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Nonlinear energy transfer and dissipation in Alfvén wave turbulence are analyzed in the first gyrokinetic
simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical
solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius
scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire
kinetic range k⊥ρi ≳ 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for
a comprehensive picture of the dissipation range in Alfvénic turbulence.
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Introduction.—Spacecraft measurements find a radial
temperature profile of the solar wind which can only be
explained by the presence of heating throughout the
heliosphere [1]. The key mechanism of heating in
the inner heliosphere up to ∼20 AU is thought to be the
dissipation of turbulent fluctuation energy, and its under-
standing and description is one of the outstanding open
issues in space physics [2]. Over the past decade, numerous
studies, both observational [3–7] and theoretical or com-
putational [8–14], have focused on this topic, extracting
ever more sophisticated measurements of solar wind
fluctuation properties, and accomplishing increasingly
detailed turbulence simulations.
As the solar wind plasma is only weakly collisional, a

variety of kinetic effects such as cyclotron damping,
Landau and transit time damping, finite Larmor radius
effects, stochastic heating, or particle acceleration at
reconnection sites can contribute to the conversion of field
energy to particle energy, and thus determine how colli-
sional dissipation will ultimately set in. A kinetic descrip-
tion is crucial in order to judge the relative importance of
each of those effects. Because of the complexity of a
nonlinear kinetic system, numerical simulations are essen-
tial for interpreting observations and providing guidance
for analytical theory.
In the present Letter, we employ an approach based

on gyrokinetic (GK) theory [15], which is a rigorous
limit of kinetic theory in strongly magnetized plasmas.
Because of the assumptions of low frequencies

(compared to the ion cyclotron frequency) and small
fluctuation levels, the gyrokinetic model excludes cyclo-
tron resonances and stochastic heating. In absence of
these effects, we focus on the energetic properties of
kinetic Alfvén wave (KAW) turbulence, which has been
demonstrated to be a crucial ingredient of solar wind
turbulence [16].
We address the following key questions: (1) Which

spectral features can be found in a comprehensive simu-
lation extending from the magnetohydrodynamic (MHD)
range down to the electron gyroradius scale? (2) What are
the characteristics of nonlinear energy transfer from large
to small scales? (3) How is energy dissipated, and how
is the dissipated energy partitioned between ions and
electrons?
Simulation setup.—The nonlinear GK system of equa-

tions is solved using the Eulerian code GENE [17] to study
the dynamics of KAW turbulence in three spatial dimen-
sions. In order to model the energy injection at the outer
scales of the system, a magnetic antenna potential, whose
amplitude is evolved in time according to a Langevin
equation [18], is externally prescribed at the largest scales
of the simulation domain. The driven modes are ð0; 1;�1Þ
and ð1; 0;�1Þ, where ði; j; kÞ are multiples of the lowest
wave numbers in ðkx; ky; kzÞ, respectively. The mean
antenna frequency is chosen to be ωa ¼ 0.9ωA0 (ωA0
being the frequency of the slowest Alfvén wave in the
system), the decorrelation rate is set to γa ¼ 0.7ωA0,
and the normalized antenna amplitude is set to
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vA (setting δ ¼ 2, N ¼ 4,
C2 ¼ 1), in accordance with the critical balance condition
ωlin ∼ ωnl [18].
The physical parameters are chosen to be similar to

solar wind conditions at 1 AU, with βi ¼ 8πniTi=B2
0 ¼ 1,

Ti=Te ¼ 1. Proton and electron species are included
with their real mass ratio of mi=me ¼ 1836. The electron
collisionality is chosen to be νe ¼ 0.06ωA0 (with νi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

me=mi

p

νe), a value small enough to not inhibit kinetic
effects, but large enough to reduce resolution requirements
in velocity space.
In order to maximize the effective dynamic range, the

simulation domain is extended significantly compared to
previously published work, to include scales larger than the
ion gyroradius, allowing for a free distribution of energy
into the KAW or the ion entropy cascade [19] as the ion
gyroradius scale is passed. The evolution of the gyrocenter
distribution is tracked on a grid with the resolution
ðnx; ny; nz; nv∥ ; nμ; nσÞ ¼ ð768; 768; 96; 48; 15; 2Þ. The
plane perpendicular to the background magnetic field is
resolved by 5122 fully dealiazed Fourier modes, covering
a perpendicular wave number range 0.2 ≤ k⊥ρi ≤ 51.2
(or 0.0047 ≤ k⊥ρe ≤ 1.19), thus extending into the
regime where electron finite-Larmor-radius effects become
important. Here, ρσ ¼

ffiffiffiffiffiffiffiffiffiffiffi

Tσmσ
p

c=eB with the species
index σ. The number of grid points in the perpendicular
plane is thus increased by a factor of 36 with respect to
the largest runs of this kind published to date [9]. Ninety-
six points are used to resolve the dynamics along
the background field (the z direction), and 48 × 15
gridpoints are chosen to represent the ðv∥; μÞ domain,
where v∥ is the velocity along the guide field, and μ ¼
mv2⊥=2B0 is the magnetic moment with respect to the
guide field. The domain sizes in velocity space are
chosen to extend up to 3 thermal velocities vTσ in both
parallel and perpendicular velocities for each species σ,
where vTσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tσ=mσ

p

.
Our simulations are performed using the same iterative

expansion scheme as in Ref. [9], where simulations are
initially run with low resolution and are then restarted
several times with an increasingly fine grid, until the target
resolution is reached. The total runtime is chosen to span
several antenna oscillation periods τA (in this case
tend ¼ 7.20τA) in order to ensure that a quasisteady state
has been reached.
Diagnostic methods.—The key results of this study

are obtained using a set of sophisticated energy diag-
nostics (partially introduced in Refs. [20–23]), which
enable studies of energy source, transfer, and dissipation
spectra separately for each species, and which are
applied to KAW turbulence for the first time here. In
particular, we analyze the time derivative of the
spatially averaged free energy density, which can be
expressed in the case of an antenna-driven electromag-
netic system as

∂tE ¼ ℜ
X
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Here, the sum over k denotes a summation over all wave
number pairs ðkx; kyÞ, and the angle brackets indicate a
spatial average along the guide field. fσk is the perturbed
gyrocenter distribution, and hσk ¼ fσk þ ðqσϕ̄1σkþ
μB̄1∥σkÞF0σ=T0σ is its nonadiabatic part. The overbar
denotes an average over the gyro-ring, and F0σ is a
Maxwellian background distribution with background
density n0σ and temperature T0σ. The magnetic potential
A1∥tot;k ¼ A1∥k þ A∥ant;k is understood to contain also the
contribution due to the Langevin antenna A∥ant;k, which is
necessary for a complete account of the energy contained
in the system. The time derivative ∂tgσk ¼ ∂tðfσk þ
qσv∥Ā1∥kF0σ=cT0σÞ is the quantity explicitly evolved in
the GK Vlasov equation as implemented in GENE, and

C ¼ k2⊥
��

k2⊥ þ
X

σ
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2
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�

is a factor arising from the antenna-modified Ampere’s
law, with λσ ¼ k⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mσμ=B0q2σ
p

. By replacing ∂tgσk in
Eq. (1) with any of the various terms contributing to its
evolution, we can assess the impact of that term on the
evolution of the free energy density. The nonlinear transfer
function (i.e. the free energy balance contribution of the
nonlinear term) thus reads

Tkpq ¼
πB0

mσ
ℜ
Z

dv∥dμ½pxqy − pyqx�½χ̄1σphσq − χ̄1σqhσp�

×

�

hσk
T0σ

F0σ
þ qσv∥CĀ∥ant;σk=c

	

; ð2Þ

with kþ pþ q ¼ 0. Compared to the definition used in
Refs. [22,23], there is an additional term involving the
antenna potential, and the electrostatic approximation has
been dropped by using the full electromagnetic potential
χ̄1σ ¼ ϕ̄1σ − v∥Ā1∥tot;σ=cþ μB̄1∥σ=qσ . Note that the new
antenna potential term does not satisfy the same symmetry
properties as the rest of the transfer function, consistent with
the fact that the antenna acts as an energy source through the
nonlinear term (but also through the parallel advection
term). This source can be quantified by measuring the
symmetric part of the above transfer function.
Field energy spectra.—Before focusing on the nonlinear

transfer physics, we analyze the spectra of the magnetic
and electric field energy, which can be directly compared
to spacecraft observations. As is common practice, we
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compute 1D spectra of EE⊥ , EB∥
, and EB⊥ versus k⊥ρi by

summing the energy of all ðkx; kyÞmodes within a given k⊥
shell. Shells are linearly spaced and divided into 384 bins; a
short-time average over about 0.01τA is performed, as well
as an average in the z direction. The results are displayed in
Fig. 1. Here, the solid vertical line denotes the boundary to
the “corner modes,” for which the angle integration in
ðkx;kyÞ ceases to pick up complete circles, causing the
artificial spectral break.
In the range k⊥ρi ≲ 1, an MHD-type spectrum can be

observed, which exhibits a very small amount of compres-
sive fluctuation energy with a flat spectrum, and electric
and magnetic field energy spectra decaying approximately
with the same power law. The power law exponent is close
to the Goldreich-Sridhar estimate of −5=3 [24], but the
confidence level at small wave numbers is low as there are
few modes per shell.
As the range of k⊥ρi ∼ 1 is crossed, all spectra steepen,

and the turbulence becomes more compressible (evidenced
by the increased ratio jB∥j2=jB⊥j2). For 2≲ k⊥ρi ≲ 15,
all quantities exhibit rather well-defined power law
spectra, until a further steepening of the spectra sets in
at k⊥ρi ≈ 15, accompanied by a crossing of the parallel and
perpendicular magnetic fluctuation energy. These spectral
features are consistent with previous simulations using a
fraction of the present dynamic range [12]. As the choice of
parameters is (except for the collisionality) similar to near-
Earth solar wind measurements, in Fig. 1 we plot the power
law exponent EB ∝ k−2.8⊥ obtained from the measurements
of Refs. [4,25] for comparison, which agrees within about
15% with our average exponent of −3.17, measured
between 1 < k⊥ρi < 10.
Nonlinear energy transfer.—In order to study the non-

linear energy transfer, it is useful and necessary to reduce
the data by subdividing the perpendicular wave number
plane into shells (see also Ref. [22]), which we define as the
region 0≤k⊥≤k0 for the 0th shell and k02ðn−1Þ=3≤k⊥≤

k02n=3 for the shells numbered 1 ≤ n ≤ N − 1, where we
set k0 ¼ 0.275 and N ¼ 25. Thus, the entire k⊥ range
present in the simulations is covered, with good resolution
also for k⊥ρi < 1, while at the same time ensuring that only
the lowest shell 0 < k⊥ < k0 contains the externally
driven modes.
With this setup, we analyze the net nonlinear shell-to-

shell energy transfer, which is obtained by summing over
all q wave numbers in Eq. (2). The resulting matrix
(including the symmetric terms due to the antenna, and
normalized for each k⊥ scale) is displayed for the electron
species in Fig. 2. Numerical inspection shows that the
antenna source acts almost exclusively on the lowest shell,
and diminishes very quickly for higher shell numbers.
Studying the conservative transfer more closely, one can
observe that in the range k⊥ρi ≲ 3, while local energy
transfer dominates, there are some nonlocal contributions
connecting disparate k⊥ scales. In the range k⊥ρi > 3, on
the other hand, the nonlinear transfer is quite local
ðk⊥ ≈ p⊥Þ, i.e. dominated by direct energy transfer
between neighboring shells.
Nonlocal mediation.—Beyond the net energy transfer,

we now extend the analysis to differentiate between differ-
ent mediators, i.e. q wave numbers. To this end, we
evaluate the transfer function of Eq. (2) with triply filtered
inputs, i.e., with fields and distributions condensed into
shells K;P;Q. Even with the limited number of wave
number shells used here, this diagnostic is extremely
expensive (approximately ∝ N2, or about 150 000 core
hours here), and is thus only evaluated instantaneously for a
single time step. Its results can be visualized in a compact
way, e.g., by means of Kraichnan’s locality functions [26].
The so-called infrared (IR) locality function is defined
(following the notation of Ref. [22]) as

FIG. 1 (color online). Normalized field energy spectra. Power
law exponents obtained from the B⊥ energy spectra within the
dotted sections are printed into the plot.
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FIG. 2 (color online). Nonlinear shell-to-shell transfer function
for electrons, normalized to the maximum absolute value of each
wave number scale.
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and retains, for a fixed shell kc with a varying “probe”wave
number kp, only transfers for which at least one leg p⊥ or
q⊥ is smaller than kp. Thus, starting with kp ¼ kc (retain-
ing all transfers) and then moving the probe kp away from
kc, the most local transfers are successively removed. For
an extensive description of this setup, we refer the reader to
Sec. V of Ref. [23].
For several kc shells, we show the corresponding IR

locality functions ΠðkpjkcÞ=ΠðkcjkcÞ in Fig. 3. By plotting
the curves versus the probe wave number kp instead of the
conventional ratio kp=kc, Fig. 3 highlights the existence of
a meaningful physical scale length at k⊥ρi ∼ 1, indicating a
lack of self-similarity. Indeed, the locality function curves
for kcρi ≳ 5 exhibit a transition in their slope that occurs
close to the ion gyroradius scale, kpρi ∼ 1: for kpρi > 1 the
nonlinear energy transfer is rather nonlocal, with a locality
exponent between 2=3 and 1=3; for kpρi < 1, a more
local exponent of 4=3, as in Navier-Stokes turbulence
[27], is found. As a consequence of this property, for
5≲ kc ≲ 51.2, nonlocal transfers mediated by fluctuations
in the tail of the MHD range at kpρi ≲ 1 are responsible for
at least 30% of the total energy transfer through these
shells. Note that this does not contradict the above
observation that the net nonlinear transfer for large k⊥ is
local. Indeed, the nonlinear triad kþ pþ q ¼ 0 for such
nonlocal interactions is characterized by jqj ≪ jkj; jpj and
thus jkj ≈ jpj, consistent with a local net transfer between k
and p. Finally, we note that while all of the above state-
ments were illustrated with results for the electron species,
the nonlinear ion energy transfer (not shown) exhibits the
same characteristics, though with an even more pronounced
nonlocality (exponent ∼1=12), and at least 50% of the
transfer mediated by modes in the tail of the MHD range.

Collisional dissipation.—Next, we study the spectral
properties of the collisional dissipation rate by measuring
the contribution of the collision term to the free energy
balance. The resulting graphs are presented in Fig. 4 for
both electron and ion species, as well as their sum. About
70% of the total dissipation is found to arise from electron
collisions, which exhibit a broad peak around k⊥ρi ∼ 1–5.
Qualitatively, this peak is consistent with electron Landau
damping acting on the magnetic energy spectrum shown
in Fig. 1. Despite peaking at these relatively small k⊥ wave
numbers, electron dissipation remains strong throughout
the spectrum, and begins to intensify somewhat at
k⊥ρi ≳ 30. At k⊥ρi ∼ 1, where ion transit-time damping
is expected to transfer field energy to ion particle energy,
there is in fact little ion heating. At these scales the ion free
energy (not shown) is comparable to the magnetic fluc-
tuation energy, but it is cascaded to smaller scales in both
position and velocity space, and is dissipated close to the
electron gyroradius scale (around k⊥ρi ∼ 25). This obser-
vation is consistent with an ion entropy cascade and the fact
that νi ≪ νe [9,19,28]. Taking into account both species’
contributions, we find an essentially flat dissipation spec-
trum throughout the kinetic wave number range, contrast-
ing with some interpretations of solar wind data [4,5] which
suggested that the electron gyroradius scale acts as the
dominant dissipation scale.
Conclusions.—In the present study, the first gyrokinetic

simulation of kinetic Alfvén wave turbulence coupling all
scales from the tail of the MHD range to the electron
gyroradius scale was performed, with the goal of analyzing
fundamental properties of nonlinear energy transfer and
collisional dissipation for parameters relevant to the solar
wind. It was found that nonlinear energy transfer in the
kinetic range, particularly for k⊥ρi ≳ 5, is considerably
more nonlocal than hydrodynamic turbulence, as suggested
by previous theoretical considerations [29], and is to a
significant percentage (> 30%) mediated by the tail of the
MHD cascade just below k⊥ρi ∼ 1, while the net energy

FIG. 3 (color online). Infrared locality functions for several
shells kc, normalized to the total nonlinear energy transfer
through kc, versus the probe wave number kpρi. For the curves
with kcρi ≳ 5, a change in slope is apparent when the probe kp
crosses the ion gyroradius scale.

total
Electrons

Ions

FIG. 4 (color online). Normalized, short-time averaged colli-
sional dissipation rate for electrons, ions, and its total value.
Curves are multiplied by k⊥ so the area under the curve is
proportional to the energy dissipation rate.
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transfer occurs mainly between nearest-neighbor shells. For
Te=Ti ¼ 1 and βi ¼ 1, similar to the near-Earth solar wind,
70% of the injected energy is dissipated through the
electron species, whose dissipation spectrum peaks around
k⊥ρi ∼ 1–5, consistent with electron Landau damping. The
ion free energy, on the other hand, is cascaded to small
scales and dissipated around k⊥ρi ∼ 25. These findings
underscore the presence of strong dissipation throughout
the kinetic range k⊥ρi ≳ 1, justifying the common notion of
a “dissipation range,” and demonstrating a coupling across
multiple scales of both transfer and dissipation.
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