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Abstract:
We describe results obtained from Gkeyll, a full-F continuum gyrokinetic code, designed to study turbulence
in the edge region of fusion devices. The edge region is computationally very challenging, requiring robust
algorithms that can handle large amplitude fluctuations and stable interactions with sheath boundary conditions.
Results of turbulence in a scrape-off layer (SOL) for NSTX-type parameters with a model magnetic geometry
have been obtained. Key physics of SOL turbulence, such as drive by toroidal bad curvature and steep gradients
and interactions with a model sheath boundary condition are included. This allows us to perform parameter
scans and physics studies, such as the physics of heat flux width on the divertor plate, and the amplitude and
intermittency of SOL turbulence. Initial results find that the heat flux narrows as the connection length is made
shorter (the poloidal field becomes stronger). To validate the code, we have studied turbulence in the straight-field
LAPD device at UCLA and the Helimak device at the University of Texas. We will also describe the extension
of the GENE gyrokinetic code to be full-F, and initial GENE simulations for LAPD.

1 INTRODUCTION

An outstanding challenge in fusion research is developing a quantitative understanding of the edge plasma, its
interaction with material walls, and its impact on fusion performance. A lack of quantitative understanding of the
edge is a road-block to optimization of fusion performance, and design of reactor-grade burning plasma machines.
Although relatively narrow, the edge plasma, however, is very challenging computationally, with the need to
handle a wide range of scales, large amplitude fluctuations near the beta limit, stable interactions with a sheath
model, and complex atomic and surface physics.

To attack this challenging problem, we are developing a complex computational tool, Gkeyll, which will
allow quantitative predictions of edge physics that we plan to test against experiments, and some initial exper-
imentally relevant simulations are shown here. The Gkeyll code employs novel versions of high-order Dis-
continuous Galerkin (DG) algorithms, extensively developed in the computational fluid dynamics community[6].
Our algorithms conserve energy exactly for Hamiltonian systems in the continuous time limit. The use of robust
higher-order schemes can significantly help with the computational challenges of the edge region. Higher order
DG methods, which have a sub-cell representation of the solution allow significant flexibility in creating algo-
rithms that are robust, yet continue to preserve important conserved quantities (density and energy) as well as
maintain physical bounds on solution (positivity of the distribution function).

Gkeyll has recently been used to demonstrate the first successful simulations using continuum algorithms of
bad-curvature-driven turbulence on open field lines with sheath boundary conditions. The continuum code GENE
has done similar simulations in straight field configurations. We give highlights of these Gkeyll and GENE results
here. The XGC code, using PIC algorithms, is at present the only gyrokinetic turbulence code able to handle open
and closed field line regions simultaneously.

This paper is organized as follows. First, we describe the algorithms implemented in Gkeyll followed by
a linear benchmark in which we compute the growth rate of ETG modes and compare them to analytical results.
Next, we show results from various physics studies carried out with Gkeyll. We have performed simulations of
turbulence in the straight-field LAPD device[22], and found fluctuation amplitude and intermittency levels quali-
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tatively similar to that found in experiments and previous fluid calculations. Simulations of biasing experiments on
LAPD[19] that drive strong sheared flows, find that turbulence is suppressed as observed in experiments[23]. We
recently[23, 21] extended these straight-field simulations to a curved helical field (a toroidal field plus a vertical
field), and carried out simulations of this helical model SOL for NSTX-type parameters. We give some highlights
of these model SOL simulations here.

The GENE continuum gyrokinetic code has been widely used to study turbulence in the main core region of
tokamaks and stellarators. The global version has recently been extended to include the parallel nonlinearity, mak-
ing it equivalent to a full-F code, and extended to include sheath boundary conditions. It has been demonstrated
on a 1D ELM heat pulse problem for JET[17], finding similar results as Gkeyll[20]. The full 3x2v version of the
code has recently simulated LAPD turbulence[18], also finding similar results to Gkeyll[22].

In our initial SOL simulations, we have modeled the magnetic field as a toroidal field plus a vertical field,
which is sufficient for several physics studies. This same geometry can also be used to simulate toroidal devices
such as the Helimak, and we show some initial comparisons with experiments.

Areas for future work include implementation of more complex magnetic geometry, extensions to include
electromagnetic fluctuations, and some models of atomic physics. While the present work shows the overall
feasibility of the continuum approach to simulating plasma edge turbulence and allow initial physics studies, these
extensions should allow for more detailed comparisons with experiments on tokamaks and other plasma devices.

2 GYROKINETIC MODEL AND DISCONTINOUS GALERKIN AL-
GORITHM

Gkeyll uses an energy-conserving, mixed discontinuous Galerkin (DG), continuous Galerkin (CG) scheme for
the gyrokinetic equations (GK) written as a Hamiltonian evolution equation

∂f

∂t
+ {f,H} = C[f ]. (1)

Here f(t, z) is a distribution function, H(z) is the Hamiltonian and {g, f} is the Poisson bracket operator, and
C[f ] is the collision operator. The coordinates z = (z1, . . . , zN ) label the N -dimensional phase-space in which
the distribution function evolves. Defining the phase-space velocity vector α = (ż1, . . . , żN ), where the charac-
teristic speeds are determined from żi = {zi, H}, allows rewriting Eq. (1), on use of the Liouville theorem on
phase-space incompressibility, ∇ · (Jα) = 0, where ∇ is the gradient operator in phase-space, in an explicit
conservation law form

∂

∂t
(J f) +

∂

∂zi
(
J żif

)
= JC[f ] (2)

where J is the Jacobian of the transform from canonical to (potentially) non-canonical coordinates. Note that if
the coordinates are canonical, J = 1. This is the form in which Gkeyll evolves the equations.

In this paper we will use a long-wavelength limit of the gyrokinetic model with electrostatic fluctuations. The
phase space is five-dimensional (N = 5), the Hamiltonian is

H =
1

2
mv2
‖ + µB + qφ (3)

and the non-canonical Poisson Bracket operator is

{F,G} =
B∗

mB∗‖
·
(
∇F ∂G

∂v‖
− ∂F

∂v‖
∇G

)
− c b̂
qB∗‖

×∇F · ∇G. (4)

where B∗ = B+ (Bv||/Ω)∇× b̂ and B∗|| = b̂ ·B∗. From the Poisson structure one can show that the Jacobian is
J = m2B∗‖ . The potential appearing in the Hamiltonian is determined from the equation of quasi-neutrality, also
referred to as the gyrokinetic Poisson equation, which we use in the linearized polarization limit, that is

−∇ · (ε⊥∇⊥φ) = ρc =
∑
s

q

∫
d3vf (5)

where ε⊥ is the perpendicular plasma polarization coefficient. In the above we follow some of the notation of
[14]. See Sugama [24], Cary and Brizard[5], and Brizard and Hahm[4] for derivation and details of the various
terms in these expressions.
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Historically, many widely used numerical methods for simulating Hamiltonian systems in plasmas, especially
the Vlasov equation, are based on a particle-in-cell[3, 13] (PIC) approach, a class of Lagrangian schemes that
introduce macro-particles that move in phase space with the characteristic velocity α. Another approach, adopted
in our work, is to solve the Hamiltonian equation directly by discretizing it using a continuum Eulerian scheme.
In recent years efficient high-order schemes, especially of the discontinuous Galerkin family[7, 8], have become
popular for computational fluid dynamics applications[26] and are well suited to application to the phase-space
flow described by the gyrokinetic Vlasov equations.

Continuum algorithms, like the one described in this paper, have certain advantages over traditional particle
methods. The most obvious one is the elimination of particle noise that can be challenging, in certain parameter
regimes, for standard PIC algorithms. Importantly, well designed continuum schemes based on the DG approach,
due to flexibility of basis and test functions, can be designed in such a manner that conserved quantities of the
continuous system, such as total (fluid plus field) energy and momentum can be exactly or accurately conserved.

To discretize the gyrokinetic equation, we introduce a phase-space mesh T with cells Kj ∈ T , j = 1, . . . , N
and introduce the following piecewise polynomial approximation space for the distribution function f(t, z)

Vph = {v : v|K ∈ Pp,∀K ∈ T } (6)

where Pp is (some) space of polynomials. To approximate the Hamiltonian, on the other hand, we introduce the
space

Wp
0,h = Vph ∩ C0(Z) (7)

where Z is the phase-space domain. Essentially, we allow the distribution function to be discontinuous, while
requiring that the Hamiltonian is in the continuous subset of the space used for the distribution function.

The problem can now be stated as finding fh ∈ Vph such that, for all Kj ∈ T ,∫
Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n ·αhF̂ dS −
∫
Kj

∇w ·αhfh dz = 0, (8)

for all test functions w ∈ Vph . Here, n is an outward unit vector on the surface of the cellKj . In this discrete weak-
form, F̂ = F̂ (f−h , f

+
h ) is a numerical flux function. Further, the subscript h indicates the discrete solution and the

notation w− (w+) indicates that the function is evaluated just inside (outside) on the location on the surface ∂Kj .
The energy conservation properties for Hamiltonian problems in phase-space are indirect, involving inte-

gration by parts and field-particle energy exchange, and are not automatic as they are for finite-volume treat-
ments of fluid equations where there is an explicit energy conservation equation. Part of energy conservation in
phase-space requires that the discrete scheme satisfy one of the quadratic invariants of the Poisson bracket, i.e.∫
H{f,H} dz = 0, the integration taken over all phase-space. However, total energy conservation (particles plus

field) usually requires use of the corresponding field equation, and hence also imposes additional constraints on
its solution.

With our schemes and choice of basis functions we can prove that the total number of particles is conserved
exactly, and energy (particles plus field) is conserved exactly in the continuous time limit. That is, spatial scheme
conserves total energy exactly:

∂

∂t

∫
Ω

(
Eh(x, t) +

ε⊥
8π
|∇⊥φh(x, t)|2

)
dx = 0 (9)

where Eh is the discrete particle energy. In addition, we can show that the second Casimir invariant, that is, the
L2 norm of the distribution function, can be conserved with a special choice of numerical fluxes, while it decays
monotonically with upwinding.

We have spent significant effort to make our schemes robust, allowing us to obtain reasonably accurate results
even with coarse resolution. A particular challenge is to ensure that the distribution function does not become
negative. A negative distribution function can cause nonphysical instabilities and also modify the energy content
of the simulation adversely. To ensure positivity we have developed a novel scheme in which the moments of the
distribution function in each phase-space cell are used to reconstruct a local exponential which is, by definition,
positive. The basic idea in a 1D example is the following. A standard DG approach is to expand flin(x, t) =
f0(t) + f1(t)x in piecewise linear basis functions, and ensure that the error projected onto the basis functions is
0, leading to Eq. 8. For a cell domain x ∈ [−1, 1], strict positivity requires |f1|/f0 < 1. But we can also interpret
Eq. 8 as giving the time evolution of moments M0 =

∫
dxf and M1 =

∫
dxfx. As long as −1 ≤ 〈x〉 ≤ 1,

where 〈x〉 = M1/M0, which corresponds to the less restrictive limit |f1|/f0 < 3, then one can always find an
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FIG. 1: Linear growth rates for a toroidal ETG problem computed from Gkeyll simulations (solid) compared to analytically obtained values
from dispersion relation (dashed) for two different values of R/LT , with R/Ln = 0, k‖R = 0.5 and τe = 1. The Gkeyll growth rates
compare very well to analytical theory for a broad range of kyρe.

equivalent positive exponential representation fexp = exp(β0 +β1x) with these same moments. This exponential
reconstruction is then used in the update formula for surface fluxes. Combined with flux limiters that cap the
particles leaving a phase-space cell in a single time-step, this rigorously ensures that the solution remains positive.

The collision terms are modeled at present using a Lenard-Bernstein operator (LBO). See Shi thesis[23] for
details. This operator, although significantly simpler than the full Fokker-Planck operator, contains the basic struc-
ture of collisional processes relevant to the edge plasma, that is, a combination of drag and diffusion. The LBO
is discretized using a “recovery” based discontinuous Galerkin method[25]. In velocity space, the LBO conserves
particles, momentum, and energy. To ensure this property is preserved in a system with spatial variations, we have
developed novel DG-based techniques to recover moments consistently with conservation requirements as well as
boundary conditions. These will described in a later publication.

3 LINEAR ETG BENCHMARK

To benchmark our code we have performed a large number of tests, comparing code output to analytical or pre-
viously published results. In this section we describe a simple, but very useful, ETG linear benchmark that
demonstrates the ability of the code to obtain correct linear behavior even when using the full nonlinear code.
A simple purely toroidal magnetic field is used, so one can do analytical derivation of the growth rate without
solving a ballooning-type eigenvalue problem (this is a local limit of the toroidal ETG instability, for modes local-
ized near θ = 0). With finite k||, this problem requires full 3D2V capability, and so tests many code components
simultaneously.

To linearize the gyrokinetic Vlasov equation we write H = H0 + H1 and f = f0 + f1, where the subscripts
0 and 1 indicate equilibrium and perturbed quantities respectively. (The code remains in full f form, but radial
periodic boundary conditions are applied to f − f0, in order to remove the non-periodic linear gradient in f0.)
With this, the Poisson bracket can be linearized as {H, f} = {H0, f1} + {H1, f0}. Combining this with the
linearized field equations, and assuming a local limit with kinetic electrons and adiabatic ions, and neglecting
FLR corrections except in the polarization density, we obtain the dispersion relation[1, 2]

τe + k2
⊥ρ

2
e +R0(x) +R1(x)

R

Ln
+R2(x)

R

LT
= 0, (10)

with

R0(x) = 1 + i

∫ ∞
0

dτeiτxe−τ
2z2‖/2(1+2iτ) x

(1 + iτ)
√

1 + 2iτ
(11)

R1(x) = −i
∫ ∞

0

dτeiτxe−τ
2z2‖/2(1+2iτ) 1

(1 + iτ)
√

1 + 2iτ
(12)

R2(x) = i

∫ ∞
0

dτeiτxe−τ
2z2‖/2(1+2iτ) 1

(1 + iτ)
√

1 + 2iτ

(
3

2
− 1

1 + iτ
−

1 + 2iτ − τ2z2
‖

2(1 + 2iτ)2

)
(13)

and τe = Te/Ti, x = ω/ωde, z‖ = k‖vte/ωde, and ωde = kyρevte/R, with vte =
√
Te/me. Note that unlike

in Beer[1], we neglect all FLR corrections (effectively taking b = 0 in Beer’s equations 2.64-2.66) except for the
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FIG. 2: Left: Cross-section of an MHD equilibrium in NSTX. The SOL region shaded in green illustrates the simulation domain, using a helical
model of the SOL magnetic field, with a toroidal plus a vertical magnetic field. The right plot zooms in on the red box. Right: A snapshot of
turbulent density fluctuations (in units of 1019/m3) near the midplane of the SOL, calculated by the full-F continuum code Gkeyll. (The
source is strongly localized around R = 1.3 m, left of the white dashed line.) (From [23] and [21].)

second order FLR correction that gives the polarization density in the quasineutrality equation, which results in
the k2

⊥ρ
2
e term in Eq. (10). Results are shown in Fig. 1 for two choices of R/LT , with R/Ln = 0, k‖R = 0.5 and

τe = 1. This shows that the numerically computed growth rates from Gkeyll simulations agree well with the
analytical dispersion relation above.

4 PHYSICS STUDIES ON OPEN FIELD GEOMETRIES

4.1 Turbulence in a model helical SOL geometry for NSTX

Our first turbulence simulations on open field lines were done with straight magnetic fields[22, 23], for parameters
typical of the LAPD device. These demonstrated that the algorithms could handle large amplitude fluctuation
sufficiently well, that the interactions between the gyrokinetic equations and boundary conditions to model sheaths
were stable and physically reasonable, that the predicted turbulence characteristics (fluctuation amplitudes, degree
of intermittency, etc.) were qualitatively similar to those observed in LAPD, and thus demonstrated the overall
feasibility of a continuum approach to simulating edge turbulence.

Our next step was to extend to curved magnetic fields, which introduce grad B and curvature drifts, and thus
the bad curvature drive of toroidal instabilities that can often be quite strong. This allows us to do a simple helical
model of the magnetic field in a tokamak SOL. We choose parameters to be comparable to a typical SOL region
in NSTX. The simulation domain is like the green SOL region indicated in Fig. 2(a), straightened out to vertical
flux surfaces. The simulation domain (using field-aligned coordinates) is a flux tube that follows field lines that
start at the bottom divertor plate, go around the torus and eventually hit the top divertor plate.

Fig. 2(b) shows a snapshot of turbulent density fluctuations from the simulation near the midplane, zooming
in on the red box in Fig. 2(a). We model the flux of particles and heat from the core of the plasma across
the separatrix, and the particle source from ionization of neutrals, as a Maxwellian source of particles near the
midplane that is radially highly localized (a Gaussian with σ = 0.5 cm) around x = R = 1.30 m, to the left of
the white dotted line in Fig. 2(b), plus a small source (at a rate 0.1 times the peak) that is uniform in x. (This
small radially-uniform source also helps prevent the density in the far SOL from getting too small and causing
numerical problems. The final density profile including turbulent radial transport is fairly broad compared to this
source profile, but future work can study the impact of different source profiles.) The particle fuelling rate and the
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FIG. 3: Profiles of the heat flux to the divertor target plates, for several different values of poloidal (vertical) field Bv , indicating that the heat
flux width is narrowest at the highest poloidal field.

temperature of the source were chosen to give a power into the SOL of Psol = 5.4 MW, comparable to an NSTX
case. The source temperature (74 eV for electrons and ions) was chosen to give a plasma temperature near the left
side of the box comparable to what is seen at the separatrix in experiments. (The resulting temperatures from the
simulation in the source region were Ti ∼ 50 eV and Te ∼ 30 eV, dropping to much lower temperatures in the far
SOL.) For this given Psol, this source temperature also turns out to give about the right electron density near the
separatrix. Although the source temperature was an adjustable parameter, the shape of the predicted temperature
and density profiles are the result of self-consistent balance between the very narrow source, radial broadening by
turbulence, and parallel losses to the divertor plate.

The simulations produce turbulence that has characteristics similar to experimental observations. The rms
fluctuation levels are largest in the steep gradient region around the white dotted line in Fig. 2(b). Blobs tend to
form there and occasionally detach and propagate a large distance radially, giving more intermittent fluctuations
in the far SOL, as seen in the figure. If the curvature is turned off and straight field lines are used in the simulation,
then the blobs do not propagate very far in the radial direction and the overall turbulence level drops, indicating
the importance of the bad curvature drive.

In Fig. 3 we show how the radial profile of the heat flux to the divertor plates varies as the poloidal (i.e., vertical)
field varies. We find that the SOL heat flux width narrows as the poloidal field increases. This is qualitatively
similar to experimental scalings[9, 11], though the physical mechanism sometimes invoked may differ, since there
are no magnetic drifts across flux surfaces in our present geometry. As the poloidal field increases, the connection
length from midplane to the divertor plate shortens, which can have a direct stabilizing effect on some instabilities
and also shortens the parallel loss time, so turbulence has less time to spread plasma radially before it hits the
end plates. We know there are important physical processes that need to be added to the code before we expect
quantitatively accurate predictions (such as more complete magnetic geometry, finite-beta magnetic fluctuations,
etc.), but it is interesting to see features in the present simulations that are qualitatively similar to experiments.
Further details about these helical SOL simulations for NSTX can be found in [23, 21].

4.2 Turbulence in Helimak experiment and experimental validation

We used Gkeyll to simulate the Texas Helimak[10], a simple magnetized torus experiment at the University of
Texas at Austin. This device has a toroidal magnetic field (Bmax < 0.13 T), a vertical field, major radius R =
1.1 m, plasma half width 0.5 m, and vertical height 2 m. It uses RF heating to make plasmas with densities
of order 0.1-1 ×1017/m3 and electron temperatures of order 5-10 eV, and has an extensive array of probes to
measure characteristics of the plasma and turbulence. We do not yet have radiation, charge exchange, or ionization
directly in the code, and a large fraction of the input power can be radiated away for the Helimak case under
consideration, so we adjusted the power in the source (i.e., the source temperature) to give about the right average
electron temperature seen in the experiment. The particle source rate was also chosen to give about the right
average density, but this source was taken to be very narrow (since it is concentrated near narrow RF resonance
layers), as indicated in Figure 4. The simulation density profile shape, which is determined self-consistently by
the turbulence, agrees relatively well with the experimental data, as shown in Fig. 4. It is much broader than the
source, so the profile shape indicates that the predicted turbulent transport is about right.

The right part of Figure 4 shows turbulence profiles calculated as the root-mean-square of ion density fluc-
tuations over the local (in R) mean density. Despite differences at larger radii, these levels are closer than those
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FIG. 4: Left: Helimak ion density steady state profiles from experiment and simulation (Gkeyll), and source profile in the simulation. The
simulation predicts about the right density profile shape self-consistently from the turbulent spreading, independent of the narrow particle
source. Right: Experimental and simulated profile of the turbulent fluctuation amplitudes, δnrms/n, for a Helimak case. Despite differences
at larger radii, these levels are closer than those achieved in past simulations.

FIG. 5: Results from the GENE simulation of LAPD turbulence. (a) A snapshot of the electron density (in 1018 m−3) on the mid-plane in a
quasi-steady state. The dashed circle with radius r = 0.25 m indicates the edge of the top-hat source. (b) The RMS of the electron density
fluctuations as a function of radius, normalized to the local mean density. The shaded area indicates the source region. (This figure is adopted
from Fig. 3a and Fig. 6b of Reference[18], reprinted with permission).

achieved with fluid simulations of the Helimak[16]. The predicted electron temperature for the present input
power is about 30% low on average compared to the experiment. In future work we can investigate if increasing
the source input power (which will raise the temperature) will affect the parallel loss rate and profiles enough to
improve the level of agreement in the fluctuation amplitudes at large R.

4.3 Open Field line modelling with GENE

The continuum gyrokinetic GENE code has been under continuous development for two decades or so and widely
applied to turbulence studies of the core region of tokamaks and stellarators[15, 12]. To handle unique properties
of edge plasmas, including large amplitude fluctuations and plasma-wall interactions in the SOL, the global ver-
sion of the code was extended[17] to include the E|| velocity-space nonlinearity, sheath boundary conditions, and
a nonlinear Lenard-Bernstein collision operator, for electrostatic applications. The extended code is equivalent
to and can be run as a full-f code. The code employs either traditional or weighted essentially non-oscillatory
(WENO) upwind finite-volume methods for the parallel dynamics, finite-differencing for the perpendicular dy-
namics, and a particle- and energy-conserving finite-volume method for the collisions.

To compare with Gkeyll, a 1D1V code was extracted from the 3D2V GENE code to simulate the parallel
transport of a ELM heat pulse from the mid-plane to the divertor target in JET SOL. It was demonstrated that
a large sheath potential builds up upon the arrival at the divertor target of suprathermal electrons, confining the
bulk electrons with the ions. Consequently, the main ELM heat flux loading occurs on the ion transit time scale.
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The heat flux deposited onto the divertor target quantitatively agrees with the Gkeyll result[17]. The full 3D2V
version of the code has modeled LAPD turbulence driven continuously in time by a density and heat source
centered around the axis of the plasma column. In response to the density built up in the top-hat-shape source
region, waves and turbulence develop at the source edge with a steep density gradient, resulting in the rotating
azimuthal structures that are seen in the Gkeyll simulations and resemble the experiment data from the imaging
camera. The strongest density fluctuations (normalized to the local mean density) occur outside of the source
edge, and the maximum fluctuations are at the 40% level. This is qualitatively consistent with the experimental
data from the Langmuir probe. Overall, we found that the time-averaged profiles and the fluctuation statistics are
in qualitative agreement with Gkeyll results and experimental data; detailed comparisons and comments can be
found in [18]. Extensions to Gkeyll and GENE to add things such as atomic physics and a more detailed treatment
of the electron beam that heats LAPD could be done for more detailed quantitative comparisons with experiments.
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