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In solving the 1D (flux surface averaged) transport equations for the temperatures, 
magnetic fields, and densities in the “evolving equilibrium” equilibrium description of a 
tokamak[1], one increasingly encounters highly nonlinear thermal conductivity and 
diffusivity functions, such as GLF23[2], that have a strong and non-analytic dependence 
on the temperature gradients.  These arise from a subsidiary microstability based 
calculation in which the growth rates and hence transport coefficients are sensitive 
functions of these gradients [3].  When these nonlinear functions are interfaced with an 
existing transport framework that uses a standard implicit time advancement algorithm 
such as Crank-Nicolson or backward Euler [4], large non-physical oscillations can 
develop and, as a result, non-convergent solutions can occur.  Here we describe a 
relatively simple modification to these implicit algorithms that cures this difficulty. 
 
To illustrate the method, we start with a simple diffusion equation in cylindrical polar 
coordinates: 
 

( )1T Tr T S
t r r r

χ∂ ∂ ∂⎡ ⎤′= +⎢ ⎥∂ ∂ ∂⎣ ⎦
                                                 (1a) 

 
Now, define a new independent variable,Φ , proportional to the area (or the toroidal 
magnetic flux if a uniform longitudinal magnetic field is present), that is defined 
as: 2 / 4rΦ ≡ .    With this substitution, equation (1a) becomes  
 

( )T TT S
t

χ∂ ∂ ∂⎡ ⎤′= Φ +⎢ ⎥∂ ∂Φ ∂Φ⎣ ⎦
                                               (1b) 

 
Here we have denoted the dependence of the thermal conductivity on  by ( )T Tχ ′∂ ∂Φ . 
We normalize the domain to 0 1≤ Φ ≤ . Note that this has a steady-state solution for 

1, 1, 1 .S Tχ = = = −Φ    
 
We apply a boundary condition of T=0 at Φ=1, keep S=1, and use the above solution as 
an initial condition.  Now, define a function that mimics the critical gradient thermal 
diffusivity model GLF23: 
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For definiteness, let 0χ =1.0, α=0.5, k = 10, and 0.5cT ′ = . 
 
In order to finite difference  Eq. (1b), we define a mesh going from 0 to 1.  We make jT  a 
cell centered quantity, in which j goes from 1 to N+1.  If we define the flux increment as 

1
21 ( )NΔΦ = + , then the temperature jT  is centered at location 1

2( )j jΦ = − ΔΦ .  Thus, 
the temperature at j=1 corresponds to a cell center located at 1

1 2Φ = ΔΦ , and the 
boundary condition is applied as 1 0NT + =   .   There is no need for a ghost zone or 
boundary condition at j=0.   We first try solving this with a θ-implicit method (Crank-
Nicolson corresponds to θ=0.5 and backward Euler to θ=1.0) with s ≡ 2tΔ ΔΦ : 
 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

1 1 1 1 1
1/ 2 1/ 2 1 1/ 2 1/ 2 1

1/ 2 1/ 2 1 1/ 2 1/ 2 11

n n n n n n n n
j j j j j j j j j j

n n n n n n
j j j j j j j j

T T s T T T T T T

s T T T T T T tS

θ χ χ

θ χ χ

+ + + + +
+ + + − − −

+ + + − − −

⎡ ⎤ ⎡ ⎤′ ′= + Φ − − Φ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′ ′+ − Φ − − Φ − + Δ⎣ ⎦ ⎣ ⎦

     (3) 

Or, in tridiagonal form, 
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Figure 1:  Initial solution of Eq. (1) using backward Euler method corresponding to (3) with θ=1.  
Left plot is temperature vs. time at zone 10, and right is temperature vs. time at  zone 90.  Finely 
oscillating curves (red online) have Δt=0.01, coarse oscillating curves have Δt=0.10. 
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Figure 2: Initial solution of Eq. (1) using backward Euler  method (3).   Left plot is dT/dΦ at zone 10 
vs. time and right plot is at zone 90.  Curves correspond to those in Figure 1. 
 
The illustrations in Figs 1 and 2 are the result of solving this with n=100 zones, with a 
time step Δt=0.01 (and 0.10), implicit parameter θ=1.0 for 200 (and 20) time steps.  We 
plot the time history of the function and derivative at locations 10 and 90. 
 
This is seen to be very noisy, with a large amplitude oscillation and is not obviously 
convergent.   In order to improve the solution, we investigate a nonlinearly implicit 
method that would seek to evaluate the χ functions multiplying the advanced time 
derivatives also at the advanced times, i.e.: 
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We can derive a Newton’s iteration to solve this by defining the modified coefficients 
corresponding to Newton iteration i (out of N): 
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The results of solving the equation using the coefficients in (7) rather than those in (4), 
evaluating all derivatives of the form Tχ ′∂ ∂  numerically, and using just a single 
Newton iteration each time step, are shown in Figures 3 and 4. We see that the solution 
converges to a mean result (compared to Figs 1 and 2) and without oscillations. Note that 
if we specialize to only a single Newton iteration, we can rewrite Eq. (7) as: 
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Figure 3: Temperatures at zone 10 (left) and zone 90 (right) corresponding to Figure 1 using a single 
Newton iteration as defined by Eq. (8) 

 

 
Figure 4: Temperatures derivatives at zone 10 (left) and zone 90 (right) corresponding to Figure 2 
using a single Newton iteration as defined by Eq. (8) 
 
 
We note that the finite difference equation (8) corresponds to the differential equation: 
 
 

( )T T TT T T S
t T T

χ χχ∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′= Φ + − Φ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′∂ ∂Φ ∂ ∂Φ ∂Φ ∂ ∂Φ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
                     (9) 

 
where the first term on the right is evaluated θ-centered in time and the second term is 
evaluated at the old time level.   The multi-iteration Newton method, equation (7), is 
equivalent to repeating the timestep but using the most recent values of  and Tχ χ ′∂ ∂ in 
(9). 
 
As further demonstration of the improved properties of the Newton method (8) over the 
backward Euler  method (3), we show a comparison of the solutions over the transient 
period 0 < t < 0.4 with a series of timesteps ranging from Δt = 0.0025 to Δt = 0.08.  
Figure 5a corresponds to the Newton method (8).  The results are seen to converge 
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linearly in timestep Δt.  Figure 5b corresponds to the backward Euler method (3) with 
θ=1.  It is seen that the results are non-convergent as Δt  0.  To show that this non-
convergence is a result of the nonlinearity, we have repeated the backward Euler 
calculation of 5b but with a linear transport model corresponding to χ0 = 3 and k=0 in (2).  
The fact that the results are now convergent shows that the nonlinearity in the transport 
model is responsible for the poor behavior of the backward Euler method. 

 
Figure 5a: Convergence results for Newton method (3) for a sequence of time steps ranging from 
0.0025 to 0.080.  Inset shows values at time t=0.16 
 

 
Figure 5b: Same as for Figure 5a except using the backward Euler method.  Results do not appear to 
be converging with timestep. 
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Figure 5c: Backward Euler method (3) with  a linear transport model obtained by setting χ0=3 and 
k=0 in (2).  Results are now convergent, indicating that the poor convergence shown in Figure 5b is 
due to the nonlinearity in the thermal diffusivity model χ(T’). 
 
 
We have incorporated this method into two existing production tokamak transport codes 
with only minor modification.  Thus, in the existing numerical method in TSC [5] or in 
PTRANSP [6], the first term can just be treated as a modified thermal conductivity: 

( ) ( )T T T
T
χχ χ ∂′ ′ ′→ +
′∂

                                                     (10a) 

and the second term can be treated as a modified source term: 
 

TS S T
T
χ∂ ∂ ∂⎧ ⎫⎡ ⎤′→ − Φ⎨ ⎬⎢ ⎥′∂Φ ∂ ∂Φ⎣ ⎦⎩ ⎭

                                            (10b) 

Extending this to two temperatures T and Te gives: 
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                        (11) 

 
Here, again, the first term on the right of each equation is evaluated θ-centered in time, 
and the second term is evaluated at the old time level.   
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The algorithm presented here is a variation of an unpublished algorithm first developed 
by one of us for usage in transport codes employing the IFS-PPPL transport model, 
which is a precursor to the current GLF23 model.  In this note we show it to be in fact a 
Newton iteration and hence it can be iterated each individual time step to improve 
robustness.  Variants of this algorithm have also been briefly mentioned in Ref. [7] and 
[8].  Taking a single iteration is a similar concept to that proposed by Beam and Warming 
[9] for systems of hyperbolic equations, while performing multiple iterations is 
equivalent to the nonlinearly consistent method [10], both of which are discussed in Ref. 
[11].  A significant new feature of the method presented here is that the linearization has 
been done semi-analytically (but without assuming any particular form for ( )Tχ ′ ).  This 
allows us to keep the implicit difference equations in tri-diagonal form, even after the 
linearization.  One does not need to calculate Jacobians or use Krylov methods such as 
GMRES as is done in [11].  Since the tri-diagonal solution method is very efficient and 
already being used by the codes we are targeting, the modification only amounts to a 
simple re-definition of the coefficients and essentially no increase in running times. 
 
 
Application to a JET Discharge 
 
Here we show an example with the method implemented in the PTRANSP code as part 
of the finite difference algorithm that is used to advance the electron and ion thermal 
transport equations.  The thermal transport equations are a pair of diffusive-convective 
equations, similar to equation (11), that are coupled tightly through an equipartition term 
that is proportional to the difference between the electron and ion temperatures.  When 
the finite difference approximations to the transport equations are advanced in time using 
an implicit technique, the result is a block tridiagonal system of algebraic equations 
similar to equation (4) that must be solved each time step. 
 
Before the implementation of the form of Newton’s method described here, time 
smoothing was used in an effort to control the numerical artifact associated with the use 
of stiff transport models.  The results of a simulation using time smoothing together with 
the GLF23 transport model are shown in the left two panels of Fig. 6, where the electron 
and ion thermal diffusivities are plotted as a function of normalized minor radius 
(electron thermal diffusivity in the bottom panel and ion thermal diffusivity in the top 
panel).  If time smoothing (or Newton’s method) were not used, the numerical artifact 
(ragged behavior shown in the left panels of Fig. 6) would be so severe that the 
simulation could not be run.   
 
Corresponding simulation results are shown in the right panels of Fig. 6 after the 
implementation of Newton’s method [similar to equation (7)] with time smoothing turned 
off.  In this simulation of a JET tokamak discharge using the GLF23 transport model, 
three Newton’s method iterations are used to advance the finite difference equations each 
time step and the implicitness parameter θ is taken to be unity.  (The use of three 
iterations is a compromise between a single iteration, which gives almost identical 
results, and a full nonlinear convergent method, which has not been implemented.  
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Simulation results indicate that θ=1 yields smoother solutions for a single Newton 
iteration with large timesteps than does θ=0.5). The small remaining lack of smoothness 
in the diffusivity profiles can be attributed to the random Monte Carlo noise in the source 
terms [S in equation (12)] and the abrupt transition to a steep gradient boundary layer that 
is imposed beyond r/a > 0.95 in these simulations. 
   

Figure 5.  Electron and ion thermal diffusivity (bottom and top panels respectively) as a function of 
normalized minor radius, r/a, from a PTRANSP simulation of a JET discharge before and after 
Newton’s method was implemented (left and right panels respectively). 
 
 
Several problems were encountered in the implementation of Newton’s method in the 
TSC and PTRANSP codes when used with the GLF23 transport model.  There are some 
conditions, for example, that result in a negative derivative of the thermal diffusivity with 
respect to the temperature gradient, at least for one of the channels of transport.  The 
negative gradient can be so large that the combination χ+(∂χ/∂T ')T ' can be negative 
(such as could happen at a transport barrier bifurcation), which results in a severe 
numerical instability.  In order to avoid this problem, the magnitude of negative values of 
∂χ/∂T ' had to be limited in order to ensure that the combination χ+(∂χ/∂T ')T ' is always 
positive. 
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