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Abstract. A status report is given· on recent developments in the 
gyrofluid approach to simulating tokamak turbulence. "Gyrofluid" ( or 
"gyro-Landau fluid") equations attempt to extend the range of valid
ity of fluid ~quations to a more collisionless regime typical of tokamaks, 
by developing fluid models of important kinetic effects such as Landau
damping and gyro-orbit averaging. The fluid moments approach should 
converge if enough moments are kept, though this may require a large 
number of moments f~r s~me processes. Toroidal gyrofluid equations 
have been extended from 4 to 6 moments, and to include the µ 'i7 B mag
netic mirroring force. An efficient field-line coordinate system for toroidal 
turbulence simulations (useful for both particle and fluid simulations) is 
presented. Nonlinear 3-D simulations of toroidal ITG-driven turbulence 
indicate that turbulence-generated sheared flows play an important role 
in the development and saturation of the turbulence. There is a strong 
enhancement of the flows when the electrons are assumed adiabatic on 
each flux surface, which is partially offset by toroidal drift effects which 
reduce the flows. 

1. Introduction 

Fluid equations have long been used to gain insight into plasma instabilities and turbu
lence. Our aim is to build on this by developing fluid models of important kinetic effects 
which are thought necessary for ~ore realistic simulations of plasma turbulence in toka
maks. The "gyrofluid" equations provide the dynamics of a few moments (typically 4-6 
moments, for density, parallel flow, parallel and perpendicular pressure, parallel and 
perpendicular heat flux, etc.) of the gyrokinetic equation, expressing fundamental non
linear conservation laws which the turbulence must satisfy. Closure approximations for 
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the highest moments are made which provide improved fluid models of kinetic effects 
such as wave-particle resonances (Landau-damping and its inverse)[l, 2], gyro-radius 
orbit-averaging[3], and the dominant nonlinearities[3]. [Sometimes they are called the 
"gyro-Landau" fluid equations to _emphasize the Landau-damping model as well as 
the gyro-radius effects.] .These equations provide n-pole approximations to the plasma 
dispersion function Z, and usually provide a fairly good approximation to the linear 
eigenfrequencies and eigenmodes for both unstable and damped modes. A nonlinear 
saturated state is achieved when the .Ex B nonlinearity (including FLR corrections) 
couples these various modes together. Nevertheless, a finite set of fluid moment equa
tions represents an approximation which certainly breaks down in some regimes, and 
so some care must be exercised. Detailed comparisons between nonlinear gyrokinetic 
and gyrofluid simulations need to be carried out. Interesting things can be learned 
from both areas of agreement or disagreement, since much of our existing understand
ing about plasma turbulence is based ou analogies with neutral fluid turbulence and 
on fluid-like models of plasmas (such as Hasegawa-Mirna and Terry-Horton drift-wave 
models, Kadomtsev trapped-particle models, MHD, etc.). 

In Sec. 2 we discuss how the fluid moments should converge ;f enough moments 
are kept, and how this sheds light on some processes which may not be adequately 
represented by just a few moments. Sec. 3 summarizes the recent extension of the 
gyrofluid equations to 6 moments in toroidal geometry, including the magnetic mirroring 
force. Sec. 4 describes a field-line coordinate system proposed by Cowley et al [4] (which 
has some similarities to the ballooning transformation) as an efficient way to represent 
short-wavelength turbulence. Sec. 5 presents results from toroidal nonlinear calculations 
which indicate the dominant role that turbulence-generated sheared flows have on the 
dynamics and saturation of the turbulence. In particular, the (usually) proper form of 
the adiabatic electron response causes a large enhancement in the perpendicular flows. 
[The talk on which this paper is based included a discussion of nonlinear E x B phase
mixing (a little-studied but potentially important nonlinear process) as an example of 
our approach to fluid models of phase-mixing. The reader interested in that topic is 
referred to [3].] 

2. Resolution limits and higher order Landau-fluid equations 

In our previous work(l, 2] we presented 2, 3, and 4-moment variations of fluid equa
tions with models for Landau damping, and mentioned that one could extend this to 
an arbitrary number of moment equations, providing more information about the dis
tribution function J(v) and providing a more accurate n-pole approximation (where n 
is the number of moments kept) of the plasma dispersion function Z. We have recently 
completed a study of the convergence properties of such higher order fluid moment 
equations, and have tested them on the nonlinear plasma echo problem. Details of this 
calculation will appear in a future paper[5], but we summarize some of the results here 
for the insight they provide on the resolution limits of a truncated set of fluid moment 
equations. 

The mathematics for higher moments becomes more tractable if one uses Hermite 
polynomials in velocity when taking moments of the Vlasov equation, rather than using 
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the usual J dv vef or J dv (v - u)'J fluid moments .. The £th Hermite moment is defined 
as 

a,,(x:t) = jdvH,( ; )f(x,v,t), 
v2v, 

{1) 

where v, is a constant thermal velocity (mv,2 = To) which sets the velocity scale, and 
H, is the £th Hermite polynomial, 

' d' He(v) = (-l)'e" -ee-J'. 
dv 

(2) 

The first f Hermite moments and the· first £ fluid moments contain exactly the same 
information, since the polynomials I, v, (v - u), .. . , (v - u)' span the same space as 
Ho( v ), H,( v ), ... , He( v ). The orthogonality properties of the Hermite polynomials then 
allow us to expand f in a Hermite polynomial series: 

f(x, v, t) =-· 1_ 8 _,;, 1,v,' f: a,sx,
1 
t) H,(-v-). 

. ,/ij;v, l=O 2 £. v'2v, 
(3) 

This provides a direct link between the "fluid" approach of evolving n fluid moment 
equations, and the "kinetic" approach of solving the Vlasov equation with n Hermite 
polynomials. The usage of Hermite polynomials for solving the Vlasov equation was in
troduced independently by Armstrong et al [6], Grant and Feix[7), and by Sadowski[S]. 
This approach was used to study a number of early plasma problems (linear and non
linear Landau damping, two-stream instabilities, plasma echoes, etc.). The Hermite . 
polynomials provide a complete basis set, and so should converge if enough moments 
are kept. As pointed out on p.67 of the review article by Armstrong[6], the nature 
of the resolution limits of a truncated Hermite expansion can be illustrated by just 
considering the free streaming equation 

of of 
ot + V OX= Q. (4) 

We will compare Hermite-based solutions of this with the exact soiution, which is just 

(5) 

for the initial condition f = JM( v )e•kx, where fM is a Maxwellian. Even though f is 
initially a smooth function of velocity, it eventually becomes a very o_scillatory functiim 
of v for large enough t ( this is responsible for the phase-mixing decay of the density 
n = J dvf), and therefore requires a large number of Hermite polynomials to accurately 
represent it. 

Operating on Eq. (4) with fdvH,, and using the recursion relation He+i(x) = 
2xH,(x) - 2RH,_1 (x), yields 

80,, '2 (ea"'e-1 ! 80<e+1) = 0 ot + V ~Vt OX + 2 OX • (6) 

Like the usual fluid moments equations, this is an infinite set of coupled equations, 
each expressing a conservation law, but which requires some closure approximation in 
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practice, and one must consider resulting truncation errors~ Taking a time derivative 
of Eq. (6), Fourier transforming in x, and normalizing time to 1/(k,v,-./2), leads to 

fPa, ( 1) 1 
812 

+ £(£ - l)o.,-2 + £ + 2 a,+ 4al+ 2 = 0. 

Scaling the coefficients by o.2,(t) = (-1)'2l(2f- l)!!x,(t) {note the factor of 2 difference 
in tli.e a and x indices), it is possible to rewrite this in the form 

d?x, 
M, dt

2 = k,+1(Xt+1 - x,) - k,(x, - x,_,). 

I.e., this provides a precise mechanical analog to Eqs.(6) in terms of a infinite set of 
masses M, at positions x, (for£= 0, 1, 2, ... ) each coupled to its nearest neighbors M,_, 
and M,+1 by springs with spring constant k, and kl+t• (A solution for the coefficients 
is k, = eM, and M, = {2l)!/(4'{£!) 2

) ~ 1/R.) An initial density perturbation, i.e., 
an initial perturbation in the lowest moment c,0 , can be thought of as a perturbation in 
the position x 0 of the first mass in the mechanical system. This then produces a wave 
in the coupled springs which propagates to high £. One can take Hermite moments of 
the exact solution f = fM(v)exp(ik(x-vt)) and show that[6] 

a,(t) ex t'e-(kv,t)'l 2• 

The peak of the wave thus reaches the l'th moment (i.e., the l/2 mass) at t = ,/ej(kv,). 
After that time, most of the energy in the wave will have propagated to higher £'s. 
Truncating the Hermite expansion by setting CY.L = 0 corresponds to replacing the L/2 
mass with a fixed wall (i.e., setting XL/ 2 = 0) which reflects the energy back to lower 
springs (i.e., to lower moments). There is no damping mechanism in this mechanical 
system, so the wave energy is trapped and bounces around between e = 0 and £ = 
L/2 - I. The density ( c,0 ) will appear to phase-mix for short times as the wave energy 
propagates to higher l's, but the system has no dissipation in it, and it will periodically 
reconstruct the initial perturbation (see Fig. 1 in Ref.[2] for examples of this). To 
rectify this problem, the early computational studies[6] would sometimes include a weak 
amount of velocity-space diffusion (which might arise either from particle collisions or 
from wave-induced quasilinear diffusion) in the Vlasov equation. For example, using the 
Lenard-Bernstein model collision operator[9), C(f) = 8/8v(vvf + vv;8J/8v), adds the 
term -vfo, to the right-hand-side of Eq. (6), thus providing larger damping at higher 
moments. For low collisionality problems, this requires a large number of Hermite 
moments {and the stiffness·of the equations increases as more moments are kept). The 
early computational studies[6) frequently kept ten's or hundred's of Hermite moments. 

In the framework of the above mechanical analogy, our fluid model of Landau 
damping[l, 2) can be interpreted as providing damping for the highest-£ spring in the 
system to reduce artificial reflection of the wave back to the lower springs. I.e., our 
closure approximation for the highest moment C<L introduces damping into the equation 
for 8ai_,f 8t which models the rate at which energy is flowing from the resolved lower 
moments £ < L to unresolved higher moments £ c': L, where it is presumed to be 
eventually damped at high enough £ by collisions. This simplifies the problem and 
allows the use of fewer moments than would be required if one had to resolve all the 
way up to the collisional scale. While this assumption works in many cases, there are 
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certainly some cases where it breaks down, where some additional effect causes the 
information to be reflected back down to low l's before the information had propagated 
to high enough f's to be damped. One example of this is the nonlinear plasma echo. 

In the classic plasma echo problem[lO, 11], one considers the response of the plasma 
to an electric field of the form E = E 1 cos( k1x )o(t) + E, cos(k,x )8(t-t 2 ). Linearly these 
two electric pulses produce density perturbations at wavelengths k1 and k2 which then 
decay in time due to phase-mixing. The nonlinear interaction between the E, pulse 
and the J, oc E1vfM(v) cos(k1(x-vt)) produces a perturbation inf at the wavenumber 
k2 - k1 which "un-phase-mixes" in. time producing a maximum density perturbation 
(an "echo") aroun·d the time t"ho = t,k,/(k, - k1 ). Numerical solutions of Landau-fluid 
equations are easily able to reproduce the phase-mixing decay of the linear perturbations 
at k1 and k2 even with just a few (2-4) moments (as they were designed to do), however 
we have found that one must keep of order (k1v,t 2 ) 2 moments in order to reproduce the 
echo ( details of this calculation will be reported later[5]). This is consistent with the 
number of Hermite moments needed to represent the highly oscillatory fi at the time 
12 of the second pulse. 

Ion Compton scattering (ICS) is another process which may, in some cases, require 
more moments. Mattor[l2] has carried out a weak-turbulence analysis of a simplified 
version of gyro-Landau fluid equations (with 3 moments). The range of validity of 
weak-turbulence theory for ITG modes is fairly narrow[l3], but it does provide a useful 
analytic test of nonlinear effects. The 3-moment fluid approach successfully[l2, 14] 
reproduces ion Compton scattering for drift-w~ves with w > k

11
vt. However, for ITG 

modes very near marginal stability, with low frequencies w «: k
11
v,, Mattor found that 

the ICS rate predicted by the fluid approach is too small by a factor of (w/k 11v,)2 • Thus 
one needs to be cautious with Landau-fluid equations in cases where significant ICS 
might be expected. Based on the above discussion about resolution limits of Hermite 
polynomial representations, one might conjecture that in order to properly reproduce 
ICS one needs to follow the evolution of / 1 oc exp(ik 11(z - v 11t)) for a time t ~ 1/w, so 
that the number of moments needed might scale as.L ~ (k11v,t) 2 "'(k 11v,/w) 2• This is a 
large number in the particular regime of near-marginal stability for low-frequency ITG 
modes investigated by Mattor. Further from marginal stability, one frequently finds 
that the fastest growing ITG modes ( which may or may not dominate the nonlinear 
spectrum) typically have w ~ k

11
v,, so that perhaps a few moments will be sufficient 

(as suggested by the successful drift wave results where k
11
v,!w was small). These are 

conjectures, however, and further study of these issues should be carried out. 

3. Toroidal Gyrofluid Equations 

The toroidal gyrofluid equations are derived by taking velocity moments J d3v v;'v~m of 
the nonlinear electrostatic gyrokinetic equation in toroidal geometry:[15, 16, 17] 

:tFB+v-[FB(v 11b+JovE+vd)] 

+a
8 

[FB(-..:...f..'\i'Joif>-µb-'vB+vu(b-'vb)-JovE)] =C(F). 
~ m . 
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The toroidal effects are contained in vd (the curvature and 'v B drifts), a modifica
tion to · the parallel acceleration ( the b · 'vb term), the mirroring force µ b •. 'v B, and 
the non-zero divergence of VE = c.E x B / B 2 in toroidal geometry. The highest mo
ments introduced are approximated in terms of lower moments to accurately model the 
linear kinetic response. In the parallel terms, this is accomplished by adding damp
ing proportional to \kn\,[l] while in the toroidal terms the damping is proportional to 
\wd\-[18] For the µb • 'v B terms, the higher moments are approximated as Maxwellian 
perturbations, without dissipation .. These terms incorporate trapped particle effects, 
reproducing the CGL pressure balance equation. The collision operator is modeled by 
a number, momentum, and energy conserving Krook operator, ignoring FLR correc
tions which give rise to classical transport, but roughly capturing neoclassical effects 
from ion-ion collisions (v;;). Taking moments of the Joi!> terms introduces FLR approx
imations (not shown here) as discussed in [3]. We summarize these equations here; a 
complete derivation will be presented in a future paper. 

dn 
Bb- 'v~ - iw.<P + iwd(Pn ~ P.L + <P) = O 

dt + 

du11 + Bb • 'vp 11 + b. 'vi!>+ P.L b • 'v B + iwd(q11 + q.L + 2u11) = 0 
dt B B 2 

dpn 
+ Bb. 'v(q 11 ~ 3un) + 2(q.L; u 11)b · 'v B - iw.(I + ~)<P 

dt 

+ iwdi(1p 11 + P.L - 4n + 4/P) + \wd\(v,T11 + v2T,) = -~v;;(p 11 - P.L) 

dp.L 
+ B2b • 'v(q.L ; 2 un) .- iw.(l + ~ )<P d.t 
+ iwd~(5p.L + Pn -3n + 3/P) + \wd\(v3T11 + V4T,) = ~v,;(Pn - P.L) 

dqn - .. . q 

dt + (3 + ,811)b · 'vT11 + v'2BD 11\k1r\ ~ 

+ iwd~(-3qn - 3q.L + 6u11) + \wd\(v,u11 + v•q11 + vrq,) = -v;;qn 

dq.L 
+ B2b-'vT"+./2B2D \k\q.L+(3T,-Tu)b-'vB 

dt B2 .L11B2 B 

+ 
. 1 ·. 
zwd2(-q11 - q.L + u11) + \wd\(vsu11 + vsq11 + vwq,) = -v;;q.L 

d a C . 2p;Vti [cos0 a . 0 8 l 
dt = at + VE · 'v + FLR orrections ZWd = --y- -r- 80 + sm or 

The parallel closure coefficients are D11 = 2,/ir/(3,r - 8), ,811 = (32 - 9,r)/(3,r - 8), 
D, = ,/ir/2. The toroidal closure coefficients are of the form v = (v,, v,) = Vr + 
iv;\wd\/wd, where v, = (1.9, -1.3), v2 = (.43, 1.2), V3 = (-.46, 1.1), V4 = (-.10, -1.5), 
Vs= (-8.1,12.6), VG= (6.4,13.0); V7 = (7.6,6.2), Vs= (3.5,-7.0), V9 = (3.4,-4.9); 
v10 = (8.9, -6.7). This large number of coefficients is due to the fact that the toroidal 
d "ft . t d ' 2 2 • s 3 2 d • . t Th k' t· . n s m ro uce v

11
, v

11
vJ., vJ., v

11
, v

11
vJ., an v

11
v.L momen s. e gyro me 1c quas1neu-

trality constraint is discussed in Sec. 5. The gyrofluid model agrees well with the linear 
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Figure 1. Comparison of linear growth rates with the kinetic ballooning 
results of Ref.[19] for the toroidal ITG mode for q = 2.4, !i = 1, Ln/ R = 0.2, 
T; = T,. The solid circles are with the new 6-moment equations, the open 
circles are with 4-moment equations and the closure in Ref.[18]. 
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growth rates (and eigenmode structure) from fully kinetic integral calculations[19] of 
the toroidal ITG mode (assuming f, • 'v' B = 0), as shown in Fig. 1. 

4. An efficient field-line coordinates representation 

Cowley et al [4] proposed the use of a field-line coordinate system as an efficienf and 
natural geometry for tokamak turbulence simulations. This approach has advantages 
for both particle and fluid simulations. The basic idea is to take advantage of the short 
perpendicular correlation lengths of tokamak turbulence, while still allowing for long 
parallel correlation lengths and rapid parallel propagation, by simulating a thin flux 
tube which is extended along the field lines. The most efficient computation possible 
would use the smallest simulation volume necessary. I.e., the size of the simulation 
volume may only need to be a few decorrelation lengths in each direction, and it would 
seem unnecessary to simulate the whole tokamak to reproduce small-scale, locally
driven turbulence. [Ultimately, this hypothesis should be tested by varying the size of 
the simulation region to see if the character of the turbulence is indeed independent 
of the box size once the box is large enough. Also, the assumption of "locally-driven" 
turbulence is another important caveat which may need investigation. An analogy 
might be drawn with the ocean, where waves 20 miles apart are statistically uncorrelated 
(they have random phases), yet the average amplitude of the waves on the beach will be 
larger if there is a storm 20 miles out at sea. It is usually thought that magnetic shear, 
the radial variation of w., and other effects probably localize tokamak turbulence, but 
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experiments and nonlinear theoretical investigations of this may be interesting.] The 
use of a field-line following coordinate system also allows the use a coarse grid in the 
parallel direction, providing further computational savings. 

BES measurements in the TFTR experiment[20] indicate that the perpendicular 
correlation lengths are of order 2 cm (for a particular set of experimental conditions). 
Though this is much longer than the ion gyroradius p; ~ 0.15 cm, it is still much 
smaller than the 80 cm plasma minor radius, so it would seem unnecessary to simulate 
the whole plasma to reproduce this short-scale phenomena. We have done simulations 
in a flux tube of dimensions 9 cm radial x15 cm poloidal x21rqR along the field line, i.e., 
the simulation box is 4-7 times wider than the experimentally measured decorrelation 
length. Some initial nonlinear results are reported in the next section. 

The essential features of the field-line approach recommended by Cowley et al [4] 
can be illustrated in a simple sheared slab geometry with the magnetic field B = 
B0 (z + sxfj). Define the coordinate transformation 

I 
X =x, y' = y- sxz, I z = z. (7) 

Using the chain rule, derivatives are transformed by 

a a , a 
-=---sz- -
ax 8x 1 8y1

' 

a a 
ay=ai'. 

a a , a 
-=~-sx-
8z 8z' 8y1 • 

(8) 

In the new primed coordinates, magnetic field lines are straight and are labeled by a 
particular value of (x', y'). Derivatives along the field line become simply I,• 'v = (z + 
sxfi)·'v = 8/ 8z'. Fourier transforms are related by ky = k; and k, = k:-sz'k;. Note the 
similarity between this expression fork, and the expression fork, in the usual ballooning 
transformation k, = k,s(0 - 00). Thus, the above coordinate transformation can be 
related to the usual ballooning transformation by relating ke = k;, 00 = -k~/(k;s) (one 
must be careful with modes with ~ = 0 and finite k~ -they are physically meaningful 
components of the fluctuations although they have an infinite 00), and the poloidal 
angle is related to the distance along the field line by 0 = z'/(qR). 

The surprise is that the nonlinear terms remain easy to evaluate in the new field
line coordinate system[4]. The E x B nonlinearity operating on some field A is usually 
written using the Poisson bracket notation: 

• 8q, 8A 8<1> 8A 
zx'v<l>-'vA= 8x8y - 8y 8x ={<l>,A}. 

Transforming to the field-line coordinates yields 

{<1>,A = 8<!>8A _ 8<!>8A _ 8<1>8A _ 84>8A 
} Bx 8y 8y 8x ox' 8y' 8y' 8x' (9) 

This can be easily evaluated in numerical codes using finite-differences or Fast Fourier 
Transform techniques. This is in contrast to the usual way in which the nonlinearity is 
written for the ballooning representation[l5]: 

(bx'v<l>-'vA)k,,0,(0)=,r L L I:•-;""'2''k~k1.s(21rp+0~-0~)x 
k-9=k6+ki k90o=k~e~+k~O;{ p 
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(10) 

While the usual slab nonlinearity (k1-' x k1-") can be efficiently evaluated with FFT's, 
it was not obvious that the ballooning nonlinearity, with its sum over p, can be. As 
we show below, the field-line coordinate transformation can be made equivalent to the 
ballooning representation (with certain boundary condition in B), so that Eq. (9) is the 
fast way to evaluate Eq. (10). 

Periodic radial boundary conditions are easy to implement in these field-line coor
dinates even in a sheared magnetic field. Perturbations in the plasma tend to be highly 
elongated along magnetic field lines.· Because the magnetic field points in a different 
direction at x = 0 than at x = L,, it is not appropriate to impose x-periodicity in 
the unprimed coordinates ili(x = 0,y,z) = ili(x = L,,y,z) (for example, see Fig.3 of 
Ref.[14]). However, one can use periodicity in x', ili'(x' = 0, y', z') = ili'(x' = Lx, y', z'), 
since the field-line coordi~ate transformation takes care of the magnetic field direction. 
One should note x' is not a physically periodic variable (unlike B or¢, in a torus). In
stead we are assuming that the statistical properties of the fluctuations at x = Lx are 
the same as at x = 0, and that if L, is much larger than the radial correlation length · 
we can can assume they are in fact identical at every instant. This "statistical period
icity" allows one to avoid edge effects associated with iii = 0 boundary conditions at the 
edges of a bounded box. Periodic radial boundary conditions allow the self-consistent 
evolution of the (ky = 0, kz = 0) components of the fluctua,tions (which were set to zero 
in some previous simulations in a bounded box to avoid flattening of the background 
gradient) which play a dominant role in the nonlinear turbulent state since they are 
responsible for the sheared poloidal flows (see Sec. 5). The precise choice of boundary 
conditions shouldn't matter much if the box is large enough so that there is a separation 
of time scales between the turbulence saturation time and the profile flattening time 
(and if the rational surfaces are close enough together[l4] so that flattening around 
individual surfaces doesn't dominate), though periodic boundary conditions should be 
a bit more efficient by allowing a somewhat smaller box. 

Periodicity in the y' direction is the same as in the unprimed coordinates, 
ili'(x', Ly, z') = ili'(x', 0, z'). However, the along-the-field-line periodicity assumption 
should be imposed in physical coordinates, not field-line coordinates directly. The 
reason for this is that in the (x,y) plane, the computational box is twisting into a 
parallelogram as it follows the· field lines along z'. If the eddies tend to be elon
gated in the x direction at z = 0 (perhaps because of "ballooning" to take ad
vantage of the ba.d curvature drive at B = 0), then. they should also tend to be 
elongated in the physical x direction (not the x' direction) at L, (assuming L, is 
some multiple of 21rqR). Using the mapping from real-space to field-line coordi
nates ili(x,y,L,) = ili'(x',y',L.) = ili'(x,y- sxL,,L.), and expanding iii' in Fourier 

components as 'P'(x',y',z') = Ek~Ek; <I>k~.k~(z)exp(i,k~x' + ik~y'), it can be shown 
that the parallel periodicity assumption translates to the field-line coordinates as 

iii~, k' (L,) = iii~, -k' ,L k' (0). · If L, = 21rqR, this translates into the usual balloon-
"'' 31 :,: y z, y 

ing representation as ili.,,,,(B = 2,r) = <Pk,,0,-2,(0). In general, L, should be chosen to 
be several times the parallel decorrelation length rather than just 21rqR. If one follows 
a very thin flux tube a distance of 21rqR along the field, it will come back to the same 

poloidal angle .but usually a different toroidal angle ( unless one is near a low-order 
rational surface), and it hasn't yet "bitten it's tai1"[4] to require periodicity. (Careful 



982 G W Hammett et al 

convergence studies need to be done, but in practice Lz = 21rqR may be sufficient, 
particularly if the box is thick enough in the x' and y' directions.) 

In a later paper we will present the field-line-following coordinate transformation 
in more detail, including more details on its relation to the usual ballooning transfor
mation. There are also similarities between this field-line transformation[4] and some 
other approaches[21, 22] also proposed for efficient simulations of small-scale turbulence, 
though in each case one needs to think carefully about the relative advantages of various 
approaches, and the effects of boundary conditions on correlation lengths. J.B. Taylor 
et al [23] have recently discussed some potentially significant subtleties which result 
from including the radial variation of w.(r) "'w.o(l + x/ L,) (one should also consider 
~i vs. r). When Fourier-transformed, this would lead to new terms involving -i8/8kx 
which could be included in the field-line approach, though more thought perhaps needs 
to be given to the radial boundary conditions in this situation. 

5. Self-generated sheared rotation and nonlinear results 

We have implemented this coordinate system in 3-D nonlinear gyrofluid simulations of 
toroidal ITG turbulence. We present early results here; more detailed studies will follow. 
Fig. 2 shows typical nonlinear results from a relatively low resolution run, showing that 
a saturated state is only reached with the proper adiabatic electron response, ne1/n 0 = 
e( ill- (ifl) )/T" where (ifl) is the flux-surface-averaged potential. When n,ifn 0 = eifl /T, 
is used, the turbulence does not saturate: streanoer-like (radially elongated) structures 
form and grow indefinitely. With the (usually) proper electron response c,:: ifl - (ifl}, 
sheared poloidal Ex B flows (potential perturbations with (ky = 0, kz = 0), but kx # 0) 
are nonlinearly generated by the turbulence. These sheared flows have a stabilizing 
influence on the turbulence and play an important role in regulating the saturated 
state. However, if n,i/no = eif! /T, is used, then electrons are allowed to flow radially 
in response to the (ky = O, kz = 0) component of ifl, thus shorting out the radial 
electric field associated with the sheared rotation. (This may actually occur if the 
magnetic fields were completely stochastic allowing rapid radial electron transport.) 
To see this mathematically, consider the gyrokinetic quasineutrality condition, which 
in our notation[3] is n, =ii;+ n;o(ro - l)eifl/T,. At long wavelengths this becomes 
n, = ii; -'- kip;n,0 eifl /T,. The electron response for most Fourier components is just 
n, =· n, 0eifl /T., so that the quasineutrality constraint reduces to the familiar form 
ifl ex ii;/(1 + kip;). However, the (ky = 0, kz = 0) component of n, 1 should be zero so 
that the quasineutrality constraint becomes iflo,o ex ii;/k;p;. For k;p; <t: 1 this gives a 
large enhancement of the poloidal flow.' This effect had been missed in most previous 
ITG simulations because of limitations in the adiabatic response, or in the treatment 
of the (ky = 0, kz = 0) mode and boundary conditions. 

Siµce the sheared poloidal flow has such a strong effect on the turbulence, it is 
important to include all of the proper drives and sinks for this flow. Poloidal flows are 
danoped only· weakly by collisions in slab geometry, and we have observed some cases 
where the flows grow to very large amplitudes causing complete stabilization of the 
turbulence for a long time, and leading to a bursting behavior in the turbulence[l4]. 
In toroidal geometry, neoclassical poloidal flow danoping may play an important role 
(work in progress), but we have found that the toroidal drifts of particles off of their 
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Figure 2. 3-D nonlinear gyrofluid simulations of toroidal ITG turbulence 
for 1/i = 4, s = 1.5, Ln/R = 0.4, T; = T,, and q = 2. (a) Xi vs. time for 
n,/n 0 = eif.>/T, (dashed) and n,/no = e(if.> - (if.>))/T, (solid). A saturated 
state is reached only when self-gel)erated poloidal flows are allowed. (b) Time 
averaged saturated energy spectrum vs. ke for n,/no = e( if.>-(if.>) )/T,, showing 
that the spectrum is downshifted from the fastest growing linear mode. 

flux surfaces (modeled by the wd and lwdl terms of the gyrofluid equations of Sec. 3) 
cause enough smoothing of the radial density perturbations that the radial electric field 
does not grow too large and steady state turbulence is achieved. This is a banana-orbit
averaging effect which is analogous to the smoothing provided by gyro-orbit-averaging. 
Further study of the level of accuracy of our models of these toroidal effects needs to 
be carried out. 

The generation of poloidal flow and subsequent reduction in fluctuation levels is 
similar to that observed in simulations by Hasegawa and Wakatani[24] for resistive drift 
waves and by Carreras et al.[25] for resistive pressure gradient driven turbulence, and 
predicted to play an important role in generating L to H-mode transitions by Diamond 
and Kim. [26) These earlier works tended to emphasize the edge, while the present results 
suggest that this may also be an important effect in the plasma interior, and for all 
modes with near-adiabatic electron response. 

The time averaged energy spectrum is shown in Fig. 2b for the saturated case in 
Fig. 2a. Although the maximum linear growth rate is at kep; ,:; 0.4, the peak in the 
energy spectrum is shifted to longer wavelength. This is in agreement with general 
trends observed in BES measurements[20], but detailed comparisons need to be done 
for the actual experimental parameters vs. radius (the peak kep; varies with minor 
radius in the BES measurements). Future simulations will investigate the processes 
which determine the dominant scale of the fluctuations .. 

0.6 
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6. Conclusions 

Recent advances in gyrofluid modeling include (1) a better understanding of the conver
gence properties of higher order fluid moment equations and of why a limited number 
of fluid moments may be inadequate for some nonlinear processes, (2) an extension 
of the toroidal gyrofluid equations to 6 moments, including CGL-like terms from the 
magnetic mirroring force responsible for trapped particles, (3) the implementation of a 
toroidal 3-D nonlinear gyrofluid code using a field-line coordinate system for efficient 
representation of small scale turbulence, ( 4) the observation of the major role that 
self-generated sheared flows play in determining the saturated turbulent state. Future 
work is needed to (1) study further the analytic weak-turbulence limit where difficulties 
have been observed for lower-frequency (w ~ k

11
vti) ITG modes very near marginal 

stability[12], (2) study the accuracy of gyrofluid models of various neoclassical effects 
which may affect the self-generated sheared flow, (3) carry out higher resolution nonlin
ear simulations and look for what controls the long wavelength scale of the spectrum, 
(4) perform careful nonlinear comparisons with gyrokinetic particle simulations, and 
(5) compare with experimental measurements of turbulence and transport in tokamak 
plasmas, our ultimate goal. 
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