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The large eddy simulation (LES) approach—solving numerically the large scales of a

turbulent system and accounting for the small-scale influence through a model—is applied to

nonlinear gyrokinetic systems that are driven by a number of different microinstabilities.

Comparisons between modeled, lower resolution, and higher resolution simulations are

performed for an experimental measurable quantity, the electron density fluctuation spectrum.

Moreover, the validation and applicability of LES is demonstrated through a series of

diagnostics based on the free energetics of the system. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868235]

I. INTRODUCTION

Large eddy simulation (LES) methods were first intro-

duced within the computational fluid dynamics community1

in an attempt to focus on the large scales of a turbulent flow,

which often contain the information of interest for practical

applications, using the least possible amount of computa-

tional resources. Simpler versions of LES methods are based

on a phenomenological approach to turbulence, which, for a

fluid described by the Navier-Stokes equations, can be

understood in terms of two concepts, scale separation and

redistribution of energy between scales. Indeed, the

Reynolds number, which is used to characterize different

flow regimes of a fluid, measures the ratio between the forc-

ing scale and the dissipation scale in the system. For weakly

turbulent flows (or equivalently for low Reynolds numbers),

the small separation of scales implies the excitation of only a

few degrees of freedom. As one approaches a fully devel-

oped turbulent state, the scale separation increases, and more

degrees of freedom become excited. As the forcing and dissi-

pation start to act primarily at completely different scales, an

inertial range develops to bridge the two effects. The inertial

range, dynamically dominated by the nonlinear couplings,

serves to redistribute the energy from the large forcing scale

to the small dissipation scale, in a process known as a cas-

cade.2 This redistribution of energy is expected to have a

universal character and leads to the development of power

laws for certain spectral quantities. As such, accurately

recovering the correct power law exponents is a sign of an

adequately resolved simulation.

Turbulence in magnetized plasmas is more complex

than fluid turbulence since it involves multi-field dynamics,

important kinetic effects, and the possibility to dissipate

energy at different (phase space) scales. Moreover, plasma

turbulence can be driven by a large variety of different

microinstabilities—including ion temperature gradient (ITG)

modes, trapped electron modes (TEMs), and electron tem-

perature gradient (ETG) modes, which may differ signifi-

cantly in their characteristic spatio-temporal scales as well as

in their fluctuation power law spectra. In particular, in the

context of plasma turbulence described by the gyrokinetic

(GK) model,3–5 several theories try to explain the power

laws found in experiments or in direct numerical simulations

(DNS) by means of concepts like nonlinear phase mixing,6,7

critical balance,8 or damped eigenmodes.9 For this reason, a

correct identification of the power law exponents is impor-

tant for the understanding of the underlying physics and use-

ful for providing constraints for simple physical models.

From an experimental point of view, the knowledge of char-

acteristic scales and wavenumber spectra is important for the

clear identification of the different turbulence regimes, in

which various microinstabilities can affect the confinement

of particles and heat in different ways.10 With the recent

improvements in fluctuation diagnostics, such as the new

Doppler reflectometer in the ASDEX Upgrade tokamak,11 it

is now possible to measure turbulence characteristics with

higher precision, allowing for better direct comparisons

between the experimental data and the results of nonlinear

gyrokinetic simulations.

Unfortunately, within the context of nonlinear gyroki-

netics, ensuring that all of the relevant phase-space dissipation

mechanisms are adequately resolved (so that the fluctuation

statistics are adequately described) can be very expensive

from a computational point of view.12 Hence, the LES tech-

nique used for simulation fluid turbulence has been applied to

plasma turbulence, first using simpler shearing-rate based sub-

grid models in gyrofluid13 and gyrokinetic14 simulations, and

recently using more advanced dynamic sub-grid models.15,16

The same ideas, to resolve the largest scales in the system and

model the influence of small ones, are applied to the gyroki-

netic equations and give rise to the Gyrokinetic Large Eddy

Simulation (GyroLES) approach. Previous efforts in this newa)Electronic mail: alejandro.banon.navarro@ipp.mpg.de
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field were focused on saving the computational time as much

as possible, while having the most accurate possible results in

terms of global transport quantities, such as cross-field heat

and particle fluxes. This requires retaining only relatively few

scales of motion, and simulations speedups by factors of

20–30 have been achieved. The present paper is not aimed at

calculating only global transport quantities at minimal compu-

tational cost, but to demonstrate that the GyroLES approach,

using a similar resolution that is used in present simulations,

yields more accurate power law exponents for different quan-

tities and for a wide range of parameters and instabilities, at a

lower computational cost. In particular, we will show that to

have at least the same accuracy in the resulting power laws as

in a GyroLES simulation, one will need to perform a simula-

tion with at least two times more resolution in both perpendic-

ular spatial directions.

The remainder of this paper is organized as follows. The

gyrokinetic model is briefly introduced in Sec. II, and the

GyroLES approach is summarized in Sec. III. Numerical

results are then presented in Sec. IV. Here, a description of

the different cases and instabilities is provided, followed by

an analysis of the performance of the GyroLES methods.

The latter will be focused on an experimentally accessible

quantity, namely the electron density fluctuation spectrum.

Moreover, in order to better understand the range of applic-

ability of the GyroLES approach for the different cases, sev-

eral diagnostics based on the free energy of the system will

be introduced and analyzed in detail in the last part of this

section. Finally, conclusions and discussions of the main

results will be given.

II. GYROKINETIC MODEL

The simulations presented below are performed with the

gyrokinetic code GENE.17 It integrates in time (t) the nonlinear

gyrokinetic equations on a fixed grid that discretizes the five-

dimensional phase space. GENE uses a field aligned coordi-

nate system that exploits the scale separation between the

perpendicular and parallel directions. The real space non-

orthogonal coordinates are represented by {x, y, z}, where z
is the coordinate along the magnetic field line, while the ra-

dial coordinate x and the binormal coordinate y are orthogo-

nal to the magnetic field. The velocity space coordinates {vk,
l} are, respectively, the velocity parallel to the magnetic

field and the magnetic moment. For simplicity, we restrict

ourselves here to the local approximation, although GENE can

also be used as a global code.18 In this case, the coordinates

perpendicular to the magnetic field are Fourier transformed

(x, y)! (kx, ky). Symbolically, the evolution equation for the

distribution function gj¼ gj(kx, ky, z, vk, l, t) can be

expressed as

@gj

@t
¼ L½gj� þ D½gj� þ N½gj�: (1)

Typically, the index j takes two values, j¼ i for the ions and

j¼ e for the electrons.

The first term in Eq. (1) is a linear term which can be

split into three contributions, L½gj� ¼ G½gj� þ LC½gj� þ Lk½gj�.

Here, G represents the influence of the density and tempera-

ture gradients, LC describes effects due to magnetic curva-

ture, and Lk contains the parallel dynamics involving

magnetic trapping as well as linear Landau damping. The

next term in Eq. (1) is the dissipation term, D[gj], which is

represented by a Landau-Boltzmann collision operator or by

fourth-order hyper diffusion operators in the collisionless

case (more details are given in Sec. IV). Finally, N[gj] is the

nonlinear term expressed in real space (x, y) in terms of

Poisson brackets

N½gj� ¼ � vj; hj
� �

x;y
¼
@vj

@y

@hj

@x
�
@vj

@x

@hj

@y
; (2)

where hj is the non-adiabatic part of the perturbed distribu-

tion functions and vj are the electrodynamic field contribu-

tions, obtained self-consistently from the Poisson-Ampère

laws for gyrokinetics. The nonlinear term has the fundamen-

tal role of coupling different scales in phase space and leads

to an effective coupling of perpendicular kx and ky modes.

For the explicit form of the linear terms see Ref. 19, although

the knowledge of their explicit form is not necessary for the

understanding of the current paper.

III. THE FILTERED GYROKINETIC EQUATION

Large Eddy simulations for gyrokinetics require a sepa-

ration between the large (resolved) and the small scales in

the system. As we are only interested in a separation of per-

pendicular spatial scales, characterized by modes in k space,

we introduce a cutoff wavenumber kc that separates the two.

Omitting the functional dependences of the terms and the

distribution function’s species label, the evolution equation

for the large scales (jkxj � kc and jkyj � kc) can be written as

@

@t
g<kjkc
¼ L<kjkc

þ D<
kjkc
þ N<

kjkc
þ NSGS

kjkc
; (3)

where the subscript notation kjkc indicates that the k depend-

ent terms have been parametrized with respect to the cutoff

wavenumber kc. In addition, the “<” superscript notation

indicates that in computing the large scale terms, only modes

satisfying the inequality k� kc are retained. This is always

true for the linear terms. However, as the nonlinear term Nk

for the large scales (k� kc) mixes the large and the small

scales, we split its contribution into two parts. One part,

N<
kjkc

, that contains interactions occurring only between large

scale modes and another part that takes into account the

interactions with the small sub-grid scale (SGS) modes, for

which k> kc. The sub-grid term NSGS
kjkc

is the only term that

cannot be expressed as a function of solely the resolved

scales k� kc. Taking into account that Eq. (3) is just the GK

equation rewritten for modes k< kc, the sub-grid term is

simply

NSGS
kjkc
¼ Nk � N<

kjkc
: (4)

The GyroLES approach consists in replacing this SGS term

by a good model, which only depends on the resolved quan-

tities g<kjkc
and a set of free parameters a¼ {a1, a2,…},
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NSGS
kjkc
� M<

kjkc
½a�: (5)

The free parameters must then be calibrated appropriately.

Through a process known as the dynamic procedure, it

is possible to calibrate automatically all free parameters in

the model. In a first step, the procedure requires the introduc-

tion of an additional cutoff scale kt, with kt< kc, known as a

test-scale. The resulting test-filtered gyrokinetic equation

@

@t
g<kjkt
¼ L<kjkt

þ D<
kjkt
þ N<

kjkt
þ NSTS

kjkt;kc
þM<

kjkc
½a� ; (6)

contains the sub-test-scales (STS) term, parametrized in

respect to kt and kc. Since NSTS
kjkt;kc

¼ N<
kjkc
� N<

kjkt
, it can be

computed explicitly as resolved scales up to kc are known. In

a second step, a cutoff wavenumber kt is introduced directly

into Eq. (1). This yields (for scales k< kt)

@

@t
g<kjkt
¼ L<kjkt

þ D<
kjkt
þ N<

kjkt
þ NSGS

kjkt

¼ L<kjkt
þ D<

kjkt
þ N<

kjkt
þM<

kjkt
½a�; (7)

where in the last equation, the sub-grid term has been replaced

by the same model as in Eq. (6). Although the same free pa-

rameters {a1, a2,…} are used, this model acts now in a more

limited simulation (kt< kc), and therefore, its amplitudes will

be adjusted accordingly. Equating Eqs. (6) and (7), up to test

scales k� kt yields an identity for the sub-test-scale term and

the model, known as the Germano identity20,21

NSTS
kjkt;kc

þM<
kjkc
½a� �M<

kjkt
½a� ¼ 0 for k � kt: (8)

The unknowns of the Germano identity, i.e., the free parame-

ters of the model {a1, a2,…}, can then be calculated by an

optimization of this difference with respect to the unknowns

(least squares method)

@

@fa1; a2; :::g
NSTS

kjkt;kc
þM<

kjkc
½a� �M<

kjkt
½a�

� �2
� �

K

¼ 0 ; (9)

where h…iK represents phase space (K) integration. Note that,

if more than one kinetic species are being solved, the resulting

parameters of the model are species dependent. This allows

one to separately model the different species in the system.

The numerical resolution used in a code is indicated by

introducing a cutoff filter denoted by �� � �, with a characteris-

tic length �‘ ¼ 1=kc. This filter sets to zero the smallest scales

in the distribution function gj, characterized by all modes

larger than k> kc. In particular, for the GK equation solved

by the GENE code, the cutoff kc is performed in the perpendic-

ular plane and the filter is implemented numerically by

reducing the number of grid points in (kx, ky) space.

In previous works,15,16 a hyper-diffusion model for the

sub-grid term was proposed

M½�g; ax; ay� ¼ �ðax
�‘

a
xðkx

�‘xÞn þ ay
�‘

a
yðky

�‘yÞnÞ�h (10)

with n¼ 4. Here, �‘x;�‘y represent the characteristic filter scale

in the perpendicular directions, ax, ay are the free parameters,

and h is the non-adiabatic part of the perturbed distribution

function. (As pointed out in Ref. 22, renormalized damping

models should only damp the non-adiabatic part of the distri-

bution function. The adiabatic/Boltzmann part is already in a

state of maximum entropy, so reducing it would reduce the

entropy. Furthermore, the nonlinearity vanishes on the adia-

batic part of the distribution function.) Note that the damping

rate in each direction in the sub-grid term, ai
�‘

a
i , has units of

1/t. In those previous works, we used a dimensional analysis

based on the “free energy flux density” to fix the cutoff scale

exponent, which gives a¼ 1/3. However, here we will use a

somewhat more conventional estimate based on the free

energy flux and analogies to standard fluid turbulence, which

leads to a¼�2/3. In the Kolmogorov picture of fluid turbu-

lence, quantities at scale ‘ in the inertial range can depend

only on the scale ‘ and on the energy flux � (in a plasma, the

related quantity is the free energy flux), which has units of

� � v3
‘=‘, where v2

‘ is the energy per unit mass in eddies of

scale ‘ (see, for example, Sec. 7.2 of Ref. 23). Dimensional

analysis shows that if the damping rate ai
�‘

a
i can depend only

on these two parameters, ai
�‘

a
i � �b�‘

c
i , then that means that

a¼ c¼�2/3, and b¼ 1/3, so that ai � �1=3. Physically, this

scaling of the sub-grid model means that the damping rate

scales with the eddy turnover rate, which increases at smaller

scales like ‘�2=3 in the inertial range.

This ‘�2=3 scaling is tied to the inertial range energy

spectrum of fluid turbulence of Ek � k�5=3. However, there

are additional parameters that may affect plasma turbulence

so that different spectral slopes may be seen in different

types of plasma turbulence (as we will see in this paper), and

thus the optimal value of the scaling with ‘ might change.

This is because of several factors, including the anisotropy

and additional modes in plasmas. That is, the energy cascade

rate in the perpendicular directions can be affected by energy

cascades to finer scales in the parallel direction, to finer

scales in velocity space, and by coupling to modes at the

same spatial scale that are Landau damped.9 Also, the rela-

tion between the (free) energy flux and the eddy velocity

spectrum in plasmas is not as straightforward as it is neutral

fluids because of finite-Larmor-radius and other effects.

For cases where the coefficients ai are fit (using the pro-

cedure defined below) with a test filter width that is a factor

of 2 larger than the resolved scale, the new scaling of M
� ai

�‘i
�2=3

would make M a factor of 2 larger, if the coeffi-

cient ai was the same. In fact, because of anisotropies and

nonlinearities in plasma dynamics, we have found that this

change in the exponent of �‘ causes ai to also increase, so that

the overall increase in the magnitude of sub-grid model

damping rate can be a factor of �5 larger in some cases. Our

general experience is that this stronger value of sub-grid

damping rate has made it more robust and effective. In gen-

eral, it seems better if the coefficient of the sub-grid term is

somewhat larger than optimal instead of too small. Because

of the hyperdiffusion form �k4 of the sub-grid term, if the

damping rate is too strong at the grid scale k � 1=�‘, it will

be about right at a somewhat smaller value of k. But if the

damping rate is too weak at the perpendicular grid scale,

then there will be a bottleneck for energy cascade in the per-

pendicular direction, and energy transfers will instead be
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forced in the parallel direction or to other modes with stron-

ger Landau damping, so that the spectra are more strongly

distorted.

The resulting filtered gyrokinetic equation solved in

GENE then reads

@�g

@t
¼ L½�g� þ D½�g� þ N½�g� þ N�‘;‘

¼ L½�g� þ D½�g� þ N½�g� þM½�g; ax; ay�:
(11)

Here, N�‘;‘ is the sub-grid term, which for clarity of the pre-

sentation, is represented by a notation that indicates the fact

that this term contains the influence of both the resolved

scales �‘ and the sub-grid scales ‘.
The parameters {ax, ay} can now be calculated with the

application of the dynamic procedure by introducing the

additional test-filter denoted in the following by c� � �, with a

characteristic length taken simply as ‘̂ ¼ 2=kc ¼ 2�‘. The

resulting optimization of the system of equations given by

Eq. (9) yields

ax ¼
1

cx

hmxN‘̂ ;�‘iKhm2
yiK � hmyN‘̂ ;�‘iKhmymxiK

hmxmyi2K � hm2
xiKhm2

yiK
;

ay ¼
1

cy

hmyN‘̂ ;�‘iKhm2
xiK � hmxN‘̂ ;�‘iKhmymxiK

hmxmyi2K � hm2
xiKhm2

yiK
;

(12)

where the quantities

mx ¼ kn
x ĥ and cx ¼ 1�

�‘x

‘̂x

 !n�2=3

; (13)

my ¼ kn
y ĥ and cy ¼ 1�

�‘y

‘̂y

 !n�2=3

(14)

have been introduced to simplify the notation. Here, N‘̂ ;�‘

¼ N½�g� � N½ĝ� represents the sub-test-scale term that is

known and can be calculated in a GyroLES simulation. In

addition, the dissipative effect on the model is guaranteed by

setting to zero any negative coefficient value.16

IV. NUMERICAL RESULTS

In the present section, numerical simulations of GK tur-

bulence for different types of instabilities and scenarios,

ranging from the well known Cyclone Base Case28 to an ex-

perimental ASDEX Upgrade discharge, are performed. After

introducing the simulation database for the runs considered,

electron density fluctuation spectra will be shown for the dif-

ferent cases. Finally, several free energy studies will be pre-

sented in the last part of this section.

A. Simulation database

To analyze the usefulness of LES methods in numerical

simulations, we look at different cases of GK turbulence,

driven by a wide range of instabilities and for different pa-

rameter scenarios. As the LES method employed here makes

use of a hyper-diffusion model in the {x, y} directions, we

will look at different {x, y} resolutions. Meanwhile, the

same {16� 32� 8} resolution is used in the fz� vk � lg
directions for all the cases except the TEM and AUG simula-

tions which use {24� 32� 16}. All the simulations are done

with hyperdiffusion terms in the z and vk directions given by

D½g� ¼ � az
@4

@z4
þ avk

@4

@v4
k

 !
g: (15)

These hyperdiffusion terms are necessary to stabilize spurious

grid-size oscillations.29 For all the cases, the coefficients are

set to az¼ 1.0 and avk¼ 0.2, since they have been shown to be

well suited for a wide range of cases. Finally, for the AUG

case, a linearized Landau-Boltzmann collision operator with

energy and momentum conserving terms30 and with a colli-

sion frequency taken from experimental data is also used.

Details of the different perpendicular resolutions and

main parameters for the simulations considered can be found

in Table I. The resolutions considered here are used exten-

sively by the fusion community, and for all the cases the tur-

bulent (particle and heat) fluxes are properly resolved. In

general, the lowest resolution is used as long as these global

values are found to vary within 30%. As we will see during

the next sections, this does not imply that the system is well

resolved. For this reason, although in computational fluid dy-

namics the terminology DNS is used to denote that all scales

are being fully resolved, we will use DNS in its weak

TABLE I. Main parameters for the different simulations. Horizontal lines

separate the relevant sets of data, identified by the same prefix. The first set

corresponds to the CBC. The second set uses the same parameters as the

CBC, but with a higher temperature gradient. The third set corresponds to a

typical ETG simulation. In this case, a lower magnetic shear respect to the

CBC is used. The fourth set is used to study a pure TEM case where both

ions and electrons are kinetic. Finally, the last set of parameters corresponds

to a simulation of an ASDEX Upgrade discharge dominated by ITG. For ev-

ery set of parameters, there is a H-DNS (“high resolution” direct numerical

simulation), a L-DNS (“low resolution” direct numerical simulation), and a

LES. The last two cases use half of the resolution in each of the perpendicu-

lar directions. Only for the AUG case, two extra simulations with a fourth of

the resolution are included.

Name ŝ R
Ln

R
LTi

R
LTe

Grid (x� y) box size (x� y)

CBC-H-DNS 0.8 2.2 6.9 … 128� 64 125� 125

CBC-L-DNS 0.8 2.2 6.9 … 64� 32 125� 125

CBC-LES 0.8 2.2 6.9 … 64� 32 125� 125

ITG-H-DNS 0.8 2.2 12.0 … 128� 64 125� 125

ITG-L-DNS 0.8 2.2 12.0 … 64� 32 125� 125

ITG-LES 0.8 2.2 12.0 … 64� 32 125� 125

ETG-H-DNS 0.1 2.2 … 6.9 128� 128 200� 125

ETG-L-DNS 0.1 2.2 … 6.9 64� 64 200� 125

ETG-LES 0.1 2.2 … 6.9 64� 64 200� 125

TEM-H-DNS 0.8 3.0 0.0 5.5 128� 128 209� 104

TEM-L-DNS 0.8 3.0 0.0 5.5 64� 64 209� 104

TEM-LES 0.8 3.0 0.0 5.5 64� 64 209� 104

AUG-H-DNS 1.6 0.5 5.1 5.1 128� 128 149� 124

AUG-L-DNS 1.6 0.5 5.1 5.1 64� 64 149� 124

AUG-LES 1.6 0.5 5.1 5.1 64� 64 149� 124

AUG-L/2-DNS 1.6 0.5 5.1 5.1 32� 32 149� 124

AUG-LES/2 1.6 0.5 5.1 5.1 32� 32 149� 124
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interpretation to denote that no additional sub-grid scale

hyper-diffusion model is being used. In this sense, DNS runs

should be seen as having varying degrees of incomplete reso-

lution. For this purpose, we will label by L-DNS the low re-

solution DNS simulations and by H-DNS the high resolution

DNS simulations. The runs for which the sub-grid scale

terms are being modelled will be labeled as LES.

The first set of parameters corresponds to the Cyclone

Base Case, commonly used for the study of ITG driven GK

turbulence, and we label it CBC. In this study, the analysis is

limited to the simple scenario of a single ion species and adi-

abatic electrons in the context of a large aspect-ratio, circular

model equilibrium. The equilibrium magnetic configuration

is characterized by a safety factor value of q¼ 1.4 and a

magnetic shear value of ŝ ¼ 0:8.

As a way to analyze the applicability of LES methods

for even stronger turbulence regimes, in a second set of pa-

rameters we consider additional simulations with the same

parameters as for the standard CBC case, but with a higher

ion temperature gradient (R=LTi
¼ 12). We designate this

second set simply as ITG.

The third set is used for the study of a typical ETG

driven turbulence, where the adiabatic ion approximation is

used.31 In this case, the LES model acts on the electrons. We

will consider again a circular concentric geometry with

q¼ 1.4 and ŝ ¼ 0:1.

The fourth set (designated TEM) is inspired by experi-

ments dominated by electron heating and rather cold ions,

specific to turbulence driven by (collisionless) TEMs.32

Here, both ion and electron dynamics are retained, which

implies that the LES models and their coefficients calculated

by the dynamic procedure are species-dependent. For sim-

plicity, a circular concentric geometry is used with q¼ 1.4

and ŝ ¼ 0:8. In order to study a pure TEM instability, R=LTi

is set to 0, and the ratio between the electron and ion temper-

ature is set to Te/Ti¼ 3 which for these parameters eliminates

the ETG instability. It should be noted that such a situation is

by no means artificial, since a lot of experiments have been

carried out with dominant central electron heating.33

While the above “idealized” turbulence simulations

have the great advantage of minimizing the degree of com-

plexity in performing and analyzing the runs, they usually

represent simplified situations which are, in general, of lim-

ited value for direct comparisons with experimental findings.

For this reason, the last set applies the dynamic procedure to

the study of turbulence for plasma conditions found in an H-

mode ASDEX Upgrade tokamak discharge. The input profile

and equilibrium are taken from the ASDEX Upgrade dis-

charge No. 28245. This discharge is a type-I edge localized

(ELMy) H-mode with a plasma current of 0.6 MA and a to-

roidal magnetic field of 2.3 T. The input neutral beam injec-

tion (NBI) was 2.5 MW and an electron cyclotron resonance

heating (ECRH) was divided into four phases, where 0.0,

0.5, 1.2, and 1.8 MW were applied subsequently at intervals

of 0.5 s. In the following, we will focus on the phase, where

no ECRH is applied, which corresponds to a discharge time

of 2.5–3.0 s. Furthermore, the local simulations would be

focused on the flux surface at qtor¼ 0.57. In this case, previ-

ous linear gyrokinetic simulations34 showed that ITG is the

dominant instability. ETG is also present but its relative (to

the ITG) amplitude is negligible. For this reason, although

we will use both kinetic ions and electrons, we will only

resolve scales in the ITG range. For this scenario, we use a

realistic magnetic equilibrium geometry, taken from the

TRACER-EFIT interface,35 with equilibrium parameters

given as follows: q¼ 2.8 and ŝ ¼ 1:6. A linearized

Landau-Boltzmann collision operator (�*,i¼ 0.19 and

�*,e¼ 0.36), the effect of E�B shear (cE¼ 0.02 [cs/a]), and

magnetic fluctuations (b¼ 0.25%) are included.

B. Electron density fluctuation spectra

In the following, the assessment of LES methods com-

pared to various DNS runs of different resolutions is shown

for the electron density fluctuation spectra. In particular, the

electron density fluctuation spectrum in the binormal direc-

tion SðkyÞ ¼ hj~neðkx; ky; z; tÞj2ikx;z;t
and in the radial direction

SðkxÞ ¼ hj~neðkx; ky; z; tÞj2iky;z;t
is plotted in Fig. 1. Here, h� � �i

denotes averaging over quantities listed as indices and all

spectra are normalized by their respective wavenumber inte-

grated value hj~neðkx; ky; z; tÞj2ikx;ky;z;t
. The wavenumbers are

normalized in units of the dominant species gyroradius (qi

for ITG and qe for ETG) for one kinetic species simulations,

and in qs units (ion gyroradius at electron temperature) in the

case where two kinetic species are considered (TEM and

AUG). Some general features are common to all data sets:

the S(ky) spectra exhibit a maximum at ky� 0.1–0.2 and the

radial S(kx) spectra peak at wavenumbers close to zero. In

both cases, a power law Sðkx;yÞ / k
�ax;y
x;y for wavenumbers

between kx,y� 0.3–1.0 is observed. Although, a transition

and a change of the power law is expected by several theo-

ries at kx,y> 1 (see Ref. 7), we will limit our study up to

kx,y� 1. Therefore, in the following comparisons of the spec-

tra will be focus on the wavenumber range between

ky� 0.3–0.9, where a fit to the power law exponents is given

for the LES simulations.

For the CBC set of parameters, a fit of spectra yields the

power law exponents ax¼ 2.3 and ay¼ 3.3. In this case, the

LES (in green) spectra match very well the H-DNS (in black)

spectra in both S(kx) and S(ky). In contrast, L-DNS (in red)

spectra get flattened at higher wavenumbers. For the higher

temperature gradient ITG case, the fit exponents are ax¼ 2.0

and ay¼ 2.6. Regarding the S(kx) spectra, similar conclusions

as in the CBC can be drawn. However, the S(ky) spectrum

exhibits a bigger difference between the LES and H-DNS

simulations. In fact, the H-DNS spectra seem to present a

flattening of the spectra at the highest wavenumbers. We

anticipate now (more details are given in the next section)

that this is due to an accumulation of free energy. Indeed,

since this case represents a stronger turbulent case compared

to the CBC, the importance of numerically removing accu-

rately the energy at smaller scales becomes more important.

The ETG set of parameters is another example of the flatten-

ing of spectra even at the H-DNS resolution, observed in this

case in both spectra. These simulations, dominated by

streamers, can be considered as an equivalent of stronger tur-

bulent simulations. For this case, the exponents are ax¼ 3.0

and ay¼ 3.3. The fourth set of simulations, given by TEM
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turbulence, power law exponents of ax¼ 1.5 and ay¼ 2.0 are

found. Here, a good agreement between the H-DNS and LES

simulations is observed. In contrast, the L-DNS presents

now practically flat spectra. Therefore, it seems evident that

for this case the use of LES methods for the low resolution

simulations is needed.

The previous cases show how the LES procedure can be

successfully applied to different types of microturbulence.

However, these are simple setups, and the resulting expo-

nents cannot be compared directly with experimental meas-

urements. For this reason, we finally also consider a realistic

example of ITG turbulence. Here, the power law exponents

are ax¼ 2.4 and ay¼ 3.6. Interestingly, there is a good agree-

ment between AUG-H-DNS, AUG-LES, and AUG-L-DNS,

although the latter displays a flattening of the spectra at the

highest wavenumbers. Moreover, it is possible to further

decrease the resolution without changing the values of the

heat and particle fluxes. For this reason, two additional

simulations are included, AUG-L/2-DNS (in purple) and

AUG-LES/2 (in blue), see Fig. 1. Now the differences are

more evident: while AUG-LES/2 overlaps perfectly with the

LES and H-DNS simulations, L/2-DNS exhibits flat spectra.

This shows that for some cases with very limited resolution,

LES methods can succeed in recovering the correct power

law exponents for experimentally relevant cases.

At this point, it is worth to mention the anisotropy

observed in the simulations for all the cases, see Table II for a

summary of the results. In general, the ay exponents are higher

than the ax. Such deviations from isotropy should be taken

into account when comparing numerical with experimental

results. In particular, because in the experimental measure-

ments often consider kx¼ 0 contributions and the measure-

ments are done in the outboard mid-plane (z¼ 0 plane

in GENE). Therefore, for the AUG data set the Sðky; kx ¼ 0Þ
¼ hj~neðkx; ky; z; tÞj2ikx¼0;z¼0;t spectrum is shown in Fig. 2. In

this case, the calculated exponent is higher, rising to a value

FIG. 1. Mean square density fluctua-

tion spectra for the simulations

described in Table I. The spectra are

normalized by the wavenumber inte-

grated value and the wavenumbers are

in units of the dominant species gyro-

radius (qi for ITG and qe for ETG) for

single-species simulations, and in qs

units (ion gyroradius at electron tem-

perature) in the case where two species

are considered (TEM and AUG).
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of ay¼ 5.2. Moreover, the recovery of the same ay¼ 5.2 value

by the two LES runs possessing different resolutions shows

the tendency of LES methods to converge on the correct dy-

namical results. This behavior is not found by the DNS runs

(L and L/2 runs differ drastically from each other).

Finally, in addition to the shape of the spectra, it is also

important to calculate the wavenumber integrated value

h~n2ðkx; ky; zÞikx;ky;z
. However, since small scales are truncated

in the LES and L-DNS runs, it is not possible to integrate up

the same scale as in the H-DNS simulation. Therefore, an

estimate of the contribution from the truncated scales is cer-

tainly desirable if a comparison has to be made with experi-

mental results. For this reason, an estimate for the truncated

scale contribution is proposed by fitting a power-law to the

spectrum and extrapolating to unresolved scales when inte-

grating to the total fluctuation level (for specific details see

Ref. 15). The results are summarized in Table II. While the

differences regarding the wavenumber integrated electron

density for LES simulations can exceed 45% for the lowest

resolution AUG case, simulations without a LES model are

even much more inaccurate, exhibiting relative errors up to

about 200%.

To summarize, we have shown that LES methods pro-

vide a better accuracy in the calculation of power law expo-

nents for different scenarios and type of instabilities. Since

the use of LES does not increase the cost of the simulations

in comparison with normal (DNS) simulations with the same

resolution, it should be considered whenever possible. In par-

ticular, LES behaves better than simulations with two times

more resolution in each of the perpendicular coordinates, at

fraction of the cost (at least 4 times cheaper than the H-DNS

simulations).

C. Free energy studies

The previous analysis looked at the density fluctuation

spectra. However, although not measurable experimentally, it

is the free energy (see Ref. 24) which determines the resulting

power laws observed in other quantities (such as density/tem-

perature fluctuations). The study of the free energy is also im-

portant to understand the dynamics of the system and the

range of validity of LES methods. The free energy

(E ¼ Ef þ E/ þ EA), consisting in the mixing of entropy (Ef ),

electric (E/), and (EA) magnetic energies, is the quantity that

is injected into the system by the gradients and dissipated by

collisions. Moreover, free energy is redistributed between dif-

ferent scales by the action of the nonlinear term, without

global gains or losses. The global free energy is also known as

a nonlinear invariant quantity and has been proved to have

many similarities with the kinetic energy in fluid turbulence.19

For these reasons, in the following, we will introduce and ana-

lyze in detail different free energy diagnostics.

1. Free energy fluctuation spectra

Formally, the free energy spectral density is defined as

Ek ¼
�

gk
n0T0

2 F0

hk

� 	�
z;vk;l;j

; (16)

where h� � �i represents an integration over the listed index.

The background density and temperature level is given by n0

and T0, respectively. F0 represents the Maxwellian contribu-

tion to the total distribution function.

The free energy fluctuation spectra are plotted in Fig. 3

with regard to kx and ky. All spectra (Ey and Ex) are normal-

ized by their respective wavenumber integrated value

(E ¼ hEikx;ky
). As before, the free energy spectrum in the

binormal direction Ey peaks at ky/ 0.1–0.2 and a power law

Ey / k
by
y is present. The radial wavenumber spectrum Ex

peaks at kx¼ 0 and has also a power law Ex / kbx
x for higher

wavenumbers. Table III shows a summary with the power

law exponents calculated for the different data sets. For all

cases, the anisotropy in the spectra is also found. Note that

although we are computing the same quantity, i.e., the free

energy, we obtain different power law exponents for differ-

ent instabilities. This could seem as a contradiction if one

would compare with classical fluid turbulence, where the

�5/3 Kolmogorov exponent is expected independently of

the type of mechanism which drives the system. However,

for gradient-driven GK turbulence, this is not the case, and

these results seem to indicate a non-universality of the power

law exponents. This is an area of current research and the

specific details of the different mechanisms giving rise to the

different power laws observed are out of the scope of this

work. Here, we give the numerical values as a reference,

since they could help to validate future analytical theories

and are useful for comparisons with other gyrokinetic codes.

In addition, the wavenumber integrated value of the free

FIG. 2. Mean square density fluctuation spectra S(ky, kx¼ 0) in the outboard

mid-plane for the AUG data set. The spectra are normalized by the wave-

number integrated value, and the wavenumbers are in qs units.

TABLE II. Fitted power law exponents for the density fluctuation spectra,

together with the wavenumber integrated value of the electron density for

the LES and L-DNS simulations normalized to the total value of the H-DNS

simulation. For the AUG case, the value in brackets indicates the power law

exponent for the S(ky, kx¼ 0) spectrum.

Name CBC ITG ETG TEM AUG

a x 2.3 2.0 3.0 1.5 2.4

ay 3.0 2.2 3.6 2.0 3.2(5.2)

h~n2iLES=h~n2iDNS
0.87 0.98 1.26 1.41 0.71

h~n2iL�DNS=h~n2iDNS
1.02 1.79 0.95 2.11 0.63

h~n2iLES=2=h~n2iDNS
… … … … 0.52

h~n2iL=2�DNS=h~n2iDNS
… … … … 1.3
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energy is also shown in Table III. Comparing to the H-DNS

value, the total free energy can exceed 250% for L-DNS sim-

ulations, while for the LES simulations differences only up

to 40% are found.

Analyzing in detail the different cases, similar conclu-

sions as for the density fluctuation spectra can be drawn for

all cases, although now the differences between H-DNS,

L-DNS, and LES simulations are more evident: LES simula-

tions present always a power law, while both H-DNS and L-

DNS present a more clear flattening of the spectra. For

instance, looking at the ITG data set, and in particular at the

H-DNS simulation, we observe that it has a flat spectrum.

This is also the case for the L-DNS simulation. However, the

LES still presents a power law. The reason for this behavior

is the free energy accumulation of the DNS runs, which

again shows that DNS runs are in fact, to different degrees,

unresolved simulations. For a proper DNS run, the tail of the

spectrum is expected to decrease in value at a faster rate than

in the cascade range and not to posses a shallower slope.

FIG. 3. Free energy spectra for all the

simulations described in Table I. The

spectra are normalized by the wave-

number integrated value and the wave-

numbers are in units of the dominant

species gyro-radius (qi for ITG and qe

for ETG) for single-species simula-

tions and in qs units (ion gyroradius at

electron temperature) in the case where

two species are considered (TEM and

AUG).

TABLE III. Fitted power law exponents for the free energy fluctuation spec-

tra, together with the wavenumber integrated value of the free energy for the

LES and L-DNS simulations normalized to the total value of the H-DNS

simulation.

Name CBC ITG ETG TEM AUG

b x 1.3 1.6 1.8 1.2 2.0

b y 1.6 1.6 1.9 2.0 3.0

ELES=EDNS 0.84 0.75 1.05 1.39 0.85

EL�DNS=EDNS 1.71 2.76 2.29 2.12 0.82

ELES=2=EDNS … … … … 0.75

EL=2�DNS=EDNS … … … … 1.65
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Thus, the free energy is a good indicator to check if a sim-

ulation is well resolved. Looking at the spectra, and in particu-

lar the small scales behavior, one can distinguish if a simulation

requires a larger resolution or not. An accumulation of energy

at high wavenumbers will quickly amount to a change in the

nonlinear dynamics and is undesirable. As the LES models are

derived from the nonlinear transfers, the energy can be seen as

being transferred to the unresolved range of scales rather than

being arbitrarily removed. These effects, although being more

evident for the free energy, as discussed in the previous section,

are also present in other relevant quantities, such as potential,

density, or temperature fluctuations. Finally, considering the

spectral slope extension into the unresolved range of wavenum-

bers, it can be seen that a LES run can provide better results

than a high resolution DNS at a fraction of the cost.

2. Nonlinear transfer spectra

Until now, we have discussed the free energy spectra. In

order to understand how these spectra are formed, we need

to study the nonlinear cross-scale transfer of free energy.

The corresponding spectral balance equation has the form

@Ek

@t
¼ Lk þDk þ T k: (17)

Here, Lk represents the linear contributions composed by the

free energy injected into the system at scale k (by the temper-

ature/density gradients) as well as the contributions for the

parallel and curvature terms. The term Dk is the local dissi-

pation, and T k is the nonlinear free energy transfer term.

The latter represents the redistribution of free energy

between all modes k that contribute to a scale k, due to the

interaction with modes p and q¼�k–p, i.e., all triad interac-

tions that have the k scale as one of the legs

T k ¼
ð ð

dp dq T ðkjp; qÞ; (18)

T ðkjp; qÞ being the interaction between three scales defined

formally as

T ðkjp; qÞ ¼
ð
jkj¼k

dk

ð
jpj¼p

dp

ð
jqj¼q

dqT ðkjp; qÞdðkþ pþ qÞ;

(19)

where the fundamental triad transfer has the form

T ðkjp; qÞ ¼ n0T0

2F0

�
qxpy � qypx

�
vqhp � vphq

� �
hk

� �
z;vk;l;j

:

(20)

For the GyroLES approach, it is also possible to write

the spectral free energy balance equation for resolved scales

@

@t
E<kjkc

¼ L<kjkc
þD<kjkc

þ T <kjkc
þ T SGS

kjkc
: (21)

The sub-grid transfer T SGS
kjkc

represents the transfer of energy

between resolved scales k< kc and sub-grid scales k> kc. It

is related to the free energy transfer by

T SGS
kjkc
¼ T k � T <kjkc

: (22)

This equation provides a simple method to compute T SGS
kjkc

through two calculations of the transfer terms. It consists of

taking a DNS and a test-filter DNS simulation at the charac-

teristic scale kc. Since all the information of free energy

transfer T k is available in addition to the largest scale one,

we can also calculate T <kjkc
as the difference of the two. This

method was used in previous works15,16 to study the proper-

ties of the sub-grid transfer. It was found out that its effect is

to systematically dissipate free energy from the system. This

is the main reason behind choosing a hyper-diffusion LES

model, as it can be proved analytically that for positive free

parameters this term dissipates free energy at all times.

However, in the dynamic procedure introduced in the previ-

ous section, there is not a constraint regarding the sign of the

free parameter, and in fact, sometimes it can be negative. For

this reason, the free energy dissipative effect of the model is

guaranteed by setting to zero any negative coefficient values

in Eq. (12).

In the following, we will study the free energy transfers

defined in terms of the perpendicular wavenumber k
¼ ½gxxk2

x þ 2gxykxky þ gyyk2
y �

1=2
which is directly related to

physical scales (in contrast to kx and ky). Here, gxx, gxy, and

gyy are the geometric coefficients associated with the field-

aligned coordinate system.25 In the free energy balance

equation, Eq. (17), the nonlinear free energy transfer (T k)

represents the energy received by a scale (k) from the inter-

action with all other scales in the system. A positive value

indicates that energy is received, while a negative one shows

that energy is in fact removed from that scale. Unlike linear

quantities, reducing the resolution available to the system

limits the interactions between scales and changes the T k

spectra. To see this effect and the implication on LES meth-

ods, we concentrate on the ETG data set, although similar

conclusions can be obtained for the other cases. In Fig. 4, we

plot the spectral decomposition of the transfer T k into the

transfer T <kjkc
(dotted-black line) arising from the interaction

of solely large scales (k< kc) and the transfer spectra T SGS
kjkc

(dashed-blue line) involving all other interactions. Since kc is

the maximal scale obtained by halving the ETG-H-DNS re-

solution, it is clear that a large portion of computation costs

is dedicated to a small dynamical range. However, this small

FIG. 4. Nonlinear free energy transfer spectra for the ETG set of data. The

vertical dotted lines denote maximal scales available for the smaller

resolutions.
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range cannot be simply removed, as its effect on T k is evi-

dent, i.e., T <kjkc
and T SGS

kjkc
are comparable in amplitude.

For a LES run, the T <kjkc
signal is computed directly

(T <kjkc
¼ T k) while the T SGS

kjkc
is accounted by the model. The

model contribution (dashed-green line) and the actual T SGS
kjkc

signal (dashed-blue line) are in the same order of magnitude

for low k, but start to deviate when T SGS
kjkc

changes its charac-

ter from a sink to a source. This is to be expected as the

model amplitude obtained from the dynamical procedure is

always taken to be positive for a hyper-diffusivity LES

model. Looking at the resolved transfer spectra (T <kjkc
,

dotted-black line), we see a good agreement with the LES

transfer spectra (T k, dotted-green line). Moreover, consider-

ing the ETG-L-DNS run, which has the same resolution as

ETG-LES and differs from the ETG-H-DNS runs by the

T SGS
kjkc

term, we see that the low resolution DNS transfer spec-

tra (T k, dotted-red line) deviates more form the resolved

spectra than the LES run.

To account for the large resolution DNS (ETG-C-DNS)

free energy transfer (T k), both the LES resolved and the

model contributions need to be considered. In Fig. 5, we plot

the sum of these contributions to a LES run. We can see that

smaller DNS runs (obtained in the absence of a model) gen-

erate a transfer spectra that deviate more and more compared

to the largest DNS one at low k. In comparison, the LES

transfer spectra plus the model contribution try to match the

DNS transfer curve, partially successful at lower k, regard-

less of the cutoff.

3. Shell-to-shell transfer

The shell-to-shell transfer represents an additional diag-

nostic that can show the advantage of the LES method. The

diagnostic consists in filtering the distribution function and

considering only the modes contained in shell like structures

sK ¼ ½kK�1; kK�, before building the free energy transfer

functions. The boundary wavenumbers (kK) are given as a

geometric progression, here kK ¼ k0 � 2ðK�1Þ=5, and the

shell-filtered distribution functions gK
k are given by

gK
k ¼

gk; jkj 2 sK

0; jkj 62 sK:



(23)

It is important to realize that the shell-filtered distribu-

tion functions are well defined in real space, the total signal

being recovered as the superposition of all scale filtered con-

tributions, g ¼
P

K gK . As the time evolution of the distribu-

tion function, due solely to the nonlinear term, can be

expressed as the sum of shell-filtered contributions

@g

@t

����
N

¼
X

P

@v
@y

@hP

@x
� @v
@x

@hP

@y

" #
; (24)

the resulting nonlinear evolution of the free energy contained

in a shell (EK ¼ hn0T0

2F0
ghKix;y;z;vk;l;j) has the form

@EK

@t

����
N

¼
X

P

n0T0

2F0

@v
@y

@hP

@x
� @v
@x

@hP

@y

" #
hK

* +
x;y;z;vk;l;j

¼
X

P

PK;P;

(25)

where PK;P represents the free energy received by shell K
from shell P.

The same quantity can also be obtained directly from

the modes. Starting from the triad transfer definition (Eq.

(20)), we shell-filter the field before computing the transfer

�T ðkjp; qÞ ¼ n0T0

2F0

qxpy � qypx½ � vqhP
p � vphP

q

h i
hK

k

� �
z;vk;l;j

:

(26)

For �T ðkjp; qÞ, the manifest symmetry in q and p of the triad

transfers is broken effectively by the shell-filtering proce-

dure, as hP
q ¼ 0 for q 62 sP. The shell-to-shell transfer is then

defined simply as

PK;P ¼
ð
jkj2sK

dk

ð
jpj2sP

dp

ð1
�1

dq �T ðkjp; qÞdðkþ pþ qÞ:

(27)

It has the interpretation of the energy received by modes

located in a shell K from modes located in a shell P by the

interaction with all other possible modes. Due to the conser-

vation of interactions, PK;P ¼ �PP;K and PK;K ¼ 0. Since

the shell boundaries are taken as a power law, the normalized

results to the maximal shell transfer provide us with informa-

tion regarding the direction and locality of the energy cas-

cade. We designate a transfer to be direct if it is positive for

K>P and we call it to be local if jK � Pj � 5.

In Fig. 6, we look at the shell-to-shell transfer for the

ETG case. The dotted line plotted for the ETG-H-DNS run

represents the k boundary induced by the LES wavenumber

filter. It is interesting to note that while the resolved scales

shell transfers (obtained implicitly from Eq. (26) by applying

the LES filter before the shell filters) are clearly bounded by

this limit, the SGS shell-to-shell transfers penetrate strongly

below it, indicating that wavenumbers larger than the LES

cutoff contribute to scales smaller than kc. From this picture,

the advantage of the LES method is obvious. The cascade

recovered by the LES run behaves in a good part as the large

filtered scales cascade for the larger DNS run. In comparison,

the reduced DNS run (ETG-L-DNS) has stronger off-diagonal

contributions and even exhibits a change in the direction of

FIG. 5. Nonlinear free energy transfer spectra for the ETG set of data. The

vertical dotted lines denote maximal scales available for the smaller

resolutions.

032304-10 Ba~n�on Navarro et al. Phys. Plasmas 21, 032304 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.70.91 On: Sun, 23 Mar 2014 21:16:28



the cascade for the first few shells. This change in the direc-

tion of the cascade, for a limited resolution DNS, can also be

seen in the case of TEM, see Fig. 7. However, while this is

strong effect for TEM, almost no effect is observed for ITG

driven simulations. For the CBC, ITG, and AUG cases, the

small resolution DNS runs have a very similar form compared

to their respective large resolution counterparts.

4. Free energy fluxes

In addition to the spectral free energy balance equation

for a scale k, it is also worth to look at the free energy con-

tained by all the scales larger than k. Integrating the resolved

scales free energy balance equation (21), we find

@

@t

ðk

0

E<k0jkc
dk0 ¼

ðk

0

L<k0jkc
þD<k0jkc

h i
dk0 þP<

kjkc
þPSGS

kjkc
; (28)

where the resolved-scales-only flux and the sub-grid scale

flux, respectively, are defined as

P<
kjkc
¼
ðk

0

T <k0 jkc
dk0; (29)

PSGS
kjkc
¼
ðk

0

T SGS
k0 jkc

dk0; (30)

and provide the free energy transfer rate from all scales larger

than k to all scales smaller than k. At the LES cutoff kc, due to

the conservation of nonlinear interactions (T kjp;q þ T pjq;k
þT qjk;p ¼ 0), the large scales flux goes to zero (P<

kcjkc
¼ 0), as

it involves all possible interactions between resolved-scales-

only modes. As the total free energy flux consists in the sum of

the two fluxes (Pk ¼ P<
kjkc
þPSGS

kjkc
), for k	 kc, it reduces to

the SGS contribution. Since the SGS flux at the scale kc repre-

sents the energy that needs to be removed globally by the LES

model, it is also known as the total sub-grid dissipation.

For GyroLES to work, the correct amount of free energy

has to be dissipated. This property can be checked by matching

the sub-grid flux to the scale integrated dissipation of the model

PSGS
kjkc
�
ðk

0

Mk0 jkc
½a� dk0; (31)

where Mkjkc
½a� represents the free energy contribution of the

model Mkjkc
½a�. This can be satisfied through the free parameters

of the model, i.e., finding the right parameter values that satisfy

the previous relation. This is indeed a tendency that is recovered

implicitly through the dynamic procedure in Eq. (12).

Looking at the ETG data set from the perspective of the

nonlinear fluxes in Fig. 8, we observe that the ETG-LES flux

(Pk, dashed-green line) seems to match well the largest scale

kc filtered DNS flux (P<
kjkc

, dashed-red line). Since both the fil-

ter DNS and the LES runs do not have any information above

kc, the flux goes to zero on this surface. This is also the point

where the DNS flux (Pk, solid-black line) and the SGS flux

(PSGS
kjkc

, dotted-blue line) have the same value, although the

SGS flux tends to make the dominant contributions long

before that point. It is also worth mentioning that the DNS

flux does not saturate at the value of the total free energy

injected in the system. As the dissipation can act in all perpen-

dicular scales, only a ratio of free energy injected gets trans-

ferred to the smallest scales. This value is designated by

Lþ=D, where Lþ represents the total source of all linear terms

FIG. 6. Shell-to-shell transfer for the ETG case. The dotted line plotted for

the H-DNS run corresponds to the LES wavenumber filter boundary. All

transfers for a run are normalized to the respective run maximal value and

k0¼ 0.173 in the shell boundary power law.

FIG. 7. Shell-to-shell transfer for the TEM case, summed over all species.

The dotted line plotted for the H-DNS run corresponds to the LES wave-

number filter boundary. All transfers for a run are normalized to the respec-

tive run maximal value and k0¼ 0.439 in the shell boundary power law.

FIG. 8. Free energy flux and components for selected ETG runs. The satura-

tion value for the flux is given as Lþ=D, where Lþ represents the total

source of all linear terms, and kc is the LES cutoff.
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(including linear dissipations). A larger Lþ=D, tending to

one, denotes that a larger amount of free energy injected into

the system is passed down to smaller scales. In our case,

Lþ=D ¼ 0:7, meaning that the 70% of the free energy

injected into the system is transferred to smaller scales.

It is interesting to consider the scale integrated contribu-

tion of the LES model (dotted-green line). Slowly increasing

in amplitude from the large scales, it saturates at the level of

the maximal value of the DNS flux, without decreasing in

value. This is due to the fact that the model amplitude is

always positive. Looking together at the LES flux and model

contributions, we obtain an effective flux (solid-green line)

quickly reaches and remains at the DNS saturation value.

This is not that surprising as the implicitly assumption of an

infinite inertial range is incorporated into the model. This

assumption is the reason behind the spectral slope quality of

the LES runs compared to the DNS ones.

5. Sub-grid scale locality

It is important to remark that in the definition of the sub-

grid flux, the transfer of energy from scales below kc to scales

above kc does not tell us if the contribution to the flux arises

primarily from scales close in value to kc or from scales with

much smaller wavenumber. It also does not tell us, independ-

ently from where the energy comes from, towards which scales

is the energy primarily distributed. This is very important for

an application of GyroLES models. Indeed, GyroLES models

rely on the locality of interactions assumption between resolved

and sub-grid scales. In order to further investigate that assump-

tions, we will consider the classical locality ultraviolet (UV)

and infrared (IR) functions, introduced by Kraichnan26 and

recently applied to gyrokinetics,27 for the SGS flux

PSGS
UV ðkpjkcÞ

¼
ðkc

0

dk

ð ð1
kp

T ðkjp; qÞ dp dq þ 2

ðkp

0

ð1
kp

T ðkjp; qÞ dp dq

" #
with kp 	 kc ; (32)

PSGS
IR ðkpjkcÞ

¼
ð1

kc

dk

ð ðkp

0

T ðkjp; qÞ dp dq þ 2

ðkp

0

ð1
kp

T ðkjp; qÞ dp dq

" #
with kp � kc : (33)

It is important to differentiate between the locality of the

energy cascade, one structure giving energy to a similar size

structure (as discussed in the shell-to-shell transfer section),

from the locality of interactions captured by the locality

functions, where the mediator of the energetic interaction is

also considered.

The meaning of the locality functions is the following. The

UV locality function represents the energy flux across kc caused

by nonlinear interactions that involve at least one scale above

kp (with kc� kp). In this case, a significant contribution would

mean that the energy flux depends on the smallest scales and

therefore on the type of small-scale dissipation. However, due

to the resolutions employed and the LES cutoffs considered

here, the UV locality information for the SGS flux is hard to

determine numerically. By definition, we are interested in see-

ing where the energy is being transferred across kc, requiring

the contributions to decrease fast as to ensure a high level of

separation between the resolved and unresolved scales. As the

range of scales past kc is limited and the amplitude of fluctua-

tions are strongly damped, the UV locality information tends to

be highly local. On the other hand, the IR locality information

of the SGS flux is much more interesting to us, as it indicates

the dependence of the unresolved scales to the information con-

tained in the larger, resolved scales. It represents the energy

flux across kc due to nonlinear interaction that involves at least

one scale below kp (with kp� kc). Therefore, if there is a signifi-

cant contribution, it implies that there is strong interaction with

the largest scales and thus, a dependence of the type of instabil-

ity that drives the system. This would imply that good

GyroLES models should depend on the type of instability, and

therefore, their universality could be questioned.

In Fig. 9, we plot the SGS IR locality functions normal-

ized to the value of the flux through kc. For kp¼ kc, as the lo-

cality functions recover the value of the flux, we obtain a

unity value for this ratio. Increasing the separation between

kp� kc and kc removes interactions from bringing contribu-

tions to the flux and as such, the ratio plotted decreases in

value. The rate of this decrease gives us the assessment of the

SGS flux locality. We also plot a series of slopes and their val-

ues. Except for the (kp/kc)
5=6 exponent value, which has a the-

oretical interpretation27 and is considered here as a reference,

all other slopes are based on numerical observations and are

given simply as a way to help us understand the results. For

all runs, the first two points smaller that kp/kc¼ 1 have a slope

close to one, as the last few physical scales tend not to be fully

represented. This is just a negligible artifact, arising from the

small value (21=5) of the common ratio of the wavenumber

geometric progression, coupled with the discretization of the

wavenumber space. The 21=5 selection is taken to emphasize

any slopes that might arise for the locality functions.

Except for the ETG case, which seems to recover a 5/6

scaling,36 all other runs have a stronger nonlocal behavior,

reaching a 1/2 slope. While this increased nonlocal tendency

might be a factor to be considered for the LES modelling of

the sub-grid terms (it can affect the ratio of the test filter

wavenumber kt compared to the cutoff kc in the dynamical

FIG. 9. IR locality functions for the SGS flux contribution. The value of kc

is taken to be half the largest k available for the largest DNS cases for each

case. While kp wavenumbers differ from case to case, they are taken as a

geometric progression with a common ratio of 21=5.
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procedure), it is by no means something to worry about. In

fact, as the probe wavenumber kp starts to enter the large

scale range, the locality slopes accentuate drastically (the

shallowest being �2, much more than the 5/6 scaling36). By

the very nature of the driving instabilities, the interactions

tend to become more local. This might be a result of entering

the driving range, where the cascade itself tends to be weak,

well below its free energy flux saturation value. Indeed, this

change of locality exponent starts to appear at the maximum

value of the free energy flux as shown in Fig. 8. Regardless

of the cause, this accentuation of locality at low k helps miti-

gate any instability dependent physics and, even if this slope

is expected to be instability dependent, the high values of the

exponents ensures an effective universality of the SGS mod-

elling and validates the GyroLES approach.

V. CONCLUSIONS

Through the application of the LES method to gyroki-

netic turbulence driven by different kinds of microinstabil-

ities (ITG, ETG, and TEM), two general improvements are

obtained. First, the computational cost of the simulations can

be considerably reduced, and second, the physical elimina-

tion of the free energy accumulation at small perpendicular

scales helps to extract the correct power law exponents.

These two effects are of help in pursuing direct comparisons

between numerical simulations and experiments.

From the study of the free energy and density fluctuation

spectra, it is found that the LES method provides systemati-

cally better indication of the existence of power laws than

DNS simulations used. For some cases, in order to acquire a

similar accuracy as for the LES runs, DNS simulations using

at least double the resolution in each of the perpendicular

directions have to be performed.

The reasons for the successful implementation of the sub-

grid model in the gyrokinetic LES simulations can be briefly

summarized as follows. The local character of the free energy

transfer and interactions allows for the removal of small-scale

interactions without affecting the overall behavior at large

scales. By modeling this effect correctly, as is done with the

LES method in conjunction with the dynamic sub-grid proce-

dure, one is able to have much better results than without it.

This suggests that the LES method described in the present

work is very helpful while computationally cheap, and should

probably become standard for a wide range of applications.
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