
 

 

 
 

 

 
 

 

 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. B576–B605

POSITIVITY PRESERVATION AND ADVECTION ALGORITHMS
WITH APPLICATIONS TO EDGE PLASMA TURBULENCE∗

J. L. PETERSON† AND G. W. HAMMETT‡

Abstract. The unique conditions of edge tokamak plasmas motivate the employment of efficient
numerical methods that can robustly handle steep temperature and density gradients. To that end,
we compare an Arakawa finite difference technique with some recent high-resolution upwind methods
that are designed to minimize nonmonotonic overshoots while preserving the accuracy of solutions at
smooth extrema. Versions of these algorithms are able to rigorously preserve positivity when that is
physically relevant (such as for the advection of particle density or temperature). We explain in detail
the use of these methods for the nonlinear Poisson bracket, an operator applicable to neutral fluid,
gyrofluid, gyrokinetic, and general Hamiltonian simulations. For one-dimensional passive advection,
the high-resolution upwind techniques maintain monotonicity and approach minimal levels of phase
error and dissipation, especially at long wavelengths. In a two-dimensional incompressible Navier–
Stokes vortex merging problem we find that extrema-preserving methods can resolve details at lower
resolution than the Arakawa technique, are less dissipative than traditional finite volume methods
while still minimizing overshoots and ensuring positivity, and model nonlinear cascade behavior fairly
well without additional subgrid damping.
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1. Introduction. The unique environment of the edge region of fusion plas-
mas complicates the study of turbulence. Analytic approximations made to simplify
tokamak core simulations do not necessarily hold true. Fluctuation levels may grow
as large as the background distribution function, thereby limiting the applicability
of perturbative formulations. Furthermore, steep temperature and density gradients
and the general range of scales in edge turbulence strain computational resources.
As the density and temperature can vary by two orders of magnitude or more over
very short distances in the edge region (for instance, from the top of the pedestal to
the scrape-off layer or in the vicinity of plasma blobs), the resolution requirements to
accurately model the system can be challenging. These large gradients can lead to
many of the same difficulties, such as unphysical overshoots and negative solutions,
that motivated the development of modern shock-capturing algorithms.

In choosing from the virtual zoo of numerical algorithms the best possible method
for edge turbulence simulation, one should consider many different properties of the
computational scheme. First of all, it is important to consider the various conservation
properties of the method. How well does the scheme preserve the density, momentum,
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ALGORITHM TESTS FOR EDGE PLASMA TURBULENCE B577

energy, enstrophy and/or entropy of the system if physical dissipation is turned off?
But one should also consider other important properties beyond integral conservation
laws. For example, a second consideration is that one would like the system to satisfy
certain physical constraints. Positivity-preserving algorithms can ensure that the
temperature, density, and distribution function solutions never drop below zero. This
is particularly important in the presence of shocks, blobs, and other steep-gradient
features.

Third, the accuracy of the employed method is important. High-order schemes
can be advantageous, as they reduce the resolution required to accurately model the
physics of the system. Any reduction in resolution gets amplified according to the
dimensions of the problem. A factor of 2 reduction in resolution leads to a factor of
2d reduction in memory and a factor of ≈ 2d+1 reduction in computing time, which
is a factor of ≈ 64 speedup for five-dimensional gyrokinetics. (Though the reduction
in the number of grid points is partially offset by the increased work per grid point
needed for higher-order methods, this can still be advantageous because many modern
computers are limited by the bandwidth between memory and processor, so it is
relatively efficient to do the extra calculations per memory access needed for higher-
order methods). Finally, when dealing with turbulence simulations, one must consider
the ability of the algorithm to deal with cascades in k-space.

The challenges with edge plasma turbulence simulation are not, it should be noted,
confined to plasmas. The similarities between the equations governing drift-wave
turbulence, two-dimensional (2D) neutral fluid turbulence, and general Hamiltonian
systems, expand this problem to a much wider realm. While each physical problem
has its own ideal algorithm, the lessons learned from simulating systems relevant to
edge plasma turbulence can be applied to other disciplines.

Naulin and Nielsen [22] compared a spectral method, a well-known Arakawa finite
difference method [1], and a third-order finite volume WENO method [19, 29] due to
Kurganov and Levy [15], for the 2D high Reynolds number Navier–Stokes problem of
vortex merging [25]. Naulin and Nielsen’s conclusion was that the inherent numerical
dissipation from the upwinding in the third-order WENO method was so large that
it was relatively inefficient for high Reynolds number flows. Their analysis focused
on the conservation properties of the algorithms. Over time, the dissipation of the
WENO method damped out fine features in the vorticity, ω, thereby reducing the
total enstrophy Ω = 1

2

∫
ω2dA significantly faster than viscosity alone would at high

resolution. Since the Arakawa finite difference method is designed mathematically to
conserve Ω [1], Naulin and Nielsen concluded that the Arakawa method is preferable
to the third-order WENO scheme.

Our aim is to reexamine the vortex merger problem to test other aspects of nu-
merical algorithms that may also be important for gyrokinetic and gyrofluid edge
plasma simulations. In particular, while previous work focused on the conservation
properties of algorithms, other properties such as positivity preservation and the mod-
eling of cascades may be more important for edge turbulence applications. We extend
previous comparisons to include other modern finite volume methods with lower dissi-
pation than a third-order upwind method, including some recent high-order methods
designed to reduce clipping of extrema by distinguishing smooth extrema from dis-
continuities. These are the piecewise parabolic method (PPM) (in both its original
form [7] and a recent smooth extrema extension [6]), the high-order finite volume
method of Suresh and Huynh [30], and a hybrid PPM/Suresh–Huynh method. Sec-
tion 2 lays out the vortex merger problem while section 3 documents each algorithm
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and some of their unique properties. We present results for inviscid one-dimensional
passive advection and for full 2D nonlinear hydrodynamics in section 4.

2. The model system and general problem parameters. Due to the uni-
versality of nonlinear multidimensional advection, we take as our model system the
same employed in [22], namely, a 2D neutral fluid vortex merger. We begin with the
incompressible, unforced, 2D Navier–Stokes equations

(2.1)
∂�v

∂t
+ (�v · ∇)�v = ν∇2�v −∇p.

Here, �v = vxx̂+vyŷ is the velocity vector of the fluid confined in the x-y plane, and
ν is the kinematic viscosity. (The mass density has been normalized to unity.) The
scalar pressure, p, is governed by the incompressibility condition, ∇ · �v = 0. One can
apply the curl operator to express (2.1) in terms of the scalar vorticity, ω = (∇×�v) · ẑ,
and a stream function, ψ : (∇ψ × ẑ = �v). The new system of equations is

∂ω

∂t
= − [ω, ψ] + ν∇2ω,(2.2)

∇2ψ = − (ω + ωoffset) .(2.3)

A Poisson equation, (2.3), relates the vorticity and the stream function. The
constant ωoffset will be discussed in greater detail below. The bracket term, [ω, ψ], is
the standard Poisson bracket, given by

(2.4) [ω, ψ] = �v · ∇ω =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
.

The Poisson bracket term is our canonical nonlinear advection term. While this
formulation is specifically for neutral fluids, this nonlinear term is ubiquitous, since
many systems, including the gyrokinetic equations for magnetized plasma turbulence,
are described by Hamiltonian dynamics that can be expressed in terms of Poisson
brackets [28]. For instance, in plasma simulations one is interested in the advection

of plasma density n by the �E × �B drift velocity. In such cases �vE×B · ∇n ∝ [Φ, n],
where Φ is the electrostatic potential. As such, discretizations of (2.4) can be applied
to plasma physics turbulence problems. All of the algorithms in section 3 represent
(2.4) differently.

Following the details outlined in [22], we solve (2.2) and (2.3) on a doubly-periodic
domain of dimensions 10 × 10 length units. The uniform grid spacing is h = Δx =
Δy = 10/N , with N being the number of grid points in either the x or y directions.
Grid indices in the x and y directions are indicated by i and j, respectively, with
i, j ∈ [0, N − 1], so that ωi,j

.
= ω(xi, yi) = ω(ih, jh).

As our focus is on the nonlinear Poisson bracket, (2.4), we use an explicit “4-point
stencil” for the viscous term on the right-hand side of (2.2). Specifically we set

(2.5) ∇2ωi,j =
1

h2
(ωi−1,j + ωi+1,j + ωi,j−1 + ωi,j+1 − 4ωi,j) .D
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While the authors of [22] employ an implicit form for (2.5), there is no significant
difference in solutions for the small time steps used in our simulations. Additionally,
to solve the Poisson equation, (2.3), we use a spectral technique based on the FFTW
package [8] that takes advantage of the fact that in k-space the inversion of (2.3) is
algebraic.

The test problem in [22] consists of two merging Gaussian vortexes. They are
initially 3 length units apart, have unit maximum, and are given in standard Gaussian
form as

(2.6) ωl(�ri,j) = e−‖�ri,j−�rl‖2/(2σ2).

Explicitly, ‖�ri,j‖ =
√
x2i + y2i = h

√
i2 + j2 is a distance on the grid, �rl is the lo-

cation of the center of Gaussian number l, and σ is the standard deviation of the
monopole. Following [22] we define our Gaussian monopoles such that 2σ2 = (0.8)2

or σ = 0.8/
√
2 ≈ 0.566. The initial positions of the two peaks are �r1 = (3.5, 5.0)

and �r2 = (6.5, 5.0). After summing these two Gaussians to give the initial vorticity
ωi,j = ω1(�ri,j) + ω2(�ri,j), we calculate a small offset to the Poisson equation equiva-
lent to ensuring that the total net vorticity on the grid

∑
i,j(ωi,j + ωoffset) has zero

total circulation, so that the Poisson equation is invertible on a periodic domain.
Specifically, this offset is written as

(2.7) ωoffset = − h2

L2

∑
i,j

ωi,j .

While in two-dimensional hydrodynamics the local vorticity ωi,j can have either
sign, the equivalent Poisson equation in plasmas involves contributions from the ion
and electron charge densities, both of which must individually be of only one sign, so
positivity preservation of the ion and electron particle density is important.

Simulations are further parametrized by the Reynolds number, defined here as
Re = σv0max/

(√
2ν

)
, where v0max is the maximum scalar velocity based on the initial

conditions and for this simulation is approximately 0.25. The one-dimensional (1D)
passive advection test case in section 4.1 is inviscid (ν = 0), and the fully nonlinear
2D problem in section 4.2 uses a high Reynolds number (Re = 100, 000).

The time steps are variable during the course of the simulation and are designed
to keep the Courant number at CFL = vmaxΔt/h = 0.1, well below the stability
limit. At time step n, Δtn = 0.1h/vn−1

max . Since the CFL condition is defined in terms
of the maximum grid velocity, it is locally below this value in most cells.

3. The Poisson bracket algorithms. We compare six different algorithms for
the spatial discretization of the Poisson bracket, (2.4). Like the authors of [22] we
examine Arakawa finite differencing [1] and a third-order WENO scheme [15, 19, 29].
Additionally, we compare the behavior of a variant of PPM with and without a limiter
designed to improve the accuracy at smooth extrema [6, 7]. We also consider a limiter
method meant to decrease the diffusion of solutions at smooth extrema as laid out by
Suresh and Huynh in [30]. While many of these high-resolution upwind algorithms
have been tested for 1D linear and shock problems, here we also compare them side
by side with Arakawa on a 2D nonlinear incompressible flow problem.
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3.1. Arakawa finite differencing.

3.1.1. A second-order solution (Arakawa/Arakawa2). A classic imple-
mentation of the Poisson bracket, (2.4), is the finite difference method1 proposed
by Arakawa [1, 2]. It has the advantages of a straightforward, closed-form equa-
tion and of preserving discrete analogs of the exact linear and quadratic conservation
properties of the Poisson bracket. That is, it guarantees conservation of the mean
vorticity, which results from

∫
d2r [ψ, ω] = 0, and conservation of both quadratic in-

variants of 2D hydrodynamics, the energy and the enstrophy Ω (the total squared
vorticity, Ω = (1/2)

∫
d2r |ω|2 → (1/2)h2

∑
i,j |ωi,j |2), which result from the discrete

equivalents of the properties
∫
d2r [ψ, ω]ψ = 0 and

∫
d2r [ψ, ω]ω = 0. In Arakawa’s

method, the Poisson bracket is represented by

[ω, ψ] = − 1

12h2
× {(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) (ωi+1,j + ωi,j)(3.1)

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1) (ωi−1,j + ωi,j)

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) (ωi,j+1 + ωi,j)

− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j) (ωi,j−1 + ωi,j)

+ (ψi+1,j − ψi,j+1) (ωi+1,j+1 + ωi,j)

− (ψi,j−1 − ψi−1,j) (ωi−1,j−1 + ωi,j)

+ (ψi,j+1 − ψi−1,j) (ωi−1,j+1 + ωi,j)

− (ψi+1,j − ψi,j−1) (ωi+1,j−1 + ωi,j)}.

Note that one can consider a 1D passive advection limit, where ψ = vy and ω is
independent of y, in which case the Arakawa formula applied to (2.2) reduces to

(3.2)
∂ωi

∂t
= −vωi+1 − ωi−1

2Δx
+ ν

∂2ω

∂x2
,

which is just the standard form for centered second-order finite differencing of the
advection term. It is well known that this expression can lead to unphysical oscilla-
tions in the solution, particularly in regions of sharp gradients compared to the grid
resolution, unless the diffusion term is sufficiently strong [17].

3.1.2. A higher-order Arakawa solution (Arakawa4). It is possible to use
Richardson extrapolation [26, 27] to construct a higher-order Arakawa discretization.
The lower-order Arakawa discretization is a symmetric approximation to the Poisson
bracket on a grid of size h:

(3.3) [ω, ψ]h = [ω, ψ]True + C2h
2 + C4h

4 + · · · .

In this case [ω, ψ]True is the true value of the Poisson bracket, and the second term
represents the error in the discretization, which is proportional to h2 and scales with

1Although written here as finite differences, the Arakawa algorithm can be considered as having
a generalized finite volume form, where the first four lines in (3.1) correspond to the usual fluxes,
between cell (i, j) and cells to its east, west, north, and south, but the next four lines represent some
kind of corner fluxes, between the center cell and cells to the NE, SW, NW, and SE. In principle
one could apply limiters to these fluxes to satisfy monotonicity constraints as one does with other
finite volume methods, but that would break the quadratic conservation properties of the Arakawa
method. Following [22], we use the finite difference form without limiters.
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a constant factor C2. By applying the same algorithm but on a larger grid spacing,
we can equally write

(3.4) [ω, ψ]2h = [ω, ψ]True + 4C2h
2 + 16C4h

4 + · · · ,
which can be obtained from (3.1) by the transformation h ⇒ 2h and {i, j} ± 1 ⇒
{i, j} ± 2. These can be combined algebraically to eliminate the second-order error
term, thus giving us a new Poisson bracket discretization that has an error propor-
tional to the fourth power of the grid spacing, much like many of the higher-order
finite volume methods presented in the following section. Explicitly this becomes

(3.5)
4

3
[ω, ψ]h − 1

3
[ω, ψ]2h = [ω, ψ]True − 4C4h

4 + · · · .

The discretization given by (3.5) is a fourth-order Arakawa finite difference approxi-
mation to the Poisson bracket with the same conservation properties as the lower-order
method detailed above. The grid stencil is now five points in any direction, the same as
the higher-order finite volume methods, with similar implications for parallelization.

Since the original vortex merging problem in [22] used the second-order Arakawa
method, we focus in subsequent sections primarily on the second-order method. Gen-
eric references to “Arakawa” refer to the second-order method, although in some places
we mark it as “Arakawa2” when comparing with the fourth-order variant, which is
marked as “Arakawa4.”

3.2. Finite volume. While finite difference methods focus on the solution at
points, finite volume techniques evolve the integral-averaged quantity within a grid
cell. Specifically, we average (2.2) over a grid cell to obtain the following conservative
equation for the volume-averaged vorticity, ω̄i,j ≡ h−2

∫ ∫
i,j ωdxdy:

(3.6)
∂ω̄i,j

∂t
= ν∇2ω̄i,j − 1

h

(
F x
i+1/2,j − F x

i−1/2,j + F y
i,,j+1/2 − F y

i,j−1/2

)
.

The form of (3.6) is the same as (2.2), with the Poisson bracket term represented
as a divergence of fluxes. Fundamentally we are evolving the same equation, but
philosophically it is important to remember that these are volume-averaged vorticities,
not necessarily the point-value vorticity at the grid center. The fluxes through the
grid cell are defined in terms of the velocities and vorticities along grid edges,

F x
i+1/2,j = vxi+1/2,j × ω∗

i+1/2,j ,(3.7)

F y
i,j+1/2 = vyi,j+1/2 × ω∗

i,j+1/2.(3.8)

The choice of ω∗depends upon the direction of the velocity. Finite volume algo-
rithms allow discontinuities at the grid boundaries, so along each grid edge there
exist two values for the vorticity, depending upon which side of the interface one
looks. Specifically, let us define the vorticity in grid cell (i, j) at the boundaries of
that cell (i ± 1/2, j ± 1/2) as

ωR
i,j = ωi+1/2,j ,(3.9)

ωL
i,j = ωi−1/2,j ,(3.10)

ωU
i,j = ωi,j+1/2,(3.11)

ωD
i,j = ωi,j−1/2.(3.12)
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The heart of every finite volume method lies in the determination of these “right,”
“left,” “up,” and “down” edge vorticities {ωR

i,j , ω
L
i,j, ω

U
i,j , ω

D
i,j}. Once calculated, we

choose ω∗ to be the edge value of the vorticity in the cell from which a fluid element
would originate (the “upwind” direction). Mathematically, this is represented in the
x-direction as

ω∗
i+1/2,j =

{
ωR
i,j , vxi+1/2,j > 0,

ωL
i+1,j , vxi+1/2,j < 0,

(3.13)

ω∗
i−1/2,j =

{
ωR
i−1,j , vxi−1/2,j > 0,

ωL
i,j , vxi−1/2,j < 0.

(3.14)

The y-direction is symmetric under the transformation {R,L, i, j} → {U,D, j, i}:

ω∗
i,j+1/2 =

{
ωU
i,j , vyi,j+1/2 > 0,

ωD
i,j+1, vyi,j+1/2 < 0,

(3.15)

ω∗
i,j−1/2 =

{
ωU
i,j−1, vyi,j−1/2 > 0,

ωD
i,j , vyi,j−1/2 < 0.

(3.16)

Proceeding with any finite volume method involves the calculation of the vor-
ticities {ωR

i,j , ω
L
i,j , ω

U
i,j, ω

D
i,j} and the edge velocities {vxi±1/2,j , v

y
i,j±1/2}. The velocity

calculation is straightforwardly based upon the stream function. We use a centered
discretization for the velocities �v = ∇ψ× ẑ and define vxi,j = (ψi,j+1 −ψi,j−1)/2h and
vyi,j = −(ψi+1,j − ψi−1,j)/2h. We then interpolate linearly to the cell edges

vxi±1/2,j =
1

2

(
vxi,j + vxi±1,j

)
,(3.17)

vyi,j±1/2 =
1

2

(
vyi,j + vyi,j±1

)
.(3.18)

Although we will be using higher-order methods for the interpolations of ω to the
cell faces, the final algorithm is formally only second-order accurate in multiple
dimensions because we are using simple midpoint evaluations of the face-averaged
fluxes such as F x

i+1/2,j = 〈vxω∗〉i+1/2,j = (1/h)
∫ yj+1/2

yj−1/2
dy vx(xi+1/2, y)ω

∗(xi+1/2, y) ≈
vxi+1/2,jω

∗
i+1/2,j . The higher-order aspects of the ω interpolations are still useful for

reducing numerical dissipation. (Following up on a suggestion by one of the reviewers,
on nonuniform grids, it would probably be better to interpolate the streamfunction
to the corners of the grid cells first and then difference across a face to determine the
velocity through that face. This would preserve the divergence-free property of the
flow.) Extensions to full higher-order accuracy can be done; see, for example, [5].

The edge vorticity calculation is unique to each finite volume method. However,
all techniques involve two basic steps:

1. Interpolate from cell-averaged vorticities to cell boundaries. This is usually
accomplished by fitting surrounding vorticity values to a high-order polyno-
mial function. Let us call these estimates {ω†R

i,j , ω
†L
i,j , ω

†U
i,j , ω

†D
i,j }.

2. Limit these initial interpolations, {ω†R
i,j , ω

†L
i,j , ω

†U
i,j , ω

†D
i,j }, according to a set of

predefined conditions. These initial estimates may (or may not) be altered
during the process, but the result is the set {ωR

i,j, ω
L
i,j , ω

U
i,j , ω

D
i,j} to be used

in (3.13)–(3.16). Most often this is to prevent overshoots and undershoots in
the solution, but the exact mechanism varies with the algorithm.
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Once one has determined the edge velocities {vxi±1/2,j , v
y
i,j±1/2} from (3.17) and (3.18)

and {ωR
i,j , ω

L
i,j, ω

U
i,j , ω

D
i,j} from the method-specific interpolation/limiting algorithm,

the procedure continues by using (3.13)–(3.16) to determine the values of ω∗. Hence,
one can use (3.7) and (3.8) to determine the appropriate flux in (3.6). The coding
to evolve the equation in time is identical for a finite volume method and a finite
difference equation, with the Poisson bracket term in (2.2) replaced by the flux terms
in (3.6).

We now describe the algorithms for the interpolation and limiting of edge-valued
vorticities in the x-direction. The y-direction is symmetric under the transformation:
{R,L, i, j} → {U,D, j, i}.

3.2.1. Third-order WENO (WENO3). We employ the third-order WENO
method as suggested by Kurganov and Levy [15]. The interpolations are parabolic,
while the limiters rigorously preserve monotonicity and reduce to piecewise constant
values at extrema. First, we determine if the current grid cell vorticity is either a
maximum or a minimum. If so, we set the edge vorticity values to be equal to the
cell-averaged value:

if sign (ω̄i+1,j − ω̄i,j) 
= sign (ω̄i,j − ω̄i−1,j) then

ωR
i,j = ωL

i,j = ω̄i,j.(3.19)

Otherwise, we are not at an extremum and we proceed with our parabolic interpola-
tions for {ω†R

i,j , ω
†L
i,j }. Defining Δ1

i = (ω̄i+1,j−ω̄i−1,j) and Δ2
i = (ω̄i+1,j−2ω̄i,j+ω̄i−1,j)

we have

ω†R
i,j = ω̄i,j +

1

4
Δ1

i +
1

12
Δ2

i ,(3.20)

ω†L
i,j = ω̄i,j − 1

4
Δ1

i +
1

12
Δ2

i .(3.21)

The limiters to ensure that rigorously no overshoots and undershoots appear in
the solution proceed thusly:

if sign
(
ω̄i,j − ω†L

i,j

)

= sign

(
ω†L
i,j − ω̄i−1,j

)
then

ωL
i,j = ω̄i−1,j ,(3.22)

ωR
i,j = ω̄i−1,j +

5

2
(ω̄i,j − ω̄i−1,j) ,(3.23)

else if sign
(
ω̄i,j − ω†R

i,j

)

= sign

(
ω†R
i,j − ω̄i+1,j

)
then

ωR
i,j = ω̄i+1,j ,(3.24)

ωL
i,j = ω̄i+1,j +

5

2
(ω̄i,j − ω̄i+1,j) .(3.25)

If neither of these conditions is met, the limiter is not triggered and the initial esti-
mates are used: ωR,L

i,j = ω†R,L
i,j .

The limiters in the WENO3 scheme serve to ensure that edge vorticity values lie
between the values of adjacent cells and rigorously preserve this monotonicity.

3.2.2. The piecewise parabolic method (PPM4). Originally developed by
Colella and Woodward [7], PPM is a finite volume method that seeks solutions com-
prised of local parabolas. Like the WENO3 method in section 3.2.1, it becomes piece-
wise constant at extrema. We use a fourth-order variant of PPM (PPM4) for the
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spatial discretizations, as described in [6]. As with all of the other spatial-differencing
algorithms, we will use the Runge–Kutta (RK) time-advancement method described
in section 3.4 (instead of the original PPM time-advancement method), as was also
done in [5]. In our notation the initial interpolation becomes

ω†R
i,j =

7

12
(ω̄i,j + ω̄i+1,j)− 1

12
(ω̄i−1,j + ω̄i+2,j) ,(3.26)

ω†L
i,j =

7

12
(ω̄i,j + ω̄i−1,j)− 1

12
(ω̄i−2,j + ω̄i+1,j) .(3.27)

Next, PPM4 completes the interpolation by applying monotonicity constraints to
eliminate solution oscillations. These limiters are triggered when monotonicity is
violated. Explicitly these conditions are:

if
(
ω̄i,j − ω†R

i,j

)(
ω̄i+1,j − ω†R

i,j

)
> 0 then

ω†R
i,j = (ω̄i,j + ω̄i+1,j) /2 − (

δω∗
i+1 − δω∗

i

)
/6,(3.28)

if
(
ω̄i−1,j − ω†L

i,j

)(
ω̄i,j − ω†L

i,j

)
> 0 then

ω†L
i,j = (ω̄i−1,j + ω̄i,j) /2 − (

δω∗
i − δω∗

i−1

)
/6.(3.29)

We define

δω∗
i =

{
sign

(
Δ1

i

)
min

(
1
2

∣∣Δ1
i

∣∣ , 2 ∣∣ΔL
i

∣∣ , 2 ∣∣ΔR
i

∣∣) , ΔR
i Δ

L
i > 0

0, otherwise,
(3.30)

where Δ1
i = ω̄i+1,j − ω̄i−1,j , Δ

L
i = ω̄i,j − ω̄i−1,j , and ΔR

i = ω̄i+1,j − ω̄i,j. As men-
tioned, limiters only apply when monotonicity is violated in the edge interpolations.

In smooth regions away from extrema, there will be no change to ω
†{R,L}
i,j from (3.28)–

(3.29).
The next step in the PPM4 method is to apply additional limiters, which depend

on whether or not the solution is a local extremum, defined not only by the averaged
values, ω̄, but also by the initial interpolations, ω†. Specifically, the solution is a local
maximum or minimum if

(3.31)
(
ω†R
i,j − ω̄i,j

)(
ω̄i,j − ω†L

i,j

)
≤ 0 or (ω̄i−1,j − ω̄i,j) (ω̄i,j − ω̄i+1,j) ≤ 0.

If the initial interpolation satisfies (3.31), we apply the piecewise constant limiters
ωR
i,j = ωL

i,j = ω̄i,j , like (3.19).
Away from extrema we apply further limiters that constrain the amount of vari-

ation in the local reconstructions. We test and limit each of the edge interpolations
{ω†R

i,j , ω
†L
i,j } using the logic

if
∣∣∣ω†R,L

i,j − ω̄i,j

∣∣∣ ≥ n
∣∣∣ω̄i,j − ω†L,R

i,j

∣∣∣
then ωR,L

i,j = ω̄i,j + n
(
ω̄i,j − ω†L,R

i,j

)
else ωR,L

i,j = ω†R,L
i,j .(3.32)

The parameter n here controls how much variation between the edge interpolations
and the cell average is allowed before limiting the solution. (If the solution varies
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too much, that is used as a sign that we are near a shock or underresolved region
and the limiter allows a discontinuity to form in the reconstructed solution across the
cell edge.) Higher n allows higher-order accuracy in smooth regions, but requires a
smaller time step and delays the switch to allowing discontinuities when needed. We
have used n = 3 here to avoid limiting the accuracy of monotonic cubic interpolations.
It has been pointed out [20] that n = 2 can be used (as is done in the original PPM)
with only rare and slight loss of local accuracy (because locally quadratic behavior
near flat regions is more generic than locally cubic behavior, in the sense that locally
cubic behavior requires both the first and second derivative to vanish simultaneously
at a point, which in many cases might be rare).

While more complex limiters for the parabolic interpolant exist [6], we follow [5]
and [20] and choose the limiters described above.

3.2.3. Smooth extrema preserving piecewise parabolic method (XPPM).
A major limitation of many finite volume methods is a reduction of accuracy at
smooth extrema [6, 30]. As noted above, many algorithms resort to first-order (piece-
wise constant) solutions at local maxima and minima. One method of improving
the performance of these methods is to apply a new limiter at extrema, to replace
(3.31). A recently developed limiter [6] uses estimates of the second derivative to re-
lax the constraints on solutions at extrema, thereby allowing for solutions with higher
accuracy.

The method is identical to that described in section 3.2.2, with the exception of
the limiters. Interpolation is done according to (3.26) and (3.27). But instead of
(3.28) and (3.29), we use the following (which corrects a typo in (19) of [6]):

if
(
ω̄i,j − ω†R

i,j

)(
ω̄i+1,j − ω†R

i,j

)
> 0 then

ω†R
i,j =

1

2
(ω̄i,j + ω̄i+1,j) − h2

6

(
D2ω

)
i+1/2,j,lim

,(3.33)

if
(
ω̄i−1,j − ω†L

i,j

)(
ω̄i,j − ω†L

i,j

)
> 0 then

ω†L
i,j =

1

2
(ω̄i−1,j + ω̄i,j) − h2

6

(
D2ω

)
i−1/2,j,lim

.(3.34)

The value of (D2ω){i,j}±1/2,lim is determined from approximations to the second
derivative:

(
D2ω

)
i+1/2,j

=
3

h2

(
ω̄i,j − 2ω†R

i,j + ω̄i+1,j

)
,

(
D2ω

)
i+1/2,j,L

=
1

h2
(ω̄i−1,j − 2ω̄i,j + ω̄i+1,j) ,(

D2ω
)
i+1/2,j,R

=
1

h2
(ω̄i,j − 2ω̄i+1,j + ω̄i+2,j) .(3.35)

If (D2ω)i+1/2,j , (D
2ω)i+1/2,j{L,R} all have the same sign, then

(
D2ω

)
i+1/2,j,lim

= s min
{
C
∣∣∣(D2ω

)
i+1/2,j,L

∣∣∣ , C ∣∣∣(D2ω
)
i+1/2,j,R

∣∣∣ , ∣∣∣(D2ω
)
i+1/2,j

∣∣∣} ;

s = sign
((
D2ω

)
i+1/2,j

)
.(3.36)

Otherwise, (D2ω)i+1/2,j,lim = 0. A value for the constant C moderately higher than
1 allows the algorithm to use the most accurate estimate of the second derivative
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in relatively smooth regions where all estimates of the second derivative are similar,
while turning on limiters when there are significant oscillations near the grid scale.
Following [6] we select C = 1.25. To determine (D2ω)i−1/2,j,lim, let i → i − 1 and

ω†R
i,j → ω†L

i,j .
While modifications to limiters away from extrema exist [6], we follow [5] and [20]

and focus only on algorithmic modifications at extrema as defined by (3.31). Recent
work on further improvements to the XPPM approach can be found in [21].

Away from these points our implementation of the XPPM method is identical to
the PPM4 algorithm with (3.32). The differences occur near extrema. When (3.31)
is satisfied, instead of proceeding with (3.19) (as does the PPM4 algoritihm), the
XPPM algorithm uses its own smooth extrema limiter [6], which begins with several
approximations to the second derivative:

(
D2ω

)
i,j

=
6

h2

(
ω†L
i,j − 2ω̄i,j + ω†R

i,j

)
,

(
D2ω

)
i,j,C

=
1

h2
(ω̄i−1,j − 2ω̄i,j + ω̄i+1,j) ,(

D2ω
)
i,j,L

=
1

h2
(ω̄i−2,j − 2ω̄i−1,j + ω̄i,j) ,(

D2ω
)
i,j,R

=
1

h2
(ω̄i,j − 2ω̄i+1,j + ω̄i+2,j) .(3.37)

If (D2ω)i,j , (D
2ω)i,j{C,L,R} all have the same sign, then

(3.38)(
D2ω

)
i,j,lim

= s min
{
C
∣∣∣(D2ω

)
i,j,L

∣∣∣ , C ∣∣∣(D2ω
)
i,j,R

∣∣∣ , C ∣∣∣(D2ω
)
i,j,C

∣∣∣ , ∣∣∣(D2ω
)
i,j

∣∣∣} .
Otherwise, (D2ω)i,j,lim = 0. The coefficient s ≡ sign[(D2ω)i,j ], and C is defined as
above, after (3.36). The final limiter is

(3.39) ωR,L
i,j =

⎧⎨
⎩ω̄i,j +

(
ω†R,L
i,j − ω̄i,j

) (D2ω)
i,j,lim

(D2ω)i,j
,

(
D2ω

)
i,j


= 0,

ω̄i,j ,
(
D2ω

)
i,j

= 0.

The net effect of this is that at smooth extrema, the limiters turn off and the high-
order interpolation for ω†R,L

i,j is used, while at poorly resolved nonsmooth extrema, it
switches to approach a piecewise constant reconstruction.

3.2.4. Fifth-order Suresh–Huynh limiters (SuHu). Another method to
ameliorate the loss of accuracy at extrema comes from Suresh and Huynh [30]. The
technique uses geometrical arguments to maintain the order of the underlying inter-
polation method at smooth local extrema and guarantees global positivity for linear
problems. It should be noted that no such guarantee is made on nonlinear problems
such as the Navier–Stokes problem here. While it is possible to apply the SuHu lim-
iter to any initial edge interpolation, we employ a quartic polynomial reconstruction
that results in a fifth-order method,

ω†R
i,j =

1

60
(2ω̄i−2,j − 13ω̄i−1,j + 47ω̄i,j + 27ω̄i+1,j − 3ω̄i+2,j) ,(3.40)

ω†L
i,j =

1

60
(2ω̄i+2,j − 13ω̄i+1,j + 47ω̄i,j + 27ω̄i−1,j − 3ω̄i−2,j) .(3.41)

As shown by (3.40) and (3.41), the polynomial interpolations are symmetric.
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After interpolation, each edge value is limited by a function of the vorticities of the
cell and its neighbors. Let us call that algorithm l(ω†, ω−2, ω−1, ω0, ω+1, ω+2). Sym-
metry allows the same function to be used for each of the edge values {ωR

i,j, ω
L
i,j , ω

U
i,j ,

ωD
i,j}:

ωR
i,j = l

(
ω†R
i,j , ω̄i−2,j , ω̄i−1,j , ω̄i,j , ω̄i+1,j, ω̄i+2,j

)
,(3.42)

ωL
i,j = l

(
ω†L
i,j , ω̄i+2,j, ω̄i+1,j , ω̄i,j , ω̄i−1,j , ω̄i−2,j

)
.(3.43)

The function ω̂ = l(ω†, ω−2, ω−1, ω0, ω+1, ω+2) begins by calculating a “monotonicity-
preserving” limit for ω, ωMP :

(3.44) ωMP = ω0 +minmod [(ω+1 − ω0) , α (ω0 − ω−1)] .

The minmod[x, y] function is the median of x, y, and 0: minmod[x, y] = (sign(x) +
sign(y))×min(|x|, |y|)/2. The multiple-argument minmod[z1, . . . , zk] function returns
the smallest argument if all are positive, the largest argument if all are negative, and
zero otherwise. And α is a numerical constant. Higher values of α allow higher-order
accuracy in the interpolations but also reduce the allowable time step that will ensure
monotonicity in a strong stability preserving (SSP) RK algorithm. As suggested in
[30], we set α = 4. For a further discussion of α and time stepping, see section 3.4.

Part of the efficiency of the SuHu limiter is a check to see if any limiters must be
applied to the edge value. If we are within a certain tolerance (ε = 10−10), we do not
have to apply any limiters to ω†:

(3.45) if
(
ω† − ω0

) (
ω† − ωMP

)
< ε then ω̂ = ω†.

Otherwise, we proceed with the limiting procedure, beginning with some second dif-
ferences:

d−1 = ω−2 + ω0 − 2ω−1,(3.46)

d0 = ω−1 + ω+1 − 2ω0,(3.47)

d1 = ω0 + ω+2 − 2ω+1.(3.48)

We then modify these differences:

dM4
+ = minmod [4d0 − d1, 4d1 − d0, d0, d1] ,(3.49)

dM4
− = minmod [4d−1 − d0, 4d0 − d−1, d0, d−1] .(3.50)

The limiting algorithm continues by calculating various geometric factors. The mean-
ing and reasoning behind these are given in [30], but for simplicity, let us leave these
details and proceed with the algorithm:

ωUL = ω0 + α (ω0 − ω−1) ,(3.51)

ωAV G =
1

2
(ω0 + ω+1) ,(3.52)

ωMD = ωAVG − 1

2
dM4
+ ,(3.53)

ωLC = ω0 +
1

2
(ω0 − ω−1) +

4

3
dM4
− .(3.54)
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These values are used to calculate the minimum and maximum allowable values for
ω†:

ωmin = max
[
min

(
ω0, ω+1, ω

MD
)
,min

(
ω0, ω

UL, ωLC
)]
,(3.55)

ωmax = min
[
max

(
ω0, ω+1, ω

MD
)
,max

(
ω0, ω

UL, ωLC
)]
.(3.56)

Finally one modifies the edge value by taking the median of these two limits:

(3.57) ω̂ = median
(
ω†, ωmin, ωmax

)
.

The equations (3.44)–(3.57) make up the entire limiting function, l(ω†, ω−2, ω−1,

ω0, ω+1, ω+2), which can be applied to each edge interpolation, {ω†R
i,j , ω

†L
i,j}, using

(3.42) and (3.43). Even though the SuHu method seems outwardly complex, the
symmetries in both the interpolation and limiting phases of the algorithm allow for
easy coding. The SuHu limiter maintains the order of the underlying algorithm even
at extrema and guarantees monotonicity preservation for 1D linear passive advection
problems, but global constraints might not be enforced in the presence of nonlineari-
ties. Positivity is also insured if a time-step restriction is satisfied.

3.2.5. Suresh–Huynh/piecewise parabolic method hybrid (SuHu-PPM).
To form a simple hybrid technique, we use the PPM interpolations as laid forth in
section 3.2.2 but the limiters proposed by Suresh and Huynh [30] and detailed in
section 3.2.4. This is not out of the spirit of the SuHu method, as [30] states that the
limiters therein can be applied to any type of interpolation, and here we apply them
to the fourth-order PPM interpolations. (This hybrid choice was motivated by results
found in section 4.) Explicitly, we use (3.26)–(3.27) for the initial interpolations, but
apply the limiters in (3.42)–(3.43).

Although the value of α in (3.44) can be set to 3 when using the fourth-order initial
interpolations of PPM, thereby allowing a slightly larger time step (see section 3.4),
we leave α = 4 for the results in this paper.

3.3. On parallelization. Considering the recent advancements in high-powered
computation, it is prudent to mention a few words on an algorithm’s ability to par-
allelize efficiently over multiple processors and overall performance. Because higher-
order methods generally involve more FLOPS per memory access (and can reuse data
in cache from adjacent cells in the higher-order interpolations), one will generally ex-
pect higher-order methods to perform better on modern computer architectures where
memory bandwidth is usually more of a bottleneck than the CPU.

Even though the test problem contained here was run on a single serial processor,
all of the methods tested lend themselves to domain decomposition. The number of
requisite ghost cells each processor needs depends upon the algorithm. The Arakawa
method needs one layer to achieve its second-order accuracy, as cell (i, j) needs infor-
mation from its immediate neighbors (i± 1, j ± 1). A higher-order Arakawa method,
such as the one discussed in section 3.1.2, would require more information. For in-
stance a fourth-order method needs (i ± 2, j ± 2) [23] and, thus, two layers of ghost
cells. The WENO3 method similarly only needs one layer of extra information per
processor to calculate edge values {ωR

i,j , ω
L
i,j, ω

U
i,j , ω

D
i,j}. However, in order to properly

calculate the fluxes through the faces of cell (i, j), we must know the edge vorticity
values on both sides of the interfaces, or specifically {ωR

i−1,j, ω
L
i+1,j , ω

U
i,j−1, ω

D
i,j+1}.

This implies that each processor must first calculate all of the {ωR
i,j, ω

L
i,j , ω

U
i,j , ω

D
i,j} on

its subgrid using one ghost layer, then exchange information with its neighbors to be
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able to calculate the correct fluxes and advance the solution and then exchange the
newly calculated vorticity values ωn+1

i,j with its neighboring processors.
Alternatively, one could subdivide the grid into domains with two ghost layers.

This would allow each processor to accurately calculate all of the {ωR
i,j, ω

L
i,j , ω

U
i,j , ω

D
i,j}

and {ωR
i−1,j , ω

L
i+1,j, ω

U
i,j−1, ω

D
i,j+1} on its subdomain, thereby consolidating two mes-

sage passing events into one. In most cases this will probably be better as it will
reduce the total latency, but the choice of which method to use would depend on
details of the specific computer architecture (such as the latency and bandwidth of
the interprocessor communication relative to CPU speed), and thus the relative effi-
ciencies of having a slightly larger domain on each processor and the speed at which
processors can exchange information. Similarly, the PPM, XPPM, and SuHu meth-
ods could all run with two ghost cells, but it will probably be more efficient to have
three.

3.4. Time-advancement algorithms and positivity constraints. To ad-
vance the system in time, we employ a third-order SSP-RK algorithm (SSP-RK3), as
described in [11]. It is a multistage process that is slightly complicated by the coupled
equations (2.2) and (2.3). Written in a generic form, (2.2) is

(3.58)
∂ω

∂t
= ξ(ω, ψ).

The SSP-RK3 method evolves this equation in three stages for every total time step,
Δt, with the total process a convex average of forward Euler steps. If each Euler step
preserves certain properties (such as monotonicity, as the limiters of the various finite
volume methods are designed to do), then the convex average of the final method will
preserve these properties as well. If we define the vorticity and stream function at
time step n as ωn and ψn, then the SSP-RK3 method is

ω� = ωn +Δt ξ(ωn, ψn),(3.59)

ω′ =
3

4
ωn +

1

4
ω� +

1

4
Δt ξ(ω�, ψ�),(3.60)

ωn+1 =
1

3
ωn +

2

3
ω′ +

2

3
Δt ξ(ω′, ψ′).(3.61)

It should be noted that each vorticity/stream function pair must satisfy the Poisson
equation (2.3), so the SSP-RK3 algorithm requires three inversions of (2.3) per time
step.

As mentioned, we run the simulations with a CFL number of 0.1 to ensure that
our comparison of spatial algorithms is not muddled by temporal errors. While our
focus is primarily on the different algorithms for evaluating the Poisson bracket, the
choice of time-integration scheme in a plasma edge turbulence simulation is important
as well.

The SSP-RK3 algorithm is one of a set of schemes designed to maintain the
properties (such as monotonicity and positivity) of the simulation throughout the
multistage integration process. There is a trade-off with these multistage algorithms.
As the number of stages increases, so can the order accuracy of the method and the
maximum stable time step. However, adding additional stages increases the amount
of work, as the Poisson equation must be inverted and the Poisson bracket must be
evaluated at each stage.

SSP-RK algorithms are comprised of many Euler-like substages, each of which
makes a temporal advance of Δt1. In order for an SSP-RK algorithm to preserve
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Table 3.1

Stability-based efficiency of various time-advancement algorithms [10], measured by work re-
quired to integrate forward in time using the maximum possible time step to preserve stability,
monotonicity, and positivity. The parameter α depends on the spatial discretization algorithm, and
the length of a substep is Δt1.

Algorithm
Number of stages Time-step size Relative efficiency

Nstages Δt/Δt1 εt

SSP-RK3 3 1 0.333/(1 + α)
5-stage SSP-RK4 5 1.508 0.302/(1 + α)

Low-storage 10-stage SSP-RK4 10 6 0.6/(1 + α)

monotonicity (and/or positivity, if relevant), it must satisfy a constraint on the max-
imum allowable substage time advance [10]. Namely, if we define a CFL time scale
by ΔtCFL = h/v, then to preserve monotonicity or positivity, each substage of an
SSP-RK method must satisfy a constraint of the form

(3.62) Δt1,max =
ΔtCFL

1 + α
,

where the value of α depends on the spatial discretization algorithm and generally
increases with the order of the spatial discretization. (Possible choices of α and its
relation to monotonicity preservation are discussed in [30]. We will use their suggested
value of α = 4 for the cases in this paper. Values of α for positivity preservation
are discussed below.) The length of each of these substeps is dependent upon the
time-advancement algorithm. For instance, in the SSP-RK3 algorithm described in
(3.59)–(3.61), Δt1 = Δt, the total time step. While the ratio of the total time step to a
substep, Δt/Δt1, is algorithmically dependent, it does define the maximum allowable
total time step, Δtmax = (Δt/Δt1)Δt1,max. We can define an SSP-based relative
efficiency for an algorithm as the ratio of this maximum allowable time step (relative
to the Courant time ΔtCFL) to the number of stages in the RK scheme:

εt =
Δtmax

ΔtCFL

1

Nstages

=
Δt

Δt1

1

Nstages(1 + α)
.(3.63)

While a detailed discussion of various optimal SSP algorithms can be found in [10],
Table 3.1 highlights the efficiencies of a few methods. The three-stage RK method
we use, (3.59)–(3.61), is actually more efficient than an optimal five-stage, fourth-
order method, because it has fewer stages. Even still, a recently discovered ten-
stage SSP-RK4 algorithm [12] is nearly twice as efficient as the five-stage version,
because it allows for a much larger time step. This analysis, however, only takes into
consideration the work required for monotonicity and positivity. In situations where
high accuracy is of greater concern, higher-order methods would be favorable.

In any case, we are focused primarily on spatial discretizations of the advection
operator and so choose the simpler SSP-RK3 method with small enough time step so
as not to obscure the spatial discretization analysis. An estimate of the time-stepping
errors can be seen in Figure 4.3, where the dissipation from the Arakawa scheme is
entirely from time integration errors.

Time-advancement schemes can also alter the monotonicity and positivity prop-
erties of the system. Two of the Poisson bracket algorithms, the XPPM and Suresh–
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Fig. 3.1. Illustration that there exist initial conditions where all of the cell averages are positive
(left plot), but the extrema-preserving algorithms can lead to a negative cell average at a later time
(right plot), as the minimum in the underlying reconstruction moves from a cell edge towards a cell
center. Note that the underlying smooth reconstruction ω(y) can be negative in some regions even
though the cell averages are everywhere positive initially.

Huynh algorithms, are monotonicity preserving (in the sense described below), but
they are not necessarily positivity preserving, a desirable property when simulating
advection of physically positive quantities (examples include density, temperature,
probabilities, or particle distribution functions). To understand the origin of this
problem, note that these algorithms are monotonicity preserving (for constant advec-
tion in one dimension, if the time step is sufficiently small) in the sense that no new
extrema are produced and an initially monotonic region may be displaced during a
time step but remains monotonic within that displaced region. (This is the sense in
which Suresh and Huynh refer to their algorithm as monotonicity preserving.2) In
other words, the algorithms move existing extrema but do not create any new ex-
trema. However, they do not necessarily prevent an existing extremum from being
slightly accentuated, which in fact must be allowed in order to maintain accuracy near
smooth extrema. Thus they do not necessarily ensure positivity of the solution.

An example illustrates how these kinds of monotonicity-preserving algorithms
do not necessarily preserve positivity. Smooth extrema preserving algorithms like
XPPM and SuHu are exact for smooth low-order solutions, which near a minimum
can be approximated as a generic parabola, or ω(y, t) = C0 + C2(y − vt − y0)

2, for
given coefficients C0 and C2, where the minimum is initially located at y0. It is
possible for the initial conditions for the cell-averaged values of ω̄i to all be positive,
but to correspond to an underlying reconstruction ω(y, 0) that goes negative at some
locations. Then as the solution evolves in time, it is possible for a cell average to drop
below zero, as illustrated in Figure 3.1, for the specific case of C0 = −0.2, C2 = 1.0,
v = 1.0, and y0 = 0. Of course, if ω(y) should be positive, then C0 ≥ 0, and the initial

2In some of the CFD literature, the term “monotonicity preserving” is defined to mean not
only that there are no new extrema produced, but also that existing extrema are not accentuated.
However, this is not the sense in which Suresh and Huynh use the term.
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values of ω̄i should be such that ω̄i remains positive. But the converse is not true, as
there are certain values for ω̄i that correspond to C0 < 0, even though all of the ω̄i

are positive at a given instant, which will then cause some ω̄i to go negative at a later
time. (Such conditions might be produced not only by initial conditions but by other
terms in the equations, such as loss terms by radiation or some other process.)

It is possible to guarantee positivity of the cell-averaged solution by supplementing
these algorithms with a simple additional limiter. A single forward Euler time step
of (3.6) (neglecting the diffusion term for simplicity) can be written in the form

(3.64) ω̄n+1
l = ω̄n

l −
∑
s

Δt v̂s,l
h

ω̂s,l

where ω̂s,l is the value of ω interpolated (with limiters) to the face s of the cell l
at time level n, and v̂s,l is the velocity directed outward through face s. (For two-
dimensional problems, s = 1 . . . 4, and v̂s,l = −vi−1/2,j for s corresponding to the left
face of cell (i, j).) To ensure positivity of the solution at time tn+1, we must satisfy∑

s(Δt v̂s,l/h) ω̂s,l ≤ ω̄n
l . If we use a conservative upper bound on the left-hand side

of this equation based on only the outward fluxes from this cell (vs,l ≥ 0), and if the
edge interpolations are bounded by

(3.65) 0 ≤ ω̂s,l ≤ (1 + α) ω̄n
l

for some constant α (to be discussed), then positivity is preserved if

(3.66)
∑
s

Δt max(v̂s,l, 0)/h ≤ 1/(1 + α)

is satisfied for all cells. The maximum value over all cells of the left-hand side of
this equation defines a generalized CFL parameter, so positivity is satisfied if CFL ≤
1/(1 + α).

To preserve the order of accuracy of the algorithm, one chooses α large enough to
avoid limiting any allowable, positive solutions that are sufficiently smooth. For the
fourth-order XPPM or SuHu-PPM, where solutions are of the form ω(y) ∝ (y − y0)

2

near a zero, the maximum value for the ratio of the edge value to its cell-averaged
value, ω̂s,l/ω̄

n
l , is 4. Therefore, setting α = 3 is the minimum value needed to guar-

antee positivity without reducing the order of accuracy. The value of α = 4 used
in the original SuHu algorithm will also ensure positivity without reducing the order
of accuracy, if the edge interpolations are limited to satisfy (3.65) and the time step
satisfies (3.66). In general, as the order of accuracy of the interpolations increases,
one must use larger values of α in (3.65) to preserve that accuracy, but this increases
the computational expense because the time-step size is reduced for larger α in (3.66).

These results for the choice of α apply in the asymptotic limit as the grid is refined.
One might consider more general polynomials near a minimum. As an example for
XPPM or SuHu-PPM, which use cubic interpolating polynomials, one could have
ω(y) ∝ (y − y0)

2(y − y2) locally near a particular cell containing y0. A value of
α ≈ 3.38 would be necessary to avoid limiting any case where the point y2 (where ω
changes sign and this local polynomial expansion breaks down) lies at least two cells
away. However, as the grid is refined so that the point y2 is many cells away, then
α = 3 becomes an acceptable limit to preserve positivity and the order of accuracy.

For the fifth-order SuHu algorithm, where ω(y) ∝ (y − y0)
4 is possible, one finds

the maximum ratio of edge to cell-averaged values gives α ≈ 6.43, which would lead
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to the time-step restriction, CFL < 0.13, somewhat stricter than the Suresh–Huynh
original choice for just monotonicity, CFL < 0.2. However, if high-order minima are
rare and it is more likely to have distinct second-order minima, ω(y) ∝ (y − y0)

2(y −
y2)

2, then the value of α ∼ 3–4 may be sufficient in most cases, allowing a larger time
step with little loss of accuracy. The limiter in (3.65) will preserve positivity if the
SSP-RK time step is sufficiently small, with CFL < 0.2 for our parameters.

A flexible way to implement a positivity limiter, without imposing the limit on
the time step in (3.66), is to bound the edge interpolations to satisfy

(3.67) ω̂s,l < ω̄n
l /max(1/(1 + α),CFLl),

where the local CFL parameter in cell l is defined by CFLl =
∑

s Δt max(v̂s,l, 0)/h.
The parameter α is as given above to avoid losing accuracy for smooth positive so-
lutions in regions where the local CFL parameter is small enough, though there will
be some loss of accuracy by this positivity limiter in regions where the local CFL
parameter exceeds 1/(1 + α). For certain types of flows (including kinetic plasma
problems of interest to us), the local CFL number on most of the grid will be much
smaller than the maximum CFL number on the grid, so that positivity can thus be
ensured everywhere, without loss of accuracy on most of the grid, while allowing a
larger time step. We leave exploration of this possibility as future work.

As mentioned in [6], another way to preserve positivity could be to couple finite
volume methods with the flux-corrected transport method (FCT) [31], and some ap-
proaches to this could allow a larger time step. The standard FCT method requires
twice the work per time step, but if it is used only to enforce positivity, then a simpler
version can be implemented within a single step [32]. As has been pointed out [20],
it is not necessary to apply the FCT algorithm on every substage of an RK time-
advancement algorithm. Instead, one could apply FCT only after a full RK time
step, using the fluxes averaged over the RK substages as the starting point for FCT.
(This comes at the expense of storing these average fluxes at each cell face, which re-
quires d times as much memory as the cell averages in d dimensions.) If an individual
RK substage generates negative values, the corrections from the other substages are
likely to make it positive again, or at least reduce the magnitude of the overshoots.
(If the solution is everywhere positive after the final RK stage on most time steps,
then the FCT limiting could be skipped on those steps.) This could allow a larger
time step for preserving positivity without reducing the order of accuracy. Note that
negative values during intermediate RK stages can be set to a floor value if necessary
when calculating fluxes, while still satisfying the conservation form as long as only
the fluxes are modified. Storage of the fluxes could be avoided by using the time-step
algorithm in [33], though this algorithm is only formally second-order accurate for
nonlinear problems [34]. Tests of FCT-based approaches are beyond the scope of this
paper.

4. Results.

4.1. One-dimensional advection. By skipping the Poisson equation inversion,
(2.3), with the initial conditions vx = 0, vy = 1 and without viscosity, ν = 0, the equa-
tions of motion become simple advection, and (2.1) reduces to a wave equation. Exact
solutions are easily tractable, as the initial disturbance propagates with constant unit
velocity. After a transit period (t = 10m, m ∈ N), any distortions from the initial
conditions are only properties of the numerical algorithm.

A standard test problem in 1D advection is the transit of a Gaussian and a
step-function pulse (see, for instance, [17]). Since our problem is formulated in two
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Fig. 4.1. Advection of a Gaussian and step-function pulse for one transit (dots) through a 1D
periodic domain, overlaid with the initial conditions (solid line). Left, top to bottom: second-order
Arakawa, PPM4, and XPPM. Right, top to bottom: WENO3, SuHu, SuHu-PPM. In all cases,
ν = 0, vy = 1.

dimensions, we advect 2D structures (the Gaussian and a square block) in one dimen-
sion and compare solutions through the center of the structures along the direction
of motion. That is, after initialization, we let these pulses transit through one period
of motion in the y-direction and compare solutions at fixed values of x.

Figure 4.1 shows the overlaid initial (solid) and final (dotted) solutions for the
six methods (all with CFL = vΔt/Δx = 0.1 so that time discretization errors are
negligible and the results do not change with smaller Δt). The second-order Arakawa
result displays a large phase error, as evidenced by the mismatch in peak locations.
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Furthermore, one clearly sees spurious oscillations that build up behind the pulses and
propagate through the mesh. These kinds of errors could be particularly significant in
cases where nonlinear interactions of coherent structures are important, so one would
like to minimize phase errors between various components of the solution.

Reducing the spurious oscillations seen with the Arakawa method may require
very high resolution and/or including relatively strong viscosity. Much of the total
error in the Arakawa solution originates from the step function, which propagates
through the mesh and adversely affects the smooth pulse. (Indeed, even very high
resolution will not eliminate spurious oscillations for Arakawa with a step-function
initial profile.) However, even without the step function, the solution would still
oscillate to unphysical negative values (for a Gaussian with a full width at half max-
imum (FWHM) of 1, and 12.8 points per FWHM, the oscillations in the solution
will reach −6% of the peak value after propagating a distance of 10). In many re-
spects this is not unexpected, as in the 1D limit the Arakawa discretization reduces
to a second-order center-differenced method (see (3.2)). The WENO3 and PPM4
solutions display significant diffusion near the Gaussian peak (PPM4 is slightly less
diffusive), but both show relatively small phase errors and asymmetries. However, the
finite volume methods with smooth extrema preserving limiters reproduce the initial
conditions quite well, with peak amplitude drops of ∼ 10−7. Additionally, no finite
volume result has spurious oscillations; the solution stays above the initial minimum,
preserving positivity.

As another test, we can initialize the vorticity to be a cosine wave in the direction
of propagation with wave number k, ω0(y, t = 0) = cos (ky). After a time T =
2π/(kv) the wave should have moved exactly one wavelength and reproduce the initial
condition. For linear algorithms, the numerical solution will be a cosine wave, with
possible phase shift and amplitude errors: ωT (y) = ω(y, t = T ) = a cos (ky + φ).
Because of the nonlinearities in the limiters of these algorithms, a standard linear
von Neumann analysis cannot be done, so we measure amplitude and phase errors
that build up during one advection period in the following way. If there were no
damping, the numerical cosine wave would satisfy

〈
ω2

〉
= 1/2 for all k = 2πm/L

(except m = 0, N/2), where 〈· · · 〉 denotes the average operator along the y-direction.
Let us characterize a numerical damping factor γn by

(4.1)
〈
ω2

〉
(T ) =

1

2
e−2γnT .

The phase error can be determined by the law of cosines, through the dot product of
the initial and final solutions:

(4.2) cos(φ) =

∑
j ω

0
jω

T
j√∑

j

(
ω0
j

)2√∑
j

(
ωT
j

)2 .
If ωT and ω0 are exactly out of phase (ω0 = −ωT ), then (4.2) calculates φ =
cos−1(−1) = π. If they are in phase, φ = cos−1(1) = 0. Alternatively, one can calcu-
late the phase error less robustly by a nonlinear least-squares fit for the coefficients
a and φ of ω(y, T ) = a cos(ky + φ). We define the phase error Eφ as (1 − cos(φ))/2,
which maps φ ∈ [0, π] → Eφ ∈ [0, 1].

An ideal algorithm would have small values for both γn and φ for all wave numbers
kΔy/π ∈ (0, 1). If one is primarily interested in large-scale physical features, low
damping and phase errors at small k would be particularly desirable, even though,
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Fig. 4.2. Phase errors after one period for advection of a cosine wave as a function of wave
number.
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Fig. 4.3. 〈ω2〉 as a function of wave number for the passive advection of a cosine wave after
one period T for the different algorithms (left), along with associated numerical damping factors γn
(right) as defined by 〈ω2〉(T ) = 1

2
e−2γnT .

in general, the phase and amplitude errors are not simple functions of only the wave
number for most of these algorithms because of the nonlinearities in the limiters
they use. As shown in Figure 4.2, the phase errors of the higher-order algorithms
(XPPM, SuHu, SuHu-PPM) are all much lower than those of the WENO3, PPM4,
and Arakawa methods across all wavelengths.

We display
〈
ω2

〉
with calculated numerical damping rates, γn, of each method

in Figure 4.3. As the Arakawa spatial discretization method does not introduce any
dissipation itself, the curve labelled Arakawa represents the small residual numerical
dissipation from the third-order time-stepping method. While the WENO3 and PPM4
methods have relatively high rates of numerical dissipation, the extremum-preserving
methods have significantly lower dissipation. XPPM drops to the minimum possible
dissipation at long wavelengths, because it reverts to an undamped centered method
in well-resolved regions. The observation that SuHu is better than XPPM at higher
wave number while XPPM is better at lower wave number motivated the choice of the
SuHU-PPM hybrid, which uses the centered fourth-order interpolation of the initial
step of PPM in combination with the SuHu limiters. The SuHu-PPM method nearly
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overlaps the true solution as it approaches the minimum level of dissipation for long
wavelengths of kΔy � π/3.

It is possible to understand some of the asymptotic scalings for the numerical
dissipation rate in Figure 4.3. If (3.20) and (3.21) from the WENO3 method were used
to interpolate the boundary values with no further limiters, then this would correspond
to an upwind-biased third-order method, which would have a numerical damping rate
γn ∼ |v|(Δx)3k4. As seen in the damping rates of Figure 4.3, the additional limiters in
the WENO3 method give larger damping, γn ∝ k3. This behavior is because WENO3
reverts to a piecewise constant interpolation near extrema, which is equivalent to
simple first-order upwind that locally introduces a numerical damping ∼ |v|Δxk2.
Since the fraction of cells at extrema is proportional to kΔx, the resulting average
dissipation is a numerical damping rate ∼ k3. Similar arguments apply to the regular
PPM method, which is also dominated by clipping errors at extrema.

4.2. Two-dimensional vortex merger. We now turn to the fully 2D nonlinear
problem as described in section 2. The two Gaussian monopoles begin to swirl around
each other and merge together. During the process, sideband rings propagate outward
across the mesh. Details on the vortex merging process can be found in [25], but it
should be noted that the vorticity should never drop below the floor as defined by the
background. Any such solutions are solely artifacts of the numerical method.

In Figure 4.4 we show Re = 105 vorticity solutions at t = 100 for WENO3,
second-order Arakawa (Arakawa2), SuHu, XPPM, and SuHu-PPM, at two different
resolutions, N = 128 (left) and N = 1024 (right). All plots are on the same common
color scale, which spans the initial minimum and maximum vorticity. Values outside of
this range are marked in white (if they are negative, indicating a positivity violation)
or black (if they are too large, indicating an overshoot).

Beginning with the low-resolution simulations, we see that the WENO3 solution
is extremely affected by numerical dissipation. The solution has washed out all fine
features and has joined the two peaks into a single ellipsoid shape. Furthermore, the
orientation of that ellipse does not agree with any of the other solutions, but WENO3
does not violate positivity, as expected. The low-resolution Arakawa solution is also
plagued with numerical errors, as indicated by the numerous positivity violations
and the unphysical overshoots near the center of the domain. However, the SuHu,
XPPM, and hybrid SuHu-PPM methods more faithfully reproduce the solution at low
resolutions. Both of the merging peaks are resolved alongside the expanding banded
arms. The SuHu low-resolution solution violates positivity slightly in a few places,
which is interesting, although not surprising, because the SuHu limiters are designed
to only ensure positivity in linear problems, like passive advection, and make no such
guarantee for nonlinear problems, like vortex merging. Although the two methods
with the PPM interpolations (XPPM and SuHu-PPM) do well at low resolutions, the
SuHu-PPM method shows the most detail.

The N = 1024 extremum-preserving and Arakawa solutions show crisp details,
such as the wake features seen trailing the vortexes, which are washed out by the
WENO3 method. This is in agreement with the observations made by Naulin and
Nielsen [22]. However, the high-resolution Arakawa solution still has excessive oscil-
lations and positivity violations. This is seen not only in the white and black cells of
Figure 4.4, but also in a 1D slice through the domain center, as shown in Figure 4.5.

With respect to overall levels of dissipation, we present in Figure 4.6 the total
enstrophy Ω at t = 100 (left plot) and at t = 500 (right plot), for different resolutions:
N = 1024, 512, 256, 128. Plotted alongside is a curve marked “optimal subgrid,”
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Fig. 4.4. Low- (N = 128) and high-resolution (N = 1024) vorticity solutions for the vortex
merger problem with high Reynolds number Re = 105 at t = 100, with the color scale spanning the
minimum and maximum initial vorticity. Positivity violations appear white. Unphysical overshoots
are black.

which corresponds to a hypothetical subgrid model that leaves the spectrum un-
perturbed except for truncation at kmax = π/(Δx) = kminN/2. The total enstrophy
is calculated by summing the enstrophy spectrum Ωk over all k up to kmax from a
well-resolved N = 1024 simulation using the fourth-order Arakawa method described
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Fig. 4.5. 1D slices of vorticity, ω(x = 5.0, y, t = 100) for the second-order Arakawa (top left),
WENO3 (top right), and SuHu-PPM (bottom) techniques.

Fig. 4.6. Convergence of the total enstrophy at time t = 100 (left) and time t = 500 (right)
versus 1/N , for grid sizes N = 128, 256, 512, 1024, for the high Reynolds number case. Also plotted
are the solutions from an optimal subgrid model.

in section 3.1.2. The optimal subgrid curves are fairly flat, indicating that little of
the enstrophy is above these cutoffs.

The solutions for both the WENO3 and Arakawa methods at t = 100 agree with
those found in [22]. The numerical dissipation in WENO3 makes the enstrophy signif-
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Fig. 4.7. Enstrophy spectra for high Reynolds number at different resolutions, for the second-
order Arakawa method (left) and the SuHu-PPM method (right). At lower resolutions, the Arakawa
method experiences an artificial pileup of enstrophy at high k.

icantly lower than that calculated via the Arakawa method, which exactly preserves
the discretized enstrophy. As such, the Arakawa solution only contains dissipation
from the explicit viscous term and from the time-stepping algorithm, which is small.
The extremum-preserving algorithms are the least dissipative of the finite volume
schemes; however, even the PPM4 method presents a significant improvement over
WENO3. (A correction to the finite volume methods that accounts for the fact that

finite volume methods actually deal with cell-averaged vortices ωi,j and that [ωi,j ]
2
is

slightly larger than ω2
i,j is very small and has no visual impact on this plot.) While

Arakawa is closest to the correct total enstrophy when dissipation is not yet important
(at early times) and converges most quickly at high resolution, it can have problems
at low resolution at later times (as seen in the t = 500 plot) when dissipation should
occur but the dissipation scale is not adequately resolved. Even at early times when
Arakawa is closer to the correct total enstrophy because it has more enstrophy than
the finite volume methods, the phases between the high k modes containing that extra
entrophy are not accurate. This leads to the large spurious oscillations seen in the
low resolution results in Figure 4.5.

In general, some level of dissipation is desirable for simulations of turbulent or
other nonlinear cascades, as illustrated in another way by the enstrophy spectra Ωk

shown in Figure 4.7. We plot kΩk versus normalized wave number k/kmin, with
kmin = 2π/L, for different resolution simulations at late time, t = 500, for the same
Re = 105 vortex merger problem as before. The left plot is for the Arakawa technique
and the right plot is for the SuHu-PPM hybrid technique (XPPM and SuHu give
similar results). The 1D enstrophy spectrum Ωk plotted here is the sum over all modes
�k = kxx̂ + ky ŷ with ‖�k‖ lying in the bin k ± −Δk/2, so that the total enstrophy is
Ω =

∑
k Ωk, where k = kmin, 2kmin, . . . ,

√
2(N/2)kmin.

As can be seen in Figure 4.7, both methods show a falloff in enstrophy at high
resolution. Additionally, the energy-containing larger scales (k/kmin < 10 in this
case) look similar. But the Arakawa method at lower resolution has an artificial
pileup of enstrophy at high k. Because of the conservation properties of Arakawa,
the enstrophy is trapped in the system if there is no dissipation (or the dissipation
scale is not sufficiently resolved), and instead of cascading down to unresolved smaller
scales, the enstrophy is reflected back from the grid scale, leading to a pileup. This
pileup, or bottleneck, problem is well known in turbulence simulations and is the
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Fig. 4.8. Utilizing a higher-order Arakawa method prevents neither spectrum pileup in low
resolution cases (left) nor spurious oscillations (right).

motivation for adding some kind of artificial dissipation or hyperviscosity to such
systems [3, 28]. The time it takes for nonlinearities to cascade part of the solution to
dissipation scales is often very fast (for example, in fully developed three-dimensional
Kolmogorov turbulence, energy reaches the dissipation scale in a time of order of
the large-scale eddy turnover time, independent of Reynolds number), so dissipation
quickly becomes significant in such cases.

In the lowest resolution N = 128 Arakawa case, the pileup spectrum for k/kmin >
20 is roughly similar to what one might expect for thermalization of enstrophy, where
there is no net cascade of enstrophy. For 2D thermal equilibrium, the energy spec-
trum is Ek ∝ k/(α + βk2), so the asymptotic result at high k would give kΩk ∝ k2

for positive β coefficient [13, 14]. This is similar to recent observations of partial ther-
malization at high k for hyperviscosities ∝ ∇2p with excessively high p exponents [9].
Note that the standard expectations for 2D turbulence [13, 24] with a net cascade
would give Ek ∼ k−3 in the enstrophy intertial range, and thus kΩk ∼ k0, though
these results for fully developed turbulence are not necessarily expected to hold for
the coherent vortex merger problem under study here.

Increasing the order of accuracy of a method does not necessarily fix the pileup and
positivity problems seen at lower order. The fourth-order Arakawa method still traps
enstrophy in the system and allows nonphysical oscillations. Figure 4.8, a recreation of
the tests in Figures 4.5 and 4.7 with the fourth-order Arakawa method, shows similar
results to the lower-order Arakawa method. Since enstrophy is exactly conserved by
the Arakawa methods, it cannot leave the system at the grid scale without explicit
damping, and the power spectrum is altered if the dissipation scale is not adequately
resolved. The higher-order Arakawa solution still displays spurious oscillations, visibly
violating positivity even in the highest resolution simulation.

Higher-order versions of the Arakawa Poisson bracket representation share the
conservation properties of their lower-order counterparts. Since positivity violation,
spurious oscillation, and turbulent spectrum alteration are all related to these conser-
vation properties, it is not possible to eliminate these problems by merely employing
a higher-order solution.

5. Discussion. The SuHu-PPM method (and other similar methods) is more
robust at lower resolution, giving the qualitatively correct enstrophy inertial range,
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because it essentially introduces a kind of subgrid model that provides some needed
dissipation near the grid scale. While the numerical dissipation in these methods is
the minimum necessary to ensure monotonicity (in 1D linear advection), and acts
qualitatively as a subgrid model that improves robustness on coarse grids, it is not
necessarily the optimal amount of damping for a subgrid model purely from a tur-
bulence modeling perspective (if small amounts of nonmonotonic overshoots can be
tolerated). For fluctuations near the grid scale, these methods revert to first-order
upwind differencing, which corresponds to a damping rate of order |v|/Δx, while
eddy-viscosity concepts [16] indicate that a subgrid model of the transfer from barely
resolved scales to unresolved scales should introduce a damping rate near the grid
scale of order of the shearing rate, |∇v|. For a Kolmogorov spectrum E(k) ∼ k−5/3,
where most of the energy is at large scales but most of the shearing is done by small
scales, this means that upwind damping at the grid scale is too strong by a factor of

approximately
√
k2max

∫
dk E(k)/

√∫
dk k2E(k) ∼ (kmax/k0)

1/3, where k0 is the wave
number of the energy-containing eddies and kmax ∼ 1/(Δx). While this damping is
too strong at the grid scale at high resolution, where kmax/k0 is large, the numerical
dissipation drops off relatively rapidly for k/kmax < 1/2 to 1/3 (see Figures 4.3 and
4.7), like a hyperviscosity, so longer wavelength fluctuations are relatively unaffected.

For other types of flow, such as those with shear, the numerical dissipation in the
finite volume methods might not be enough because it only damps modes with short
scales in the direction of the flow, irrespective of the scales perpendicular to the flow
direction. An example of such is passive advection ∂ω/∂t+∇ · (�vω) = 0 in a sheared
flow, defined for some numerical constant s as �v = x̂sy, with the initial condition ω(t =
0) = cos(k0x). The exact solution should be ω = cos(k0x− k0sty). If k0 � kmax then
the numerical dissipation will be negligible, even though the actual solution should
cascade to unresolved scales when the y-component of the wave number k0st = kmax.
This absence of damping will cause a recurrence error on time scales larger than
kmax/(k0s). For many turbulent systems, the gradients of the advected quantity
will be randomly oriented with respect to the flow direction, so there will be sufficient
damping near the grid scale. To further improve robustness one could consider adding
a subgrid model to introduce damping related to sheared flows.

It is also possible that a subgrid model [16] (even a relatively simple Smagorinsky
model) added to the Arakawa method could significantly improve its robustness with
respect to the enstrophy spectral shape and the pileup problem, though such a subgrid
model by itself would not be enough to eliminate the phase errors that exist even in
uniform advection or preserve exact positivity or monotonicity. One could further add
limiters only to try to preserve positivity, which would introduce less dissipation than
limiters that also try to preserve monotonicity. (These subgrid models and limiters
would of course break the conservation properties that the Arakawa method has by
itself.) We leave exploration of these possibilities to future work.

Although the extrema-preserving methods were the best performers in our test
problems, one should exercise caution when implementing them. In our implemen-
tation, the XPPM, SuHu, and SuHu-PPM were comparable in speed to each other
but were approximately 2x slower in CPU time per time step per grid point than the
Arakawa methods, because we did not focus on optimization. In particular, the code
looped over the whole grid twice each time step for the finite volume methods for con-
venience, because the finite volume advection operators had been implemented sepa-
rately in the x and y directions. Advection problems are typically memory-bandwidth
limited, so this explains the factor of two slowdown compared to the Arakawa meth-
ods, which only looped through the grid once to implement the full advection operator.
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In essence, this is an example of poor cache optimization. The implementation of the
finite volume algorithms could be rewritten to do everything in a single loop, which
should speed them up by about 2x. (That the second- and fourth-order Arakawa
methods had similar execution times at all grid resolutions further supports the idea
of memory-bandwidth limitation.) In modern architectures, where FLOPS are cheap
relative to memory access, the differences in speed per grid point for these various
algorithms should be small if they are implemented optimally. In problems where
an expensive Reimann solver takes most of the CPU time, this would also reduce
the sensitivity of the total CPU time to the order of the reconstruction algorithm.
Even if the higher-order extrema-preserving methods are somewhat more expensive
per grid point, they should often be a better choice, particularly in higher dimensions,
because of their better performance at lower grid resolution. Since the compute time
for advection problems in d dimensions scales as CNd+1

1 (including the shorter time
step at higher resolution), where N1 is the number of grid points in each direction, a
modest decrease in the required resolution N1 can easily offset a factor of two in the
coefficient C.

6. Conclusions. We have compared a number of discretizations for the Poisson
bracket nonlinearity for 1D passive advection and for the vortex merger problem in 2D
incompressible Navier–Stokes. The ubiquitous nature of this nonlinearity allows for
the application of these techniques to other equations, notably those used to describe
edge gyrokinetic and gyrofluid plasmas.

In agreement with previous work [22], we find that the numerical dissipation in the
third-order WENO method [15, 19, 29] can be significant for some applications. The
Arakawa method [1] is designed to be dissipation free, and so of course does better in
terms of conservation properties in cases where there should not be much dissipation.
However, depending on the application at hand, there are other properties of interest
beside dissipation rates, such as spectral shape, phase errors, spurious oscillations, and
positivity. We have shown that using a higher-order variant of the Arakawa method
alone cannot fix positivity violation and spectral pileups.

We have also extended the analysis to include a number of recent finite volume
techniques that are both accurate to a higher order and seek to increase the accuracy
of solutions at smooth extrema, leading to lower levels of numerical dissipation. These
include the high-order limiter implementation of Suresh and Huynh [30], Colella and
Sekora’s smooth extrema limiter [6] for the piecewise parabolic method [7], and a
hybrid technique that uses PPM4 interpolations and the Suresh and Huynh limiter.

The extrema-preserving techniques do extremely well in the passive advection
problem, eliminating extraneous oscillations and reducing phase errors while keeping
dissipation minimal. In the fully nonlinear problem they are less dissipative than
the conventional finite volume methods, reduce unphysical oscillations, resolve details
fairly well at low resolution, and model cascade behavior. All methods of course
converge to the right answer when the dissipation scale is well resolved, but these
recent finite volume methods are fairly robust even at lower resolutions, because their
numerical dissipation acts as an approximate subgrid model (though not necessarily
an optimal one).

Positivity is an important property to preserve for physical quantities such as
density, temperature, and distribution function in simulations of edge plasmas. While
the finite volume methods studied here do fairly well at preventing artificial overshoots
and preserving positivity, because of the modifications to the limiters to preserve
the accuracy of smooth extrema they may still produce small negative overshoots.
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However, it is possible to strictly preserve positivity with a small supplement to the
limiters used in these algorithms, similar to the constraints they already use to enforce
monotonicity.

There are various ways the time-step constraint might be further relaxed while
maintaining positivity. One possibility, mentioned in [6], is to couple these algorithms
with an FCT algorithm [31].

Another class of techniques that may be worth exploring for these types of prob-
lems are discontinuous Galerkin algorithms [4, 18, 35], as they combine some of the
favorable features of finite volume and finite elements, and have relatively low phase
errors while keeping a local stencil for efficient implementation.

Acknowledgments. We wish to thank J. Candy, P. Colella, D. Martin, and
J. Stone for their insight.
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