the matrix-vector multiplication must be defined implicitly

since the elements of M are not computed in our iterative scheme. Here we show

how this is defined for our gyrokinetic equations. Recall that our field equations

are given by Eqs. (2.14) and (2.15) using Eqs. (2.16) and (2.17) for the RHS charge

and current densities. Introducing an intermediate vector
(

Φ̂n+1, Ân+1
‖

)

into the
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latter two equations, we can write that:









ρdens
[

Φn+1, An+1
‖

]

ρcurr
[

Φn+1, An+1
‖

]









=









ρdens
[

Φ̂n+1, Ân+1
‖

]

ρcurr
[

Φ̂n+1, Ân+1
‖

]









+









M1 M2

M3 M4

















Φn+1 − Φ̂n+1

An+1
‖
− Ân+1

‖









(2.105)

Substituting this into the Poisson-Ampere equations of Eqs. (2.14) and (2.15), we

find that









M1
GS2 M2

GS2

M3
GS2 M4

GS2

















Φn+1 − Φ̂n+1

An+1
‖
− Ân+1

‖









= −









ρdens
[

Φ̂n+1, Ân+1
‖

]

ρcurr
[

Φ̂n+1, Ân+1
‖

]









+C









Φ̂n+1

Ân+1
‖









(2.106)

where

C ≡











∑

s

n0se
2Z2

s

T0s

(1− Γ0(bs)) 0

0 c
4π
k2

⊥











(2.107)

and MGS2 is defined in Appendix A as the response matrix as implemented in

GS2. Eq. (2.106) is thus the equivalent of the desired form M~xn+1 = −~ρ with

M → MGS2, ~x →
(

Φ− Φ̂, A‖ − Â‖

)

and −~ρ equal to the RHS. To determine the

matrix-vector product of MGS2 with a generic vector ~v, we manipulate the second

term on the RHS as follows:

C









Φ̂n+1

Ân+1
‖









= C









Φn+1

An+1
‖









− C









Φn+1 − Φ̂n+1

An+1
‖
− Ân+1

‖








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=









ρdens
[

Φn+1, An+1
‖

]

ρcurr
[

Φn+1, An+1
‖

]









− C









Φn+1 − Φ̂n+1

An+1
‖
− Ân+1

‖









=









ρdens
[

(Φn+1 − Φ̂n+1) + Φ̂n+1, (An+1
‖ − Ân+1)Ân+1

‖

]

ρcurr
[

(Φn+1 − Φ̂n+1) + Φ̂n+1, (An+1
‖
− Ân+1)Ân+1

‖

]









−C









Φn+1 − Φ̂n+1

An+1
‖ − Ân+1

‖









(2.108)

Combining this with Eq. (2.106), we find that the matrix-vector product is defined

as

MGS2~v = −









ρdens
[

Φ̂n+1, Ân+1
‖

]

ρcurr
[

Φ̂n+1, Ân+1
‖

]









+









ρdens
[

vΦ + Φ̂n+1, vA‖
+ Ân+1

‖

]

ρcurr
[

vΦ + Φ̂n+1, vA‖
+ Ân+1

‖

]









− C









vΦ

vA‖









(2.109)

In our implementation, we arbitrarily choose
(

Φ̂n+1, Ân+1
‖

)

=
(

Φn+1,0, An+1,0
‖

)

as the intermediate vector. (Thus, our initial guess is ~xn+1,0 = ~0.) Note that the

introduction of this intermediate vector eliminates the need for the computation

of the inhomogeneous solution by basically replacing it with the initial guess com-

putation. Recall from Eqs. (2.6) and (2.7) that computation of ρdens
[

Φ∗, A∗
‖

]

and

ρcurr
[

Φ∗, A∗
‖

]

involves velocity-space integrations of the distribution function f n+1,∗

obtained from solution of the gyrokinetic equation using f n, Φn, An
‖
, Φn+1 = Φ∗,

and An+1
‖ = A∗

‖. Thus, assuming that the charge and current densities of the initial

guess are stored, each matrix-vector multiplication in the iterative algorithm in-

volves one solution of the gyrokinetic equation (and its velocity-space integrations).

Matrix-vector products are thus computationally expensive since the efficiency of
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the iterative schemes is ultimately measured with respect to the total number of

gyrokinetic solves per time step.

Note that, for the test case results, the reported average number of gyrokinetic

solves per time step includes those from matrix-vector multiplications performed

within the iteration loop as well as gyrokinetic solves involved in the initializa-

tion and finalization of the iteration. Specifically, as noted previously, each of the

iterative schemes which we consider also requires a matrix-vector product to com-

pute the initial residual from the initial guess. In addition, a gyrokinetic solve is

also required upon completion of the iteration for each time step to compute the

distribution function fn+1 corresponding to the converged solution (Φn+1, An+1
‖

).

The exception, however, is with the implementation of the simple iteration only,

for which we do not perform a final gyrokinetic solve since we measure convergence

with respect to ~xn+1,p+1 rather than ~rp+1. Referring to the template in Appendix

B, the matrix-vector product involved in the update of the residual is needed only

for the next iteration. Thus, in our actual implementation, the (p+1)-th residual

is not computed until after the convergence of ~xn+1,p+1 is determined. Unlike the

other iterative schemes in which the final matrix-vector product performed before

the convergence check is done with an intermediate quantity, that with simple iter-

ation is performed with ~xn+1,p and thus the last-computed distribution function at

convergence of ~xpfinal+1 is directly fn+1,pfinal, which we thus use as the approximate

solution for fn+1. Note then that, with this implementation, the residual can be

considered as computed at the beginning of the iteration loop, so the simple itera-

tion does not have an “additional” pre-iteration matrix-vector multiplication either.

Thus, simple iteration only performs as many gyrokinetic solves as iterations.
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Figures 2.23 and 2.24 show the results for simulations with the test case pa-

rameters comparing implementation of the various iterative schemes in GS2. These

simulations use the linear two-point extrapolation initializer and multiM (16,7)

preconditioner. The GMRES results shown in these figures do not use restart.

Also, note that all of the schemes except GMRES are implemented using the con-

vergence criterion with respect to the field vector as given in Eq. (2.67). The

GMRES package of [FRAYSSE et al., 2003] has its own built-in criterion that is

rather based on the L2-norm of the residual, given with the default parameters as
∣

∣

∣

∣

∣

∣M−1
approx~r

p+1
∣

∣

∣

∣

∣

∣

2
/
∣

∣

∣

∣

∣

∣M−1
approx~ρ

∣

∣

∣

∣

∣

∣

2
< (iter tol). It is first required that this criterion is

satisfied with respect to the computed residual and then, afterwards, with respect

to the true residual (i.e. M−1
approx (−~ρ−M~xn+1,p+1)) to account for finite precision

arithmetic errors in the computed residual from the Arnoldi process. This is shown

in the template in Appendix B. For the GMRES simulations, iter tol/ω tol = 10 is

used, as empirically found to be sufficient to ensure that the iteration convergence

does not affect the ω convergence. Recall that this latter criterion was also used to

choose iter tol/ω tol = 1/4 for the other iterative schemes, which use Eq. (2.67) as

the stopping criterion.

Overall, figures 2.23 and 2.24 show that simple iteration performs quite well

(i.e. even better than the more complex Krylov solvers) for small to moderate time

steps in the electrostatic limit and for sufficiently small time steps with electro-

magnetic dynamics. This is primarily due to the low overhead of simple iteration:

specifically, the two additional initialization and finalization gyrokinetic solves re-

quired for the more complex algorithms are relatively significant when the number

of iterations is small. At larger time steps, the figures show that the conjugate

gradient algorithm diverges more quickly than the other algorithms. In fact, the
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Figure 2.23: Average number of gyrokinetic solves per time step for test case pa-
rameters in the electrostatic limit using an iterative implicit scheme with a linear
two-point extrapolator initializer and multiM (16,7) preconditioner and comparing
iteration schemes.

conjugate gradient algorithm fails to converge within the maximum allowable it-

erations for even the smallest time steps in the electromagnetic cases. This is not

entirely surprising since the theoretical basis behind the derivation of this algorithm

was not applicable for non-Hermitian systems. Although this is also true for the

steepest descent algorithm, its performance was better than the conjugate gradient

algorithm. The steepest descent algorithm, which basically attempts a correction

of the simple iteration algorithm search directions, performs similar to the simple

iteration algorithm for these test cases, yielding slightly better convergence at larger

time steps for the electrostatic cases and a slightly larger time step limit for the

electromagnetic cases.
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Figure 2.24: Average number of gyrokinetic solves per time step for test case pa-
rameters with electromagnetic dynamics (β = 1.0×10−3) using an iterative implicit
scheme with a linear two-point extrapolator initializer and multiM (16,7) precon-
ditioner and comparing iteration schemes.
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While simple iteration or steepest descent may be useful for electrostatic sim-

ulations (since the typical time step for a nonlinear GS2 simulation is ∆tvti/a ∼

0.01 − 0.1), figure 2.24 ultimately shows that the more robust Krylov solvers are

necessary for larger time steps with electromagnetic dynamics. This may be partic-

ularly true for nonlinear electromagnetic runs, in which there is a wide range of k⊥ρi

modes, with the smallest resolved k⊥ρi usually less than 0.1. (Recall from figure

2.20 and the corresponding empirical scaling in Eq. (2.64) that the time step lim-

itation for electromagnetic cases for the simple iteration algorithm becomes more

severe as kyρi decreases). Comparing Bi-CGSTAB and GMRES, differences in per-

formance are trivial in the electrostatic limit and with electromagnetic dynamics,

except for the kyρi = 0.1 electromagnetic case at large time steps. For this case,

the largest difference in iterations for the range of time step widths tested occurs

at ∆tvti/a = 0.25, for which Bi-CGSTAB does ∼ 38 GK solves per time step while

GMRES which does ∼ 18. However, recall from table 2.4 that, at these large it-

eration numbers, GMRES requires about twice as much vector storage. (GMRES

is also doing a larger amount of work in the other computational operations (for

example, ∼ 189 total inner products per time step compared with ∼ 152 for Bi-

CGSTAB), but this work is negligible compared to the gyrokinetic solves.) For a

moderate number of iterations, storage requirements are not a significant concern

for our gyrokinetic problem since it applies to the 3D field vectors rather than the

5D distribution function. However, for large nonlinear simulations with many (kx,

ky) modes, the extra storage required for GMRES may not be practical.

Thus, we also consider GMRES(m), the results of which are shown in figures 2.25

and 2.26. In the electrostatic limit at kyρi = 0.5, GMRES(1) performs as well as

GMRES(N) even at the largest time steps. A slight decrease in performance is seen
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for kyρi = 0.1 at large time steps for m=1; though, the performance of GMRES(4) is

nearly identical to that of GMRES(N). However, for these electrostatic results, the

number of iterations is very small overall and does not increase much with ∆t. In

contrast, with electromagnetic dynamics, GMRES(1) diverges even at kyρi = 0.5.

Furthermore, for the more difficult case of kyρi = 0.1, even GMRES(4) diverges.

(Note that only GMRES(N) is guaranteed to converge.) These results amplify the

significance of the Bi-CGSTAB convergence since, as can be seen in the template for

the algorithm in Appendix B, Bi-CGSTAB is not generally guaranteed to converge.

Also, the results for Bi-CGSTAB are surprising in this context since, as we noted

previously, the Bi-CGSTAB algorithm is related to GMRES(1).

Overall, the choice of an optimal algorithm for Eulerian gyrokinetic simulations

will of course depend on the circumstances, such as the time step and simulation

size requirements set by the nonlinear turbulence, and on how often the time step

might be changed or how often the response matrices have to be recalculated to

handle time-dependent shearing of the grid if a large-scale equilibrium ExB flow is

included. For moderate size nonlinear simulations that do not go to very low k⊥ρi,

and/or for simulations where the time step does not need to change very often, the

original fully implicit algorithm of GS2 might be best. Otherwise, in some cases

simple iteration with a somewhat small time step will work, while the GMRES

iterative solver (or Bi-CGSTAB iterative solver if there is limited memory storage)

might provide the most robust alternative to the fully implicit algorithm.

Future work might explore how to modify the GMRES algorithm so that it

can converge in a minimum of two gyrokinetic solves and thus be competitive with

simple iteration for a sufficiently small time step (and/or a sufficiently good pre-

conditioner) while also being more robust than simple iteration for large time steps.
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Figure 2.25: Average number of gyrokinetic solves per time step for test case pa-
rameters in the electrostatic limit using an iterative implicit scheme with a linear
two-point extrapolator initializer, multiM (16,7) preconditioner, and GMRES iter-
ative scheme comparing the restart parameter m. Note the m=N, where N is the
total size of the field vector, corresponds to no restart.
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Figure 2.26: Average number of gyrokinetic solves per time step for test case param-
eters with electromagnetic dynamics (β = 1.0 × 10−3) using an iterative implicit
scheme with a linear two-point extrapolator initializer, multiM (16,7) precondi-
tioner, and GMRES iterative scheme comparing the restart parameter m. Note
that m=N, where N is the total size of the field vector, corresponds to no restart.
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Specifically, this would require modification of the iteration tolerance stopping cri-

terion of the GMRES algorithm (as implemented in the package of [FRAYSSE et

al., 2003]; see Appendix B) to skip the extra calculation of the true residual and

instead rely on just the Arnoldi-computed residual, which should be sufficient if it

converges in just a few iterations. Another necessary modification would be to store

the distribution function f corresponding to the evaluation of ω1 = M−1Av1 for

the first evaluation of the “For j” loop in line 6 of Appendix B in constructing the

basis using the Arnoldi process. At present, an extra evaluation of the gyrokinetic

equation is required once the optimal step size y is determined on line 16 of the

algorithm, while this could be avoided at the expense of some additional storage.

2.4 Summary

Several numerical algorithms for Eulerian gyrokinetic codes were explored. For this

study, we have focused on the framework of the flux tube-based GS2 code, which

employs a fully implicit treatment of the linear dynamics. A semi implicit-explicit

scheme which uses an explicit treatment of the linear field dynamics combined with

GS2’s 2nd order compact differencing (which leads to between-grid spatial averaging

of the ∂f
∂t

term) was found to be numerically unstable at the Nyquist limit. However,

with upwinding, a stable regime was found for the case of adiabatic electrons using

a forward Euler scheme. While a two-step predictor-corrector scheme is stable for

the case of adiabatic electrons even in the absence of upwinding, both the single-

step and two-step schemes are numerically unstable upon inclusion of gyrokinetic

electrons.
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Thus, we have focused on developing an iterative implicit scheme based on nu-

merical approximations of the plasma response. This method reduces the long time

needed to set-up implicit arrays, yet still has larger time step advantages similar

to a fully implicit method. Various model preconditioners, iteration initializers,

and iteration schemes were studied via implementation within the framework of

GS2. A numerical preconditioner was developed based on computing the response

of simultaneously applied perturbations and refining the tail end of the response

using an extrapolation with the translation of a single exact response row. While

this numerical preconditioner with a simple iteration algorithm works fairly well

for both the electrostatic limit and the more general electromagnetic case with a

sufficiently small time step due to its low overhead, more robust Krylov solvers such

as Bi-CGSTAB and GMRES (without restart) are necessary with electromagnetic

dynamics for large time steps. Note that although the test cases for developing

these algorithms focused on linear gyrokinetic dynamics, they are easily applicable

to nonlinear gyrokinetic simulations, particularly with codes like GS2 in which the

nonlinear term is treated explicitly, so the implicitness applies only to the linear dy-

namics anyways. This as well as extension of the algorithm to more global Eulerian

codes such as GYRO are topics of future research.

The original fully implicit algorithm of GS2 is absolutely stable for arbitrarily

large time step, but requires NfieldsNθper2πNconnect ∼ 103 evaluations (see section

2.1.1 for definitions of these parameters) of the gyrokinetic equation to initialize the

plasma response matrix M. In comparison, the multiM method which we develop

here calculates an approximate plasma response matrix with only Nfields(nstride +

1) ∼ 50 evaluations of the gyrokinetic equation, and thus speeds up the initialization

process by a factor of 20. This speed-up may be partially offset by the additional
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iterations required for later gyrokinetic solves (for example, see figures 2.23 and

2.24), but if the time step is sufficiently small anyways (due to the nonlinear Courant

limit), then simple iteration with the multiM preconditioner converges as quickly

as with the exact response matrix.

It might be possible that the advantages of the iterative implicit algorithms

studied here would be larger (requiring fewer iterations or allowing larger time

steps) if GS2’s finite differencing algorithm for the spatial derivative was upgraded

from its present usage of Beam-Warming 2nd order compact finite differencing.

While this choice of spatial differencing has the advantage of leading to a fully

implicit algorithm that needs only a relatively simple bi-diagonal matrix inversion

to advance the distribution function, it introduces a high frequency Nyquist mode in

the system with k‖qR∆θ = π and ω∆t = π. This may be limiting the effectiveness

of the implicit iterative solvers explored here (since ω∆t independent of ∆t makes

higher-order predictor steps ineffective). Iterative implicit methods might be more

effective with a different choice for the spatial differencing, such as 4th or 6th

order compact finite differencing, which would eliminate the high frequency Nyquist

mode. Upgrading from 2nd order to 4th order compact finite differencing in GS2

would be computationally very tractable (it just requires using a tri-diagonal solver

rather than a bi-diagonal solver), but it would require some nontrivial programming

(for example, one of the difficulties will be re-formulating the boundary conditions

at trapped particle turning points) and so is left for possible future work.



Chapter 3

An ADI Algorithm for

Gyrokinetics

I
n addition to semi-implicit and iterative implicit algorithms, we have also ex-

plored the implementation of an Alternating Direction Implicit (ADI) algorithm

for a gyrokinetic plasma problem and its resulting numerical stability properties.

The ADI algorithm is a type of operator splitting method in which each time step

is split into two successive fractional steps of size ∆t/2, treating a different oper-

ator implicitly on each fractional step. ADI algorithms are often useful in solving

PDEs where an operator that is difficult to invert can be split into two operators

that are much simpler to invert. ADI schemes often have the property that they

are absolutely stable for arbitrarily large time step, which makes them relatively

robust (though of course there are accuracy limits on the time step).

Consider a general problem of the form ∂f/∂t = Lf , where L is some arbitrary

linear operator. Rather than applying a single-step implicit finite difference time

advancement scheme as in Eq. (2.1) in Chapter 2, in the ADI scheme we split L

124
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into two linear operators as L = L1 + L2 and apply a two-step scheme as follows:

1

∆t/2

(

fn+1/2 − fn
)

= L1f
n+1/2 + L2f

n (3.1)

1

∆t/2

(

fn+1 − fn+1/2
)

= L1f
n+1/2 + L2f

n+1 (3.2)

In the first step, the L1 term is treated implicitly, while the L2 term is treated

explicitly. In the second step, the L2 term is treated implicitly, while the L1 term is

treated explicitly. Note that, in addition to being implicit, this scheme is 2nd order

accurate in time, like the r = 1/2 time-centered scheme in Eq. (2.1). Stability of

the ADI scheme is guaranteed if the split operators L1 and L2 are diagonalizable

and if all of the eigenvalues of L1 and L2 satisfy <(λ1,j) ≤ 0 and <(λ2,j) ≤ 0

[HUNDSDORFER, 1998].

In practice, application of ADI schemes to many physical problems has been

successful. For example, an ADI scheme applied to a parabolic problem with two

spatial variables (such as the 2D heat conduction equation) can easily be shown

to be absolutely stable [PEACEMAN and RACHFORD, 1955; DOUGLAS and

RACHFORD, 1956]. Furthermore, stabilizing correction schemes, also a class of

implicit schemes of alternating direction, can be used to achieve absolute stability

for purely parabolic problems of higher dimensionality [DOUGLAS and RACH-

FORD, 1956] as well as for some advection-diffusion and advection-reaction equa-

tions [HUNDSDORFER, 1998].

In this work, we apply a standard ADI scheme to the gyrokinetic problem,

using it to divide the field solve from the particle distribution function advance.

This algorithm has previously been found to work well for certain plasma kinetic

problems involving 1 spatial and 2 velocity dimensions, including collisions and an
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electric field. However, as we will show, for the gyrokinetic problem we find a severe

stability restriction on the time step. Furthermore, we find that this numerical

instability limitation also affects some other algorithms, such as a partially implicit

Adams-Bashforth algorithm, where the parallel motion operator v‖∂/∂z is treated

implicitly and the field terms are treated with an Adams-Bashforth explicit scheme.

Ultimately, fully explicit algorithms applied to all terms can be better at long

wavelengths than these ADI or partially implicit algorithms.

3.1 Motivation

Edge plasmas are known to play a critical role in tokamak confinement. A com-

plete model of fusion edge plasma turbulence requires a full gyrokinetic description

for all ions and electrons to accurately capture the large range of spatial scales

due to the high degree of variation in the collisionality across the edge region.

While computations of the electrostatic gyrokinetic equation with adiabatic elec-

trons can be performed with straightforward numerical schemes, the inclusion of

kinetic electrons and electromagnetic effects has been numerically challenging due

to the smaller length scales and faster time scales associated with the fast parallel

electron dynamics relative to the modes of interest. Furthermore, for edge turbu-

lence codes, the existence of an Alfvén wave in the low β edge/scrape-off region,

where the wave is even faster than the thermal electron motion, causes most stan-

dard explicit algorithms to need very small time steps for numerical stability. A

semi-implicit or fast implicit algorithm that could use larger time steps, without

excessive computational overhead, would thus be advantageous.
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Various hybrid methods have been studied for extending Lagrangian particle-in-

cell (PIC) gyrokinetic codes to include kinetic electrons and fully electromagnetic

dynamics (see [CHEN and PARKER, 2001; COHEN et al., 2002a; COHEN et al.,

2002b] and references therein). Recent breakthroughs in the PIC approach to elec-

tromagnetic gyrokinetics have been achieved via careful treatment of cancellations

that should occur in the magnetic potential field equation [CHEN and PARKER,

2003]. Here we focus on algorithms useful for Eulerian codes (where these cancella-

tions are straightforward to ensure and are in fact automatic in some formulations).

Eulerian codes are being intensively used for nonlinear electromagnetic gyrokinetic

simulations. While there are interesting issues involved in various choices of spatial

discretization of the gyrokinetic equation [DANNERT and JENKO, 2004; CANDY

and WALTZ, 2003a; KOTSCHENREUTHER et al., 1995a], here we will focus on

the time-advancement algorithm and will just Fourier transform in the spatial di-

rections.

An Alternating Direction Implicit (ADI) algorithm developed by Kupfer et al.

[KUPFER et al., 1996] has recently been considered for kinetic edge microturbu-

lence simulations. This two-step scheme splits the treatment of the parallel advec-

tion terms from the treatment of the electric field acceleration terms, treating them

implicitly on alternating steps. This method has the advantage of avoiding the set

up of large plasma response matrices needed for an unsplit implicit treatment of

the linear gyrokinetic terms. Kupfer successfully used this ADI algorithm for a

kinetic equation for electrons with 1 spatial dimension (in the parallel direction)

and 2 velocity dimensions, including collisions with fixed Maxwellian background

ions and imposing a quasi-neutrality constraint. While this model is useful for un-

derstanding aspects of scrape-off layer plasmas, the equations used did not contain
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the Alfvén wave dynamics of the full gyrokinetic equation, which would be needed

for a complete 3D simulation of edge plasmas.

Here we use a simple kinetic Alfvén wave limit of the gyrokinetic equation to

test an ADI algorithm. We find the somewhat surprising result that not only does

the ADI algorithm for this equation have a stability limit on the time step, but also

that stability limit can be quite short for long wavelength modes, even worse than

some fully explicit algorithms. This problem exists even at higher β, where the

Alfvén wave is slower than the electrons. Thus, one needs to look at other options

for faster gyrokinetic algorithms.

3.2 Kinetic Alfvén Wave Test Problem

As a starting point, we consider the test problem of a shear kinetic Alfvén wave at

small k⊥ρi. Thus, for the simplified starting equations, we consider the gyrokinetic

equation [FRIEMAN and CHEN, 1982; ANTONSEN and LANE, 1980; CATTO et

al., 1981] in the linear, collisionless limit in slab geometry with a uniform magnetic

field and uniform background Maxwellian particles. For further simplicity, we also

neglect the kinetic equation for ion perturbations, assuming ω � k‖vti. Thus, the

only ion contribution to perturbations will be through the ion polarization density.

With these assumptions, the kinetic and field equations in Eqs. (2.3) - (2.5) become:

∂fe
∂t

+ v‖

∂fe
∂z

= −Zee
T0e

v‖FMe

(

∂Φ

∂z
+

1

c

∂A‖

∂t

)

(3.3)

(Zie)
2n0i

T0i

k2
⊥
ρ2
iΦ = Zee

∫

d3vfe (3.4)

k2
⊥A‖ =

4π

c
Zee

∫

d3vv‖fe (3.5)
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Here, fe(z, ~v, t) is the electron distribution function, z and v‖ are the position and

velocity along the magnetic field, Φ is the electrostatic potential, A‖ is the parallel

component of the perturbed magnetic vector potential, ρi is the thermal ion gyro-

radius, T0i and T0e are the ion and electron temperatures, and FMe is a Maxwellian

distribution for the background electrons. For simplicity in this analysis, we also

assume that Zi = 1 (Ze = −1). These or very similar equations have been used

previously to study kinetic Alfvén waves and various numerical methods [COHEN

et al., 2002a; DANNERT and JENKO, 2004; SNYDER, 1999; HAHM and CHEN,

1985; LEE, 1987].

Using a Fourier transform in time and space, i.e. fe = f̂ee
−iωt+ik‖z, we find that

f̂e =
Zee

T0e
FMe

k‖v‖

(

Φ− ω
k‖c
A‖

)

ω − k‖v‖

(3.6)

Using this result in the field equations and expanding to lowest non-trivial order in

the limit of ω � k‖vte, we obtain the dispersion relation

ω2 =
k2

‖v
2
A

1 + 2
βe

me

mi
k2

⊥
ρ2
s

(3.7)

where βe = 8πn0T0e/B
2, ρ2

s = c2s/Ωci is the sound-based gyroradius, c2s = T0e/mi

is the sound speed, and v2
A = (2/βe)c

2
s is the Alfvén speed. Note that this is just

the dispersion relation for a simple shear Alfvén wave in a straight magnetic field,

with some finite gyroradius corrections. (A gyrofluid version of this derivation

can be found in [SNYDER, 1999].) If βe < 2me/mi, such as in regions of very

low density edge and scrape-off plasmas, then the Alfvén wave is faster than the

thermal electron speed. A stable treatment of this wave in this regime is important.
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However, consideration of these equations in the pure electrostatic limit (i.e. βe →

0) yields the high frequency electrostatic shear Alfvén wave [LEE, 1987], i.e. ω2 =

k2
‖v

2
te/(k

2
⊥ρ

2
s). Thus, to avoid this excessively high frequency mode at low k⊥, it is

useful to include magnetic perturbations from A‖, as we do here.

Following the approach used in most existing continuum gyrokinetic codes (such

as the GENE code [JENKO et al., 2000] and the GYRO code [CANDY and WALTZ,

2003a]), we eliminate the ∂A‖/∂t term from the electron kinetic equation by defining

ge = fe + Zee
T0e
FMe

v‖
c
A‖. (Other codes, such as GS2 [KOTSCHENREUTHER et

al., 1995a], which uses a linearly fully implicit algorithm, retain the ∂A‖/∂t term,

though both formulations are equivalent.) With this substitution, the equations for

our kinetic Alfvén wave test problem become:

∂ge
∂t

+ v‖

∂ge
∂z

= −Zee
T0e

v‖FMe

(

∂Φ

∂z
− v‖

c

∂A‖

∂z

)

(3.8)

(Zie)
2n0i

T0i
k2

⊥ρ
2
iΦ = Zee

∫

d3vge (3.9)

(

k2
⊥

+
4π

c2
(Zee)

2n0e

me

)

A‖ =
4π

c
Zee

∫

d3vv‖ge (3.10)

Eqs. (3.8)-(3.10) provide a relatively simple problem with 1 spatial and 1 ve-

locity coordinate that could provide a very useful testbed for studying alternative

gyrokinetic algorithms. With appropriate normalizations, these equations can be

written as the following set of integro-differential equations:

∂ge
∂t

+ v‖

∂ge
∂z

= v‖FMe

(

∂Φ

∂z
− v‖

∂A‖

∂z

)

(3.11)

k2
⊥Φ = −

∫

dv‖ge (3.12)
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(

k2
⊥ + β̂

)

A‖ = −β̂
∫

dv‖v‖ge (3.13)

where k2
⊥

is normalized to Ziρ
2
s and β̂ ≡ (βe/2)mi

me
. The electron thermal velocity

vte has been normalized to unity, so that the Maxwellian equilibrium is FMe =

exp(−v2
‖/2)/

√
2π. Because v2

A = v2
te/β̂, Eq. (3.7) becomes

ω2 =
k2

‖/β̂

1 + k2
⊥
/β̂

(3.14)

A more complete general comprehensive test of the numerical stability of an algo-

rithm for this problem would include a typical range of parameters, particularly,

k⊥ = 0.01− 10 and β̂ = 0.1− 10, and perhaps also the addition of collisions in Eq.

(3.11) to test the collisional component of the algorithm.

3.3 Implementing and Testing an ADI Algorithm

Kupfer’s ADI algorithm as applied to the kinetic equation is a two-step algorithm:

the first step is implicit in the parallel advection term and explicit in the field

terms, while the second step is explicit in the parallel advection and implicit in the

fields. (This is equivalent to a standard view of ADI as an “alternating direction”

approach, since the electric field term represents motion in the velocity direction of

(z, v‖) phase space.) Thus, the discrete equations are:

1

∆t/2

(

gn+1/2
e − gne

)

+ v‖

∂gn+1/2
e

∂z

= −Zee
T0e

v‖FMe

(

∂Φn

∂z
− v‖

c

∂An‖
∂z

)

(3.15)
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1

∆t/2

(

gn+1
e − gn+1/2

e

)

+ v‖

∂gn+1/2
e

∂z

= −Zee
T0e

v‖FMe

(

∂Φn+1

∂z
− v‖

c

∂An+1
‖

∂z

)

(3.16)

(Zie)
2n0i

T0i

k2
⊥
ρ2
iΦ

n+1 = Zee
∫

d3vgn+1
e (3.17)

(

k2
⊥ +

4π

c2
(Zee)

2n0e

me

)

An+1
‖ =

4π

c
Zee

∫

d3vv‖g
n+1
e (3.18)

To analyze the stability of the combined scheme, we use the ansatz eik‖z for

the perturbed quantities and combine Eqs. (3.15) and (3.16) to express the time

advanced distribution function gn+1
e in terms of the fields:

gn+1
e =

1− ik‖v‖∆t/2

1 + ik‖v‖∆t/2

[

gne −
Zee

T0e
(ik‖v‖∆t/2)FMe

(

Φn − v‖

c
An‖

)]

−Zee
T0e

(ik‖v‖∆t/2)FMe

(

Φn+1 − v‖

c
An+1

‖

)

(3.19)

Defining a complex amplification factor per time step as a ≡ e−iω∆t and using the

further ansatz for all fields that gne = anĝe(v), we find that

ĝe =
Zee

T0e
FMe

(

Φ̂− v‖

c
Â‖

)

k‖v‖

ω̂ − k‖v‖

(1 + k‖v‖ω̂(∆t/2)2) (3.20)

where ω̂ is an effective frequency defined such that a−1
a+1
≡ −iω̂∆t/2, or

a =
1− iω̂∆t/2

1 + iω̂∆t/2
. (3.21)

For real ω̂, |a| = 1 and perfect stability with no artificial damping is obtained, even

for arbitrarily large time step. Absolute stability |a| ≤ 1 also occurs for all modes

with Im(ω̂) ≤ 0. However, we will find that if the time step is too large, then
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the numerical dispersion relation for the ADI algorithm has roots with Im(ω̂) > 0,

which correspond to |a| > 1 and thus a numerical instability.

Using the result of Eq. (3.20) in the field equations and again expanding to

lowest non-trivial order in k‖vte/ω̂, we find that

ω̂2 =





k2
‖
v2
A(k⊥ρs)

2 (1 + 3(k‖vte∆t/2)2)
(

2
βe

me

mi
k2

⊥
ρ2
s + 1 + 3(k‖vte∆t/2)2

)

((k⊥ρs)2 − (k‖vte∆t/2)2)



 (3.22)

Note that this discrete version of the dispersion relation agrees with the analytic

result in Eq. (3.7) in the limit ∆t → 0. In the electrostatic limit (βe → 0), the

dispersion relation becomes

ω̂2 = (k‖vte)
2

[

1 + 3(k‖vte∆t/2)2

(k⊥ρs)2 − (k‖vte∆t/2)2

]

(3.23)

Thus, for both the electrostatic limit and the general electromagnetic case of

Eq. (3.22), the algorithm is numerically unstable if ∆t/2 >
∣

∣

∣

∣

k⊥ρs

k‖vte

∣

∣

∣

∣

. Figures 3.1

and 3.2 show plots of ω̂ and |a| as a function of the temporal resolution k‖vte∆t

for the right-moving wave for a set of standard parameters, showing the onset of

the numerical instability at |k‖vte∆t| ∼ |2k⊥ρs| ∼ 0.06. This result implies that,

with this algorithm, the electrostatic shear Alfvén wave must be fully resolved for

stability in both the electrostatic and electromagnetic cases. Overall, this can be a

potentially severe limitation for numerical simulations employing this type of ADI

algorithm.

While the results thus far have focused on the limit of low (βe/2)(mi/me),

where the Alfvén wave is faster than the electron thermal speed and expansions in

k‖vte/ω � 1 could be done, we have also analyzed the numerical stability of the

ADI algorithm more generally, including the regime of high (βe/2)(mi/me), where
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Figure 3.1: Normalized mode frequency vs. normalized time step for the kinetic
Alfvén wave at k⊥ρs = 0.03 and (βe/2)(mi/me) = 0.1 using an ADI algorithm.

the Alfvén wave is slower than the thermal electron speed. This analysis was per-

formed via consideration of an nth-order generalized Lorentzian approximation (i.e.

e−x ≈
(

1 + x
n

)−n
) for the parallel component of the Maxwellian in Eq. (3.20). It

can be shown that n ≥ 3 is necessary for convergence of the velocity integrals over

the Maxwellian terms in the field equations. For consistency in the transformation

of the field equations upon elimination of the ∂A‖/∂t term, we have added normal-

ization constants to the Lorentzian approximation to ensure that the density and

pressure integrals are exact. Specifically, we assume that

FMe(v‖) ≈
n0e√
2πvte

C0
(

1 + C1

v2
‖

2v2te

)n (3.24)
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Figure 3.2: Amplification factor vs. normalized time step for the kinetic Alfvén
wave at k⊥ρs = 0.03 and (βe/2)(mi/me) = 0.1 using an ADI algorithm.
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where

C0 =
Γ(n)Γ1/2(n− 3/2)

Γ3/2(n− 1/2)
(3.25)

C1 =
Γ(n− 3/2)

Γ(n− 1/2)
(3.26)

For this analysis, a 3rd order Lorentzian approximation was used and the field

equations using Eq. (3.20) with Eq. (3.24) as an approximation for ĝe were solved nu-

merically using the software Maple (Maple is a symbolic computational system from

http://www.maplesoft.com) for given values of k⊥ρs and (βe/2)(mi/me). (Note that

if an exact Maxwellian is used, the integrals cannot be evaluated analytically but

can be written in terms of the plasma dispersion Z function. With a Lorentzian

FMe(v‖), Maple is able to do the integrals analytically, resulting in essentially a

multipole approximation to the Z function. Alternatively, one can interpret the

resulting dispersion relation as exact for an equilibrium distribution function given

by this generalized Lorentzian, and so it is a physically realizable exact dispersion

relation. Since Alfvén waves should be physically stable even with this Lorentzian

equilibrium according to the Penrose stability criterion, this provides a useful test

of the stability of numerical algorithms.)

The result, demonstrated in figures 3.3 and 3.4, surprisingly also shows a severe

stability limit on the ADI algorithm of |k‖vte∆t| ∼ |2k⊥ρs| ∼ 0.06, i.e. the same

stability criterion as found in the βe = 0 limit in Eq. (3.23), even though the Alfvén

wave is slower than the electron thermal velocity at high (βe/2)(mi/me). A time

step of k‖vte∆t = 0.06 corresponds to ω∆t = 0.02, so both the parallel electron

motion time scale and the actual mode frequency would appear to be very well

resolved, yet still there is a numerical instability.
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Figure 3.3: Normalized mode frequency vs. normalized time step for the kinetic
Alfvén wave at k⊥ρs = 0.03 and (βe/2)(mi/me) = 10 using an ADI algorithm.

3.4 Simpler Illustration of the Difficulties

Here we further illustrate the numerical difficulties of an ADI algorithm by an

equivalent application of the algorithm to a Landau-fluid approximation to the

kinetic equation. This reduces the operators involved to 2x2 matrices. This limit

is useful for understanding why the ADI algorithm in this case has a stability limit

at all, unlike other applications where an ADI algorithm is absolutely stable.

Integrating the normalized Eqs. (3.11)-(3.13) over velocity and defining the per-

turbed density ρ =
∫

dv‖ge, the perturbed fluid velocity u =
∫

dv‖gev‖, and the

perturbed pressure p =
∫

dv‖gev
2
‖

leads to the fluid equations:

∂ρ

∂t
= −∂u

∂z
− ∂A‖

∂z
(3.27)



3.4. Simpler Illustration of the Difficulties 138

0 0.02 0.04 0.06 0.08 0.1
1

1.05

1.1

1.15

k
||
 v

te
 ∆ t

|a
|

Figure 3.4: Amplification factor vs. normalized time step for the kinetic Alfvén
wave at k⊥ρs = 0.03 and (βe/2)(mi/me) = 10 using an ADI algorithm.

∂u

∂t
= −∂p

∂z
+
∂Φ

∂z
(3.28)

k2
⊥
Φ = −ρ (3.29)

(

k2
⊥ + β̂

)

A‖ = −β̂u (3.30)

Assuming a general closure approximation of the form −∂p/∂z = −Γ∂ρ/∂z−ν|k‖|u

(see [HAMMETT et al., 1992] and references therein for a discussion of closure

approximations that model kinetic effects such as Landau-damping) and Fourier

transforming in space leads to

∂ρ

∂t
= −ik‖u− ik‖A‖ (3.31)
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∂u

∂t
= −ik‖Γρ− ν|k‖|u+ ik‖Φ (3.32)

which can be written as

∂

∂t









ρ

u









=









0 −ik‖

−iΓk‖ −ν|k‖|

















ρ

u









+









0
ik‖β̂

k2
⊥

+β̂

− ik‖
k2
⊥

0

















ρ

u









(3.33)

Denoting the first matrix on the RHS by P, which represents the spatial propagation

operator, and the second matrix on the RHS by E, which represents the electric

field term, and denoting the state vector ~y = (ρ, u), this can be written as

∂~y

∂t
= P~y + E~y (3.34)

Applying the ADI algorithm to this in an equivalent way as used in Eqs. (3.15)-

(3.16), where the electric field is explicit on the first half step while all other terms

are implicit and then vice versa on the next step, leads to

~yn+1/2 − ~yn
∆t/2

= P~yn+1/2 + E~yn (3.35)

~yn+1 − ~yn+1/2

∆t/2
= P~yn+1/2 + E~yn+1 (3.36)

Combining these two steps of the ADI algorithm gives

~yn+1 =
(

1− ∆t

2
E
)−1 (

1 +
∆t

2
P
)(

1− ∆t

2
P
)−1 (

1 +
∆t

2
E
)

~yn (3.37)

In common ADI cases where the operators being split are diagonalizable and

have eigenvalues with zero or negative real part, the ADI algorithm is absolutely sta-

ble for arbitrarily large time step (though of course there are accuracy restrictions),
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because ∆t appears in the numerators of the RHS of this equation. Consider our

case first in the electrostatic β̂ = 0 limit. Then the operator corresponding to the

electric field E is not diagonalizable because its only non-zero entry is off-diagonal.

This operator has the property that En = 0 for all n > 1 (i.e. E is a nilpotent

matrix). This means that
(

1− ∆t
2
E
)−1

= 1 + ∆t
2
E and what appeared to be an

implicit step was actually equivalent to an explicit step. Thus the ADI algorithm

for this case will be unstable if the time step ∆t is too big. (In fact, analysis of the

eigenvalues of the amplification matrix corresponding to Eq. (3.37) for this case re-

covers the onset of a numerical instability at |k‖∆t| ∼ |2k⊥|, as found for the kinetic

equations.) For the more general electromagnetic case, though E is diagonalizable

for nonzero β̂, the eigenvalues λ of E are given by λ2 = (k‖/k⊥)2β̂/(k2
⊥ + β̂), and

the positive branch gives an instability. This is in contrast to the behavior of the

unsplit operator P + E, which has negative values of λ2 (in the ν = 0 limit for

simplicity), which correspond to stable oscillations.

3.5 Comparison with Adams-Bashforth Schemes

For comparison, we perform a similar analysis of the kinetic Alfvén wave test prob-

lem using an Adams-Bashforth algorithm. We first consider a partially implicit

scheme, in which the parallel derivative term is treated implicitly and time-centered

while the field terms are treated fully explicitly with a 2nd order Adams-Bashforth

algorithm. Thus, the single-step discrete kinetic equation becomes

1

∆t/2

(

gn+1
e − gne

)

+ v‖

∂

∂z

1

2

(

gn+1
e + gne

)

= −Zee
T0e

v‖FMe
∂

∂z

(

1

2

(

3Φn − Φn−1
)

− v‖

c

1

2

(

3An‖ − An−1
‖

)

)

(3.38)
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Again using the ansatz eik‖z and defining gne = anĝe(v), we find that

ĝe =
Zee

T0e

FMe

(

Φ̂− v‖

c
Â‖

)

k‖v‖

ω̂ − k‖v‖

(1− iω̂∆t)
(1 + iω̂∆t/2)

(1− iω̂∆t/2)
(3.39)

where ω̂ is again defined in agreement with Eq. (3.21).

We again examine the stability of the algorithm in both the low and high

(βe/2)(mi/me) limits. For the low (βe/2)(mi/me) analysis, substitution of Eq.

(3.39) into the field equations and expansion to lowest order in k‖vte/ω̂ yields a

4th order complex equation for ω̂, which we solve numerically with Maple using

our standard parameters. Analysis in the high (βe/2)(mi/me) limit is likewise

performed as before, using a 3rd order Lorentzian approximation for the parallel

component of the Maxwellian term in (3.39) and using Maple to numerically solve

the field equations with this approximation.

Figures 3.5 and 3.6 show the results of the analysis for the kinetic Alfvén wave.

Though there is a slight artificial decay for both the low and high (βe/2)(mi/me)

cases, the numerical instability that we saw for the ADI scheme does not occur

in either regime for these roots. However, the discrete dispersion relation contains

multiple roots and these plots are for the eigenmode corresponding to the phys-

ical Alfvén wave only. Furthermore, an Adams-Bashforth algorithm introduces

unphysical “computational modes” which must be also damped or there will still

be a numerical instability. For both the low and high (βe/2)(mi/me) cases, the

physical modes found in the analysis are numerically stable over the range of ∆t

studied. These include the right and left moving kinetic Alfvén waves and a heavily

damped entropy mode related to Landau damping (there are 3 physical roots of

the analytic dispersion relation for a 3rd order Lorentzian equilibrium). However,
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one of the computational mode becomes numerically unstable. The amplification

factor as a function of normalized time step for this mode is shown in figure 3.7

for k⊥ρs = 0.01,0.03 (our standard case), and 0.05, for both (βe/2)(mi/me) =

0.1 and (βe/2)(mi/me) = 10. The onset of the numerical instability occurs at

|k‖vte∆t| ∼ |k⊥ρs|, as indicated by the rapid rise in the modulus of the amplitude

above 1. Thus, the partially implicit Adams-Bashforth algorithm is subject to a

stability limit which is twice as strict as that found for the ADI algorithm. Though

it is the physical mode which becomes numerically unstable for the ADI algorithm,

while just the computational mode (which is introduced solely as a result of the nu-

merical discretization) becomes unstable for the partially implicit Adams-Bashforth

algorithm, the more severe stability limit for the partially implicit Adams-Bashforth

algorithm makes it highly unpractical for edge gyrokinetic simulations. We have

also tried a partially implicit algorithm using a 3rd order Adams-Bashforth for the

electric field terms and found that it had an even smaller stability limit on the time

step than the 2nd order Adams-Bashforth method.

For comparison, we also analyze the stability of a fully explicit Adams-Bashforth

algorithm. For this case, we treat the parallel derivative operator term as well as

the field terms with a 2nd order Adams-Bashforth scheme. Using our usual ansatz,

we find that

ĝe =
Zee

T0e
FMe

(

Φ̂− v‖

c
Â‖

)

k‖v‖

ˆ̃ω − k‖v‖

(3.40)

where here the effective frequency is defined such that a(a−1)
3a−1

= −i ˆ̃ω∆t/2.

The result of Eq. (3.40) has the same form as the exact time continuous result

(i.e. the equivalent of Eq. (3.6) for our starting equations) and is thus surprisingly

not subject to the same stability restrictions |k‖vte∆t| <∼ |k⊥ρs| as the ADI and
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Figure 3.5: Normalized mode frequency vs. normalized time step for the kinetic
Alfvén wave at k⊥ρs = 0.03 using a partially implicit Adams-Bashforth algorithm.

partially-implicit Adams-Bashforth algorithms for this problem.

As is well known, a 2nd order Adams-Bashforth algorithm does induce a small

amount of artificial growth. The amplification factor for this case is given by

a =
1

2



1− 3

2
iω̂∆t±

√

1− i ˆ̃ω∆t− 9

4
(ˆ̃ω∆t)2



 (3.41)

as shown in figure 3.8 for the low and high (βe/2)(mi/me) cases. We show both the

physical Alfvén mode, for which |a| → 1 in the limit of ∆t→ 0, and the unphysical

computational mode, for which |a| → 0 in the limit of ∆t → 0. These levels of

artificial growth would be quite adequate for many gyrokinetic turbulence simula-

tions. One just needs to keep the time step sufficiently small so that this artificial

amplification is small compared to physical dissipation mechanisms, or in turbulent
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Figure 3.6: Amplification factor vs. normalized time step for the kinetic Alfvén
wave at k⊥ρs = 0.03 using a partially implicit Adams-Bashforth algorithm.
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Figure 3.8: Amplification factor vs. normalized time step for the physical mode
and the computational mode at k⊥ρs = 0.03 using a fully explicit Adams-Bashforth
algorithm.

systems, small compared to the rate at which nonlinear interactions take energy

out of undamped modes and transfer energy to damped modes. Overall, this anal-

ysis suggests that even a 2nd order purely explicit Adams-Bashforth algorithm can

be better at long wavelengths than the ADI or partially implicit Adams-Bashforth

algorithms explored here.

By going to an even higher-order explicit algorithm, one can completely elim-

inate artificial growth over a range of time step, since the stability boundaries in

the complex ω∆t plane are well known [GEAR, 1971; DURRAN, 1998]. Often a

3rd order Adams-Bashforth (AB3) or a 4th order Runge-Kutta (RK4) algorithm

is chosen to provide a good balance between maximum stable time step and com-

putational cost. On the real ω axis, the maximum stable time step for AB3 is
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|ω|∆t = 0.72, while for purely damped modes the maximum stable time step

for AB3 is |ω|∆t = 0.55. The stability limit of a 4th order Runge-Kutta algo-

rithm is comparable (after dividing by 4 to account for the 4 intermediate steps

that make up a full step of a 4th order Runge-Kutta algorithm), equivalent to

|ω|∆t = 0.71 for real ω, and |ω|∆t = 0.70 for purely damped modes. The dis-

persion relation that follows from the 3rd order Lorentzian in Eq. (3.24) has 3

roots. For (βe/2)(mi/me) = 0.1 and k⊥ρs = 0.03, these roots are ω = ±3.2k‖vte

(the Alfvén waves) and ω = −5.2ik‖vte (a heavily damped entropy mode related

to Landau damping). This heavily damped mode would set a stability limit for an

RK4 algorithm of k‖vte∆t = 0.14, 2.2 times better than the stability limit of the

ADI algorithm. For lower k⊥ modes, a fully explicit RK4 or AB3 algorithm would

be even better in comparison to the ADI and partially implicit algorithms studied

here.

3.6 Summary

Though ADI algorithms applied to many problems have the nice property that

they are absolutely stable for arbitrarily large time step, and though Kupfer’s ADI

algorithm has previously worked for a related plasma kinetic problem, we have

found that the implementation in a gyrokinetic problem yields a severe time step

restriction. It is somewhat surprising not only that the ADI algorithm for this

problem has a stability limit, but also that this stability limit is so short, even

worse than some fully explicit algorithms.

Specifically, for a test problem of a shear kinetic Alfvén wave at small k⊥ρi,

the ADI algorithm is numerically unstable for ∆t/2 > |k⊥ρs/(k‖vte)| in both the
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low (βe/2)(mi/me) regime and the high (βe/2)(mi/me) regime, where the Alfvén

wave is slower than the electron thermal speed and all of the important dynamics

would seem to be well resolved. Furthermore, this stability problem is not unique

to the ADI algorithm, as a partially implicit Adams-Bashforth scheme yielded a

restriction on the time step twice as low as the ADI algorithm for this problem.

A simple set of gyrofluid model equations was constructed to illustrate the source

of the problems. In the simple electrostatic limit, one of operators used in the

alternating implicit steps was nilpotent and was not diagonalizable, so that what

appeared to be an implicit step was actually equivalent to an explicit step.

Eventually, the best approach for kinetic edge microturbulence simulations

might be a fully implicit algorithm for the linear terms, perhaps employing pre-

conditioned Krylov solvers from an advanced package such as PETSc [BALAY et

al., 2005] or SUNDIALS [HINDMARSH et al., 2003]. A key to successful use of

such iterative methods is a good preconditioner. As part of the preconditioning,

one might use precomputed plasma response matrices as used in the linearly fully

implicit GS2 algorithm [KOTSCHENREUTHER et al., 1995a] or a similar ap-

proach used in GYRO [CANDY and WALTZ, 2003b]. As a starting point short of

these more complicated implicit methods, one might use a fully explicit 4th order

Runge-Kutta algorithm.



Chapter 4

Effects of Shaping on Gyrokinetic

Plasma Turbulence

I
n this chapter, the effects of flux surface shape and other plasma parameters

on the gyrokinetic stability and transport of tokamak plasmas are studied using

high resolution, fully electromagnetic, 5D simulations of plasma microturbulence.

Here we are interested primarily on the effects of elongation (κ ≡ Zmax/a, where

Zmax is the highest point on the plasma boundary and a is the midplane half-width)

and triangularity (δ ≡ (R(Zmax)−R0)/a where R0 is the major radius at the center

of the flux surface).

Previous experimental studies indicate that shaping effects are important in

improving the performance of tokamaks. Recall that an efficient tokamak must

simultaneously achieve both high β (to increase the fusion gain) and a large self-

driven bootstrap current (to reduce the amount of external auxiliary current drive

needed for steady state operation). However, tokamaks are generally subject to

pressure, current, and density limits, above which MHD instabilities are driven

149
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(such as kink/ballooning modes, edge-localized modes, resistive wall modes, and

neoclassical tearing modes), which can lead to catastrophic disruptions. This in-

cludes the Troyon β limit, which was found numerically via pressure profile op-

timization at varying shaped equilibrium and constant current and which yields

that the maximum β is limited by the MHD ballooning instability such that the

Troyon-normalized β (βN = β/(Ip/(aBT )) is around 4% [TROYON et al., 1984].

(Troyon’s expression captures most of the effects of plasma shaping on the β limit,

specifically through the fact that an elongated plasma can carry more current at

fixed q than a circular plasma: βTroyon = Ip/(aBT ) ∝ (a/Rq95)(1 + κ2(1 + 2δ2))/2

(approximately). However, there is some dependence of the MHD β limit on plasma

shape and current profile that is not captured by Troyon’s simple expression.) High

shaping has been shown to be favorable in experiments; for example, providing sig-

nificant increases in the β stability limit in DIII-D (with increased elongation and

triangularity) [LAZARUS et al., 1991; FERRON et al., 2005] and also yielding

simultaneous high density (relative to the Greenwald density limit) and high con-

finement in JET ELMy H-mode discharges (by increasing the triangularity) [ON-

GENA et al., 2001]. The observed enhanced performance of tokamaks with shaping

is essentially attributable to the associated increase in the plasma current (at fixed

q, which is generally constrained by the kink instability), providing higher βTroyon.

This increased plasma current also yields a higher fraction of the bootstrap current

(fBS ∝ βP ∝ qβN), which reduces the amount of recirculated power needed for cur-

rent drive and thus improves the overall engineering performance of the tokamak.

However, while shaping is favorable in tokamaks, the degree of shaping is somewhat

limited. Specifically, the plasma elongation is limited primarily by the vertical in-

stability (though this can be controlled with a vertical feedback control system and
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passive stabilizing structures for sufficiently modest elongations κ <∼ 2.2), while the

plasma triangularity is primarily limited by divertor constraints.

While the effects of shaping have been studied theoretically in some detail with

respect to MHD stability and gyrokinetic linear stability, the effects of shaping on

nonlinear gyrokinetic microturbulence, are not well known. Early gyrokinetic stud-

ies by [REWOLDT et al., 1982] using the FULL gyrokinetic code interfaced with

a general geometry numerical MHD equilibrium and focusing on TEMs showed

that elongation is strongly stabilizing on the TEM, while the effect of increasing

the triangularity (at fixed κ = 1.0) is slightly destabilizing, though relatively weak

compared to the effect of elongation. Similarly, later linear gyrokinetic shaping

studies of the ITG mode (with adiabatic electrons) by [HUA et al., 1992] varying

the global equilibrium (rather than local shaping parameters) showed that the ITG

growth rate decreases as elongation increases but is insignificantly affected by tri-

angularity. More recent studies by [WALTZ and MILLER, 1999] using the Miller

local analytic equilibrium model [MILLER et al., 1998] to systematically vary the

flux surface shape likewise found a general improvement of the ITG mode (with

gyrokinetic electrons) with elongation (in the absence of triangularity) as well as an

improvement with reverse triangularity (at fixed moderate κ = 2.0), in agreement

with the FULL results, due to drift reversal on the trapped electron drive. Lacking

in these linear gyrokinetic studies, however, is an understanding of the effects of the

coupling of elongation and triangularity as well as the variation of local radial gra-

dients of the shaping parameters. Furthermore, while some studies of the nonlinear

transport in general geometry have been done, mostly with gyrofluid codes, (for

example, in their 1999 paper, Waltz and Miller also coupled the Miller equilibrium

model with a gyrofluid code to begin to explore a scaling of the heat flux with
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elongation for ITG turbulence with adiabatic electrons), these studies have been

limited and are generally sparse.

Thus, the goal of our studies is to extend these studies to develop an under-

standing of and predictive models for the scaling of nonlinear turbulence levels with

shaping parameters through systematic gyrokinetic simulations of plasma microtur-

bulence in varying geometric equilibria. Overall, a better theoretical understanding

of the effects of shaping on plasma turbulence and transport could be used to opti-

mize the design of tokamaks and could ultimately improve the economics of fusion

energy.

In relation to gyrokinetic stability, shaping the plasma can influence the ITG

turbulence by changing the local magnetic shear [KESSEL et al., 1994; ANTONSEN

et al., 1996]. Recall that the toroidal ITG instability is driven by “bad-curvature”

effects. However, because particles that produce an eddy tend to follow the field

lines, ITG turbulence can be reduced by reversed magnetic shear (i.e. local shear

ŝ < 0), which twists an eddy in a short distance to point in the good curvature

direction. In contrast, for positive magnetic shear, convective cells tend to remain

oriented in the ∇R direction and are thus more strongly driven. (A nice illustration

of this can be found in figure 2 of [ANTONSEN et al., 1996].) Most commonly,

locally reversed magnetic shear can be produced naturally by squeezing the field

lines at high pressure. To see this, recall that ŝ = (r/q)(dq/dr), so reversed magnetic

shear is q dropping with r. Since q = (r/R)(BT/Bp), this can be achieved by

increasing Bp with r. This creates the so-called “2nd stability” of an advanced

tokamak [JARDIN et al., 2005] and spherical torus [JARDIN et al., 1997]. However,

reversed magnetic shear can also be produced by changing the plasma shape (such

as varying the elongation and triangularity) since this changes Bp. These effects
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are explored here.

4.1 The Equilibrium

In these studies, we use the gyrokinetic code GS2 [KOTSCHENREUTHER et al.,

1995a; DORLAND et al., 2000] for studies of the effects of local flux surface shape

on plasma microturbulence. GS2 is a flux tube-based Eulerian code, which includes

nonlinear effects, gyrokinetic electron dynamics, trapped particles, electromagnetic

perturbations, and a pitch angle scattering collision operator. GS2 can use either a

full numerical equilibrium or a local parameterized equilibrium such as developed

by Miller et al. [MILLER et al., 1998] to obtain a realistic treatment of plasma

shape. For these shaping studies, we use the analytic Miller local equilibrium

model. According to Mercier and Luc [MERCIER and LUC, 1974], an equilibrium

in the neighborhood of a chosen flux surface ψ0 can be obtained via local expansion

of the Grad-Shafranov equation, given the shape of the reference flux surface as

defined by Rs(θ) and Zs(θ), the poloidal field on the flux surface Bps(θ), and the

two free functions of the poloidal flux (p′(ψ0) and I ′(ψ0)). In the Miller model, nine

parameters are required to fully describe the local equilibrium: κ (elongation), δ

(triangularity), ŝ (global magnetic shear), α (pressure gradient), A (aspect ratio),

q (safety factor), ∂rR0, ∂rκ, and ∂rδ. The shape of a flux surface is specified using

a standard formula for D-shaped plasmas, i.e.

Rs = R0 + r cos
[

θ +
(

sin−1 δ
)

sin θ
]

(4.1)

Zs = κr sin(θ) (4.2)
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The primary advantage of this model compared with a full numerical equilibrium is

that the parameters can be individually varied, thus allowing for systematic studies

of the effects of each upon stability and transport for shaped flux surfaces.

4.1.1 JET-based Plasmas

For these studies, we use representative shapes based on the JET tokamak. A

complete scan of a 9D parameter space as described by the Miller local equilibrium

model using generic equilibria would be difficult due to the computational inten-

sity of nonlinear gyrokinetic simulations. Furthermore, in most real experiments,

the various shaping parameters are not fully independent and tend to be corre-

lated with each other. Thus, we consider a single cut through the space of shaping

parameters, beginning with parameters from an existing tokamak as a base case.

Specifically, our simulation studies begin with shaping parameters based on JET

experimental data. We have focused on JET ELMy shot 52979, t=22.0s. This

shot was run as a long duration, high density experiment to study density peaking.

Studies of this shot have been published in [VALOVIC et al., 2002]. TRANSP

analysis [HAWRYLUK, 1980; ONGENA et al., 1998] of this data was provided by

R. V. Budny. The resulting radial profiles of the shaping parameters and the ion

and electron temperatures and densities are shown in figure 4.1. (Note that the

kinky behavior in the ion temperature profile is due the effects of the high density

of the shot on the diagnostic. Some smoothing was done before calculating the

local temperature gradient given below.) We have chosen one radial zone as a rep-

resentative shaped flux surface and then artificially varied the shaping parameters

using the Miller formalism to approach the circular limit via linear interpolations.

This zone (which we will refer to as zone 75) corresponds to r/a = 0.80 and was
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Figure 4.1: TRANSP analysis of the experimental data from JET ELMy shot
52979, t=22.0s: specifically, the radial variation of the elongation, triangularity,
electron and hydrogenic ion temperature, and electron and deuterium density. The
dotted vertical lines mark zone75, i.e. the radial zone chosen as the base case for
the JET-based shaping studies.

chosen in particular because shaping effects are strongest near the plasma edge, yet

experimental measurements too close to the edge are subject to large uncertainties.

The standard local parameters based on the JET zone 75 equilibrium are given

as follows: r/a = 0.80, R/a = 3.42, ∂rR0 = −0.14, q = 2.03, ŝ = 1.62. The original

shaping parameters for zone 75 are: κ = 1.46, ∂r/aκ = 0.57, δ = 0.19, ∂r/aδ = 0.60.

Thus, the parameterizations of the shaping factors based on linear interpolations

of this data are given by:

∂r/aκ(κ) = (0.57/0.46)(κ− 1) (4.3)

δ(κ) = (0.19/0.46)(κ− 1) (4.4)
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∂r/aδ(κ) = (0.60/0.19)δ(κ) (4.5)

Plots of neighboring flux surfaces for the JET-based parameter scan showing the

effects of κ and δ on the equilibrium can be seen in figure 4.2. We limit our scan to

κ ≤ 2.6 since, in real experiments, tokamaks with very high elongation are subject

to the catastrophic MHD vertical instability. (The exact threshold for the vertical

instability is very sensitive to experiment-specific parameters, such as how close

passive stabilization plates and feedback coils are. However, modern tokamaks

are typically designed with elongations less than 2.2.) In the GS2 simulations, we

use a single ion species (i.e. we neglect impurity species) and include gyrokinetic

electrons with the following base case parameters: R/Lni = R/Lne = 3.50, R/LT i =

R/LTe = 10.81, T0i = T0e, νei/(vti/a) = 0.393, νii/(vti/a) = 9.88× 10−3.

For studies of electromagnetic effects, we also vary β with shaping to keep the

Troyon-normalized β fixed (βN = β/(Ip/(aBT )) while also holding q95 fixed (where

q95 is the plasma safety factor at the flux surface that encloses 95% of the total

poloidal flux). Tokamaks are generally designed to work at fixed βN (constrained

by the stability of ballooning modes) and q95 (constrained by the stability of kink

modes). We assume a scaling for the shaping factor based on a modification of the

empirically-based formula of [UCKAN, 1990], i.e.

βTroyon ∝
a

Rq95

[

1 + κ2(1 + 2δ2)

2

]

(4.6)

At fixed q95, as the plasma elongates, the poloidal current Ip increases. Thus, we

vary β as

β(κ) = βzone75

[

1 + κ2(1 + 2δ2)

1 + κ2
zone75(1 + 2δ2

zone75)

]

(4.7)
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where βzone75 = 7.58 × 10−3. (Note: We use the notation β = βi = βe, where

βs = 8πn0sT0s/B
2 and the total βtotal is given by (βi + βe).)

For consistency, the equilibrium β radial gradient should also be varied as de-

fined, i.e.

−∂r/aβ(κ) =
∑

s

βs(κ)
(

R

Lns
+

R

LTs

)

a

R
(4.8)

(In this notation, the density and temperature length scales are defined as Lns ≡

−[∂(ln n0s)/∂r] and LTs ≡ −[∂(ln T0s)/∂r] such that −∂r/aβ(κ) is a positive quan-

tity.) Recall, however, that in gyrokinetics ∂r/aβ enters in as an equilibrium param-

eter (related to the second derivative of the Shafranov shift in the Miller equilibrium

model), while β is a dynamical parameter (controlling the magnitude of A‖), so each

can be varied independently. In the simulation results presented in this chapter,

for electromagnetic runs, β and ∂r/aβ are varied as above. For electrostatic runs

denoted as “β prime(κ)” results, ∂r/aβ is varied with shaping as in Eq. (4.8) even

though β itself is zero. This allows for a direct comparison between the electrostatic

and electromagnetic results showing the effects of the dynamical β, since the equi-

librium is unchanging from the electrostatic to the electromagnetic description. For

electrostatic runs denoted as “β prime=const” results, the β gradient is kept fixed

at the original zone 75 value (−(∂r/aβ)zone75 = −0.063) across shaping parameters.

In comparison with electrostatic “β prime(κ)” results, this allows for a study of

the effects of the equilibrium generated by the β gradient on the dynamics.

4.2 Linear Gyrokinetic Stability

We first explore the effects of shaping on the linear gyrokinetic stability. For all of

the linear results, we report the maximum linear growth in a scan over kyρi in the
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range 0.1 ≤ kyρi ≤ 1.0. The results presented in this section were performed in the

electrostatic limit.

We begin with studies of the variation of the linear ITG growth rate with κ,

shown in figure 4.3. In general, the results show that elongation has a stabilizing in-

fluence on the linear growth rate. The δ = 0 curve is used as a base case comparison

with the δ(κ) curve, from which we observe that triangularity is slightly destabiliz-

ing at low to moderate κ and slightly stabilizing at very high κ. However, overall,

the dependence of the linear stability on triangularity is very weak compared with

the stabilizing effects of elongation. Comparison with the curve at constant β radial

gradient shows that increasing
∣

∣

∣∂r/aβ
∣

∣

∣ is also stabilizing. The stabilizing influence

of the β gradient has been shown previously and has been demonstrated to be par-

ticularly important in high β spherical torus plasmas [BOURDELLE et al., 2003].

This can be seen intuitively in ŝ-α geometry, where the curvature drift frequency

can be written as:

ωd,‖ = −
(

kyρsvts
R0

)

[cos θ + (ŝθ − α sin θ) sin θ] (4.9)

where α = −q2(R0/a)∂r/aβ (related to the second derivative of the Shafranov shift)

and ωd,‖ < 0 corresponds to drifts in the “bad-curvature” direction. Thus, Eq. (4.9)

shows that the stabilizing effect of increased −∂r/aβ (or, equivalently increased α)

is analogous to that due to reversed local magnetic shear.

Overall, the results of figure 4.3 agree with our previous GS2 shaping studies

based on a generic equilibrium as an extension of the initial shaping studies of

[WALTZ and MILLER, 1999]. The parameters for these studies are: r/a = 0.5,

R/a = 3.0, ∂rR0 = −0.0, q = 2.0, ŝ = 1.0, ∂rβ = −0.0. We have artificially varied
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Figure 4.3: Real frequency and linear growth rate vs. elongation for JET-based
plasmas in the electrostatic limit comparing zero triangularity and triangularity
varied with κ, as well as comparing constant β radial gradient and β radial gradient
varied with κ.
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the input shaping parameters, starting with a concentric circular base case and using

simple approximations for the gradients and a linear interpolation of the parameters

in [WALTZ and MILLER, 1999] as an approximation of the triangularity variation

with elongation, given as follows:

∂r/aκ(κ) = (κ− 1)/(r/a) (4.10)

δ(κ) = Cδ(0.416/0.66)(κ− 1) (4.11)

∂r/aδ(κ) = δ(κ)/(r/a) (4.12)

where the constant Cδ = 0.75 was chosen to maintain the physical restriction

0 ≤ δ ≤ 1 for the range of κ of interest. Note that this is similar to the variation

of the shaping parameters in the JET-based study, but with a different equilibrium

base case and a more simple variation of the shaping gradients. Plots of neighboring

flux surfaces for this generic-based parameter scan can be seen in figure 4.4. This

figure specifically shows the effects of δ on the equilibrium. Note the qualitative

similarity with the flux surfaces of the JET-based equilibrium scan shown in figure

4.2. In particular, the triangularity at any given κ is larger for the JET-based

plasmas. The increased triangularity gradient for the JET-based plasmas is also

particularly noticeable by the increased relative closeness of the neighboring flux

surfaces for the κ = 2.2 case compared with the corresponding generic-based case.

In the GS2 simulations for the generic-based parameterization, we use a single

ion species and include gyrokinetic electrons with the following base case param-

eters: R/Lni = R/Lne = 3.00, R/LT i = R/LTe = 6.00, T0i = T0e, νei/(vti/a) =

νii/(vti/a) = 0. Results showing the variation of the real frequency and linear ITG

growth rate with the shaping parameters can be seen in figure 4.5. In agreement
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Figure 4.4: Neighboring flux surface shapes for representative generic-based plas-
mas.

with the JET-based results in figure 4.3, these generic-based results show a gen-

eral improvement in the linear ITG stability as κ increases and a weak dependence

on δ. In these studies, the effects of the shaping gradients themselves were also

studied via artificially adjusting the elongation gradient and triangularity gradient

by a factor of 2 and 0.5 respectively. These results are also shown in figure 4.5.

It is generally observed that a high elongation gradient is more stabilizing, while

the effect of increased triangularity gradient is much less significant though slightly

destabilizing.

Overall, insight about the stabilizing effects of high shaping observed in figures

4.3 and 4.5 can be obtained by considering the equilibrium. Figure 4.6 shows the

variation of the curvature drift and k2
⊥

equilibrium parameters with the ballooning

mode extended angle θ for the JET-based plasmas (δ is also varied with κ here).
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In general, moderate levels of shaping appear to have little effect on the curvature

drift. However, the case of κ = 2.20 shows a significantly more narrow region in

the “bad-curvature” direction. This is also reflected in the k2
⊥ plot, which narrows

with increasing shaping. (Instabilities are generally suppressed at large k2
⊥

by FLR

averaging, so the region of interest is near k2
⊥

= 0.) Thus, the equilibrium plots show

that with high shaping, only unstable modes which are very highly localized will

persist in the system. It should also be noted that the Jacobian factor associated

with the ∂/∂l operator (∂/∂l = (∂θ/∂l)∂θ) is slightly larger for higher shaping.

Freedom in the definition of θ has been exploited to remove the θ dependence from

(∂θ/∂l). For these parameters, we find that (∂θ/∂l)a = {0.1492, 0.1522, 0.1569}a

for the cases of {κ = 1.00, κ = 1.46, κ = 2.20, } respectively, thus indicating a

higher amount of stabilizing Landau damping with increased shaping.

The effects of shaping on the linear critical temperature gradient were also

studied for the JET-based plasmas. The results are shown in figure 4.7 for the

electrostatic limit. Note that ∂r/aβ is varied with shaping (κ and δ) as well as

consistently with R/LT . While shaping was found to be stabilizing in the regime

of R/LT = 10.81 in figure 4.3, we find surprisingly that shaping has no significant

effect on the linear critical temperature gradient. Specifically, all three shaped

plasmas yield a stabilizing gradient for the ITG mode near that observed for the

circular shape, i.e. R/LT ∼ 3.42 . The dashed lines in figure 4.7 for the κ = 1.46

and κ = 2.20 cases correspond to constant zero triangularity (rather than varying

triangularity with κ as for the solid lines). Again we see that the dependence of the

ITG growth rate on δ is insignificant across the entire temperature gradient length

scale regime, except for the upshift in the linear critical temperature gradient with

zero triangularity for the κ = 2.20 case.
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Figure 4.6: Curvature drift (normalized as ωd,‖/(vti/a)/(kyρi)) and k2
⊥/|B|2 (nor-
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the “bad-curvature” direction.
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4.3 Nonlinear ITG Turbulence

Extensions to study the scaling of nonlinear turbulence with shaping have also

been explored. The simulation domain for these studies has Lx = 74.28ρi and

Ly = 62.83ρi with the number of grid points in the perpendicular directions given

by Nx = 72 and Ny = 36, such that ∆x = 1.05ρi and ∆y = 1.80ρi. In spectral

space, this corresponds to resolving nonzero modes in the range 0.085 ≤ |kxρi| ≤

1.95 and 0.10 ≤ kyρi ≤ 1.10. The domain along the field line has length Lz =

2πqR = 12.75R, with Nθ = 32 grid points per 2π in θ. The velocity grid has

NE = 16 total energy grid points and Nλ = 37 pitch angle grid points (λ = µ/E),

divided into trapped and untrapped regions. Runs were performed as typical with

time-centering parameter r = 0.55 and slight upwind diffusion (spatial-centering

parameter s = 0.55).

Contours of electrostatic potential for the κ = 1.8 JET-based case near the

beginning and near the end of the simulation can be seen in figure 4.8. (Note that

the toroidal width of the simulation domain is not to scale in this figure and is

much wider than shown.) At the beginning of the nonlinear stage, when the ampli-

tudes of the Fourier harmonics are small, the spectrum is dominated by the fastest

growing linearly unstable, “bad-curvature”-driven modes. This is shown in the

early-time visualization in figure 4.8 by the radially elongated eddies (which have

zero radial wavenumber) at the outboard midplane, which are extended along the

field lines, since parallel Landau damping quickly damps any high k‖ components.

These eddies basically provide a mechanism for heat and particles to escape from

the tokamak. However, as the simulation is evolved, the ExB nonlinearities transfer

energy between different k⊥ modes until a statistically steady, yet turbulent steady

state is reached. Physically, nonlinear generation of sheared ExB flows essentially
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Figure 4.8: Contours of electrostatic potential for the JET-based case of (κ = 1.8,
δ(κ) = 0.3343) in the early-time linear phase (left) and in the late-time steady-state
turbulent phase (right) for a nonlinear GS2 simulation in the electrostatic limit.

breaks apart the radially elongated eddies and converts them into poloidal flows.

This is shown in the late-time visualization in figure 4.8. This process has previ-

ously been described by a parasitic instability model, in which the equilibrium is

unstable to primary (linear) instabilities, which in turn are unstable to secondary

instabilities. The balance between the primary instabilities (which grow like eγlint)

and the secondary growth instabilities (which grow with the amplitude of the pri-

mary instabilities, i.e. like ee
γlint

) determines the saturation level for the turbulence

[COWLEY et al., 1991; ROGERS et al., 2000].

The heat diffusivities presented in this chapter are written in terms of χiter, a

quantity defined by the ITER Expert Group such that the 1D radial heat transport
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equation is given by:

3

2

∂(nT )

∂t
+

1

V ′
∂

∂r

[

V ′
〈

|∇r|2
〉

χiter

(

n
∂T

∂r

)]

= SE (4.13)

where V is the flux surface volume and V ′ = dV/dr. The transport equation in

this form has the advantage that χiter is independent of the flux surface label r. In

our GS2 simulations, we choose r to be the minor radius. Based on the formulation

adopted in GS2, χiter can be computed as

χiter = χGS2
〈|∇r|〉
〈

|∇r|2
〉 (4.14)

While the geometric quantities 〈|∇r|〉 and
〈

|∇r|2
〉

can be computed exactly for

general geometry using Eqs. (4.1) and (4.2), here we assume the limit of concentric

ellipses to get a simplified expression for the translation from χGS2 to χiter, yet one

which essentially retains the key dependence on κ. Specifically, this corresponds to

R(r, θ) = R0 + r cos(θ) (4.15)

Z(r, θ) = κr sin(θ) (4.16)

i.e. we have assumed that δ = 0, ∂rR0 = 0, and ∂rκ = 0. This yields that

|∇r|2 = (1/κ)
(

κ2 cos2(θ) + sin2(θ)
)

(4.17)

Taking the flux surface average (given by 〈f〉 ≡ (1/V ′) ∂
∂r

∫

dV f), we find that the
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conversion factor for χGS2 is given by:

〈|∇r|〉
〈

|∇r|2
〉 =

(

4

π

)(

κ

1 + κ2

)

E
(√

1− κ2
)

(4.18)

where E(x) ≡ ∫ 1
0 dt

(√
1− x2t2/

√
1− t2

)

is the incomplete elliptic integral.

Though this relation does not include triangularity, the Shafranov shift, nor the

radial elongation gradient, we could use it to approximate our JET-based shaping

results in terms of χiter, since we are primarily interested in the dependence of

the ITG turbulence on κ. (Recall from figures 4.3 and 4.5 that the dependency

of the ITG linear growth rate on both δ and ∂r/aκ is relatively weak compared to

the dependence on κ.) However, instead we have modified GS2’s geometry module

to compute this geometric conversion factor numerically for the actual full Miller

equilibrium and instead use this to convert our χGS2 results into χiter. But we can

use a comparison of our approximation in Eq. (4.18) to get a qualitative idea of the

strength of the triangularity and radial gradients of the elongation and triangularity

on the shaping scaling. This is shown in figure 4.9. Overall, over the range of our

JET-based shapes, we note that the scaling of this geometrical factor is weak, i.e. it

remains fairly close to unity even for the more highly shaped plasmas. Comparing

the exact case for δ = 0 with the approximation (which also has zero triangularity),

we infer that the effects of the radial gradient of the elongation (and finite Shafranov

shift) on the scaling may be relatively weak. However, comparison of the δ = 0

case with the exact case for δ(κ), which shows a reversal in the curve at high

shaping, suggests that high elongation when coupled with high triangularity may

be influential on the scaling. These inferences are, of course, completely heuristic

and do not account for the dynamics in the kinetic computation of the heat flux,
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Figure 4.9: Variation of the geometrical quanitity 〈|∇r|〉 /
〈
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〉

(which is the

conversion factor for χGS2 → χiter) with κ for JET-based plasmas comparing zero
triangularity and triangularity varied with κ and comparing an exact numerical
calculation based on the actual Miller equilibrium with an analytic approximation
which neglects triangularity, the Shafranov shift, and the radial shaping gradients.

though this figure together with the simulation results may help to identify scaling

regimes of the heat flux and give a qualitative understanding of the dependence on

triangularity.

The effects of shaping on the nonlinear ITG turbulence in the electrostatic limit

for the JET-based plasmas, analogous with the electrostatic linear results in figure

4.3, are shown in figure 4.10. In agreement with the linear results, the nonlinear

results show that high shaping has a stabilizing influence. Also, similar to the linear

stability, the dependence of the nonlinear heat flux on triangularity is weak across

the entire range. It is particularly notable that the results at constant β radial

gradient do not vary as strongly with κ. This suggests that most of the variation
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Figure 4.10: Ion and electron heat flux vs. elongation for JET-based plasmas in the
electrostatic limit comparing zero triangularity and triangularity varied with κ, as
well as comparing constant β radial gradient and β radial gradient varied with κ.
The dotted lines show the empirical scalings κ−1, κ−1.5, and κ−2.

of the standard case (δ(κ), βprime(κ)) is coming from the variation of ∂r/aβ as given

by Eqs. (4.7) and (4.8). We compare the GS2 data with empirical scalings of κ−1,

κ−1.5, and κ−2, designed to fit the data at κ = 1.0. These are plotted as the dotted

lines in figure 4.10. Qualitatively, we find that both the ion and electron heat flux

scale as χ ∼ κ−1.5. It is further interesting that, in the regime where triangularity

is slightly destabilizing, the scaling of the case with zero triangularity becomes

stronger (χ ∼ κ−2). Note from figure 4.9 that the transition between the χ ∼ κ−1.5

scaling regime and the χ ∼ κ−2 regime is near where we observed the deviations

in the trend of the geometrical heat flux conversion factor 〈|∇r|〉 /
〈

|∇r|2
〉

between

the δ = 0 case and the δ(κ) case.

Compared with previous numerical studies, the simulation results in figure
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4.10 are within the range of previous gyrofluid results which found a scaling of

χ ∼ 2/(1 + κ2) (for δ = 0 and adiabatic electrons) [WALTZ and MILLER, 1999].

However, our nonlinear gyrokinetic simulations of core turbulence overall do not

completely explain the much stronger effects of shaping found experimentally, par-

ticularly not the strong triangularity dependence observed in tokamaks. For exam-

ple, in figure 4.11, we show the scaling of 1/χ with κ of various experimentally-based

empirical scaling relations in comparison with the scaling of 1/χ ∼ κ1.5 or κ2.0 ob-

served in our GS2 simulations. The scaling laws which we plot include the standard

IPB98(y,2) scaling [ITER PHYSICS EXPERT GROUP ON CONFINEMENT and

TRANSPORT et al., 1999], which is based on H-mode global confinement data

and was used for the ITER design, for both β = constant (“IPB98y2(κ, 0)”) and

β/βTroyon = constant (“IPB98y2(κ, β)”) and the standard Error in Variables scal-

ing of [CORDEY et al., 2005] (“EIV 05 maxerr(P )(κ)”), which is similar to the

IPB98(y,2) scaling yet uses a modified H-mode database, resulting in a weaker β

dependence. From figure 4.11, it is clear that our GS2 simulations yield a weaker

scaling than the experiments and thus do not fully capture the strong stabilizing

effects of highly shaped plasmas. While the fact that the Dimits nonlinear critical

temperature gradient shift depends on shaping, which we observed with the GS2

simulations and show next, may help to explain the remainder of the scaling to

match the empirical scaling relations from experiments, stronger shaping depen-

dence in tokamaks most likely comes in through edge boundary conditions for core

turbulence, so this will be a key topic of future research. In fact, very recent work

by Kendl and Scott exploring the effects of shaping on plasma turbulence for edge-

like parameters using gyrofluid simulations shows a scaling of χ ∼ κ−4 [KENDL

and SCOTT, 2006], i.e. a stronger shape dependence than we found with our core
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Figure 4.11: Inverse heat flux vs. κ (assuming triangularity varies with κ) for various
experimentally-based empirical scaling laws, namely the standard IPB98(y,2) H-
mode scaling for β = constant (“IPB98y2(κ, 0)”) and for β/βTroyon = constant
(“IPB98y2(κ, β)”) and the standard Error in Variables scaling of Cordey et al.
(“EIV 05 maxerr(P )(κ)”). For comparison, the scalings of κ1.5 and κ2.0 (observed
in our GS2 simulations) are shown.

gyrokinetic simulations. There are a number of differences between core and edge

turbulence, such as the stronger role played by nonlinear non-adiabatic electron

dynamics in edge turbulence, which could be interesting to explore further.

Here we present results from studies of the effects of shaping on the nonlinear

critical temperature gradient. The GS2 simulation results are shown in figure 4.12

for the electrostatic limit. While shaping was found to be stabilizing on the non-

linear ITG turbulence in the regime of R/LT = 10.81 in figure 4.10 in agreement

with the linear results, here we see that shaping is also stabilizing near the regime

of zero net heat flux. In particular, the results show that the nonlinear critical
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Figure 4.12: Ion and electron heat flux vs. temperature gradient length scale for
JET-based plasmas in the electrostatic limit for triangularity varied with κ.

temperature gradient increases with strong shaping. For example, R/LTc ∼ 3.42

for the κ = 1.00 and κ = 1.46 cases, while R/LTc ∼ 5.13 for the κ = 2.2 case. This

is unlike the linear results in figure 4.7 which showed that shaping has little effect

on the linear critical temperature gradient.

The results of figure 4.12 are somewhat surprising and worthy of further analysis.

Here we show that the larger upshift of the nonlinear critical temperature gradient

with higher shaping may be due to enhanced zonal flows. Zonal flows are the purely

poloidal flows (i.e. ky = 0 modes) driven by ITG turbulence which are believed to

play an important role in saturating the level of the turbulence [HAMMETT et al.,

1993; DIMITS et al., 1996; DIMITS et al., 2000]. Rosenbluth and Hinton found

analytically that a component of the zonal flows is undamped by linear collisionless
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processes and that the residual amplitude of these flows scales as

Φfin

Φinit

=
1

1 + 1.6
h

(4.19)

where h =
√
ε/q2 (where ε = r/R is the inverse aspect ratio) [ROSENBLUTH and

HINTON, 1998]. This result was derived for concentric circular plasmas. However,

h is related to the physics of banana widths, which depends on the poloidal magnetic

field, and thus it is natural that h should scale with the shaping parameters.

Physically, what we are considering here is the bounce-averaged gyrokinetic re-

sponse of the plasma to shield an externally imposed Φ. This has been explained

qualitatively by [HAMMETT, 1997], which we summarize here. The usual classical

gyroradius shielding comes from the ion polarization density term ∝ (1−Γ0(k
2
⊥
ρ2
i ))

in the gyrokinetic Poisson equation (see the LHS of Eq. (2.4)). Thus, in the

limit of small k⊥ρi, the classical perpendicular plasma dielectric can be approxi-

mated as Dclassical ∼ 1 + ρ2
i /λ

2
Di ∼ ρ2

i /λ
2
Di � 1, where λDi is the Debye length

(λ2
Di = T0i

4πn0iZie2
). This shielding effect is set-up in a short time, i.e. after a few

gyroperiods. In the long time limit, i.e. after a few bounce times, neoclassical po-

larization shielding also arises due to the distortion of the banana orbits by the

radial electric field. Thus, the neoclassical perpendicular plasma dielectric scales

as Dneoclassical ∼ (ρ2
banana/λ

2
Di)ftrapped, where ρbanana ∼ ρiq/

√
ε is the banana or-

bit width and ftrapped ∼
√
ε is the fraction of trapped particles (representing the

fact that trapped particles have larger radial excursions off a flux surface than

passing particles). Thus, we find that Dneoclassical/Dclassical ∼ q2/
√
ε
2

= 1/h.

Assuming an initial Φ due only to the classical polarization density, in the long
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Figure 4.13: Time evolution of the amplitude of the zonal flows for the JET-
based circular case computed using GS2 with an initial external potential Φext ∼
(1/kr) cos(krr). The dashed line shows the Rosenbluth-Hinton prediction for these
parameters (h = 0.1171).

time limit considered by Rosenbluth and Hinton (i.e. ω � ωbounce), Φ will be re-

duced due to the neoclassical enhancement of polarization shielding by a factor

of Dclassical/(Dneoclassical + Dclassical), which we find scales as ∼ 1/(1 + 1/h), in

qualitative agreement with the Rosenbluth-Hinton result given in Eq. (4.19). (The

factor of 1.6 in Eq. (4.19) comes from a more accurate kinetic calculation which also

includes the contribution of passing particles.) Physically, in the time evolution,

the amplitude of the potential appears as the superposition of transit-time damp-

ing oscillations (known as the geodesic acoustic modes) and an undamped residual

component (which we refer to as the Rosenbluth-Hinton component of the zonal

flows), as shown in figure 4.13.

Here we explore the effects of shaping on the Rosenbluth-Hinton residual flows,
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focusing specifically on the dependence of h on shaping. Using GS2, we find the

amplitude of the Rosenbluth-Hinton residual flows by adding an external Φ to

the gyrokinetic Poisson equation and then computing the response of the plasma

to it. Figure 4.14 shows the results, specifically the saturated amplitude of the

Rosenbluth-Hinton residual zonal flows vs. κ for the JET-based parameters. Over-

all, we find that shaping enhances the Rosenbluth-Hinton component of the zonal

flows. This provides an explanation for the larger upshift of the nonlinear critical

temperature gradient with higher shaping observed in figure 4.12, since zonal flows

help to saturate the turbulence.

A model prediction for the scaling of h with shaping was found empirically based

on these GS2 results, assuming

Φfin

Φinit
=

1

1 + 1.6
Chshaping

(4.20)

where

hshaping =

√
ε

q2
f(κ, δ) (4.21)

The constant C=0.887 was chosen to match the GS2 circular case with the original

Rosenbluth-Hinton model. (Note that Rosenbluth-Hinton assumed concentric cir-

cular plasmas, while our JET-based plasmas have a non-zero Shafranov shift.) A

good fit was found with the shaping function

f(κ, δ) =
1

2

[

1 + κ2 (1 + δ)2
]

(4.22)

This is shown as the lines in figure 4.14. Note the good agreement between the GS2

results and the model prediction both with zero triangularity and with triangularity
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Figure 4.14: Amplitude of the Rosenbluth-Hinton residual zonal flows vs. elongation
for JET-based plasmas in the electrostatic limit comparing zero triangularity with
triangularity varied with κ. The data points are the GS2 results; the lines are the
analytic model prediction.

varied with δ. It is interesting to compare this shaping function with that found

empirically based on experiments for the pressure limit, such as the Troyon β limit

given by Eq. (4.6). The shaping function of Eq. (4.22) for the residual zonal flows

has a similar κ dependence as the empirical Troyon β limit, yet with a slightly

weaker δ dependence. Future work could pursue a more rigorous analytic physics-

based calculation of f(κ, δ). However, overall, this analysis shows that geometry

does affect the residual zonal flows, and this may help to explain why strong shaping

is favorable in experiments.
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4.4 Electromagnetic Effects

The effects of electromagnetic dynamics (i.e. finite β) coupled with shaping are also

explored for the JET-based plasmas. For these studies, both β and ∂r/aβ are varied

with shaping, as given by Eqs. (4.7) and (4.8) respectively. These results are thus

analogous to those above performed in the electrostatic limit in which ∂r/aβ was

varied but the dynamical parameter β was zero. For these electromagnetic results,

we retain the parallel Ampere equation in addition to Poisson equation, though we

neglect compressional magnetic perturbations (i.e. δB‖ = 0), which are generally

insignificant for low β tokamak plasmas (but can be important for high β plasmas

like NSTX [BOURDELLE et al., 2002]).

4.4.1 Linear Results

We first consider the linear limit to develop insights and then consider extensions

to include nonlinear dynamics. Figure 4.15 shows the variation of the linear growth

rate with κ comparing the electrostatic β = 0 limit and the electromagnetic β(κ)

description for the same equilibrium (i.e. ∂r/aβ is varied with shaping for both

cases). The results show a general enhanced stability of the linear ITG mode with

electromagnetic effects (except at the highest κ). This is expected for β < βc, where

βc is the threshold for the kinetic ballooning instability. Specifically, it has been

shown previously that, considering a scan over β, the ITG mode dominates at low

β (< βc) and is stabilized with increased β. As β is further increased, the kinetic

ballooning mode dominates and is further destabilized with increasing β [KIM et

al., 1993], though 2nd stability can occur at high β, depending on the value of

∂r/aβ.
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Figure 4.15: Real frequency and linear growth rate vs. elongation for JET-based
plasmas comparing the electrostatic limit (i.e. β = 0) and the electromagnetic
description (i.e. β(κ)) for both zero triangularity and triangularity varied with κ.
(Note that the β radial gradient is varied with κ for both cases.)
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Figure 4.16: Real frequency and linear growth rate vs. temperature gradient length
scale for JET-based plasmas with electromagnetic dynamics.

The electromagnetic analog of the linear scan over the temperature gradient

length scale in figure 4.7 is shown in figure 4.16. As with the electrostatic results,

the electromagnetic results also show surprisingly that, while higher shaping is sta-

bilizing for steep temperature gradients, shaping has no effect on the linear critical

temperature gradient. Furthermore, comparing figure 4.7 and figure 4.16, while

electromagnetic dynamics are stabiling in the regime of high R/LT (as observed in

figure 4.15), the value of the linear critical temperature gradient does not shift with

electromagnetic effects.

The relationship between β(κ) and βc is explored in figure 4.17, which shows

a linear scan over β for the JET-based plasmas. For the noncircular plasmas, as

β increases, the linear growth rate decreases, i.e. β is stabilizing over the entire

range. While a mode transition from the dominant ITG mode to a dominant mode
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in the electron direction occurs (note that this latter mode was also observed in

figure 4.15 at the highest shaping values with electromagnetic effects), there is no

evidence of transition through a dominant kinetic ballooning instability regime,

but rather directly to a 2nd stabilitizing regime. This is different from the circular

case (κ = 1.0, δ = 0.0), where there is a regime at intermediate β where the

kinetic ballooning instability dominates. Consider the circular case in more detail.

At low β, the dominant ITG mode is stabilized as β is increased. However, near

β ∼ 0.01, transition to a strongly destabilized mode is observed. This mode peaks

at small kyρi (∼ 0.1), as is typical of the kinetic ballooning instability. However,

as β is further increased, a second transition occurs to the dominant negative real

frequency mode that was also observed with the noncircular plasmas. Thus, these

results suggest that shaping opens up to a type of 2nd stability regime.

A simple estimate for the ideal MHD ballooning instability limit can be obtained

using a program provided by GS2, which finds the solution of the Euler-Lagrange

equation for the variational energy δW using the same geometrical information used

for the GS2 gyrokinetic simulation. This yields that βc ∼ 0.00671 for the κ = 1.00

case, which is in approximate agreement with the kinetic ballooning limit shown

in figure 4.17. As shaping increases, the estimate for the ideal MHD ballooning

threshold significantly increases. For example, βc ∼ 0.0101 for the κ = 1.20 case,

βc ∼ 0.0182 for the κ = 1.46 case, and no instability was found for the higher

shapes. However, no kinetic ballooning instability regime was observed for any of

the shaped plasmas with the gyrokinetic simulation. From this, we note that even

for the κ = 1.20 and κ = 1.46 cases, β(κ) is well below even the estimated MHD

βc. This is important for the nonlinear electromagnetic simulations presented in

section 4.4.2, since the growth at small kyρi associated with the kinetic ballooning
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Figure 4.17: Real frequency and linear growth rate vs. β for JET-based plasmas for
triangularity varied with κ. (Note that the β radial gradient is varied consistently
with β.) The points marked β(κ) denote the standard case β values using the
assumed variation of β with shaping given by Eq. (4.7).
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instability can cause unsaturated transport.

However, we should note that in figure 4.17, only the growth rates for the

dominant modes in a scan of kyρi over the range [0.1, 1.0] are reported. This means

that, for the noncircular cases, a kinetic ballooning mode may exist, but might not

be dominant over the ITG mode. To check this, we examine the scans of kyρi at

constant β, as shown in figure 4.18 for β(κ) (and for β = 0 for comparison with the

electrostatic ITG mode). Recall that the ballooning mode is generally marked by

significant growth at small kyρi (<∼ 0.1), while the ITG mode tends to dominate

at moderate kyρi (∼ 0.3 − 0.6). Figure 4.18 shows no growth at small kyρi for

β = β(κ) for any noncircular case, indicating that these cases are not near the

ballooning limit. In contrast, note that the κ = 1.00 case shows evidence of the

ballooning instability for β near its estimated βc (the dashed curve). Surprisingly,

however, the κ = 1.46 case does not show evidence of the ballooning instability, not

even near its estimated βc. In any case, these results support the conclusion that

β(κ) is well below βc for all of the shaped plasmas.

Overall, the main result of figure 4.17 that shaping opens up access to a type

of 2nd stability regime is supported by a previous study which we performed based

on a generic equilibrium. This study focuses on the variation of the linear growth

rate with α (and varying β consistently) at various values of global shear, thus

paralleling an MHD ŝ-α stability analysis. The parameters for this study are based

on a generic equilibrium used as a test case in [MILLER et al., 1998]: r/a =

0.83, R/a = 2.63, ∂rR0 = −0.354, q = 3.03. Two sets of shaping parameters are

compared: κ = 1.66 with ∂r/aκ = 1.4 (original Miller parameters) and κ = 2.00

with ∂r/aκ = 2.12 (= (1.4/0.66)∗ (κ−1), i.e. assumed linear interpolation); δ = 0.0

with ∂r/aδ = 0.0 and δ = 0.7 with ∂r/aδ = 0.84 (= δ/(r/a)). In the GS2 simulations,
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Figure 4.18: Real frequency and linear growth rate vs. kyρi at constant β for JET-
based plasmas for triangularity varied with κ comparing the electrostatic (β = 0)
limit and the electromagnetic (finite β) description. The dashed curves correspond
to β near the estimated ideal MHD ballooning limit.
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we use a single ion species and include gyrokinetic electrons with the following base

case parameters: R/Lni = R/Lne = 2.63, R/LT i = R/LTe = 7.89, T0i = T0e,

νei/(vti/a) = νii/(vti/a) = 0.

Figure 4.19 shows the results at high shear (ŝ = 2.85), while figure 4.20 shows

the results at ŝ = 1 and ŝ = 0. These results show that at a fixed κ, increasing δ

has a destabilizing effect at low α, yet can have a stabilizing influence at high α. In

particular, for the high shear case, a kind of 2nd stability regime is observed at high

α and high δ. This can be contrasted with the zero triangularity cases which show

transition from a stabilizing regime at low α to a destabilizing regime at moderate

to high α. Overall, this observed effect that high triangularity opens up access to

a type of 2nd stability regime at high α is qualitatively similar to previous studies

of the effects of triangularity on MHD ballooning stability [MILLER et al., 1998].

(In our case, complete stabilization is not observed, but the growth rates of the

microinstabilities are decreasing as α increases in this 2nd stability-like regime.)

In contrast, the low shear results in figure 4.20 show that the effect of δ on the

stability at high α is not significant. However, the destabilizing effect of δ at low α

are qualitatively similar to that at high shear.

Comparing the effects of elongation alone, in figure 4.19 we also see that high

elongation has a stabilizing effect at both low and high α. This is qualitatively

consistent with the linear κ scan for the generic equilibrium at fixed α = 0 in

figure 4.5 and the JET-based equilibrium in figure 4.3 (electrostatic) and in figure

4.15 (electromagnetic). In the context of the JET-based results of figure 4.17,

these results are in agreement in that the κ = 1 JET-based plasma showed a

destabilizing region at moderate β (and β gradient, which scales with α), while the

more highly shaped plasmas (with increased κ and δ) transitioned more rapidly to
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Figure 4.19: Real frequency and linear growth rate vs. α (also varying β) for generic-
based plasmas with electromagnetic dynamics at a global shear ŝ = 2.85.

a 2nd stability-like regime at high β.

4.4.2 Nonlinear Results

The effects of the shaping on the nonlinear ITG turbulence with electromagnetic

dynamics are presented here. The simulation domain for these studies was modified

from that for the electrostatic nonlinear simulations to give finer resolution in kx.

Specifically, the simulation domain for the electromagnetic nonlinear simulations

has Lx = 151.92ρi and Ly = 85.68ρi with the number of grid points in the per-

pendicular directions given by Nx = 64 and Ny = 48, such that ∆x = 2.41ρi and

∆y = 1.82ρi. In spectral space, this corresponds to resolving nonzero modes in the

range 0.041 ≤ |kxρi| ≤ 0.87 and 0.073 ≤ kyρi ≤ 1.10. The resolution along the field
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Figure 4.20: Real frequency and linear growth rate vs. α (also varying β) for generic-
based plasmas with κ = 1.66 with electromagnetic dynamics at global shear ŝ =
1.00 and 0.00.
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line and in velocity space was the same as for the electrostatic nonlinear results.

The nonlinear results with electromagnetic dynamics, analogous with the linear

results in figure 4.15, are shown in the LHS plots in figure 4.21 for various values

of β relative to β(κ). For comparison, the electrostatic case (β = 0, ∂r/aβ(κ)) is

also shown. For the electromagnetic results, ∂r/aβ is varied consistently with β.

Surprisingly, while finite β was found to be stabilizing on the ITG linear growth

rate, with nonlinear effects we find that β strongly negatively affects the electron

transport. In fact, unsaturated transport was observed in some cases, particularly

as β/β(κ) increases and as shaping decreases. (For example, unsaturated transport

occurred as low as β = 1
3
β(κ) for the κ = 1.00 case.) However, we address these

cases of observed unsaturated transport separately in Appendix C, as more com-

prehensive numerical convergence studies may be needed to exclude the possibility

of numerical issues for these cases. Regardless, we can observe from the results in

the figure 4.21 that the negative effects of β on the nonlinear ITG turbulence are

strongest for more circular plasmas. The general result that β has little effect at

high shaping (such as shown in the results for the κ = 2.20 case) is in agreement

with the linear results in figure 4.15.

Overall, the observed strong effect of β on the electron transport is surprising

since the linear results in figure 4.17 show that β(κ) is well below the linear kinetic

ballooning limit for all of these cases. (Recall that growth at small kyρi associated

with the kinetic ballooning instability can cause unsaturated transport.) In fact,

these nonlinear gyrokinetic results are even more extreme than previous gyrofluid

results which showed dramatically enhanced transport as β is increased above ∼

βc/2 [SNYDER, 1999]. Those gyrofluid results had also shown significant reduction

in transport for low values of β, analogous with stabilization of the linear ITG mode
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with finite β. So it is somewhat surprising that, even as β is decreased, we do not

observe nonlinear finite β stabilization. However, studies over a more extended

lower regime of β may be needed. Recent gyrokinetic results from the GYRO code

run in the flux tube limit with ŝ-α geometry found that, in a scan over β, finite β

has a weak effect on the ion transport, yet a strong effect on the electron transport,

with roughly 50% of the total electron thermal diffusivity being driven by magnetic

flutter just above βe,c/2 [CANDY, 2005]. Our results at low shaping, including

looking at the dashed lines in figure 4.21 which denote the component of χe due to

magnetic flutter transport, are at least qualitatively in agreement with the GYRO

results.

Studies of the effects of shaping on the nonlinear critical temperature gradient

in the presence of electromagnetic dynamics are also of interest and a topic of

future research. Presently, this is difficult due to the computational intensity of

nonlinear electromagnetic gyrokinetic simulations. However, as a beginning, we

have also performed GS2 simulations using a smaller temperature gradient length

scale, specifically R/LT = 5.31, i.e. near the nonlinear critical gradient for κ = 2.20

in the electrostatic limit shown in figure 4.12. These simulations were performed

only for the cases of β = 0 and β = 1
3
β(κ). The results are shown in the RHS plots

in figure 4.21 for comparison with the LHS plots corresponding to the base-case

steeper temperature gradient length scale of R/LT = 10.81. Note that for these

runs, ∂r/aβ is varied consistently with both β and R/LT . For these results, it is not

surprising that finite β does not appear to significantly affect the nonlinear critical

temperature gradient for κ = 2.20, since we already observed that this case is not

strongly affected by β linearly nor nonlinearly at a higher temperature gradient.

However, at moderate shaping, finite β appears to have a smaller effect on both
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Figure 4.21: Ion and electron heat flux vs. elongation for JET-based plasmas with
electromagnetic dynamics for triangularity varied with κ comparing various values
of β. (Note that the β radial gradient is varied consistently as β is varied, except
for the electrostatic (β = 0) case for which ∂r/aβ = ∂r/aβ(κ)). The dashed lines
denote the component of χ due to magnetic flutter transport (from A‖).

the electron and ion heat flux at this lower R/LT compared with the standard case

at higher R/LT . This may indicate that β may not have a strong effect on the

nonlinear critical temperature gradient, though of course a comprehensive study

analogous with the nonlinear electrostatic temperature gradient scan in figure 4.12

is necessary.
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4.5 Summary

The GS2 code has been used to study the effects of flux surface shape on the gy-

rokinetic stability and transport of tokamak plasmas. Studies of the scaling of the

linear growth rate and nonlinear turbulence with shaping parameters were per-

formed starting with a representative JET-like flux surface and artificially varying

elongation, triangularity, and their radial gradients together using the Miller ana-

lytic local equilibrium model to approach the circular limit via linear interpolation.

In the electrostatic limit, high elongation was found to a stabilizing influence on

both the linear ITG instability and the nonlinear ITG turbulence. Triangularity

was somewhat destabilizing at moderate κ or α, but could be stabilizing at high κ

or combined high α and high ŝ. A general scaling of χ ∼ κ−1.5 was found for the

nonlinear turbulence, with a slightly stronger dependence on κ of χ ∼ κ−2 with zero

triangularity in the high κ regime where triangularity is destabilizing. This scal-

ing is consistent with previous gyrofluid simulations [WALTZ and MILLER, 1999].

Investigations of the effects of shaping on the critical temperature gradient showed

that, while shaping had little effect on the linear critical temperature gradient, high

shaping resulted in a larger upshift of the nonlinear critical temperature gradient

due to enhanced zonal flows.

The effects of electromagnetic dynamics coupled with shaping were also ex-

plored. In these studies, β was varied with shaping to keep the Troyon-normalized

β fixed while also holding q95 fixed. Linearly, finite β was found to be stabilizing.

A scan over β found that shaping opens up access to a type of 2nd stability regime,

and an apparent increase in the threshold of the linear kinetic ballooning insta-

bility with higher shaping was observed. However, nonlinear results showed that

β strongly negatively affects the electron transport, particularly for more circular
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plasmas, even at β � βc. Future nonlinear studies will focus on a scan over a wider

range of β and R/LT . The effects of shaping on the Dimits nonlinear critical tem-

perature gradient in the presence of electromagnetic dynamics may be of particular

interest for future work.

Overall, while our nonlinear gyrokinetic simulations of core turbulence capture

some of the shaping effects found experimentally, they do not completely explain

the degree of this dependence on shaping, particularly the strong triangularity de-

pendence observed in tokamaks. While the result that the Dimits nonlinear shift

is enhanced with shaping may help to further explain why shaping is favorable in

experiments, the experimentally-observed strong triangularity dependence is most

likely related to the edge boundary conditions for core turbulence and will be ex-

plored in future research. Furthermore, future work to develop a more complete

understanding of shaping effects could include scanning shaping parameters over

a range of values of q, as some previous gyrofluid work suggests that stronger κ

dependence at lower q [WALTZ and MILLER, 1999], or exploring higher degree

shaping moments such as “squareness” (which modifies the D-shaped plasma for-

mula in Eqs. (4.1) and (4.2) by Zs → κr(sin(θ)+ζ sin(2θ)), where ζ is the squareness

parameter), which has been found to have a significant stabilizing effect in some

DIII-D experiments [FERRON et al., 2000; OSBORNE et al., 2000] and in MHD

studies [TURNBULL et al., 1999].



Chapter 5

Trial Function-Based Methods

A
common approach of gyrokinetic simulations is to use reduced spatial ge-

ometry via consideration of the gyrokinetic equation in the flux tube limit.

Flux tube-based simulations use a simulation geometry which resolves only a thin

flux tube (or equivalently, a fraction of the toroidal direction of a thin annulus)

rather than the full torus. This geometry essentially exploits the elongated nature

of the turbulence, which has short perpendicular scales and long parallel scales. In

the linear limit, flux tube geometry is equivalent to the ballooning representation,

so the gyrokinetic equation reduces to a 1D equation in coordinate space along the

equilibrium magnetic field line on a single chosen magnetic surface. The numerical

advantage is that flux tube simulations allow for high resolution simulations in real-

istic geometries while more easily retaining more significant physical effects, such as

non-adiabatic electron dynamics and nonlinear electromagnetic effects. Physically,

flux tube simulations assume that the turbulence has a small radial correlation

length relative to the size of the tokamak and thus usually assume that quantities

195
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such as ωd and ω∗T (proportional to the density and temperature gradients) are con-

stant over the radial width of the flux tube. This is appropriate for large tokamaks

in the gyro-Bohm limit of small ρ∗ = ρ/L∗, where ρ is the gyroradius (the radial

correlation length of the turbulence typically scales with ρ) and L∗ is the length

scale over which plasma gradients are changing. Global simulations (or extensions

of flux tube/annulus simulations) relax this radially local assumption and include

effects such as the radial variation of profiles, which can be important in some

regimes at large ρ∗, particularly near the plasma edge or near transport barriers.

Both flux tube and global simulations are useful for different regimes and resolution

requirements. Presently, the flux tube approach is used in the Eulerian nonlinear

initial value codes GS2 [KOTSCHENREUTHER et al., 1995a; DORLAND et al.,

2000] and GENE [JENKO, 2000], the Eulerian linear eigenvalue code FULL [RE-

WOLDT et al., 1982; REWOLDT et al., 1987], and the PIC nonlinear code GEM

[CHEN and PARKER, 2003].

Here we explore even further approximations to reduce the geometrical com-

putational grid. Specifically, we have developed a local linear gyrokinetic model

which enhances the efficiency of flux tube-based microinstability calculations by

using representative values of the equilibrium parameters averaged over a Gaussian

trial function. The code based on this trial function model uses the same geometri-

cal information available in the full GS2 gyrokinetic code. Thus it can use either a

full numerical equilibrium or a local parameterized equilibrium such as developed

by Miller et al. [MILLER et al., 1998].

Previously, a trial function has been used in the quasi-linear gyro-Landau-fluid

code GLF23, though only allowing for an ŝ-α shifted circular equilibrium [WALTZ

et al., 1997]. In this code, even and odd Gaussian trial functions were introduced
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and the trial function width was scaled as a linearly decreasing function of q and

ŝ. Comparisons with the linear ballooning mode gyrokinetic stability code GKS

showed good agreement in scans over kyρi and ŝ for a range of q, T0i/T0e, and νei

in the electrostatic limit. (Very recently, this model has been replaced with a finite

series of Hermite polynomial basis functions and extended to separate the gyro-

Landau-fluid model equations for passing and trapped particles [STAEBLER et al.,

2005]. It is presently still limited to shifted circular geometry and the electrostatic

limit, though upgrades to general geometry are being planned.) Likewise, the use of

a trial function in the linear, collisionless, electrostatic gyrokinetic code KINEZERO

has been successful in the concentric-circular limit [BOURDELLE et al., 2002]. In

this case, the trial function was chosen to be the most unstable exact solution

obtained in the fluid limit.

As an extension of the ideas in these models, the trial function model which

we describe retains the full velocity-space dependence of the gyrokinetic equation

(in contrast with the GLF23 model) and allows for the inclusion of noncircular flux

surfaces and non-adiabatic electron dynamics. Modifications to include electromag-

netic dynamics are also discussed. The motivation for this work is that, upon the

inclusion of a quasi-linear approximation or nonlinear effects with subgrid models

in future research, such a code might be more practical than a full geometry code

for real-time between-shot analysis studies of existing experiments and for opti-

mization studies for future tokamaks. For example, such a code could serve as a

next step beyond the gyrofluid-based GLF23 transport model in the multiscale cou-

pling between fast microinstability dynamics and slow macroscopic transport time

scales, based directly on coupling a quasi-linear or nonlinear gyrokinetic code and

a transport code, which would require a large number of iterations to accurately



5.1. Formulation of the Model 198

describe the transport coefficients.

5.1 Formulation of the Model

In general, the equilibrium parameters required as input in a flux tube-based gy-

rokinetic simulation (particularly the curvature drift ωd,‖, the ∇B drift ωd,⊥, k2
⊥/B

2,

and (∂θ/∂l)) depend on the ballooning mode extended angle θ. To reduce the equa-

tions to a local dimensionality yet still retain the effects of the geometry, we have

developed a trial function model based on computations of weighted averages of

these parameters over an even Gaussian trial function as follows:

〈F 〉 =

∫

dθFe−θ
2/(2σ2)

∫

dθe−θ2/(2σ2)
(5.1)

where σ is the arbitrarily defined trial function width. (Choice of σ will be discussed

further below.) The Gaussian form for the weight function is motivated by the fact

that drift wave eigenmodes tend to be localized in the “bad curvature” (i.e. θ = 0)

region.

As an example, in the low β, high aspect ratio limit in circular geometry at

kx = 0, the equilibrium parameters are given by:

ωd,‖ = ωd,⊥ = −
(

kyρsvts
R0

)

(cos(θ) + ŝθ sin(θ)) (5.2)

k2
⊥ = k2

y

∣

∣

∣1 + ŝ2θ2
∣

∣

∣ (5.3)

|B| = B0 (1− ε cos(θ)) (5.4)

k‖ = − i

qR0

∂

∂θ
(5.5)
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where R0 is the major radius at the center of the flux surface, ε = r/a, where

a is the minor radius, and ωd,‖ < 0 corresponds to drifts in the “bad curvature”

direction. The trial function averages (on an infinite θ grid) then become:

〈ωd,‖〉 = 〈ωd,⊥〉 ≈ −
(

kyρsvts
R0

)

e−σ
2/2
(

1 + ŝσ2
)

(5.6)

〈

k2
⊥

|B|2
〉

≈ k2
y

B2
0

[

1 + ŝ2σ2 + 2εe−σ
2/2
(

1 + ŝ2σ2 − ŝ2σ4
)]

(5.7)

√

〈

k2
‖

〉

=
1

2qR0σ
(5.8)

Thus, as σ increases, the averaged k‖ decreases, indicating a lower amount of Lan-

dau damping, while the averaged k2
⊥

generally increases, indicating increased mode

suppression due to FLR averaging. The curvature and ∇B drifts, however, have

the largest negative values at σ2 = (2ŝ − 1)/ŝ (assuming ŝ > 1/2), so the most

unstable mode in a scan over σ might be expected near this moderate value of σ.

Examples of the equilibrium parameters comparing realistic geometrical param-

eters with the high aspect ratio circular limit can be seen in figures 5.1 and 5.2.

The equilibrium parameters are computed using the analytic Miller formalism as

implemented in GS2 and are based on input from variations of an equilibrium used

in [WALTZ and MILLER, 1999]: r/a = 0.5, R/a = 3.0, ∂rR0 = −0.0, q = 2.0,

ŝ = 1.0, ∂r/aβ = −0.0. The radial derivatives of the input shaping parameters κ

(elongation) and δ (triangularity) are approximated as ∂r/aκ = (κ − 1)/(r/a) and

∂r/aδ = δ/(r/a). The high aspect ratio limit is obtained by using r/a = 0.001.

Figure 5.1 shows the variation of ωd and k⊥ (at kyρs = 1) with θ. Note the

agreement between the high aspect ratio Miller-computed ŝ-α limit and the an-

alytic limit given by Eqs. (5.2) - (5.4). Freedom in the definition of θ has been
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exploited to remove the θ dependence from the ∂/∂l = (∂θ/∂l)∂/∂θ operator

factor and we thus obtain k‖a = {0.1666, 0.1666, 0.1666} ∂
∂θ

for r/a = 0.001 and

k‖a = {0.1684, 0.1671, 0.1733} ∂
∂θ

for r/a = 0.5 for the cases of {κ = 1, δ = 0; κ =

2, δ = 0; κ = 2, δ = 0.47} respectively. Thus, the high aspect ratio Miller-computed

ŝ-α model k‖ also agrees with Eq. (5.5). The trial function averages computed

numerically on a finite θ grid using the trial function code are shown in figure 5.2.

Agreement between the analytic ŝ-α limit (Eqs. (5.6)- (5.8)) and the high aspect

ratio Miller-computed ŝ-α limit supports the validity of the numerical trial function

averaging in the code.

Overall, for these parameters, note from figure 5.1 that the case of κ = 2

with nonzero triangularity shows a significantly more narrow region in the “bad

curvature” (i.e. ωd,‖ < 0) direction. This is likewise captured by the trial function

averaging in figure 5.2, which generally shows a larger averaged ωd,‖ at any particular

σ. The narrowing of k⊥ with increased κ is also notable and is reflected by the larger

and more rapidly increasing trial function averaged k⊥. These fundamental trends

suggest then that it is expected that the local trial function model will be able to

capture the key physics of shaped plasmas.

The collisionless gyrokinetic equation for the trial function model, analogous to

the full ballooning equation in Eq. (1.4) in the linear limit, is given by

(

∂

∂t
+ i

√

〈

k2
‖

〉

v‖ + i 〈ωdv〉
)

h

=

(

iω∗T +
∂

∂t

)

ZseFM
T0s

〈J0s〉
(

Φ− v‖

c
A‖

)

−C‖

∣

∣

∣

∣

∣

√

〈

k2
‖

〉

v‖

∣

∣

∣

∣

∣

h (5.9)

where h(v‖, v⊥, t) is the perturbed non-adiabatic part of the species’ distribution
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Figure 5.1: Curvature drift (normalized as ωd,‖/(vti/a)/(kyρi)) and k2
⊥
/|B|2 (nor-

malized as (k2
⊥/ky)

2/(|B|/|B0|)2) as a function of θ computed using the Miller for-
malism for generic input parameters. Note that the analytic ŝ-α curve and the
Miller-computed ŝ-α curve (κ = 1, δ = 0) overlap in the high aspect ratio limit
(r/a = 0.001).
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Figure 5.2: Curvature drift (normalized as ωd,‖/(vti/a)/(kyρi)), k
2
⊥/|B|2 (normalized

as (k2
⊥
/ky)

2/(|B|/|B0|)2), and k2
‖

(normalized as k2
‖
a2) averaged over a Gaussian trial

function as a function of the trial function width σ for generic input parameters.
Note that the analytic ŝ-α curve and the Miller-computed ŝ-α curve (κ = 1, δ = 0)
overlap in the high aspect ratio limit (r/a = 0.001).
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function, Φ(t) is the electrostatic potential, and A‖(t) is the parallel component of

the perturbed magnetic vector potential, all of which are local in spatial dimension-

ality with respect to the trial function averaged k‖ and k⊥ for a specified (kx, ky)

linear mode. Note that the argument of the Bessel function is also affected by the

trial function average, i.e. 〈J0s〉 ≡ J0s

(√

〈

k2
⊥

Ω2

〉

v⊥

)

. (Note: Averaging the Bessel

function directly over the trial function, rather than averaging its argument, was

also explored. This essentially averages over the oscillations in the Bessel function

and thus yields a smaller value than our present approximation. However, the test

case results were negligibly affected.) As mentioned previously, choice of the trial

function width used to define the averages is a free parameter. Unlike the model

of [WALTZ et al., 1997] which chooses σ based on parameterizations, we solve the

gyrokinetic equation given by Eq. (5.9) for a range of σ and report the largest linear

growth rate over this scan as the worst-case result.

The additional final term on the RHS of Eq. (5.9) represents a model for the

parallel free-streaming of particles out of the bad curvature region and can be

thought of as an outgoing boundary condition model. Specifically, without this

term, the model has a purely imaginary k‖ dependence, which is equivalent to a

periodic system of length L‖ = 2π/k‖. Physically, this means that particles can

never escape the bad curvature region; i.e. they can go out one side of the parallel

domain box but just come back in the other side, always seeing the same value of

ωd. In reality, particles are able to escape the bad curvature region and do so at a

rate of order |v‖/qR| ∼ |k‖v‖|, thus providing the physical basis for the inclusion of

the parallel loss term in our model. Note that for physical consistency, the parallel

loss term as given in Eq. (5.9) has been constructed to ensure the correct adiabatic

response (by applying the parallel loss term only to the non-adiabatic part of the
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distribution function). For the trial function simulations, a value of 0.13 has been

chosen for the parallel loss constant C‖ for both ion species and electrons for all

runs based on optimizations of ITG runs (with adiabatic electrons) in the low q

limit.

In practice, the parallel loss term was included in the trial function model to

obtain better accuracy for ITG modes near marginal stability. Examples of this are

shown in figures 5.3-5.5. The parameters for this scan are modified from [MILLER

et al., 1998], most significantly using the high aspect ratio limit (so that trapped

particle effects are not important), smaller (more typical) ŝ, no triangularity, and

the electrostatic limit at various q: r/a = 0.001, R/a = 2.631, ∂rR0 = −0.354,

ŝ = 0.5, ∂r/aβ = −0.0, κ = 1.66, ∂r/aκ = 1162, δ = 0, ∂r/aδ = 0. The figures show

scans of the real frequency and linear growth rate vs. the temperature gradient

length scale (at constant density gradient R/Lni = 2.63) comparing the effects of

the parallel loss operator at low to high q and overall comparing the trial function

model (the solid lines) with GS2. (The dotted lines in these figures represent a

persistent mode at very high σ, corresponding to very small k‖ and ωd and large

k⊥ρi, which, as can be seen in the figures, is sometimes dominant over the physical

ITG mode in a scan over σ. In general, we will neglect this unphysical mode;

though this is discussed further in section 5.4.) In all three figures, we see that the

most significant effect of the parallel loss term is that, at high kyρi near marginal

stability, both GS2 and the trial function code with nonzero C‖ linearly transition

from unstable to damped modes, while the trial function code without the parallel

loss term has a persistent residual slowly growing mode even when it should have

been stable. Note also that the effect of the parallel loss term becomes more evident

as q decreases from 10 to 3.03 to 1.5, as expected since the parallel connection length
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Figure 5.3: Real frequency and linear growth rate vs. normalized temperature gra-
dient length scale at various kyρi for generic parameters with q = 10 and adiabatic
electrons comparing results from GS2 with the trial function code run both with
and without a parallel loss model. (The dotted lines show a persistent secondary
dominant unphysical mode at very high σ.)

L‖ ∼ qR is becoming smaller. Thus, the case of q = 1.5 was used to help set an

appropriate level for C‖. For all future runs, the parallel loss term is included for

all species to improve the threshold critical gradient for instability.

In addition to the parallel loss model, a simple model for trapped particle effects

is also included. In general, the parallel velocity is modulated along the magnetic

field, i.e. v‖ = ±
√

2E/m− µB(θ)/m, where the energy E = mv2/2 and magnetic

moment µ = mv2
⊥/2B are adiabatic invariants. The numerical trial function model

uses a (v⊥, v‖) grid in velocity-space, though this is modified with the following

trapped particle model: if v2
‖
/v2

⊥
≤ |B(θ)|max/|B(θ)|min − 1, then 〈v‖〉 = 0. Note
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Figure 5.4: Real frequency and linear growth rate vs. normalized temperature gra-
dient length scale at various kyρi for generic parameters with q = 3.03 and adiabatic
electrons comparing results from GS2 with the trial function code run both with and
without a parallel loss model. (The dashed lines represent a persistent secondary
dominant unphysical mode at very high σ.)
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Figure 5.5: Real frequency and linear growth rate vs. normalized temperature gra-
dient length scale at various kyρi for generic parameters with q = 1.5 and adiabatic
electrons comparing results from GS2 with the trial function code run both with and
without a parallel loss model. (The dashed lines represent a persistent secondary
dominant unphysical mode at very high σ.)
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then that the trapped particle condition also applies to the parallel loss term
(

∝
∣

∣

∣

∣

√

〈

k2
‖

〉

〈v‖〉
∣

∣

∣

∣

)

, reflecting the fact that trapped particles cannot escape along the

field line because of the magnetic mirror. The trapping condition is applied only

to the electron species in our trial function model. The reason for this is that most

drift wave ITG/TEMs of interest are in the parameter regime: k‖vti � ω∗ � k‖vte,

so ion trapping is negligible. Ion trapping might become important for very long

wavelength modes, but these modes are most likely suppressed by ion-ion collisions.

(Non-local mode effects, which our trial function model does not capture, are also

important for these long wavelength modes.) In practice, ion trapping was ignored

to eliminate modes which persisted at very high k‖ with growth rates larger than

the drift instability.

5.2 The Algorithm

The gyrokinetic solver in the trial function code is Eulerian-based, using a finite

difference scheme in time, while the spatial dimension is treated locally, specifying

a (kx, ky) linear mode and using the trial function averaging in θ. The equations

implemented in the code are rewritten in terms of hs → gs+
ZseFM

T0s
〈J0s〉

(

Φ− v‖
c
A‖

)

to eliminate the time derivatives of the fields. With this transformation, the gy-

rokinetic equation in Eq. (5.9) becomes:

(

∂

∂t
+ i

√

〈

k2
‖

〉

v‖ + i 〈ωdv〉
)

g

=

(

iω∗T − i
√

〈

k2
‖

〉

v‖ − i 〈ωdv〉
)

ZseFM
T0s

〈J0s〉
(

Φ− v‖

c
A‖

)

−C‖

∣

∣

∣

∣

∣

√

〈

k2
‖

〉

v‖

∣

∣

∣

∣

∣

[

g +
ZseFM
T0s

〈J0s〉
(

Φ− v‖

c
A‖

)]

(5.10)
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and the field equations become:

∑

s

n0se
2Z2

s

T0s

(1− 〈Γ0s〉)Φ = ρdens[Φ, A‖] (5.11)

(

〈

k2
⊥

〉

+
4π

c2
∑

s

n0se
2Z2

s

ms

〈

Γ̄0s

〉

)

A‖ =
4π

c
ρcurr[Φ, A] (5.12)

where the plasma charge and current densities are given by

ρdens[Φ, A‖] =
∑

s

eZs

∫

d3v 〈J0s〉 gs (5.13)

ρcurr[Φ, A‖] =
∑

s

eZs

∫

d3vv‖ 〈J0s〉 gs (5.14)

Note that the Γ0s in the Poisson equation is computed as 〈Γ0s〉 ≡ Γ0s (〈bs〉) =

e−〈bs〉I0 (〈bs〉) for 〈bs〉 =
〈

k2
⊥

Ω2

〉

v2
ts, while the Γ0s factor in the Ampere equation

(denoted as
〈

Γ̄0s

〉

), is computed numerically, i.e. as the numerical integration of

∫

d3v 〈J0s〉2 FMs on the velocity grid, rather than from the analytic relation. This is

crucial to avoid the “Ampere cancellation” problem pointed out by G. W. Hammett

and F. Jenko [HAMMETT and JENKO, 2001] and so is commonly used in several

present-day gyrokinetic codes [JENKO, 2000; CANDY and WALTZ, 2003a; CHEN

and PARKER, 2003].

Given an input of the equilibrium parameters as a function of θ, the trial

function-based local code computes the trial function averages and then solves

for each species’ distribution function on a (v⊥, v‖) velocity grid. The tempo-

ral finite difference in the gyrokinetic equation is done via a partially implicit
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scheme, in which the field terms are treated explicitly with a 2nd order Adams-

Bashforth scheme while the gs terms are treated implicitly with a backward time-

centered scheme. Thus, the time derivative on the LHS of Eq. (5.10) is differ-

enced as 1
∆t/2

(gn+1
s − gns ); the k‖, ωdv and C‖ terms on the LHS are differenced

as 1
2
(gn+1
s + gns ); and the field terms on the RHS are differenced as 1

2
(3Φn − Φn−1)

and 1
2

(

3An
‖
− An−1

‖

)

(where n is the temporal index). The final discretized equation

based on this scheme can be easily inverted analytically and the resulting equation

for gn+1
s at a particular velocity grid point is implemented as a direct solve.

Solution of the evolution of the distribution function via the linear gyrokinetic

equation yields the real frequency and linear growth rate of the fastest growing

mode in the long time limit. In reality, the gyrokinetic equation has many normal

modes of oscillation. However, most of these modes are highly damped and the

fastest growing mode eventually dominates, with Φ ∼ e−iωrt+γt. We measure the

instantaneous frequency as ω = (i/∆t) log(Φn+1/Φn). Convergence is then defined

as: |ωn+1
r − ωnr | / |ωnr | < ωtol and |γn+1

r − γnr | / |γnr | < γtol. (Note that this is similar

to the approach in the standard version of GS2, though, since GS2 has a θ grid,

ω is measured from Φ at θ = 0. Convergence in GS2 is measured with respect to

the ratio of the sample variance to the time averaged ω for a specified time history,

rather than the instantaneous value as we do here, to reduce the chances of the

change in ω being small by coincidence, particularly for small time steps. However,

most often, the problem with measuring convergence comes from interference effects

between two modes with almost the same growth rate, in which case the code must

be run for a very long time before one mode dominates over the other. Φ can be

decomposed from multiple time steps into two modes to measure the frequency of

each separately to reduce this problem and this has been tested previously, though
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we do not address this here.)

In general, the trial function code is susceptible to time step restrictions due

to its semi implicit-explicit algorithm. Recall from section 3.5 in Chapter 3 of this

thesis that the numerical analysis of a partially implicit Adams-Bashforth scheme

for the test problem of a shear kinetic Alfvén wave at small k⊥ρi yielded the onset of

a numerical instability at |k‖vte∆t| ∼ |k⊥ρs| in both the low and high (βe/2)(mi/me)

regimes. This is not as severe as for the semi implicit-explicit algorithms explored

in section 2.2, which were found to be numerically unstable at the Nyquist limit

due to the combination with 2nd order compact finite differencing. However, both

schemes motivate the search for a more implicit treatment of the field dynamics.

Here we explore the development of an iterative implicit scheme for the trial function

code. This has primarily served as a simple test bed for the iterative implicit

algorithm discussed in section 2.3 which, for a full code like GS2, reduces the

computational intensity of computing the implicit arrays. However, here we also

compare the convergence rate of the method with the CFL condition for the original

semi implicit-explicit algorithm as a further motivation for the use of implicit-based

schemes for gyrokinetics in general.

We consider an implicit algorithm in the context of Kotschenreuther’s algorithm

described in section 2.1.1. We will assume the electrostatic limit for simplicity. For

the local gyrokinetic model, the electrostatic plasma response matrix as defined

by Eq. (2.18) is greatly simplified, i.e. reduced from an Nθ × Nθ matrix to a local

function of k‖ as follows:

M1 (k‖) ≡
∑

s

eZs

∫

d3v 〈J0s〉
δgn+1

δΦn+1
(k‖) (5.15)
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We use an analytic approximation for M 1, similar to the analytic model in the

continuous limit developed in section 2.3.2. This analytic approach is more simple

here because we do not have to inverse Fourier transform the solution back to the

real space θ grid. However, we do have the additional complication of retaining the

physics of the parallel loss term.

We consider as our simplified starting equation the trial function averaged gy-

rokinetic equation (given by Eq. (5.10)) for a uniform plasma in slab geometry at

small 〈k⊥ρi〉:

(

∂

∂t
+ i

√

〈

k2
‖

〉

v‖ + C‖

∣

∣

∣

∣

∣

√

〈

k2
‖

〉

v‖

∣

∣

∣

∣

∣

)

g

= −
(

i

√

〈

k2
‖

〉

v‖ + C‖

∣

∣

∣

∣

∣

√

〈

k2
‖

〉

v‖

∣

∣

∣

∣

∣

)

ZseFM
T0s

Φ (5.16)

From the time-centered discretization of this equation, we find that

δgn+1
s

δΦn+1
(k‖) = −〈J0s〉

ZseFM
T0s

iL̂

1 + iL̂
(5.17)

where

L̂ ≡ 1

2
∆t

(

√

〈

k2
‖

〉

v‖ − iC‖

∣

∣

∣

∣

∣

√

〈

k2
‖

〉

v‖

∣

∣

∣

∣

∣

)

(5.18)

Note that this response function is equivalent to that for the continuous precondi-

tioner model given by Eq. (2.48) in the high resolution limit (i.e. such that k̂‖ = k‖

and g(k‖) = 1) except with the addition of the C‖ term in L̂. To integrate the

distribution function response over velocity-space analytically, we again use Padé

approximations to match solutions in the limit of low and high x ≡ k‖vts∆t. In the
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low x limit, we find that

M1
low (k‖) ≈

∑

s

n0sZ
2
se

2

T0s

〈Γ0s〉
(

−x
2

4

(

1− C2
‖

)

− C‖√
2π
x

)

(5.19)

While in the high x limit, we find that

M1
high (k‖) ≈

∑

s

n0sZ
2
se

2

T0s
〈Γ0s〉



−1− 1

x2/4
(

1 + C2
‖

) + C‖

√

2

π

ln (x2/4)

x



 (5.20)

Using Padé approximations to match the solutions given by Eq. (5.19) and the 0th

order part of Eq. (5.20), we obtain the following as our analytic-based precondi-

tioner model:

M1 (k‖) ≈ −
∑

s

n0sZ
2
se

2

T0s

〈Γ0s〉




x2/4
(

1− C2
‖

)

+ C‖x/
√

2π

1 + x2/4
(

1− C2
‖

)

+ C‖x/
√

2π



 (5.21)

Figure 5.6 shows the results of implementation of the iterative implicit scheme

using simple iteration (described in section 2.3.1) and a linear two-point initializer

for the field term (i.e. Φn+1,0 = 2Φn−Φn−1). The test case parameters are the same

as used for the optimization scans for the C‖ term at high q: r/a = 0.001, R/a =

2.631, ∂rR0 = −0.354, ŝ = 0.5, ∂r/aβ = −0.0, q = 10, κ = 1.66, ∂r/aκ = 1162,

δ = 0, ∂r/aδ = 0. We use a single ion species and include gyrokinetic electrons

with the following parameters: R/Lni = R/Lne = 2.631, R/LT i = R/LTe = 7.893,

T0i = T0e. The runs were done at a constant small value of kyρi = 0.05. A scan

over σ using a fully implicit algorithm (i.e. with the exact response function) was

first done to find the maximum linear growth rate. This occurred at σ = 1.3,

corresponding to

√

〈

k2
‖

〉

a = 0.0146. The results shown in figure 5.6 were done for

this single constant value of σ. The upper plots compare the exact and approximate
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electrostatic response functions. In general, good qualitative agreement is seen even

at large time steps and with the inclusion of the parallel loss term. The plot of

the number of gyrokinetic iterations vs. ∆t shows how well the iterative method

works in practice. Even at the largest time steps, the iterative method requires less

than 10 iterations per time step on average. The significance of this result is more

evident when considering the plot of the linear growth rate vs. ∆t for the original

partially implicit 2nd order Adams-Bashforth scheme. In this plot, we see that the

method becomes numerically unstable for ∆tvti/a > 0.1 for C‖ = 0.13. This is

slightly larger than the predicted onset of numerical instability from section 3.5 at

∆t ∼ |k⊥ρs/k‖vte| which occurs at ∆tvti/a ∼ 0.0564 for our test case parameters

(though the analysis in section 3.5 did not include the parallel loss term). For

comparison, the γ vs. ∆t curve in figure 5.6 also shows the results for C‖ = 0.00,

and we indeed see a numerical instability at the predicted threshold. Comparing the

results of the partially implicit scheme with the plot of iterations for the iterative

implicit method, the number of iteration begins to rise more quickly near the CFL

threshold but is still less than a factor 4 above the 2 gyrokinetic solves required for

a fully implicit scheme. Thus, here we have demonstrated that an iterative implicit

scheme is beneficial compared with a semi implicit-explicit scheme since, even with

a simple iterative scheme and simple analytic preconditioner, time efficient results

can be obtained even when the CFL condition is strongly violated.

5.3 Benchmarks in the Local Limit

Before we look at the trial function model, we first consider the validity of the code

in the local limit as proof of correctness. In the local limit, we treat the equilibrium
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Figure 5.6: Local electrostatic response function vs. normalized time step size for

test case parameters
(

√

〈

k2
‖

〉

a = 0.0146
)

comparing the exact response function

with the an analytically-based approximation for the plasma response. The lower
left plot shows the average number of gyrokinetic iterations vs. normalized time
step using the analytic preconditioner in an iterative implicit scheme with simple
iteration. The lower right plot shows the linear growth rate vs. normalized time
step for a partially-implicit 2nd order Adams-Bashforth scheme for the same test
case parameters. The linear growth rate for the fully implicit scheme occurs at
γ/(vti/a) = 0.0353 for C‖ = 0.13 and γ/(vti/a) = 0.0371 for C‖ = 0.00.



5.3. Benchmarks in the Local Limit 216

parameters as input constants, rather than reducing a θ-varied profile using the

trial function model. Specifically, because we are interested in bad curvature-driven

ITG physics, we use the ŝ-α values of the equilibrium parameters at the outboard

midplane (θ = 0): ωd,‖ = ωd,⊥ = −kyρivti/R, k⊥ = ky. The parallel wavelength is

chosen using a representative normal connection length for the mode (k‖ = L−1
‖
∼

1/(qR)); in the purely toroidal limit, k‖ = 0. Furthermore, particle trapping and

parallel free-streaming effects are also omitted.

5.3.1 Electrostatic Results

We first consider verification of the underlying physics of the ITG instability in

the electrostatic limit. Figure 5.7 shows a scan of the linear growth rate vs. the

ion temperature gradient length scale R/LT i using the trial function code in the

local limit for the case of adiabatic electrons and a single ion species (with Zi = 1,

T0i = T0e, and R/Lni = 1.0) in the long wavelength limit (k⊥ρi = 0.01) for k‖R = 0

and k‖R = 0.05. The solid lines show the analytic approximation of Eq. (1.24) for

the ITG instability. Note the close agreement between the analytic relation and the

local code data points, particularly at high ηi where the ordering assumptions given

in Eq. (1.22) are more appropriate, but also for the critical temperature gradient.

The k‖R = 0.05 case also verifies the stabilizing effects of parallel Landau damping.

We have also performed electrostatic local benchmarks including finite, realistic

FLR effects. Figure 5.8 shows the reproduction of the gyrokinetic results of figure

2.4 of [BEER, 1995] using the trial function code in the local limit. This figure

shows a scan of the linear growth rate as a function of kyρi for various ηi for

k‖R = 0.5 (corresponding to q = 2) using adiabatic electrons and a single ion

species with Zi = 1, T0i = T0e, and R/Lni = 5.0. Note the linear variation of
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Figure 5.7: Local linear ITG growth rate vs. normalized temperature gradient
length scale at R/Lni = 1.0 and k⊥ρi = 0.01 with adiabatic electrons comparing
results from the trial function code run in the local limit (the data points) and the
analytic result of Eq. (1.24) (the solid lines).

both the real frequency and growth rate as kyρi becomes small, as expected from

Eq. (1.24). The mode stabilization cutoff near kyρi ∼ (k‖R)(R/Lni)
−1 = 0.1 as

observed in figure 2.4 of [BEER, 1995] due to parallel Landau damping effects is

also verified. (Ignoring the k⊥ terms in our analytic approximation for the ITG

cutoff given by Eq. (1.26), we find that (kyρi)c ∼ (k‖R)(R/Lni)
−1 ∗ factor, where

factor = (0.4ηi + 0.03)−1/2 ∼ O(1) for these parameters.)

5.3.2 Electromagnetic Results

For benchmarks in the local limit with the inclusion of non-adiabatic electron dy-

namics and electromagnetic effects, we use the simple case of low frequency shear
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Figure 5.8: ITG mode frequency and local linear growth rate vs. kyρi for various
ηi at R/Lni = 5.0 and k‖R = 0.5 with adiabatic electrons using the trial function
code run in the local limit for comparison with figure 2.4 of [BEER, 1995]. These
results show good agreement with Beer’s gyrokinetic results.
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Alfvén waves [LIN and CHEN, 2001]. For a shearless slab with uniform magnetic

field, the linear local gyrokinetic equation becomes:

∂gs
∂t

+ ik‖v‖gs = −iZse
T0s

J0sFMsk‖v‖

(

Φ− v‖

c
A‖

)

(5.22)

Assuming an e−iωt time dependence for the perturbed quantities, we find that

gs =
Zse

T0s

J0sFMs

k‖v‖

(

Φ− v‖
c
A‖

)

ω − k‖v‖

(5.23)

Using this relation in Eqs. (5.13) and (5.14) in the local limit, we obtain the fol-

lowing for the plasma charge and current densities:

ρdens = −
∑

s

n0se
sZ2

s

T0s
Γ0s (1 + ζsZ0(ζs))

(

Φ− ω

k‖c
A‖

)

(5.24)

ρcurr = −
∑

s

n0se
sZ2

s

T0s
Γ0s

[

ω

k‖c
(1 + ζsZ0(ζs))

(

Φ− ω

k‖c
A‖

)

− v2
ts

c
A‖

]

(5.25)

where ζs ≡ ω√
2k‖vts

, and Z0(ζs) ≡ 1√
π

∫∞
−∞ dx e

−x2

x−ζs is the 0th order plasma disper-

sion function. Substituting these expressions for a single kinetic ion species and

for kinetic electrons into the Poisson-Ampere equations given by Eqs. (5.11) and

(5.12) and using the long wavelength approximation (i.e. k⊥ρi � 1), we obtain the

following linear dispersion relation:





(

ω

k‖vA

)2

− 1





[

(1 + ζiZ0(ζi) +
1

Zi

T0i

T0e
(1 + ζeZ0(ζe)

]

= k2
⊥
ρ2
i (5.26)

where v2
A = (2/β0i)v

2
ti is the normalized Alfvén speed and β0s = 8πn0sT0s/B

2.

We consider the limit of vA

vte
=
√

me

βemi
� 1. Physically, this implies that the
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electron thermal velocity is much larger than the wave phase velocity, i.e. the as-

sumption of “hot” electrons. This assumption allows us to simplify the dispersion

relation via the application of the following first order relations:

1 + ζeZ0(ζe) ≈
1

1− ζeZ0(ζe)
(5.27)

Z0(ζe) ≈ −2ζe + i
√
π (5.28)

Furthermore, we omit the ion contribution for the purpose of suppressing the ion

acoustic wave (ω = k‖cs, c
2
s = T0e/mi). With these assumptions, we obtain the

following approximate relations for the kinetic shear Alfvén wave real frequency

and damping rate:

ωr = k‖vA
√

1 + k2
⊥
ρ2
i (5.29)

−γ = k‖vA

√

π

8

vA
vte
k2

⊥
ρ2
i (5.30)

We perform the simulation of this mode using the trial function code in the

local limit, as for the local electrostatic benchmarks. Furthermore, the slab limit

and omission of the ion contribution to the gyrokinetic Poisson and Ampere equa-

tions are strictly enforced in the coding itself. We use the parameters of [LIN and

CHEN, 2001] as input: k⊥ρi = 0.4, k‖/k⊥ = 0.01, and me/mi = 5.44 × 10−4. An

initialization of the form gs(t = 0) = FMs

(

1 + C
v‖
vts

)

is applied, where C is chosen

such that the parallel Ohm’s law, given as follows, is satisfied for the initial A‖ and

Φ:

1

c

∂A‖

∂t
+ b̂ · ∇Φ = 0 (5.31)

Specifically, using the ansatz eik‖z−iωt and initializing a right-moving shear Alfvén
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Figure 5.9: Kinetic shear Alfvén wave mode frequency and local linear damping
rate vs. electron β for k⊥ρi = 0.4, k‖/k⊥ = 0.01, and me/mi = 5.44 × 10−4 using
the trial function code run in the local limit (the data points) for comparison with
figure 1 of [LIN and CHEN, 2001]. These results show good agreement with Lin’s
gyrokinetic results and with the analytic result of Eq. (5.30) (the solid lines).

wave, the initial condition is set such that Â‖ = c
vA

1√
1+k2

⊥
ρ2i

Φ. Figure 5.9 shows the

results of the simulation. Note that this figure is a reproduction of the gyrokinetic

results of figure 1 of [LIN and CHEN, 2001]. The simulation results are in good

agreement with both the results of Lin and the analytic dispersion relations, thus

verifying the validity of the trial function code with non-adiabatic electron dynamics

and electromagnetic effects.
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5.4 Test Cases for Shaped Flux Surfaces

We would ultimately like to use the trial function code to aid in fast scoping studies

of shaping effects on gyrokinetic plasma turbulence. Thus, now that we have estab-

lished the validity of the code in the local limit, we test the robustness of the trial

function physical model by performing benchmarks with the full GS2 gyrokinetic

code for a range of shaped flux surfaces.

5.4.1 Electrostatic Results

We first perform the benchmarks in the electrostatic limit. The equilibrium pa-

rameters for these studies are based on an extension of initial shaping studies per-

formed by Waltz and Miller [WALTZ and MILLER, 1999]: r/a = 0.5, R/a = 3.0,

∂rR0 = −0.0, q = 2.0, ŝ = 1.0, ∂r/aβ = −0.0. The input shaping parameters

are artificially varied starting with a concentric circular base case and using simple

approximations for the gradients and a linear interpolation of the parameters in

[WALTZ and MILLER, 1999] as an approximation of the triangularity variation

with elongation as follows:

∂r/aκ(κ) = (κ− 1)/(r/a) (5.32)

δ(κ) = Cδ(0.416/0.66)(κ− 1) (5.33)

∂r/aδ(κ) = δ(κ)/(r/a) (5.34)

where the constant Cδ = 0.75 was chosen to maintain the physical restriction

−1 ≤ δ ≤ 1 for the range of κ of interest. The test cases are run in the collisionless

limit with a single ion species and either adiabatic electrons or a gyrokinetic electron
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species with: R/Lni = R/Lne = 3.00, R/LT i = R/LTe = 9.00, T0i/T0e = 1.00.

Figures 5.10-5.12 first show the results using adiabatic electrons. In the plots

of real frequency and linear growth rate in figures 5.11 and 5.12, the reported

values are maximized over a scan of kyρi ranging from 0.1 to 1.0. Figure 5.10

shows these scans for the circular geometry case and for κ = 2.0 at δ = 0.0 and at

δ(κ) = 0.4727. As mentioned previously, the reported values for the trial function

code are maximized over a scan of the trial function width σ. The dotted curves in

figure 5.10, however, show a persistent secondary dominant mode at high σ. While

both GS2 and the trial function see a dominant ITG mode (the solid curve) at

low to moderate kyρi, the trial function model predicts that the unphysical high

σ mode dominants at high kyρi, when the growth rate of the ITG mode becomes

small. This high σ mode generally occurs at very large
〈

k2
⊥

|B|2

〉

(> 2ky) and very

low k‖ and ωd,‖. Recall that this mode was also shown in the plots of linear growth

rate vs. temperature gradient length scale in section 5.1 for the optimization of the

value of C‖ (figures 5.3-5.5). In these plots, the high σ mode (the dotted lines)

also occurred at high kyρi and dominated at small R/LT i (where the ITG growth

rate was small), particularly for the low q case. Note, however, that the mode

appears to be affected very little by the C‖ term in these plots; though, at high

σ, k‖ is small and the parallel loss term is relatively trivial. Overall, this mode is

unphysical (i.e. it appears with our local approximations but not in the full non-

local GS2 eigenfunction calculation), in contrast with the ITG mode (which occurs

at moderate σ where bad curvature effects are significant) and, as we will see with

the inclusion of gyrokinetic electrons, the TEM mode (which occurs at low σ where

trapped particle effects are significant). Thus we neglect this unphysical mode in

future trial function results.
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Overall, figure 5.11 shows good agreement between the trial function code and

GS2 for both the δ = 0 case and the more highly shaped δ(κ) cases. Specifically,

for the δ = 0 case, the trial function code shows the stabilizing effects of high κ on

the linear ITG instability that are seen with GS2. As κ increases, the dominant

mode transitions from a mode with kyρi of 0.4 to 0.3 to 0.2 and the trial function

code also sees this in the scan over kyρi. This is evident in the jumps in the real

frequency curve and, more clearly, in the scans over kyρi for the cases of κ = 1.0

and κ = 2.0 in figure 5.10. Comparing the δ(κ) curve with the δ = 0 curve in

figure 5.11, the trial function code also shows that δ is slightly destabilizing at low

κ and slightly stabilizing at high κ, though the exact stabilizing transition point

of the trial function code occurs at lower κ and δ than in GS2. In this case, the

dominant mode transitions from a mode with kyρi of 0.4 to 0.3 and, as shown in

the real frequency curve, the trial function transitions to the dominant 0.3 mode

earlier. The ability of the trial function code to follow shaping trends is further

explored in figure 5.12, which shows the variation of the linear growth rate with

δ (also varying ∂r/aδ) for the cases of κ = 1.4 and κ = 2.0 (The δ(κ) values for

these cases corresponding to figure 5.11 are 0.1891 and 0.4727 respectively). This

figure shows that the trial function code is able to follow the trend in GS2 that δ

is destabilizing for both cases, yet becomes stabilizing at very high δ for the high

κ = 2.0 case.

Results with the addition of gyrokinetic electrons are shown in figures 5.13

and 5.14. As seen in the scans over kyρi, there are two physical modes: an ITG

mode with positive real frequency and a TEM with negative real frequency. While

good agreement is seen with the trial function code for both modes for the circular

geometry case, for the (κ = 2.0, δ = 0.0) case the trial function code predicts the
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Figure 5.10: Real frequency and linear growth rate vs. kyρi for generic test case
parameters with adiabatic electrons at (κ = 1.0, δ = 0.0), (κ = 2.0, δ = 0.0), and
(κ = 2.0, δ(κ) = 0.4727) comparing results from GS2 with the trial function code.
The lower plots show the corresponding value of the trial function width σ at which
the maximum growth rate occurs for a particular kyρi using the trial function code.
(The dotted lines show a persistent unphysical secondary dominant mode at very
high σ.)
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Figure 5.11: Real frequency and linear growth rate vs. κ for generic test case
parameters with adiabatic electrons for both δ = 0.0 and δ varied with κ comparing
results from GS2 with the trial function code. The reported results are maximized
over a scan of kyρi ranging from 0.1 to 1.0.
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Figure 5.12: Real frequency and linear growth rate vs. δ for generic test case pa-
rameters with adiabatic electrons for both κ = 1.4 and κ = 2.0 comparing results
from GS2 with the trial function code. The reported results are maximized over a
scan of kyρi ranging from 0.1 to 1.0.
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TEM as dominant over the entire kyρi range above 0.1, while GS2 predicts the

transition at kyρi = 0.7. For the δ(κ) case, the TEM dominates over the entire

range for the trial function model. In these figures we also show the ITG mode

(the dotted lines) from the trial function code which appears as the second fastest

growing mode below the TEM in a scan over σ. Note that the ITG growth rate is

close to the TEM growth rate at low kyρi and is in agreement with the GS2 results.

However, in the trial function scan, the ITG mode disappears above kyρi = 0.4

for the δ = 0 case and above kyρi = 0.6 for the δ(κ) case. In both cases, this is

well below GS2’s transition point from the dominant ITG mode to the dominant

TEM. Even for the circular geometry case we can see that the trial function code

overpredicts the TEM growth rate and, considering the previous adiabatic results in

which the trial function code underpredicts the ITG growth rate, it is not surprising

that the trial function code shows an earlier transition.

Because of this difference, in the shaping scan shown in figure 5.14 we report

values at kyρi = 0.4 (where the growth rate is maximum in a scan over kyρi for

κ = 1.0), rather than maximizing over kyρi for each equilibrium (yet we are still

maximizing the growth rate over σ). Here we see good agreement between GS2 and

the trial function code for low to moderate shaping. However, the trial function code

predicts a TEM mode dominant over the ITG mode starting at κ = 1.8 for δ = 0.0

and starting at κ = 2.0 for δ(κ), while GS2 shows the ITG mode as dominant over

the entire range for both cases. However, the dotted lines showing the continuation

of the secondary ITG mode in the trial function code are again in good agreement

with GS2. This agreement is better for the less-shaped δ = 0 curve, while for δ(κ)

the trial function code overpredicts the stabilizing effect of higher shaping and thus

shows a steeper gradient. This was also seen in the adiabatic electron results in
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Figure 5.13: Real frequency and linear growth rate vs. kyρi for generic test case
parameters including gyrokinetic electrons at (κ = 1.0, δ = 0.0), (κ = 2.0, δ = 0.0),
and (κ = 2.0, δ(κ) = 0.4727) comparing results from GS2 with the trial function
code. The lower plots show the corresponding value of the trial function width
σ at which the maximum growth rate occurs for a particular kyρi using the trial
function code. The dotted lines for the κ = 2.0 plots show the continuation of the
ITG mode, which has become secondary to the TEM.

figure 5.11.

To emphasize the qualitative success of the trial function code even with gyroki-

netic electrons, we compare the above results with those obtained without particle

trapping effects (artificially obtained using r/a = 0.001). These results are shown

in figures 5.15 and 5.16. Note that the linear growth rates are generally smaller

than for the adiabatic electron case and gyrokinetic electron case with trapping

effects. Overall, the agreement between the trial function code and GS2 is good

and comparable to the agreement in the adiabatic electron case and for the ITG
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Figure 5.14: Real frequency and linear growth rate vs. κ for generic test case
parameters at kyρi = 0.4 including gyrokinetic electrons for both δ = 0.0 and δ
varied with κ comparing results from GS2 with the trial function code. The dotted
lines show the continuation of the ITG mode, which has become secondary to the
TEM.
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Figure 5.15: Real frequency and linear growth rate vs. kyρi for generic test case
parameters including gyrokinetic electrons but neglecting trapping (r/a = 0.001)
at (κ = 1.0, δ = 0.0), (κ = 2.0, δ = 0.0), and (κ = 2.0, δ(κ) = 0.4727) comparing
results from GS2 with the trial function code. The lower plots show the correspond-
ing value of the trial function width σ at which the maximum growth rate occurs
for a particular kyρi using the trial function code.

mode in the gyrokinetic electron case with trapping effects. For this case, since

the shaping curve is done at constant kyρi rather than maximizing over kyρi, the

δ(κ) curve shows the complete stabilization of the ITG mode at high shaping. (In

the adiabatic curve at high shaping a transition to a still unstable mode at smaller

kyρi was seen.) However, again because of the trial function code’s underpredic-

tion of the ITG growth rate which becomes more inaccurate at high shaping, the

stabilization is seen much earlier than with GS2.

Overall, the results of figures 5.10-5.16 show that the trial function code is able

to follow the same shaping trends as GS2 both in the adiabatic electron limit and
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Figure 5.16: Real frequency and linear growth rate vs. κ for generic test case
parameters at kyρi = 0.4 including gyrokinetic electrons but neglecting trapping
(r/a = 0.001) for both δ = 0.0 and δ varied with κ comparing results from GS2
with the trial function code.
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with the inclusion of gyrokinetic electron dynamics. Good agreement was seen for

both the ITG mode and the TEM. However, overprediction of the TEM growth

rate has led to inaccuracies in the trial function model in predicting the transition

from a dominant ITG mode to a dominant ITG mode, suggesting that a better

model for trapped particles is needed.

The result that the trial function code usually overpredicts the growth rate

of the TEM may be a consequence of its oversimplification of trapped particle

dynamics. At present, it models all trapped particles as having a toroidal drift

precession frequency given by 〈ωdv(v‖v⊥)〉TF , where 〈. . .〉TF is an average over the

trial eigenfunction. However, a better approximation would probably be to use the

bounce-averaged 〈ωdv〉B.A., i.e. by averaging ωdv around a trapped particle’s orbit,

which depends on the particle pitch angle. This would account for the difference

between barely trapped particles and deeply trapped particles. Barely trapped

particles spend most of their time on the good curvature side of a tokamak, and

so have a positive 〈ωdv〉B.A. and have a stabilizing influence on the mode. In con-

trast, deeply trapped particles spend most of their time on the bad curvature side

of a tokamak, and so have a negative 〈ωdv〉B.A. and can contribute to destabiliz-

ing modes. We leave exploration of an improved model using a bounce-averaged

〈ωdv〉B.A. for future work.

It is interesting to compare the optimal σ scan in our trial function model

with the model of Waltz [WALTZ et al., 1997], which uses even and odd Gaussian

trial functions and scales the trial function width as σWaltz = (π/3)[1 + 0.2(q/2−

1)]−1[1 + 0.1(ŝ − 1)2]−1/2, based on empirical fits with test case parameters. For

our parameters, this yields σWaltz = 1.0472, which is generally on the same order

as our scan over σ. (We found σ to be smaller (∼ 0.5) for larger kyρi and for the
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TEM (∼ 0.1).) Exact equivalence between our σ and Waltz’s σ is not expected

since, in addition to the use of an odd Gaussian trial function for k‖, the Waltz

model also uses empirically-based fitting parameters to adjust k‖ and the trapping

condition (by adjusting them by factors slightly below unity), which has the effect

of decreasing the effective σ with respect to 1/k‖. Recall also that the Waltz model

was developed for use in ŝ-α geometry. Indeed, looking at the σmax plots for our

results, we do not see a large variation in σmax at a particular kyρi across shaping

in figure 5.15 and in the ITG branch of figure 5.13, i.e. comparing κ = 1.0 with

κ = 2.0, δ = 0.0 and κ = 2.0, δ(κ). However, as we found with the unphysical

high σ mode, choice of σ for the model is somewhat arbitrary, and our method of

reporting the “worst case physical result” as the dominant growth rate seems to

benchmark fairly well with GS2. In the end, there is of course trade-off between

a σ calculation which is accurate for arbitrary equilibrium yet significantly less

computationally intensive than solution of the gyrokinetic equation on a θ grid.

While the above results were done at fixed temperature gradient, the ability of

the trial function code to predict the scaling of the critical temperature gradient in

the presence of shaping was also explored. These results are shown in figures 5.17

and 5.18 for the cases of adiabatic electrons and inclusion of gyrokinetic electrons

respectively. The parameters for this scan are modified from [MILLER et al., 1998]:

r/a = 0.83, R/a = 2.631, ∂rR0 = −0.354, q = 3.03, ŝ = 2.85, ∂r/aβ = −0.0. The

original shaping parameters of [MILLER et al., 1998] correspond to κ = 1.66,

∂r/aκ = 1.40, δ = 0.416, ∂rδ = 1.50. The figures show scans of the real frequency

and linear growth rate vs. the temperature gradient length scale (at constant density

gradient R/Lni = 2.63 and T0i = T0e) at various δ. We vary ∂r/aδ proportionately

as δ is varied from the original parameters. For the case of κ = 2.075, ∂r/aκ is
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likewise varied as a linear interpolation between the circular case and the value at

the original shaping. The reported growth rates at each temperature gradient are

maximized over kyρi in the range [0, 1].

Consider first the case of adiabatic electrons, shown in figure 5.17. In general,

the trial function code is able to accurately follow GS2 in both the low and high

temperature gradient regimes for the ITG mode. Note that because the trial func-

tion results and GS2 results were maximized over kyρi independently, this figure

also verifies that the trial function is able to find the correct maximum at all tem-

perature gradient regimes. Looking at the shaping trends, it is interesting that

the destabilizing effect of triangularity is seen even near the critical temperature

gradient. In contrast, for the higher κ case at the original δ = 0.416, both GS2

and the trial function code show a slight stabilizing upshift in the linear critical

temperature gradient.

For the case of inclusion of gyrokinetic electron dynamics, shown in figure 5.18,

good agreement is similarly found between the trial function code and GS2 in the

high temperature gradient regime (where the ITG mode dominates) at all degrees

of shaping. The general destabilizing effect of triangularity on the ITG mode is also

again observed. As the temperature gradient decreases, the trial function code is

able to follow the transition from the dominant ITG mode to the dominant TEM

and the agreement of the TEM growth rate with that found by GS2 is fairly good,

at least at higher δ. The exact value near the transition point appears to be more

inaccurate for the δ = 0 case, though the growth rates are generally smaller across

the entire R/LT regime for this case, so the relative error is reasonable. (The exact

transition point can be difficult to predict for any initial value code in general due to

the interference effects between the two modes which have similar dominant growth
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rates at this point.) Near the transition point, the trial function code is predicting

the maximum growth rate in the scan over kyρi near kyρi = 1.0, rather than near

kyρi = 0.5, as does GS2 and both codes for the higher R/LT regime. This can be

seen in figures 5.19 and 5.20 which show the scans over kyρi for each temperature

gradient for the δ = 0.416 case. These figures show that the maximum growth rate

occurs at larger kyρi for smaller the R/LT regime than for the larger R/LT regime.

However, near the transition point (R/LT ∼ 2.6), the GS2 curve peaks near its

ITG maximum range of kyρi = 0.5, while the trial function curve does not turn

over until near R/LT ∼ 5.2. Overall, as with the shaping scans, improvements in

the trapped particle model may be needed to enhance quantitative agreement near

the transition from TEM to ITG.

5.4.2 Electromagnetic Results

Benchmarks with GS2 have also been performed with the inclusion of electromag-

netic dynamics. The parameters for this test case are: r/a = 0.001, R/a = 1.00,

∂rR0 = −0.0, q = 4.472, ŝ = 3.00, ∂r/aβ = −0.0, ŝ-α geometry, R/Lni = R/Lne =

5.0, R/LT i = 12.5, R/LTe = 10.0, T0i = T0e. (Here a is not the minor radius but the

normalizing length used internally in the code; such as when reporting the growth

rate normalized with respect to vti/a.) Note that the non-trapping limit is used for

simplicity since the effects of particle trapping were explored in the electrostatic

benchmarks and here we focus more narrowly on the effects of electromagnetic dy-

namics. Also, note that ∂r/aβ is not varied as β is varied. (In gyrokinetics, ∂r/aβ

enters in as an equilibrium parameter related to the gradient of the Shafranov shift,

while β is a dynamical parameter and thus each can be varied independently. Here

we keep ∂r/aβ constant to focus on the dynamical effect of β while maintaining a
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Figure 5.17: Real frequency and linear growth rate vs. temperature gradient length
scale for generic test case parameters with adiabatic electrons for various δ and κ
comparing results from GS2 with the trial function code. The reported results are
maximized over a scan of kyρi ranging from 0.1 to 1.0.
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Figure 5.18: Real frequency and linear growth rate vs. temperature gradient length
scale for generic test case parameters including gyrokinetic electrons for various δ
at constant κ = 1.66 comparing results from GS2 with the trial function code. The
reported results are maximized over a scan of kyρi ranging from 0.1 to 1.0.



5.4. Test Cases for Shaped Flux Surfaces 239

0 0.5 1

−0.2

0

0.2
R/L

T
=0.0

ω
 / 

(v
ti / 

a)

0 0.5 1

−0.2

0

0.2
R/L

T
=1.3

ω
 / 

(v
ti / 

a)

0 0.5 1

−0.2

0

0.2
R/L

T
=2.6

k
y
 ρ

i

ω
 / 

(v
ti / 

a)

0 0.5 1
0

0.2

0.4

γ 
/ (

v ti / 
a)

TF
GS2

0 0.5 1
0

0.2

0.4

γ 
/ (

v ti / 
a)

0 0.5 1
0

0.2

0.4

k
y
 ρ

i

γ 
/ (

v ti / 
a)

Figure 5.19: Real frequency and linear growth rate vs. kyρi for generic test case
parameters at κ = 1.66 and δ = 0.416 including gyrokinetic electrons for various
low values of the temperature gradient length scale comparing results from GS2
with the trial function code.
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Figure 5.20: Real frequency and linear growth rate vs. kyρi for generic test case
parameters at κ = 1.66 and δ = 0.416 including gyrokinetic electrons for various
high values of the temperature gradient length scale comparing results from GS2
with the trial function code.
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fixed equilibrium.)

Figure 5.21 shows the variation of the real frequency and linear growth rate

with kyρi. In the electrostatic limit (β = 0), we find good agreement between

the trial function code and GS2. However, with the inclusion of electromagnetic

dynamics with a high value of β (βi = βe = 2%), while the trial function code is

able to follow the destabilization of finite β effects at high kyρi, at low kyρi the trial

function completely misses the strong destabilization due to the kinetic ballooning

mode, showing instead a continuation of the high kyρi mode.

The failure of the trial function code to represent the physics of the kinetic

ballooning mode is further explored in figure 5.22. This figure shows a scan of

the linear growth rate over β in both the low and high kyρi regimes. It has been

shown previously that the general trend with β for gyrokinetics is that the ITG

mode dominates at low β (i.e. β < βc, where βc is the threshold for the kinetic

ballooning instability) and is stabilized with increased β; for β > βc, the kinetic

ballooning mode then dominates and is further destabilized with increased β [KIM

et al., 1993]. (However, 2nd stability at higher β can occur if the ∂r/aβ effects on the

equilibrium are included.) This trend is seen in the GS2 results for both kyρi = 0.1

and 0.7, with βc relatively downshifted shifted for the kyρi = 0.1 case, above which

the kinetic ballooning mode is very strongly unstable. The trial function code is

able to follow GS2 in the regime of both the ITG mode and the kinetic ballooning

mode for the kyρi = 0.7 case. However, for the kyρi = 0.1 case, the trial function

results agree with GS2 only in the low β ITG regime. The trial function code does

see a shift to a new dominant mode at high β, though its transition point βc is

too high (βc ∼ 1.4% rather than 0.4%) and it greatly underpredicts the growth

rate of the kinetic ballooning mode, barely increasing as β is increased. Thus,
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Figure 5.21: Real frequency and linear growth rate vs. kyρi for generic test case
parameters including electromagnetic dynamics comparing results from GS2 with
the trial function code.

while benchmarks with GS2 were successful for the ITG mode both electrostatically

and electromagnetically, these results show that extensions to include magnetic

fluctuations and accurately recover the kinetic ballooning β limit are more difficult

and may require extending the trial function model to include coupling to higher-

order Hermite basis functions. This extension is explored in the next section.
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Figure 5.22: Real frequency and linear growth rate vs. βi = βe ≡ β for generic test
case parameters including electromagnetic dynamics comparing results from GS2
with the trial function code.
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5.5 Higher-Order Models

The trial function model is more generally based on an expansion of the distribution

function in terms of normalized Hermite polynomials, i.e.

h(θ, v‖, t) = e−θ
2/4σ2

∞
∑

n=0

Hn

(

θ√
2σ

)

hn(v‖, t) (5.35)

where Hn(x) = ex
2 dn

dxn e
−x2 (−1)n

π1/42n/2
√
n!

. Here we discuss the extension of the trial

function model to higher-order and a more natural derivation of the parallel loss

term as a closure model for this expansion.

We consider the extended Hermite expansion in the simplified gyrokinetic equa-

tion

∂h

∂t
+

v‖

qR

∂h

∂θ
= 〈L(h)〉 (5.36)

where L(h) is the general linear operator consisting of the rest of the terms in the

full linear gyrokinetic equation, i.e.

〈L(hs)〉 = −i 〈ωdv〉hs +

(

∂

∂t
+ iω∗T

)

ZseFM
T0s

〈J0s〉
(

Φ− v‖

c
A‖

)

(5.37)

In general, a Hermite basis expansion of the terms represented by L(h) is also

necessary for an exact treatment of the gyrokinetic equation. However, we are not

interested in developing a full Hermite expansion model, such as that used in the

kinetic FULL code [REWOLDT et al., 1982; REWOLDT et al., 1987] or developed

by Staebler for the gyro-Landau-fluid-based GLF23 code [STAEBLER et al., 2005].

Rather, here we explore the significance of the various terms in the expansion model

and develop a higher-order approximation to our original trial function model based

on this analysis.
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Thus, to begin, we consider only a higher-order Hermite basis transformation of

the v‖b̂ · ∇ term, which is generally dominant, particularly for electron dynamics.

Using the expansion for h given by Eq. (5.35) in Eq. (5.36), the new trial function-

based gyrokinetic equation becomes

∂hm
∂t

+
v‖

2σqR

[(√
m + 1

)

hm+1 −
(√

m
)

hm−1

]

= 〈L(hm)〉 (5.38)

for m = 0, 1, 2, . . . Note that the scaling of the constant factor for the v‖ term

matches the trial function-averaged

√

〈

k2
‖

〉

of the original trial function model,

given in Eq. (5.8). For closure of the system of equations, we consider a model of

the form

hmf+1(v‖, t) = C0hmf−1(v‖, t) + C1sgn(v‖)hmf (θ, v‖) (5.39)

The closure constants C0 and C1 are determined by minimizing the error ε2 =

∫∞
0 dt|hmf+1,exact − hmf+1,closure|2, where hexact refers to the exact solution of the

simplified gyrokinetic equation as given by Eq. (5.36) with 〈L(hm)〉 = 0 for a

specific initial condition, i.e.

hexact(θ, v‖, t) = FM(v‖)e
−(θ−v‖t/qR)2/4σ2

(5.40)

or, expanding this solution in Hermite basis functions,

hm,exact(v‖, t) =
π1/4

√
m!

(

v‖t

2σqR

)m

e
−v2

‖
t2/(8σ2q2R2)

(5.41)

We consider the closure equation in both a single constant form, where ε2 is mini-

mized only with respect to C1 ≡ C and we set C0 = 0, as well as in a two constant

form, where ε2 is minimized with respect to both C0 and C1. For these cases, we
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Figure 5.23: Closure coefficients for the Hermite-based trial function equations vs.
final order of the expansion. C is the coefficient for the single constant closure
model: hmf+1 = Csgn (v‖) hmf . C0 and C1 are the coefficients for the two constant
closure model: hmf+1 = C0hmf−1 + C1sgn (v‖)hmf .

find that, for a general final order m,

C =
1√
m + 1

Γ(m + 1)

Γ(m+ 1/2)
(5.42)

C0 =
m−1/2 [Γ2(m+ 1/2)− Γ(m)Γ(m + 1)]√
m + 1 [Γ(m + 1/2)Γ(m− 1/2)− Γ2(m)]

(5.43)

C1 =
[Γ(m+ 1)Γ(m− 1/2)− Γ(m)Γ(m+ 1/2)]√
m + 1 [Γ(m + 1/2)Γ(m− 1/2)− Γ2(m)]

(5.44)

Figure 5.23 shows the variation of the closure constants with m.

Implementation of the above Hermite model is done analogously compared with
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the original trial function mode, by rewriting the equations in terms of hs,m →

gs,m + ZseFM

T0s
〈J0s〉

(

Φm − v‖
c
A‖,m

)

. Discretization is also done as before, treating

the distribution function terms implicitly and the field terms explicitly with a 2nd

order Adams-Bashforth scheme. Thus, the Hermite-based gyrokinetic equations

can be solved independently for each particular species at each velocity grid point

for all specified Hermite orders as a series of nspeciesnvel simple tri-diagonal matrix

equations using standard Gaussian elimination with backsubstitution.

Note that the original trial function model given by Eq. (5.9) is equivalent to

the 0th order Hermite-based equation with the addition of an i

√

〈

k2
‖

〉

v‖hs term on

the RHS. The value of the closure constant for the trial function model (C‖ = 0.13)

is also smaller than the value for the 0th order Hermite-based model given by

figure 5.23 (C = 0.564). However, while the higher-order model is designed to

improve the trial function model in the more general electromagnetic description,

it is anticipated that the original trial function model will perform better than

the 0th order Hermite model with electromagnetic dynamics. The reason for this is

that the 0th order Hermite equation does not have any terms involving gs which are

dependent on the sign of v‖. This means that the only sgn(v‖) dependence in the

gyrokinetic equation is in the A‖ term, indicating that the Poisson equation, which

picks out only the part of gs which is symmetric in v‖, will not be influenced by the

effect of A‖ on gs in the gyrokinetic equation. This likewise applies to the Ampere

equation, which picks out the part of gs which is antisymmetric in v‖. Thus, the

electrostatic and electromagnetic dynamics are completely decoupled. The effect

of this is that the growth rate obtained from the 0th order Hermite-based equation

is exactly the same (and gives the electrostatic value) regardless of the value of β.

Thus, the 0th order equation is not extendable to the electromagnetic description.
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Figure 5.24: Real frequency and linear growth rate vs. kyρi for generic test case
parameters including electromagnetic dynamics comparing results from GS2 with
the trial function code based on a Hermite basis transformation of the k‖v‖ term.
The expansion is done to order mf and a single constant closure model is applied.

Results from the use of the higher-order Hermite basis transformation of the

k‖v‖ term with the single constant closure is shown in figure 5.24. As expected, the

original trial function model results (shown in figure 5.21) yield better agreement

than the 0th order Hermite model for the high kyρi mode, though both models

fail to find the transition in the fastest growth mode at low kyρi to the kinetic

ballooning instability. However, with the retention of just two Hermite orders,

the trial function model is able to capture the physics of the kinetic ballooning

instability and, furthermore, shows good agreement with GS2 in both the low and

high kyρi regimes.

Figure 5.25 shows the results using the two constant closure model. Comparing

these results with those in figure 5.24 for the higher-order models, we find that the
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Figure 5.25: Real frequency and linear growth rate vs. kyρi for generic test case
parameters including electromagnetic dynamics comparing results from GS2 with
the trial function code based on a Hermite basis transformation of 1) just the k‖v‖

term and 2) the k‖v‖ term and the ωdv term. The expansion is done to order mf
and a two constant closure model is applied.

two constant closure model is more accurate than the single constant closure model,

particularly in the high kyρi regime. Though the overall effect is small, we adopt

the two constant closure for the rest of our studies, since the form of the equations is

tri-diagonal with either model and no significant additional computation is required

for this model.

To achieve better improvement, higher-order Hermite basis expansions of all

of the terms in the gyrokinetic equation (not just the k‖v‖ term) must also be

considered. This generally leads to a coupling between various m-th order moments

which can be considered numerically. Here we present an extension of the Hermite-

based model by also considering the expansion of the curvature and ∇B drift terms
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in addition to the k‖v‖ term. Specifically, the Hermite expansion of h is considered

in the following simplified gyrokinetic equation:

∂h

∂t
+

v‖

qR

∂h

∂θ
+ iωdv(θ)h =

〈

L̃(h)
〉

(5.45)

where
〈

L̃(hs)
〉

=

(

∂

∂t
+ iω∗T

)

ZseFM
T0s

〈J0s〉
(

Φ− v‖

c
A‖

)

(5.46)

This yields the following set of coupled equations for hm:

∂hm
∂t

+
v‖

2σqR

[√
m+ 1hm+1 −

√
mhm−1

]

+i
∞
∑

0

hn

∫ ∞

−∞
dxe−x

2

Hm(x)Hn(x)ωdv(
√

2σx) = 〈L(hm)〉 (5.47)

As a closure for the ωdv term, we terminate the summation at the last full Hermite

order which is retained. This is unlike the k‖v‖ term closure, where an approxima-

tion for the next order is made, since a fully analytic form for the closure coefficients

is not available upon inclusion of the term +iωdv(θ)hm,exact in the exact equation.

Comparing Eq. (5.47) with the original trial function model, note that the ωdv

term in Eq. (5.47) yields higher-order moments of the original Gaussian trial func-

tion averages. Since ωd,‖ and ωd,⊥ are symmetric in θ for an axisymmetric tokamak

(assuming up-down symmetry and for modes with kx = 0), only even orders of this

term are nonzero for m even and likewise odd orders for m odd. Thus, the 0th

order equation is equivalent to the gyrokinetic equation using only the k‖v‖ term,

i.e. Eq. (5.38), since the (m = 0, n = 0) coupling yields the term i 〈ωdv〉h0, while

the (m = 0, n = 1) coupling yields the term (i/σ) 〈θωdv〉h1 which is 0.

Figure 5.25 shows the results from inclusion of the ωdv term in the Hermite
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expansion for mf = 1 and mf = 2. Compared with the previous Hermite expansion

model, a slight improvement is seen at high kyρi, while no significant improvement

is seen at low kyρi. For further investigation, figure 5.26 shows the accuracy of

the extended Hermite expansion model as β is varied at constant kyρi in both the

low and high kyρi regimes, for comparison with the results from the original trial

function model in figure 5.22. The Hermite models and the original trial function

model produce similar results for the kyρi = 0.7 case, i.e. following the GS2 results

in the low β ITG regime and continuing through the transition to the strongly

destabilized kinetic ballooning mode. However, the significant difference in the

models is seen in the kyρi = 0.1 results. Recall that the the original trial function

model was unable to accurately predict the transition to the kinetic ballooning mode

and furthermore greatly underpredicted its growth rate. In contrast, figure 5.26

shows that with just a 1st order expansion in the model, the rate of destabilization

with increased β is accurately recovered, though the transition point in somewhat

lower than it should be.

Future work may explore a more general formulation of the Hermite expansion

model in Eq. (5.35), such as follows:

ĥ(θ, v‖, t) = eiS(θ)e−θ
2/4σ2

∞
∑

n=0

Hn

(

θ√
2σ

)

hn(v‖, t) (5.48)

where S(θ) is any real function of theta. A natural choice might be S(θ) = k‖,0qRθ,

where k‖,0 =

√

〈

k2
‖

〉

. Considering this expansion model in the simplified gyrokinetic

equation given by Eq. (5.36), we obtain:

∂hm
∂t

+
v‖

2σqR

[(√
m + 1

)

hm+1 −
(√

m
)

hm−1

]

+ ik‖,0v‖hm = 〈L(hm)〉 (5.49)
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Figure 5.26: Real frequency and linear growth rate vs. βi = βe ≡ β for generic test
case parameters including electromagnetic dynamics comparing results from GS2
with the trial function code based on a Hermite basis transformation of the k‖v‖

term and the ωdv term. The expansion is done to order mf and a two constant
closure model is applied.
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Note that using the closure model of Eq. (5.39) and again defining the closure

coefficients to minimize the mean squared error, we find that the closure coefficients

are independent of k‖,0, i.e. we retain the closure constants given in Eqs. (5.42) -

(5.44). The advantage of this model compared to the model in Eq. (5.38) is that it

recovers the lowest order m=0 Hermite representation of the original trial function

model in Eq. (5.9) and thus provides a more systematic derivation of the equations

being used in the reduced-model. Future work could explore this higher-order

expansion as an alternative.

Overall, the results presented here generally confirm the importance of higher-

order Hermite terms in retaining the physical effects of electromagnetic dynamics.

A Hermite closure model as we have described could be useful in existing full

Hermite codes, which presently use just a simple truncation and retain more orders

to compensate. This is also relevant for gyro-Landau-fluid-based models (such as

the GLF23 model [STAEBLER et al., 2005]), which carefully handle the closure

problem for the fluid velocity-moment expansion but use simple truncation for the

Hermite spatial expansion. One approach for improvement of such GLF models is

to take fluid moments of the Hermite expansion of the gyrokinetic equation model

that we have derived in this section and then apply closure approximations for the

fluid moments in addition to the closure approximations for the Hermite expansion

which we have already done. An alternative approach could be to instead begin with

the gyro-Landau fluid equations in their present form with their existing closure

approximations as already derived in k‖ space, transform them to a Hermite basis,

and then re-derive the additional closures needed for the Hermite basis. These

approaches may be explored as topics of future research.
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5.6 Summary

A local linear gyrokinetic code has been developed to allow for fast scoping studies

of gyrokinetic linear stability. This code includes models of the effects of plasma

shaping, magnetic shear, and toroidal geometry by using representative values of

k‖, k
2
⊥, ωd, etc. averaged over a trial eigenfunction, using the same geometrical

information available in the full GS2 gyrokinetic code (i.e. either a full numerical

equilibrium or a local parameterized equilibrium). Simple models for trapped par-

ticles and for the parallel free streaming of particles out of the bad-curvature region

are included.

The trial function code was successfully benchmarked with GS2 in the colli-

sionless, electrostatic limit, with single and multiple gyrokinetic ion and electron

species for a range of shaped flux surface equilibria. Overall, the trial function code

was able to follow the same shaping trends as GS2 both in the adiabatic electron

limit and with the inclusion of gyrokinetic electron dynamics, showing good agree-

ment for both the ITG mode and the TEM. The code was also able to accurately

find the critical temperature gradient, even in the presence of shaping. However,

overprediction of the TEM growth rate in general has led to inaccuracies in the trial

function code in some cases in predicting the transition from a dominant TEM mode

to a dominant ITG mode, suggesting that a better model for trapped particles is

needed. Furthermore, extensions to include magnetic fluctuations were found to be

difficult. Specifically, with the addition of electromagnetic effects, while the trial

function code was able to predict the stabilizing effects of β on the ITG instability,

it was found that the inclusion of higher-order Hermite basis functions is necessary

to accurately recover the kinetic MHD ballooning limit.

Overall, because of the reduced computational intensity of the trial function
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model and its success in capturing the significant physics of gyrokinetic linear sta-

bility even in general geometry, such a code might be more practical than a full

geometry code for optimization studies or for use in an iterative transport code,

upon inclusion of collisional effect and a quasi-linear approximation or nonlinear

effects with subgrid models.



Chapter 6

Conclusions

I
n this thesis work, advanced numerical algorithms for Eulerian/continuum gy-

rokinetic solvers were explored for more effective studies of plasma microtur-

bulence. These algorithms focus specifically on the regime of ITG/TEM/KBM

physics and are particularly designed for faster simulations with the inclusion of

non-adiabatic electron dynamics and electromagnetic perturbations, which are nec-

essary for accurate simulations of anomalous transport in core tokamak plasmas.

In addition, advances were made in understanding the mechanisms leading to im-

proved confinement in tokamaks via applications of gyrokinetic simulations to stud-

ies of the effects of flux surface shape on the gyrokinetic stability and transport of

tokamak plasmas using the GS2 code and a new local linear trial function-based

gyrokinetic code. The main results of this research and possible new continuing

areas of research are summarized below.

256
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6.1 Summary

6.1.1 Studies of Numerical Algorithms for Gyrokinetics

Several numerical algorithms for Eulerian gyrokinetic solvers were studied. These

include semi implicit-explicit schemes, iterative implicit schemes, and an Alternat-

ing Direction Implicit (ADI) scheme. A semi implicit-explicit scheme, which treats

the distribution function terms in the gyrokinetic equation implicitly while the field

terms are treated explicitly, was explored in the context of GS2’s 2nd order compact

spatial differencing. Both single-step and two-step predictor corrector schemes were

found to be numerically unstable at the highest k‖ modes (at the Nyquist limit)

with the inclusion of gyrokinetic electrons. This result motivates the need for a

more implicit treatment of the field dynamics, such as iterative implicit schemes.

An iterative implicit scheme for gyrokinetic simulations was developed based

on “matrix free” iteration methods using numerical approximations to the plasma

response as a preconditioner. This method was designed to reduce the long time

needed to set-up implicit arrays, yet still have larger time step advantages similar

to a fully implicit method. A numerical preconditioner was developed based on

computing the response of simultaneously applied perturbations and refining the

tail end using an extrapolation with the translation of a single exact response row.

Implementation in GS2 and tests in the linear limit found that this preconditioner

with a simple iteration algorithm works fairly well in the electrostatic limit, yet

yields a strict time step restriction for convergence with electromagnetic dynamics

of (∆t)max ∼ (1/2r)∗(nstride∆z)∗(kyρi/vte), where nstride∆z is the bandwidth of the

response used for the preconditioner. It was found that more robust Krylov solvers,

such as Bi-CGSTAB and non-restarted GMRES, are necessary for large time steps
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with electromagnetic dynamics. This difficulty may be related to GS2’s usage of

Beam-Warming 2nd order compact finite differencing for the spatial derivatives,

which introduces a high frequency Nyquist mode in the system at k‖qR∆θ = π

and ω∆t = π. Thus, a more standard version of the compact finite differencing

algorithm, which is usually implemented with 4th or 6th order accuracy, or even

other non-compact finite differencing algorithms may be more effective and are a

topic of future research. Overall, the original fully implicit algorithm of Kotschen-

reuther in GS2 may be best for moderate size nonlinear simulations which do not

change the time step often (i.e. which require a minimal number of re-computations

of the implicit response arrays). Otherwise, for example for inclusion of large-scale

ExB effects via time-dependent shearing of the computational grid, simple iteration

with a small time step or GMRES (or Bi-CGSTAB for large simulations with large

storage requirements) may be advantageous.

The implementation of an ADI algorithm for a gyrokinetic problem was also

explored. The resulting numerical stability properties for a test problem of a

shear kinetic Alfvén wave at small k⊥ρi were studied. For this test case, we

have focused on the time-advancement scheme and just Fourier transformed in

the parallel spatial direction. A severe stability restriction on the time step of

(∆t)max ∼ 2|k⊥ρs/(k‖vte)| was found, even in the high (βe/2)/(mi/me) regime,

where the Alfvén wave is slower than the electron thermal speed and both the ac-

tual mode frequency of the Alfvén wave and the parallel electron motion time scale

would appear to be very well resolved. This problem was also found in a partially

implicit Adams-Bashforth scheme, which yielded a time step restriction which was

twice as low as that found for the ADI algorithm. In fact, it was found that even
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a fully explicit algorithm can be better at long wavelengths than these split op-

erator algorithms. A further analysis of the ADI algorithm using a Landau-fluid

approximation to the kinetic equation found that it is the splitting of the operators

which yields the source of the numerical instability; for example, in the electrostatic

limit, one of the split operators is nilpotent and not diagonalizable. Overall, these

results suggest that an iterative implicit algorithm might be the best approach for

extensions of core gyrokinetic simulations to edge kinetic formulations, where the

fast dynamics of the Alfvén wave in the low β edge/scrape-off region cause most

standard explicit algorithms to be numerically unstable.

6.1.2 Studies of the Effects of Shaping on Plasma Turbu-

lence

As an application of gyrokinetic simulations, the effects of flux surface shape and

other plasma parameters on the gyrokinetic stability and transport of tokamak plas-

mas were also studied. Studies of the scaling of nonlinear turbulence with shaping

parameters were performed using the GS2 code, starting with an equilibrium based

on a representative JET-like flux surface and artificially varying elongation, trian-

gularity, and their radial gradients together using the Miller analytic equilibrium

formalism to approach the circular limit via linear interpolation. Both linearly

and nonlinearly, high elongation was found to be stabilizing on the ITG turbu-

lence. Triangularity could be stabilizing when coupled with high κ or combined

high α and ŝ, but was otherwise destabilizing at moderate κ or α. A scaling of

the heat flux with elongation of χ ∼ κ−1.5 or κ−2 (depending on the triangularity)

was observed. While this scaling is consistent with previous gyrofluid simulations
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[WALTZ and MILLER, 1999], it is not quite as strong as empirical experimentally-

based elongation scalings. However, our results also show that high shaping results

in a larger Dimits upshift of the nonlinear critical temperature gradient due to

enhanced zonal flows. While this may help to explain much of the remaining of

the empirical elongation scaling, the strong triangularity dependence observed in

tokamaks most likely enters through edge boundary conditions for core turbulence

and will be a topic of future research, particularly for recent initiatives to couple

core tokamak simulations with edge kinetic formulations.

The effects of electromagnetic dynamics coupled with shaping were also pre-

sented. For electromagnetic runs, β was varied with shaping to keep the Troyon-

normalized β fixed while also holding q95 fixed. Finite β was found to be a stabilizing

influence on the linear ITG mode, and a scan over β found that shaping opens up

access to a type of 2nd stability regime. However, nonlinear results show that finite

β leads to large thermal electron transport, particularly for more circular plasmas,

even well below the threshold for the linear kinetic ballooning instability.

Finally, a trial function-based local linear model for gyrokinetics was developed

to aid in fast scoping studies of gyrokinetic linear stability, including shaping effects

in particular. This model enhances the efficiency of flux tube-based simulations by

using representative values of the equilibrium parameters averaged over a Gaussian

trial eigenfunction, using the same geometrical information available in the full GS2

code. Simple models for trapped particles and for the parallel free-streaming of par-

ticles out of the bad-curvature region are also included. Benchmarks of the trial

function code with GS2 in the ITG/TEM regime in the collisionless, electrostatic

limit over a range of shaped flux surface equilibria were successful, even near the
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critical temperature gradient. However, the trial function model generally overpre-

dicted the TEM growth rate, leading to inaccuracies in the TEM to ITG transition

and indicating that a better model for trapped particles is needed, such as based

on a bounce-averaged (rather than a trial function-averaged) ωdv. Furthermore,

benchmarks with GS2 with the inclusion of electromagnetic dynamics found that,

while the lowest-order model captures the stabilizing effects of β on the ITG mode,

extensions of the trial function model to include coupling to higher-order Hermite

basis functions are necessary to accurately recover the kinetic MHD ballooning

limit.

6.2 Future Directions

The faster algorithms explored in this thesis allow for several new explorations in

the study of plasma microturbulence. Such algorithms will be useful for multiscale

initiatives, such as the development of a turbulent transport model based on an it-

erative coupling of a nonlinear gyrokinetic code and a macroscopic transport code,

the coupling of core kinetic simulations to edge kinetic formulations, and the cou-

pling of ETG physics with the ITG/TEM regime. In general, such future advanced

applications of gyrokinetics rely on fast computations of the heat and particle fluxes

from a gyrokinetic simulation. This can be achieved via advanced iterative implicit

algorithms such as those explored in Chapter 2, from a trial function-based linear

gyrokinetic code such as that explored in Chapter 5 with the additional inclusion

of a quasi-linear model, or with the development of new reduced-order models such

as subgrid models of turbulence. Subgrid models have been preliminarily tested in
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GS2 as part of this on-going research. These results and ideas for improved mod-

els are described below. In addition, a near-term example of using fast iterative

implicit algorithms to incorporate large-scale ExB shear effects in flux tube-based

gyrokinetic codes is also discussed below. This application complements the stud-

ies of flux surface shape on gyrokinetic stability in Chapter 4 and could lead to a

modified scaling which may be more applicable to cases with high sheared flows,

such as at large ρ∗ = ρ/L∗ (where ρ is the gyroradius and L∗ is the scale length

over which plasma gradients are changing) or near transport barriers.

6.2.1 Subgrid Models of Turbulence

Subgrid models of turbulence may be used to enhance the efficiency of nonlinear gy-

rokinetic simulations by reducing spatial resolution requirements. Subgrid models

are widely used in large-eddy simulations (LES) of fluid turbulence. For a simu-

lation in which only large spatial scales are resolved, a subgrid model provides a

means of removing energy at the grid scale in a way that mimics the interactions

that discarded modes would have had on fully resolved modes.

There is a large volume of literature of varying degrees of sophistication on sub-

grid models. But relatively simple subgrid models, even with a somewhat heuristic

basis (such as hyperviscosity models with a Smagorinsky-like shearing rate scal-

ing) have been found to be fairly effective. Reducing the resolution needed in a

code by only a factor of 2 can lead to a factor of 16 improvement in performance

(i.e. 23 for the spatial dimensions and another factor of 2 for the increase in the

Courant-limited time step). One reason that simple subgrid models work fairly well

is that, in the Kolmogorov picture of fluid turbulence at high Reynolds number, the

behavior of the inertial range of scales is not very sensitive to the details of what
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happens at small dissipative scales. A more challenging problem for LES simula-

tions is handling boundary layers near fluid-solid interfaces, but this is not an issue

for the homogeneous plasma turbulence simulations that we are considering here.

Typical subgrid models consist of an enhanced velocity-dependent turbulent

hyperviscosity and can easily be applied to nonlinear gyrokinetic codes as described

below. Here we follow the basic approach described in [SMITH, 1997]. Consider

the following generic form of the gyrokinetic equation:

∂f

∂t
= Lf +N(f) (6.1)

where f is the perturbed particle distribution function and L and N are the linear

and nonlinear operators respectively. The distribution function can be decomposed

into a resolved part fr and a subgrid part fs. The filtered field evolution equation

is then:

∂fr
∂t

= Lfr + (N(fr))r +Ns (6.2)

where the subgrid term is given by

Ns = (N(f))r − (N(fr))r (6.3)

A simple dissipative subgrid model for this term has the form:

Ns,~k ∼ νk|~k|pf~k (6.4)

where ν is the turbulent viscosity/hyperviscosity and p is an integer.

Previous recent work related to plasmas has involved the incorporation of the

Smagorinsky eddy viscosity (p = 2 in Eq. (6.4)) and, separately, a hyperviscosity
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model (p > 2) in a 2D drift-wave turbulence code [SMITH, 1997]. The code used

in this work is based on the model of Hasegawa and Mima, which contains the ExB

drift advection nonlinearity, with the addition of the “iδ” equations to model linear

instability and a 1-moment model of Landau damping which provides the primary

means of dissipation. Both p and a scaling factor C in the hyperviscosity model

were computed as parameterizations of the cutoff wavenumber using results from

a direct numerical simulation of the eddy viscosity over a range of parameters and

resolutions. Accurate results were obtained with the parameterized hyperviscosity

model if the cutoff wavenumber was at least 4 times larger than the characteristic

wavenumber of the advecting velocity. The Smagorinsky eddy viscosity model, on

the other hand, required at least a factor of 8 difference for the same accuracy.

We have already incorporated a 2D Smagorinsky-like hyperviscosity (p = 4)

subgrid model into GS2. In this model, the damping is applied only to the non-

adiabatic part of the distribution function as e−DhvS∆t(k̃4
⊥
/k̃4

⊥,max
), where Dhv is an

arbitrary constant coefficient, k̃2
⊥
≡ k2

x + k2
y, and S is the x-y averaged shearing

rate, defined in terms of the ExB drift velocity ~v = (c/B)b̂×∇Φ as:

S2(θ) =

〈(

∂vx
∂x

)2

+

(

∂vy
∂y

)2

+
1

2

(

∂vx
∂y

+
∂vy
∂x

)2〉

=
∑

kx

∑

ky

k̃4
⊥

c

B
|Φ|2 (6.5)

Preliminary results of χi as a function of R/LT i using the Cyclone DIII-D base

case parameters [DIMITS et al., 2000] are shown in figure 6.1. The equilibrium

parameters for this test case use ŝ-α unshifted circular geometry with: r/R = 0.18,

q = 1.4, ŝ = 0.786, ∂r/Rβ = −0.0. A single ion species is used with R/Lni = 2.222

and T0i = T0e and the electron species is assumed adiabatic. The GS2 simulation



6.2. Future Directions 265

domain for these studies has fixed Lx = 76.33ρi and Ly = 62.83ρi with varying

number of grid points in the perpendicular directions, i.e. varying resolution ∆x

and ∆y. In spectral space, nonzero modes are resolved in the range 0.082 ≤ |kxρi| ≤

0.082(nkx− 1)/2 and 0.10 ≤ kyρi ≤ 0.10(nky − 1). The domain along the field line

has length Lz = 2πqR = 8.79R, with Nθ = 32 grid points per 2π in θ. The

velocity grid has NE = 16 total energy grid points and Nλ = 37 pitch angle grid

points (λ = µ/E). Runs were performed as typical with time-centering parameter

r = 0.55 and slight upwind diffusion (spatial-centering parameter s = 0.55). A

value of Dhv = 0.075 was chosen for the constant coefficient in the subgrid model

based on an optimization scan for the R/LT i = 6.92 case at low resolution (7 kx

modes × 3 ky modes).

Overall, the results in figure 6.1 show that, for low resolution runs, addition of

a subgrid model significantly improves the accuracy, particularly at high R/LT i. In

fact, with the subgrid model, a resolution of 11kx modes × 3ky modes (=33 total k̃⊥

modes) gives approximately equivalent accuracy to cases with twice as many modes

(15×4 = 60 total k̃⊥ modes). Thus, these results indicate that such a subgrid model

may be a valuable tool in the future in performing more time efficient gyrokinetic

simulations.

Future work will focus on improvements of this subgrid model. For exam-

ple, these results in figure 6.1 show that the subgrid model overall consistently

overpredicts χi, indicating that the damping rate may not be large enough. Fine-

tuning some of the coefficients of the subgrid model might lead to further improve-

ments. Another way to improve the model might be to use a more realistic form

for the k-dependence of the eddy damping rate (instead of just a simple polyno-

mial |~k|p) [SMITH and HAMMETT, 1997], perhaps based on work by Kraichnan
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[KRAICHNAN, 1976]. Disparate scale expansions of statistical turbulence theories

[KROMMES and KIM, 2000] may also provide guidance for an improved subgrid

model. Furthermore, a 3D subgrid model, i.e. essentially a 2D model with the addi-

tion of a parallel damping term which is proportional to the parallel shear ∇‖vExB

enhanced by a factor of | ~̃k⊥|/k‖, may lead to more accurate results. A 3D model

would account for the shearing of eddies to unresolved large parallel wavenum-

bers due to small deflections in the ExB velocity at different points along a field

line. Previous results by [SMITH, 1997] show that inclusion of a 3D hyperviscosity

model in a toroidal gyrofluid code can reduce the parallel resolution requirements

by a factor of 2.

Overall, upon development of an improved 2D or 3D hyperviscosity subgrid

model, implementation in a nonlinear version of the trial function-based code (in

place of a quasi-linear approximation) would provide an accurate, yet still relatively

computationally inexpensive, calculation of the heat transport coefficient and thus

may be particularly useful for the development of an iteratively coupled gyrokinetic-

based transport code.

6.2.2 Equilibrium-Scale ExB Shear Effects

Equilibrium-scale ExB shear flows are believed to be important in describing the

formation of internal transport barriers. Nonlinear gyro-Landau-fluid simulations

have shown that the ITG turbulence is suppressed when the shearing rate γExB

exceeds the maximum ITG linear growth rate in the absence of flow shear [WALTZ

et al., 1995]. More recent nonlinear gyrokinetic simulations with GYRO have also

confirmed this “quenching rule” [KINSEY et al., 2005]. Furthermore, gyrokinetic

simulations have more generally shown the importance of ExB shear effects in
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Figure 6.1: Ion heat flux vs. temperature gradient length scale for Cyclone DII-D
base case parameters, comparing various grid resolutions (num kx modes) × (num
ky modes). “GK” refers to the high resolution results from the PG3EQ code of
Dimits et al. The lower plot uses a hyperviscosity-based subgrid model.
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modeling the Bohm-like scaling of low confinement L-mode discharges [CANDY

and WALTZ, 2003b]. Thus, accurate core tokamak plasma simulations must include

these shear flows.

While equilibrium-scale ExB shear effects are straightforward to implement in

a global gyrokinetic code, implementation in a standard flux tube code, such as

GS2, requires some re-consideration of the ballooning representation of the gy-

rokinetic equation due to its assumption of radially periodic boundary conditions.

Equilibrium-scale ExB flows enter as a new LHS term in the gyrokinetic equation:

~v
(0)
ExB · ∇h, where ~v

(0)
ExB = (c/B) ~E(0)

r × b̂ has a radial gradient and is not periodic.

A first approach in implementing radial ExB shear flows is to make GS2’s Fourier-

transformed radial coordinate kx time dependent such that it shears at the ExB

shearing rate, i.e. k
′

x = kx + k̇xt. This leaves the radial derivatives invariant, yet

introduces an additional term from the time derivative of k̇x(∂f/∂k
′

x). (Other ap-

proaches for the coordinate transformation can also be used, such as that presented

in [WALTZ et al., 1994] or [BEER et al., 1999], which shear the new coordinates in

the poloidal direction so as to keep the flux tube aligned with the magnetic field.)

The gyrokinetic equation in these time-dependent coordinates can then be solved

by applying an iterative scheme, such as those explored in this thesis work, using

GS2’s present computation of the exact implicit response matrices for kx=constant

as the preconditioner. Later, as a second approach, implementation of radially non-

periodic boundary conditions could be explored so that the effects of diamagnetic

velocity shear can be studied as well.



Appendix A

The GS2 Algorithm

Here we outline the implementation in GS2 of the implicit algorithm described

in [KOTSCHENREUTHER et al., 1995a] and in this thesis in section 2.1.1 in

Chapter 2. The primary difference in the GS2 implementation is that it uses a

predictor-corrector type format, rather than computing the inhomogeneous and

homogeneous distribution function solutions directly. The precomputed response

matrices are also reformulated. Denoting the standard response matrices as defined

in Eqs. (2.18)-(2.21) as MK , the GS2 response matrices are defined as:

M1
GS2,ij ≡ M1

K,ij −
∑

s

n0se
2Z2

s

T0s
(1− Γ0s,i) δij (A.1)

M2
GS2,ij ≡ M2

K,ij (A.2)

M3
GS2,ij ≡ M3

K,ij (A.3)

M4
GS2,ij ≡ M4

K,ij −
c

4π
k2

⊥
δij (A.4)

Subsequent solutions of the gyrokinetic equation then are found with the following

steps:
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1. Compute fn+1
∗ from the gyrokinetic equation using fn, Φn, An

‖
, Φn+1 = Φn,

and An+1
‖

= An
‖
.

2. Solve a modified form of the Poisson-Ampere equations for the difference

between the new and old fields using fn+1
∗ :

∑

s

n0se
2Z2

s

T0s
(1− Γ0s,i) Φn

i = ρdens,i(f
n+1
∗ )+M1

GS2,ijΦ
n+1
∗,j +M2

GS2,ijA
n+1
‖,∗,j (A.5)

c

4π
k2

⊥,iA
n
‖,i = ρcurr,i(f

n+1
∗ ) +M3

GS2,ijΦ
n+1
∗,j +M4

GS2,ijA
n+1
‖,∗,j (A.6)

3. Sum to get the new fields:

Φn+1 = Φn + Φn+1
∗ (A.7)

An+1
‖

= An
‖

+ An+1
‖,∗ (A.8)

4. Compute fn+1 from the gyrokinetic equation using fn, Φn, An
‖
, Φn+1, and

An+1
‖

.

This is a predictor-corrector like algorithm since the intermediate parameter f n+1
∗

is a result of solution of the gyrokinetic equation in an explicit form, i.e. using the

value of the fields at the old time step as a guess for the value of the fields at the

new time step. Solution of the Poisson-Ampere equations produces, in essence, the

residual error of this guess. The second gyrokinetic solve is then like a corrector step

using the updated values (which are the true values in this case) of the future-time

fields.

However, though this algorithm presents itself in the same format as a predictor-

corrector scheme, it is not an approximation. To see this, we show the derivation of
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the intermediate field equations from the inhomogeneous/homogeneous equations.

We start with the standard Poisson-Ampere equations in terms of MK , from Eqs.

(2.14)-(2.17):

∑

s

n0se
2Z2

s

T0s
(1− Γ0s,i)Φn+1

i = ρdens,i(f
n+1
inhomo) +M1

K,ijΦ
n+1
j +M2

K,ijA
n+1
‖,j (A.9)

c

4π
k2

⊥,iA
n+1
‖,i = ρcurr,i(f

n+1
inhomo) +M3

K,ijΦ
n+1
j +M4

K,ijA
n+1
‖,j (A.10)

Substituting MGS2 into these equations gives

0 = ρdens,i(f
n+1
inhomo) +M1

GS2,ijΦ
n+1
j +M2

GS2,ijA
n+1
‖,j (A.11)

0 = ρcurr,i(f
n+1
inhomo) +M3

GS2,ijΦ
n+1
j +M4

GS2,ijA
n+1
‖,j (A.12)

Introducing the intermediate field parameters Φn+1
∗ and An+1

‖,∗ and using the rela-

tionship between MGS2 and MK, we can write that

∑

s

n0se
2Z2

s

T0s
(1− Γ0s,i) Φn

i = M1
GS2,ijΦ

n+1
∗,j +M2

GS2,ijA
n+1
‖,∗,j

+
[

M1
K,ijΦ

n
j +M2

K,ijA
n
‖,j + ρdens,i(f

n+1
inhomo)

]

(A.13)

c

4π
k2

⊥,iA
n
‖,i = M3

GS2,ijΦ
n+1
∗,j +M4

GS2,ijA
n+1
‖,∗,j

+
[

M3
K,ijΦ

n
j +M4

K,ijA
n
‖,j + ρcurr,i(f

n+1
inhomo)

]

(A.14)

We would like to rewrite these equations in terms of fn+1
∗ rather then fn+1

inhomo by

finding an equivalence relation using the gyrokinetic equation. To do this, we first
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expand out the terms in brackets as:

M1
K,ijΦ

n
j +M2

K,ijA
n
‖,j + ρdens,i(f

n+1
inhomo) =

∑

s

eZs

∫

d3vJ0s,iLi (A.15)

M3
K,ijΦ

n
j +M4

K,ijA
n
‖,j + ρcurr,i(f

n+1
inhomo) =

∑

s

eZs

∫

d3vv‖J0s,iLi (A.16)

where

Li ≡
δfn+1

i

δΦn+1
j

Φn
j +

δfn+1
i

δAn+1
‖,j

An
‖,j + fn+1

inhomo,i (A.17)

Consider the generic finite difference form of the gyrokinetic equation as given in Eq.

(2.13). Ignoring the θ grid index for simplicity, the gyrokinetic equation becomes

Cfn +Dfn+1 = FΦn +GΦn+1 +HAn
‖

+KAn+1
‖

(A.18)

The inhomogeneous gyrokinetic equation and the plasma response functions as

derived from this equation are given in Eqs. (2.22), (2.24), and (2.25). Using these

relation, we expand L in operator format as

L = D−1
[

(F +G)Φn + (H +K)An
‖ − Cfn

]

(A.19)

Note then that L ≡ fn+1
∗ , i.e. Eq. (A.19) is just the solution of the gyrokinetic

equation with Φn+1 = Φn and An+1
‖

= An
‖
. Thus, substituting fn+1

∗ into Eqs. (A.13)

and (A.14), the Poisson and Ampere equations become Eqs. (A.5) and (A.6). Once

Φn+1
∗ and An+1

‖,∗ are computed (and thus ultimately Φn+1 and An+1
‖

) from these

equations, fn+1 can be computed directly from the gyrokinetic equation as in Step

4. Thus, we have shown that solution of the gyrokinetic-Poisson-Ampere equations

in GS2 with this predictor-corrector like form of Kotschenreuther’s algorithm is
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equivalent to his original published algorithm in [KOTSCHENREUTHER et al.,

1995a].



Appendix B

Templates of Iterative Algorithms

Templates for the iterative algorithms discussed in Chapter 2 are presented here.

We consider solution of a general linear system of equations A~x = ~b, where A is

a square nonsingular complex matrix, with left-preconditioning, i.e. MA~x = M~b,

where M is the preconditioner which is assumed to be precomputed. The algorithms

are presented in “matrix-free” form and thus it is not necessary that the elements

of A be computed since the only necessary operations involving A are matrix-vector

multiplications A~v, which can be defined implicitly. The templates given below for

the steepest descent/conjugate gradient and bi-conjugate gradient stabilized (Bi-

CGSTAB) algorithms are adapted from [BARRETT et al., 1994]. The template

for the restarted generalized minimal residual (GMRES(m)) algorithm is adapted

from [SAAD and SCHULTZ, 1986] and [SAAD, 2003] using implementation of the

Arnoldi algorithm through the modified Gram-Schmidt orthogonalization process

and using the stopping conditions as defined in [FRAYSSE et al., 2003].
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B.1 Simple Iteration

Given an initial guess x0, compute the residual r0 = b− Ax0.

FOR i = 0, 1, 2, . . .

zi = M−1ri

xi+1 = xi + zi

ri+1 = b− Axi+1

Check convergence; continue if necessary.

END

B.2 Steepest Descent and Conjugate Gradient

Given an initial guess x0, compute the residual r0 = b− Ax0.

FOR i = 0, 1, 2, . . .

zi = M−1ri

IF i = 0 or steepest descent algorithm,

pi+1 = zi

ELSE

βi =
〈ri|zi〉

〈ri−1|zi−1〉

pi+1 = zi + βip
i

ENDIF

qi+1 = Api+1

αi+1 =
〈ri|zi〉

〈pi+1|qi+1〉

xi+1 = xi + αi+1p
i+1

ri+1 = ri − αi+1q
i+1

Check convergence; continue if necessary.
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END

B.3 Bi-CGSTAB

Given an initial guess x0, compute the residual r0 = b− Ax0.

Choose r̃ (e.g. r̃ = r0).

FOR i = 0, 1, 2, . . .

(IF 〈r̃ | ri〉 = 0, METHOD FAILS)

IF i = 0,

pi+1 = ri

ELSE

βi =
〈r̃|ri〉
〈r̃|ri−1〉

αi

ωi

pi+1 = ri + βi (p
i − ωivi)

ENDIF

p̂ = M−1pi+1

vi+1 = Ap̂

αi+1 =
〈r̃|ri〉
〈r̃|vi+1〉

s = ri − αi+1v
i+1

Check convergence wrt s:

IF s is small enough,

Set xi+1 = xi + αi+1p̂

STOP

ENDIF

ŝ = M−1s

t = Aŝ
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ωi+1 = 〈t|s〉
〈t|t〉

xi+1 = xi + αi+1p̂+ ωi+1ŝ

ri+1 = s− ωi+1t

Check convergence; continue if necessary.

(for continuation, it is necessary that ωi+1 6= 0)

END

B.4 GMRES(m)

Given an initial guess x0, compute the residual r0 = M−1(b− Ax0).

Initialize v1 = r0

||r0||
2

FOR p = 0, 1, 2, . . .

Construct a basis using the Arnoldi process:

FOR j = 1, . . . , m

wj = M−1Avj

FOR i = 1, . . . , j

hij = 〈wj | vi〉

wj = wj − hijvi
END

hj+1,j = ||wj||2
vj+1 = wj/hj+1,j

Define the N × j matrix Vj = [v1 . . . vj]

Define the (j + 1)× j matrix H̄j = hik1≤i≤j+1,1≤k≤j

Compute yj by solving the least squares problem:

min ~yj∈Cm

∣

∣

∣

∣

∣

∣

(

||r0||2 e1 − H̄jyj
)∣

∣

∣

∣

∣

∣

2
, where e1 = (1, 0, 0, . . . , 0)T ∈ Cj.
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Check convergence of the Arnoldi-computed residual:

ρj =
∣

∣

∣

∣

∣

∣

(

||r0||2 e1 − H̄jyj
)∣

∣

∣

∣

∣

∣

2

IF ρj is small enough,

Check convergence of the true residual:

xj = x0 + Vjyj

rj = M−1(b− Axj)

IF rj is small enough, STOP

ELSE continue

ENDIF

END

IF j > m,

Restart:

Set x0 = xj = x0 + Vmym

Set r0 = rj = M−1(b− Axm)

Re-initialize v1 = r0

||r0||
2

Return to basis construction loop.

ENDIF

END



Appendix C

Unsaturated Transport in Finite β

GS2 Simulations

Studies of the effects of shaping on nonlinear ITG turbulence with electromagnetic

dynamics presented in section 4.4.2 in Chapter 4 found that β strongly negatively

affects the electron transport. It was noted that unsaturated transport was observed

for some cases, particularly as β increases and shaping decreases. Here we address

these cases.

The results presented in section 4.4.2 were performed for β < β(κ), where β(κ) is

given by Eq. (4.7), i.e. varying with shaping to keep the Troyon-normalized β fixed

while also holding q95 fixed. In a scan over β for the shaped plasmas, unsaturated

transport was observed for:

• κ = 1.00, as low as β = 1
3
β(κ)

• κ = 1.20, as low as β = 1
2
β(κ)

• κ = 1.46 and κ = 1.80, as low as β = β(κ)
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As shown in the time evolution plots of the heat flux in figure C.1 for the κ = 1.00

circular case at β = 1
3
β(κ), these cases look like typical well-resolved simulations,

with the heat flux reaching an apparent steady state phase for a while. However,

eventually the heat flux blows up, rising first and most rapidly in the magnetic

flutter contribution to the electron transport.

Future work will focus on more comprehensive studies of these cases to address

whether the observed unsaturated transport is a numerical problem. With the

electrostatic results, numerical convergence studies were done with varying spatial

resolution. However, with the electromagnetic cases, it is computationally diffi-

cult to do very high resolution runs. While diagnostics tools, such as analysis of

the spectral components of the heat fluxes, were used to set the simulation do-

main within the constraints of computational intensity (which essentially limits the

number of kx and ky modes that can be resolved) and to verify that the heat flux

is well-resolved in spectral space, more exploration of the possibility of numerical

issues could be done.

For example, similar results of unsaturated transport have been seen in elec-

tromagnetic GS2 simulations of high β spherical torus plasmas [APPLEGATE et

al., 2006], but they recently found that adding a modest amount of damping of

very high k⊥ modes due to classical collisional electron diffusion (with a damp-

ing rate ∝ νeiρ
2
ek

2
⊥) was sufficient to prevent these cases from blowing up and the

steady state phase was then maintained. This seems in line with the fact that,

in the recently published GYRO electromagnetic results of [CANDY, 2005], initial

convergence studies note the difficulties of accurately resolving, in particular, the

magnetic component of χe in spectral content at high βe. Furthermore, we note
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Figure C.1: Time evolution of the perturbed fields (top plots) and the electro-
static and electromagnetic components of the ion and electron heat flux (in units
of χiter,sLni/(ρ

2
i vti)) for the JET-based circular case at β = 1

3
β(κ). Note that χ

reaches an apparent steady state phase for a while, but eventually blows up.

that our particular JET-based cases may be even more challenging than usual be-

cause of their steeper temperature gradient (R/LT = 10.81) and stronger magnetic

shear (ŝ = 1.62) than a typical tokamak plasma. Thus, near future work will focus

on more comprehensive studies of these unsaturated transport results, specifically

first exploring the impact of a classical Coulomb diffusion term, such as that used

by [APPLEGATE et al., 2006], on turbulence in the standard tokamak regimes we

have been focusing on. The use of subgrid models of turbulence, such as those

discussed in section 6.2.1 in Chapter 6, can also be used to aid in spatial resolution

convergence studies, without increasing the computational intensity.
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