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The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas
are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys.
Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys.
Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters
are performed using analytic equilibria based on interpolations of representative shapes of the Joint
European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping
is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability
and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux
with elongation of χ ∼ κ−1.5 or κ−2.0, depending on the triangularity, is observed at fixed average
temperature gradient. While this is not as strong as empirical elongation scalings, it is also found
that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient
due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

PACS numbers: 52.65.Tt, 52.35.Ra, 52.35.Kt, 52.55.Fa

I. INTRODUCTION

Experimental studies indicate that plasma shaping ef-
fects are important in improving the performance of
tokamaks. Multi-tokamak studies of macroscopic stabil-
ity and global confinement have shown that increased
shaping (elongation and triangularity) generally leads to
significant increases in the energy confinement time τE
[1, 2], in the β stability limit [3], and in the Green-
wald density limit [4]. Observations of the favorable ef-
fects of shaping in individual tokamaks include, for ex-
ample, significant increases in the β stability limit with
increased elongation and triangularity in DIII-D [5, 6],
simultaneous high confinement and high density relative
to the Greenwald density limit with increased triangular-
ity in high-mode (H-mode) discharges with edge localized
modes (ELMs) in the Joint European Torus (JET) [7],
and increased electron confinement time with increased
elongation in low-mode (L-mode) electron cyclotron-
heated discharges, with additional enhancements at low-
to-negative triangularities, in the Tokamak á Configura-
tion Variable (TCV) experiment [8]. These effects are
generally attributable to an allowance for higher plasma
current at fixed q, which is generally constrained by the
kink instability.

The effects of shaping on plasma microturbulence and
transport are, however, not fully understood. In this pa-
per, these effects are studied using high resolution, fully
electromagnetic, 5D gyrokinetic simulations. In relation
to gyrokinetic stability, shaping the plasma can influ-
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ence the ion-temperature-gradient (ITG) turbulence by
changing the local magnetic shear [9, 10]. Specifically,
the toroidal ITG instability is driven by bad-curvature
effects. However, because particles that produce an eddy
tend to follow the field lines, ITG turbulence can be re-
duced by reversed magnetic shear, which twists an eddy
in a short distance to point in the good-curvature direc-
tion. In contrast, for positive magnetic shear, convective
cells tend to remain oriented in the ∇R direction and are
thus more strongly driven. (An illustration of this can be
found in Fig. 2 of Ref. [10].) Locally reversed magnetic
shear is most commonly produced naturally by squeezing
the field lines at high pressure, creating the so-called “sec-
ond stability” regime, which was first predicted by ideal
magnetohydrodynamic (MHD) theory [11] and provides
the basis behind the design of advanced tokamak [12] and
spherical torus [13] configurations. However, locally re-
versed magnetic shear can also be produced by changing
the plasma shape, such as varying the elongation and tri-
angularity, since this changes the poloidal magnetic field.
These effects are explored here.

While the effects of shaping have been studied theo-
retically in some detail with respect to gyrokinetic linear
stability [14–16], the effects of shaping on nonlinear gy-
rokinetic microturbulence are not well known. Although
some gyrokinetic studies of nonlinear turbulent transport
in non-circular geometry have been done recently [17–19],
most systematic studies of shaping effects have been per-
formed with gyrofluid simulations. Most notably, shap-
ing studies by Waltz and Miller [16] using a coupling of
the analytic Miller local equilibrium model [20] with a gy-
rofluid code found a general improvement with elongation
at fixed zero triangularity for ITG turbulence with adia-
batic electrons. More recent studies of drift Alfvén and
ITG turbulence in edge-like plasmas by Kendl and Scott
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[21] using the gyrofluid code GEM [22, 23] and numerical
equilibria found a similar, though stronger, reduction of
turbulent transport with increased elongation, primarily
due to magnetic shear damping and additionally due to
enhanced zonal shear flows for ITG turbulence parame-
ters, but found only a weak enhancement with increased
triangularity.

The goal of our studies here is to extend these previ-
ous studies to develop an understanding of and predictive
models for the scaling of nonlinear turbulence levels with
shaping parameters through systematic gyrokinetic sim-
ulations of plasma microturbulence in varying geometric
equilibria using a realistic parameterization of elongation
and triangularity and the local radial gradients of the
shaping parameters. In these studies, we use the gyroki-
netic code GS2 [24, 25], a flux tube-based Eulerian code,
which includes nonlinear effects, gyrokinetic electron dy-
namics, trapped particles, electromagnetic perturbations
(though we focus on the electrostatic limit here), and
a pitch angle scattering collision operator, coupled with
the analytic Miller equilibrium model [20] to obtain real-
istic shaped plasma flux surfaces based on representative
JET-based plasmas.

The remainder of this paper is organized as follows.
In Sec. II, some general issues are discussed regarding
how the simulation parameter scans were chosen, and
some caveats about comparing local diffusion coefficients
and global confinement time are identified. In Sec. III,
the formulation of the equilibrium is described. In Sec.
IV, simulation results showing the effects of shaping on
gyrokinetic linear stability are presented. In Sec. V,
these studies are extended to include nonlinear dynam-
ics, and scalings of the nonlinear ITG turbulence with
shaping, including comparisons with empirical scaling
laws, are shown. The effects of shaping on the Dimits
nonlinear shift of the critical temperature gradient are
also presented and further described via analysis of the
Rosenbluth-Hinton component of the zonal flows. Fi-
nally, a brief summary of the results is given in Sec. VI.

II. METHODOLOGY AND PARAMETER SCAN

CHOICES

Before going on, we first discuss some general issues
about how the shaping scans are done in this paper and
their physical motivation. There are various possible
choices that could be made of which parameters to hold
fixed while doing these scans, and there is not necessar-
ily a best set of choices for all purposes. One issue is
that there are many shaping parameters (nine local ge-
ometric parameters, plus other profile parameters), and
we have chosen a few particular slices through this multi-
dimensional space to make the problem manageable. The
approach we adopted for this work, which is described in
detail in Sec. III, basically provides interpolations from
the circular limit to a standard JET shape and extrapo-
lations beyond that to stronger shaping.

A main issue is the interpretation of the simulation
transport results in relation to empirical global confine-
ment scalings. Empirical scalings of the global confine-
ment time τE are usually expressed in terms of engineer-
ing variables, like the total plasma current Ip and heating
power P , while turbulence theories for local fluxes are ex-
pressed in terms of local parameters, like the magnetic
field B and plasma temperature, and geometric quanti-
ties related to the structure of the magnetic field, such
as the inverse winding number q (and thus the connec-
tion length ∼ Rq between the good and bad-curvature
regions of the plasma), the flux-surface averaged mag-
netic shear ŝ, the elongation and triangularity of flux
surfaces and their gradients (which affect the local mag-
netic shear that varies within a flux surface), etc. Most
of the favorable shaping dependence observed in experi-
ments is well captured implicitly through the dependence
on the current, i.e. τE ∝ Ip, basically because a highly
elongated and triangular plasma can carry a lot more
current at fixed q since Ip ∝ a2BT fs(κ, δ)/q95, where a
is the midplane minor radius, BT is the toroidal mag-
netic field, and an expression for dependence of fs(κ, δ)
on edge elongation κ and triangularity δ is given in Eq.
(9). The challenge for theory then is to understand how
this strong improvement with the global plasma current
can be explained in terms of local physics mechanisms,
including critical gradients, and thus the local or geomet-
ric parameters such as plasma shaping that more directly
affect the turbulence.

While we will find some favorable dependence of the lo-
cal thermal diffusivity χ on shaping parameters (at fixed
temperature gradient) and some additional favorable de-
pendence of the critical temperature gradient on shaping,
these effects by themselves appear to be insufficient in
fully explaining the strong shaping dependence of global
confinement observed in experiments. It may be that the
remaining shaping dependence enters indirectly through
the edge region, via the effects of critical gradients that
can lead to stiff profiles where the core results are coupled
to edge boundary conditions.

This is related to the complication that there is not
a simple relationship between global confinement scal-
ing and local transport coefficients because of the strong
nonlinearities and critical gradient threshold that exist
in transport coefficients. (There may also some turbu-
lence spreading that smoothes the radial dependence of
χ and further complicates comparisons. This spreading
is usually small in most cases, though it may become im-
portant in some cases, particularly near the edge.) For
example, theoretical transport coefficients often have a
basically gyro-Bohm scaling but with a critical gradient
threshold [26], e.g.

χ = χ0

cT
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ρi
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(
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LT,crit
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R

LT
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)

(1)

where cT/eB is the Bohm factor, ρi is the ion gyrora-
dius, R is the major radius, 1/LT

.
= −(1/T )(dT/dr) is

the temperature gradient scale length, 1/LT,crit is the
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critical gradient scale length threshold, H is a Heaviside
step-function which is zero if the temperature gradient
does not exceed the critical threshold, and χ0 is a coeffi-
cient that depends on various dimensionless parameters
such as q, r/R, κ, δ, etc. Balancing diffusive losses with
heating, P = −nχdT/dr = nχT/LT , we find that the
predicted temperature gradient has the form

R

LT
=

R

2LT,crit
+

1

2

√

(

R

LT,crit

)2

+
4P

χ0Sn(r)T 5/2(r)
(2)

where S is a coefficient that depends on parameters
such as B and R. In many hot plasmas, the ratio
P/(χ0SnT

5/2) is sufficiently small that the temperature
profiles are pinned to near marginal stability, R/LT ≈
R/LT,crit, over much of the plasma radius. Only near
the cooler edge would the predicted temperature gradi-
ent scale length be affected directly by the shaping depen-
dence of the coefficient χ0. Another way to think of this is
to consider the limit where the plasma is at marginal sta-
bility everywhere. In this limit, the temperature profile
is found just by integrating dT/dr = −T/LT,crit, giving
that T (r) ≈ Tped exp((a− r)/LT,crit). One would expect
the dominant effect of shaping on the core temperature
profile in this limit might enter through the effects that
plasma shaping has on the edge/pedestal temperature
Tped that sets the boundary condition. (We will also find
in our simulation results that shaping has a favorable
effect on LT,crit.) In this case the shaping effects are
rather indirect. Specifically, the effect of shaping on χ0

is most important in the edge region in determining Tped

(or shaping may enter through ELM stability limits that
set Tped in H-mode cases). This then sets the boundary
condition for integrating the core temperature gradient
at marginal stability and thus propagates this favorable
shaping effect on edge turbulence or ELM limits into the
core temperature profile. Some of these issues will be
discussed in more detail in Sec. V A.

Because of the sensitivity of χ to small changes in the
temperature gradient when near marginal stability, the
best way to compare experiments and gyrokinetic codes
may be in a profile-prediction mode, where the gyroki-
netic code is feed-back controlled to predict the temper-
ature gradient that would give the experimental heating
power, instead of the usual approach of a χ-prediction
mode, where the gyrokinetic code predicts the turbulent
χ given an experimentally measured temperature gradi-
ent. There is recent interest in developing such a profile-
prediction capability with gyrokinetic codes, including
fully self-consistent coupling with transport codes. How-
ever, in this paper, for simplicity, we will study the ef-
fects of shaping on gyrokinetic predictions of χ at fixed
temperature gradient and as the temperature gradient is
scanned. In cases where the plasma profiles are pinned to
marginal stability and thus R/LT does not directly de-
pend on the coefficient χ0, one can consider any shaping
effects we find for χ0 to be indicative of possible shaping
effects on χ in the edge region, which would then improve

the core temperature as well by providing a higher edge
boundary condition.

III. JET-BASED PLASMA EQUILIBRIUM

For these shaping studies, we use the local parameter-
ized equilibrium model developed by Miller et al. [20]
to obtain a realistic treatment of the plasma shape. In
the Miller model, nine parameters are required to fully
describe the local equilibrium: κ (elongation), δ (triangu-
larity), ŝ (global magnetic shear), α (pressure gradient),
R/a (aspect ratio), q (safety factor), ∂rR0, ∂rκ, and ∂rδ.
The shape of a flux surface is specified using a standard
formula for D-shaped plasmas:

Rs = R0 + r cos
[

θ +
(

sin−1 δ
)

sin θ
]

(3)

Zs = κr sin(θ) (4)

The primary advantage of this model compared with a
full numerical equilibrium is that the parameters can be
individually varied, thus allowing for systematic studies
of the effects of each upon stability and transport for
shaped flux surfaces.

A complete scan of a nine-dimensional parameter space
as described by the Miller local equilibrium model us-
ing generic equilibria would be difficult due to the com-
putational intensity of nonlinear gyrokinetic simulations.
Furthermore, in most real experiments, the various shap-
ing parameters are not fully independent and tend to be
correlated with each other. Thus, we consider a sin-
gle cut through the space of shaping parameters, be-
ginning with parameters from an existing tokamak as a
base case. Specifically, our simulation studies begin with
shaping parameters based on experimental data from
JET [27]. We have focused on JET ELMy shot 52979,
t=22.0s. This shot was run as a long duration, high den-
sity experiment to study density peaking, as described
in Refs. [28, 29], and is included in the ITER Profile
Database [30]. Radial profiles of the shaping parame-
ters and the ion and electron temperatures and densities
from TRANSP analysis [31–33] of the data are shown
in Fig. 1. We have chosen one radial zone as a repre-
sentative shaped flux surface and then artificially varied
the shaping parameters using the Miller formalism to ap-
proach the circular limit via linear interpolations. This
zone, which we will refer to as zone 75, corresponds to
r/a = 0.80 and was chosen in particular because shaping
effects are strongest near the plasma edge, yet experi-
mental measurements too close to the edge are subject
to large uncertainties.

The standard local parameters based on the JET zone
75 equilibrium are given as follows: r/a=0.80, R/a=3.42,
∂rR0=-0.14, q=2.03, ŝ=1.62. The original shaping pa-
rameters for zone 75 are: κ=1.46, ∂r/aκ = 0.57, δ=0.19,
∂r/aδ= 0.60. We note that here we use a symmetrized ge-
ometry for simplicity and thus have neglected the slight
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up-down asymmetry seen in the actual plasma shape, as
this is not accounted for in the standard Miller formal-
ism. The parameterizations of the shaping factors based
on linear interpolations of this data are given by

∂r/aκ(κ) = (0.57/0.46) (κ− 1) (5)

δ(κ) = (0.19/0.46) (κ− 1) (6)

∂r/aδ(κ) = (0.60/0.19) δ(κ) (7)

Plots of neighboring flux surfaces for the JET-based
parameter scan showing the effects of κ and δ on
the equilibrium can be seen in Fig. 2. We limit
our scan to κ ≤ 2.6 since, in real experiments,
tokamaks with very high elongation are subject to
the catastrophic MHD vertical instability. In the
GS2 simulations, we use a single ion species, thus
neglecting impurity species, and include gyrokinetic
electrons with the following base case parameters:
T0i = T0e, R/LTi=R/LTe=10.81, R/Lni=R/Lne=3.50,
νei/(vti/a)=0.393, νii/(vti/a)=9.88e-3. Here the tem-
perature and density gradient scale lengths are de-
fined as 1/LTs

.
= −(1/T0s)(dT0s/dr) and 1/Lns

.
=

−(1/n0s)(dn0s/dr). We note that some smoothing of the
data shown in Fig.1 was done before calculating the local
temperature gradients used here, as the kinky behavior
seen in the ion temperature profile is due to the effects
of the high density of the shot on the diagnostic.

The simulation results presented here are performed in
the electrostatic limit (A‖=0), yet with finite equilibrium
β radial gradient (related to the second derivative of the
Shafranov shift in the Miller equilibrium model), defined
as

∂r/aβ
.
=

∑

s

∂r/aβs = −
∑

s

βs(R/Lns +R/LTs)(a/R)

(8)
where the total βtotal is given by the sum over the β for

each species, i.e. βtotal =
∑

s

βs for βs
.
= 8πn0sT0s/B

2.

The simulations are performed either assuming a fixed
value of β across shaping parameters at the original zone
75 value, βzone75=7.58e-3, denoted as “∂r/aβ=const” re-
sults, or varying β with shaping, denoted as “(∂r/aβ)(κ)”
results. Comparison between these two cases allows for
a study of the effects of the equilibrium generated by the
β gradient on the dynamics. For the (∂r/aβ)(κ) results,
the variation of β with shaping is formulated to keep the
Troyon-normalized β fixed, βN

.
= β/(Ip/(aBT ), while

also holding q95 fixed. (When electromagnetic perturba-
tions (δA‖) are included, it is particularly important to
reduce β as elongation is reduced to the circular limit in
order to avoid running into ballooning limits.) Tokamak
reactors are generally designed to work at a fixed value
of βN (near the maximum constrained by the stability of
pressure-driven modes) and q95 (constrained by the sta-
bility of kink modes). A scaling for the shaping factor
fs(κ, δ) that relates plasma current to plasma shaping is
assumed based on a modification of Uckan’s fit to numer-

ical MHD equilibria [34],

βs,Troyon =
Ip
aBT

∝ a

Rq95
fs(κ, δ) =

a

Rq95

[

1 + κ2(1 + 2δ2)

2

]

(9)
At fixed q95, as the plasma elongates, the poloidal current
Ip increases. Thus, we vary β as

βs(κ) = βzone75

[

1 + κ2(1 + 2δ2)

1 + κ2

zone75(1 + 2δ2zone75)

]

(10)

IV. LINEAR GYROKINETIC STABILITY

We first explore the effects of shaping on the linear gy-
rokinetic stability. For all of the linear results, we report
the maximum linear growth in a scan over kyρi in the
range 0.1 ≤ kyρi ≤ 1.0. Here ρi = vti/Ωi is the ion gy-

roradius, where vti =
√

T0i/mi is the ion thermal speed
and Ωi = ZieB/(mic) is the cyclotron frequency.

We begin with studies of the variation of the linear
ITG growth rate with κ, shown in Fig. 3. In general, the
results show that elongation has a stabilizing influence
on the linear growth rate. The δ=0 curve is used as a
base case comparison with the δ(κ) curve, from which
we observe that triangularity is slightly destabilizing at
low-to-moderate κ and slightly stabilizing at very high κ.
However, the overall dependence of the linear stability on
triangularity is very weak compared with the stabilizing
effects of elongation. Comparison with the curve at con-
stant β radial gradient shows that increasing −∂r/aβ is
also stabilizing. The stabilizing influence of the β gra-
dient has been shown previously and has been demon-
strated to be particularly important in high-β spherical
torus plasmas [35]. Specifically, this can be seen intu-
itively by considering the form of the drift-velocity oper-
ator:

~vD · ∇ = i
v2

‖

v2
ts

ωd,‖ + i
µB

v2
ts

ωd,⊥ (11)

where the curvature and ∇B drift frequencies are given
by

ωd,‖ = (ρsvts/B) ~k⊥ · ~B ×
(

b̂ · ∇b̂
)

(12)

ωd,⊥ = (ρsvts/B
2) ~k⊥ · ~B ×∇B (13)

In the high-aspect-ratio limit in circular geometry,

ωd,‖ = −
(

kyρsvts

R0

)

[cos θ + (ŝθ − α sin θ) sin θ] (14)

ωd,⊥ = ωd,‖ +

(

kyρsvts

R0

)

α

2q2
(15)

where α
.
= −q2(R0/a)∂r/aβ is related to the second

derivative of the Shafranov shift and ωd,‖ < 0 corresponds
to drifts in the bad-curvature direction. Thus, Eq. (14)
shows that the stabilizing effect of increased −∂r/aβ (or
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equivalently increased α) is analogous to that due to re-
versed local magnetic shear. We note that, while the
magnetic field curvature is the main source of the bad-
curvature instability drive, there appears to also be some
stabilizing effect of α in the ∇B drift in Eq. (15). How-
ever, this is offset by other effects when compressibility
(δB⊥) is included.

Insight about the stabilizing effects of high shaping
observed in Fig. 3 can similarly be obtained by consid-
ering the more general equilibrium. Fig. 4 shows the
variation of the curvature drift frequency with the bal-
looning mode extended angle θ for the JET-based plas-
mas (δ is also varied with κ here). In general, moder-
ate levels of shaping appear to have little effect on the
curvature drift. However, the case of κ=2.20 shows a
significantly more narrow region in the bad-curvature di-
rection. Thus, with high shaping, only unstable modes
which are very highly localized along the field line will
persist in the system. This will have a stabilizing influ-
ence, since these narrow eigenmodes will contain higher
k‖ components, which are subject to Landau damping
in the local limit. Another stabilizing effect is due to
the variation of the perpendicular wave number k⊥(θ)
shown in Fig. 5. In the concentric-circle high-aspect-
ratio limit, k2

⊥
= k2

y + k2

x = k2

y(1 + ŝ2(θ − θ0)
2) increases

along the field line (away from the point θ0 where the
radial wave number vanishes, θ0 = 0 here). This is be-
cause an eigenmode in the ballooning representation fol-
lows the sheared magnetic field. Non-cicular shaping in-
duces additional stretching and shearing of a flux tube
that can also increase k2

⊥
, as shown in Fig. 5. The result-

ing FLR averaging by ions at high k⊥ρi and the associ-
ated further narrowing of the eigenmode along the field
line will also contribute to the stabilizing influence seen
with stronger shaping. On a related note, we also con-
sider the variation of the Jacobian factor J associated
with the parallel motion operator, b̂ · ∇ = (1/J )∂/∂θ.
Freedom in the definition of θ has been exploited to re-
move the θ dependence from J . For these parameters,
we find that a/J = {0.149, 0.152, 0.157} for the cases of
{κ = 1, κ = 1.46, κ = 2.20}, thus indicating a slightly
higher amount of stabilizing Landau damping with in-
creased shaping.

The effects of shaping on the linear critical tempera-
ture gradient were also studied. The results are shown
in Fig. 6. Here ∂r/aβ is varied with shaping (κ and δ)
as well as consistently with R/LT . While shaping was
found to be stabilizing in the regime of R/LT =10.81 in
Fig. 3, here we find surprisingly that shaping has no sig-
nificant effect on the linear critical temperature gradient.
Specifically, all three shaped plasmas yield a stabilizing
gradient for the ITG mode near that observed for the cir-
cular shape, i.e. (R/LT )crit ∼ 3.42. For comparison, the
dashed lines in Fig. 6 for the κ=1.46 and κ=2.20 cases
correspond to constant zero triangularity (rather than
varying triangularity with κ as for the solid lines). Again
we see that the dependence of the ITG growth rate on
δ is insignificant across the entire temperature gradient

scale length regime, except for the upshift in the linear
critical temperature gradient with zero triangularity for
the κ=2.20 case.

V. NONLINEAR ITG TURBULENCE

Extensions to study the scaling of nonlinear turbulence
with shaping have also been explored. The simulation do-
main for these studies has Lx = 74.28ρi and Ly = 62.83ρi

with the number of grid points in the perpendicular di-
rections given by Nx = 72 and Ny = 36, such that
∆x = 1.05ρi and ∆y = 1.80ρi. In spectral space, this
corresponds to resolving non-zero modes in the range
0.085 ≤ |kxρi| ≤ 1.95 and 0.10 ≤ kyρi ≤ 1.10. The do-
main along the field line has length Lz = 2πqR = 12.75R,
with Nθ = 32 grid points per 2π in θ. The velocity grid
has NE = 16 energy grid points and Nλ = 37 pitch angle
grid points (λ = µ/E), divided into trapped and un-
trapped regions. The simulations were performed as typ-
ical with time-centering parameter r = 0.55 and slight
upwind diffusion (spatial-centering parameter s = 0.55)
[24]. The heat diffusivities presented here are written in
terms of χITER, a quantity defined by the ITER Expert
Group such that the 1D radial heat transport equation
is given by

3

2

∂(nT )

∂t
=

1

V ′

∂

∂r

[

V ′
〈

|∇r|2
〉

χITER

(

n
∂T

∂r

)]

+ SE

(16)
where V is the flux-surface volume, V ′ .= dV/dr, and SE

is the energy source term. The transport equation in this
form has the advantage that χITER is independent of the
flux surface label r.

A. Transport Scalings

The effects of shaping on the nonlinear ITG turbulence
for the JET-based plasmas, analogous with the linear re-
sults in Fig. 3, are shown in Fig. 7. In agreement with
the linear results, the nonlinear results show that high
shaping has a stabilizing influence. Also similar to the
linear stability is that the dependence of the nonlinear
heat flux on triangularity is weak across the entire range.
We note further that the results at constant β radial gra-
dient do not vary as strongly with κ, indicating that a
significant fraction of the variation of the standard case
{δ(κ), (∂r/aβ)(κ)} is coming from the variation of ∂r/aβ
as given by Eq. (10). Comparisons of the GS2 data with
the empirical scalings of κ−1, κ−1.5, and κ−2, designed
to fit the data at κ=1, are also shown in Fig. 7. Qual-
itatively, we find that both the ion and electron heat
fluxes scale as χ ∼ κ−1.5. It is further interesting that,
in the regime where triangularity is slightly destabilizing,
the scaling of the case with zero triangularity becomes
stronger, χ ∼ κ−2.
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Compared with previous numerical studies, the simu-
lation results in Fig. 7 are within the range of the gy-
rofluid results of Waltz and Miller [16], which found a
scaling of χ ∼ 2/(1 + κ2), for δ=0 and adiabatic elec-
trons. However, our nonlinear gyrokinetic simulations
of core turbulence do not completely explain the much
stronger effects of shaping found experimentally, partic-
ularly the strong triangularity dependence observed in
tokamaks. For example, in Fig. 8, we show the scaling
of 1/χ with κ from various experimentally-based empir-
ical scaling relations in comparison with the scalings of
1/χ ∼ κ1.5 and κ2.0 observed in our GS2 simulations. For
the empirical energy confinement time scalings, we as-
sume that τE ∼ a2/χ and convert the empirical scalings
from engineering variables, τE ∝ Ic1

p P c2 . . ., to physics
variables for comparison with the gyro-Bohm normalized
simulation results. (For example, we eliminate the heat-
ing power in terms of the average plasma energy density
using P = W/τE ∝ V nT/τE .) Note that shaping ef-
fects are much stronger when τE is expressed in terms
of physics variables instead of engineering variables. For
example, if τE ∝ IpP

−2/3κ1/2 in engineering variables,

then eliminating the power leads to τE ∝ I3
pκ

3/2/W 2 ∝
[1 + κ2(1 + 2δ2)]3/κ1/2 (using V ∝ κ and using Eq.(9)
to relate Ip to shaping at fixed q95 and fixed BT ). The
scaling laws which we plot in Fig. 8 include the standard
IPB98(y,2) scaling [1], which is based on H-mode global
confinement data and was used for the ITER design, for
both β = constant (“IPB98y2(κ, 0)”) and β/βTroyon =
constant (“IPB98y2(κ, β)”) and the standard Error in
Variables scaling [2] (“EIV05 maxerr(P)(κ)”), which is
similar to the IPB98(y,2) scaling yet uses a modified
H-mode database, resulting in a weaker β dependence.
While there are significant differences between the shap-
ing dependencies of these three empirical scalings, it is
clear from Fig. 8 that our GS2 simulations yield a weaker
scaling than the experiments and thus do not fully cap-
ture the strong stabilizing effects of highly shaped plas-
mas. However, note that this analysis neglects marginal
stability effects. If pinned to marginal stability, then the
energy confinement time τE depends on (R/LT )crit and
the edge boundary conditions, not on χ at fixed R/LT , as
discussed in Sec. II. The fact that the Dimits nonlinear
critical temperature gradient shift depends on shaping,
which we observed with the GS2 simulations and show
next, may help to explain some of the remaining shaping
dependence of the experiments. However, it may be that
much of the shaping dependence in tokamaks comes in
through edge boundary conditions for core turbulence.
In fact, recent work by Kendl and Scott [21] exploring
the effects of shaping on plasma turbulence for edge-like
parameters using gyrofluid simulations shows a scaling
of χ ∼ κ−4, which is much stronger than we found with
our core gyrokinetic simulations. Thus, this will be a key
topic of future research. Within this, a number of partic-
ular differences between core and edge turbulence, such
as the stronger role played by nonlinear, non-adiabatic
electron dynamics in edge turbulence, could be interest-

ing to explore further.

B. Critical Temperature Gradient and Residual

Zonal Flows

Here we present results from studies of the effects of
shaping on the nonlinear critical temperature gradient.
The GS2 simulation results are shown in Fig. 9. While
shaping was found to be stabilizing on the nonlinear ITG
turbulence in the regime of R/LT =10.81 in Fig. 7, in
agreement with the linear results, here we find that shap-
ing is also stabilizing near the regime of zero net heat flux.
In particular, the results show that the nonlinear criti-
cal temperature gradient increases with strong shaping.
For example, (R/LT )crit ∼ 3.42 for the κ=1 and κ=1.46
cases, while (R/LT )crit ∼ 5.13 for the κ=2.20 case. This
is unlike the linear results in Fig. 6 which showed that
shaping has little effect on the linear critical temperature
gradient.

The results of Fig. 9 are somewhat surprising and wor-
thy of further analysis. Here we will show that the
larger upshift of the nonlinear critical temperature gra-
dient with higher shaping may be due to enhanced zonal
flows. Zonal flows are axisymmetric, primarily m = 0
flows driven by ITG turbulence which are believed to play
an important role in saturating the level of the turbulence
[36–38]. Rosenbluth and Hinton found analytically that
a component of the zonal flows is undamped by linear
collisionless processes and that the residual amplitude of
these flows scales as

Φf

Φ0

=
1

1 + 1.6
h

(17)

where h =
√
ε/q2 (where ε = r/R is the inverse aspect

ratio) [39]. This result was derived for concentric-circular
plasmas. However, h is related to the physics of banana
widths, which depends on the poloidal magnetic field,
and thus it is intuitive that h should scale with the shap-
ing parameters.

Physically, what we are considering here is the bounce-
averaged gyrokinetic response of the plasma to shield an
externally-imposed electrostatic potential Φ. The usual
classical gyroradius shielding comes from the ion polar-
ization density term, proportional to (1 − Γ0(k

2
⊥ρ

2

i )) in
the gyrokinetic Poisson equation. Thus, in the limit
of small k⊥ρi, the classical perpendicular plasma dielec-
tric can be approximated as Dclassical ∼ 1 + ρ2

i /λ
2

Di ∼
ρ2

i /λ
2

Di � 1, where λ2

Di
.
= T0i/(4πn0iZie

2) is the square
of the Debye length. This shielding effect is set-up
in a short time, after a few gyroperiods. In the long
time limit, after a few bounce times, neoclassical po-
larization shielding also arises due to the distortion of
the banana orbits by the radial electric field. Thus,
the neoclassical perpendicular plasma dielectric scales as
Dneoclassical ∼ (ρ2

banana/λ
2

Di)ftrapped, where ρbanana ∼
ρiq/

√
ε is the banana-orbit width and ftrapped ∼ √

ε is
the fraction of trapped particles (representing the fact



7

that trapped particles have larger radial excursions off a
flux surface than passing particles). Thus, we find that
Dneoclassical/Dclassical ∼ q2/

√
ε = 1/h. Assuming an

initial Φ due only to the classical polarization density, in
the long time limit considered by Rosenbluth and Hinton
(i.e. ω � ωbounce), Φ will be reduced due to the neo-
classical enhancement of polarization shielding by a fac-
tor of Dclassical/(Dneoclassical +Dclassical), which we find
scales as ∼ 1/(1+1/h), in qualitative agreement with the
Rosenbluth-Hinton result given in Eq. (17). (The factor
of 1.6 in Eq. (17) comes from a more accurate kinetic cal-
culation which also includes the contribution of passing
particles.) In physical terms, in the time evolution, the
amplitude of the potential appears as the superposition of
transit-time damping oscillations, known as the geodesic
acoustic modes, and an undamped residual component,
which we refer to as the Rosenbluth-Hinton component
of the zonal flows. This is shown in Fig. 10.

With this picture of the neoclassical enhancement of
polarization shielding, we can now see how shaping can
enhance the Dimits nonlinear shift: increasing the plasma
elongation allows the current to go up (at fixed q95 and
BT ), which increases the poloidal flux and makes the
banana widths thinner, which reduces the neoclassical
shielding of zonal flows and thus produces a larger Dimits
shift in the critical temperature gradient.

We now numerically explore the effects of shaping on
the Rosenbluth-Hinton residual flows, focusing specifi-
cally on the dependence of h on shaping. Using GS2,
we find the amplitude of the Rosenbluth-Hinton residual
flows by adding an external Φ to the gyrokinetic Poisson
equation and then computing the response of the plasma
to it. Fig. 11 shows the results, specifically the satu-
rated amplitude of the Rosenbluth-Hinton residual zonal
flows vs. κ for the JET-based parameters. Overall, we
find that shaping enhances the Rosenbluth-Hinton com-
ponent of the zonal flows. This provides an explanation
for the larger upshift of the nonlinear critical temper-
ature gradient with higher shaping observed in Fig. 9,
since zonal flows help to saturate the turbulence. From
Fig. 11, we note that the results with triangularity varied
with elongation show stronger residual zonal flow levels
than results with zero triangularity. However, compari-
son with results using zero triangularity radial gradient
shows that it is the increased ∂r/aδ, rather than δ itself,
that is having the most significant stabilizing effect. For
all cases, increased elongation (with increased elongation
radial gradient) is favorable.

A model prediction for the scaling of h with shaping
can be found empirically based on these GS2 results. We
assume the following form of the residual amplitude:

Φf

Φ0

=
1

1 + 1.6
Chshaping

(18)

where

hshaping =

√
ε

q2
f(κ, δ) (19)

The constant C = 0.887 is chosen to match the
GS2 circular case with the original Rosenbluth-Hinton
model.(Note that the Rosenbluth-Hinton analyis assumes
concentric-circular plasmas, while our JET-based plas-
mas have a non-zero Shafranov shift.) A good fit is found
with the shaping function

f(κ, δ) =
1

2

[

1 + κ2

(

1 +
1

2

r

a
∂r/aδ

)2
]

(20)

where the functional form of the triangularity term comes
from the scaling ∂r/aδ ∼ 2δ/(r/a) to reflect the observed
strong radial gradient dependence. This is shown as the
solid lines in Fig. 11. Note the good agreement between
the GS2 results and the model prediction both with zero
triangularity gradient and with triangularity varied with
κ. It is interesting to compare this shaping function with
that found empirically based on experiments for the pres-
sure limit, such as the Troyon β limit given by Eq. (9).
The shaping function of Eq. (20) for the residual zonal
flows has a similar κ dependence as the empirical Troyon
β limit, yet with a slightly weaker δ dependence.

Fig. 11 also shows a comparison between the GS2 re-
sults and a recent analytic extension of the Rosenbluth-
Hinton calculation by Xiao and Catto [40] to include
shaping effects, which was motivated by our numeri-
cal results and model prediction which were obtained
first [41]. The Xiao-Catto analytic model is based on a
simple global analytic equilibrium solution of the Grad-
Shafranov equation using an inverse-aspect-ratio expan-
sion. Here we plot their results at Shafranov shift ∆ =
0, rescaling their shaping function f(κ, δ) to match the
GS2 JET-based circular result. (It is the radial gradient
of the Shafranov shift, rather than the Shafranov shift
itself, which can have a significant effect on gyrokinetics,
causing an enhancement of the magnetic field at the outer
boundary due to the squeezing of adjacent flux surfaces.)
While the analytic approximation is in good agreement
with the GS2 results at δ=0, the Xiao-Catto δ(κ) result
is much weaker, closer to our zero triangularity gradient
results. This difference is most likely the result of an
assumed weaker δ radial profile in the simplified global
analytic equilibrium used in the analytic theory. Specif-
ically, the Xiao-Catto model corresponds to a particu-
lar parameterization of an equilibrium with an assumed
pressure and current profile (constant dp/dψ and con-
stant IdI/dψ). The value ∂r/aδ at a particular minor
radius depends in a non-local way on the pressure and
current profiles inside that radius, just as the Shafranov
shift gradient in a shifted-circular equilibrium depends
on integrals of the pressure and poloidal magnetic field,
i.e. ∂r∆ = −(r/R0)(βp + `i/2). While the simple an-
alytic global equilibrium used in the Xiao-Catto model
cannot reproduce every possible local equilibrium that we
can set-up with the Miller model, the parameters of the
Miller equilibrium could be chosen to locally match any
assumed global analytic equilibrium, so that the Xiao-
Catto analytic result can be used as a benchmark to



8

verify that a code properly reproduces this physics. In
fact, Xiao et al. [42] subsequently carried out this test
successfully with GS2. Here, however, we have not de-
termined the global pressure and poloidal field profiles
required to obtain a particular local triangularity gradi-
ent, although we have shown with our GS2 results that
the residual zonal flows depend sensitively on the result-
ing ∂r/aδ. Nevertheless, the Xiao-Catto analytic theory
generally confirms our numerical results for the elonga-
tion dependence.

Overall, this analysis has shown that the observed in-
crease in the Dimits nonlinear critical temperature gra-
dient shift with plasma shaping in Fig. 9 may be under-
stood as an enhancement of the residual zonal flows with
plasma shaping, and this may help to explain why strong
shaping is favorable in experiments.

VI. DISCUSSION AND SUMMARY

The GS2 code has been used to study the effects of flux
surface shape on the gyrokinetic stability and transport
of tokamak plasmas. Studies of the scaling of the linear
growth rate and nonlinear turbulence with shaping pa-
rameters were performed starting with a representative
JET-like flux surface and artificially varying elongation,
triangularity, and their radial gradients together using
the analytic Miller local equilibrium model to approach
the circular limit via linear interpolation. In the electro-
static limit, high elongation was found to have a stabiliz-
ing influence on both the linear ITG instability and the
nonlinear ITG turbulence. Triangularity was somewhat
destabilizing at moderate κ, but could be stabilizing at
high κ. A general scaling of the heat flux with elonga-
tion of χ ∼ κ−1.5 was found for the nonlinear turbulence
levels, with a slightly stronger scaling of χ ∼ κ−2 with
zero triangularity in the high-κ regime where triangular-
ity is destabilizing. This scaling is consistent with pre-
vious gyrofluid simulations. Investigations of the effects
of shaping on the critical temperature gradient showed
that, while shaping had little effect on the linear critical
temperature gradient, high shaping resulted in a larger
upshift of the nonlinear critical temperature gradient due
to enhanced zonal flows.

Overall, while our nonlinear gyrokinetic simulations
of core turbulence capture some of the shaping effects
found experimentally, they do not completely explain the
degree of this dependence on shaping, particularly the
strong triangularity dependence observed in tokamaks.
While the result that the Dimits nonlinear shift is en-
hanced with shaping may help to further explain why

shaping is favorable in experiments, it may be that much
of the experimentally-observed strong triangularity de-
pendence comes from the edge turbulence, which sets the
boundary conditions for core turbulence and transport.
This will be explored in future research. The edge re-
gion is particularly complicated due to the existence of
both weak and strong collisionality regimes, steep gradi-
ents such that particle drift-orbit widths can be compara-
ble to the equilibrium radial gradient scale lengths, open
and closed field lines, wall interactions, strong atomic
physics effects, etc. Thus, most edge plasma simulations
are presently done with fluid simulation models, such as
the BOUT code [43] and GEM code [22, 23], although ini-
tiatives to develop new gyrokinetic codes to specifically
simulate edge turbulence are underway. However, along
these lines, extensions of our results to include electro-
magnetic dynamics are in progress and may be of inter-
est for further shaping studies of edge-like plasmas, since
electromagnetic dynamics are particularly significant in
the edge region due to the high pressure gradient. Previ-
ous studies of MHD stability for highly shaped edge-like
plasmas show that high triangularity can give improved
access to the second stability regime [20].

Finally, a more complete understanding of shaping
effects might also include scanning shaping parameters
over a range of values of q, as some previous gyrofluid
work suggests that there is a stronger κ dependence
at lower q [16]. Exploration of higher-degree shaping
moments such as squareness ζ, which modifies the D-
shaped plasma formulae in Eqs. (3) and (4) by Zs →
κr(sin(θ)+ ζ sin(2θ)), may also be of interest, since ζ has
been found to have a significant stabilizing effect in some
DIII-D experiments [44, 45] and in MHD studies [46].
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FIG. 1: (Color online) TRANSP analysis of the experimental data from JET ELMy shot 52979, t=22.0s: the radial variation of
the elongation κ, triangularity δ, electron and hydrogenic ion temperatures, and electron and deuterium densities. The dotted
vertical lines mark zone75.
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the original experimental JET zone 75 equilibrium.
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15

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t v
ti
 / a

Φ
 / 

Φ
0

 

 

Rosenbluth−Hinton prediction

FIG. 10: (Color online) Time evolution of the amplitude of the zonal flows for the JET-based circular case computed using
GS2 with an initial external potential Φext ∼ (1/kr) cos(krr). The dashed line shows the Rosenbluth-Hinton prediction for the
saturated potential for these parameters.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

κ

Φ
f / 

Φ
0

 

 
GS2, δ(κ), (∂

r/a
δ)(κ)

Model prediction, (∂
r/a

δ)(κ)

Xiao−Catto prediction, δ(κ)
 

GS2, δ=0
 

GS2, δ(κ), ∂
r/a

δ=0

Model prediction, ∂
r/a

δ=0

Xiao−Catto prediction, δ=0
 

FIG. 11: (Color online) Amplitude of the Rosenbluth-Hinton residual zonal flows vs. elongation comparing triangularity and
its radial gradient varied with κ, zero triangularity, and triangularity varied with κ with zero triangularity radial gradient. The
data points are the GS2 results, the solid lines are our model prediction, and the dashed lines are the analytic model of Xiao
and Catto (with ∆ = 0).


