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A fluid model is developed for the description of microturbulence and transport in magnetized, long
mean-free-path plasmas. The model incorporates both electrostatic and magnetic fluctuations, as
well as finite Larmor radius and kinetic effects. Multispecies Landau fluid equations are derived
from moments of the electromagnetic gyrokinetic equation, using fluid closures which model kinetic
effects. A reduced description of electron dynamics, appropriate for the study of microturbulence on
characteristic ion drift and Alfve´n scales, is derived via an expansion in the electron to ion mass
ratio. The reduced electron equations incorporate curvature,¹B, and linear and nonlinearE3B
drift effects, needed to model the electron contribution to the drive and damping of ion gyroradius
scale instabilities in tokamaks. The Landau fluid model is linearly benchmarked against gyrokinetic
codes, and found to reproduce the toroidal finite beta ion temperature gradient and kinetic
ballooning instabilities. ©2001 American Institute of Physics.@DOI: 10.1063/1.1374238#
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I. INTRODUCTION

The development of an accurate and numerically e
cient model of plasma microturbulence and transport in
kinetic, long mean-free-path regime characteristic of the c
of magnetic fusion devices is a long standing challen
Progress has been made via the development of the nonl
gyrokinetic equation,1–4 and its numerical solution usin
direct,5,6 particle in cell,2,7–9 and ‘‘gyrofluid’’ 10–14 methods.
Gyrofluid models take velocity space moments of the fi
dimensional gyrokinetic equation to produce a reduced th
dimensional fluid description. Kinetic effects are model
via appropriately chosen fluid closures. Here we use the t
‘‘Landau fluid,’’ which emphasizes the use of fluid closur
which model Landau damping, interchangeably with ‘‘gyr
fluid,’’ which emphasizes that the fluid equations are m
ments of the gyrokinetic equation in gyrocenter space.

The importance of incorporating magnetic fluctuatio
~also called finiteb effects, whereb is the ratio of plasma
pressure to magnetic pressure! in descriptions of ion gyrora-
dius scale dynamics, has been identified by numerous
thors. Magnetic fluctuations impact the growth rates of p
dominantly electrostatic linear instabilities, for example t
finite b stabilization of the collisionless toroidal ion temper
ture gradient~ITG! mode,15,16 and introduce electromagnet
instabilities, such as the kinetic ballooning mo
~KBM !.17–22 In addition, magnetic fluctuations are expect
to significantly impact nonlinear dynamics and zonal flo
generation.23,24 Linear and nonlinear electromagnetic effec
are well documented in the extensive literature on collisio
plasmas. The strong impact of magnetic fluctuations in c
lisional Braginskii25 simulations~see Refs. 23, 26–29 an
references therein for details on recent work in electrom
netic edge turbulence! motivates the development of mode
for the dynamics of kinetic, long mean-free-path plasm

a!Electronic mail: snyder@fusion.gat.com
3191070-664X/2001/8(7)/3199/18/$18.00
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which include magnetic fluctuations and nonadiabatic el
trons. It should be noted that the collisionless ITG mode a
the ion drift resonance driven KBM instability, considered
Sec. VI, both require kinetic effects not present in the st
dard Braginskii model for an accurate description.

Here we develop an extension of earlier electrostatic
rofluid models30,31 to incorporate magnetic fluctuations an
nonadiabatic passing electron dynamics.~This model can al-
ternately be viewed as an extension of Waltzet al.14 to in-
clude more ion moments, the mirror force, different mod
of toroidal kinetic effects, and a numerically efficient r
duced electron model.! A set of general multispecies electro
magnetic gyrofluid equations are derived from velocity spa
moments of the nonlinear gyrokinetic equation in Sec.
The moment hierarchy is truncated using a set of closu
derived to model kinetic effects, including collisionles
phase mixing due to parallel streaming and toroidal drifts,
well as linear and nonlinear finite-Larmor-radius~FLR! ef-
fects. The general set of gyrofluid equations can be use
describe electron as well as ion dynamics. However,
many problems a more numerically efficient reduced mo
is appropriate for the electrons. The derivation of a redu
electron model which can be implemented in practical n
merical simulations of electromagnetic ion drift and Alfve´n
scale turbulence is a key result of this paper. Section
describes the physical motivation and mathematical der
tion of the reduced electron equations. These reduced e
tron equations include the effects of electron temperature
density gradients, electronE3B motion, Landau damping
electron–ion collisions and the parallel electron curre
which, along with parallel ion currents, give rise to the pa
allel magnetic potential. The system of equations is co
pleted with the gyrokinetic Poisson equation and para
Ampere’s Law in Sec. V. The Landau fluid system of equ
tions is then benchmarked with linear gyrokinetic theory
Sec. VI. Linear growth rates and frequencies are compa
9 © 2001 American Institute of Physics
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for both the toroidal finiteb collisionless ITG mode and th
kinetic ballooning mode. Additional benchmarks and resu
from nonlinear toroidal turbulence simulations using t
electromagnetic Landau fluid model developed here are
sented in Ref. 32.

II. THE GYROKINETIC EQUATION

The starting point for the derivation of the fluid equ
tions is the nonlinear electromagnetic gyrokinetic equation
Brizard,33 based upon earlier gyrokinetic work by man
authors.1–4,34,35

The standard gyrokinetic ordering is invoked as follow

v

V i
;

kiv t i

V i
;

ef

T
;

dB

B
;

F1

F0
;

r i

L
;«!1, k'r i;1, ~1!

wherev is a characteristic frequency of the fluctuations, a
ki andk' are typical fluctuation wave numbers parallel a
perpendicular to the equilibrium magnetic field.V i is the ion
cyclotron frequency,v t i5ATi /mi is the ion thermal speed
andr i5v t i /V i is the thermal ion gyroradius.L is a typical
equilibrium scale length, such as the density scale len
Ln52¹(ln n0)

21, the temperature scale lengthLT

52¹(ln T0)
21, or the plasma minor radius (a) or major

radius (R). T andB are typical equilibrium temperatures an
magnetic fields, andF0 is the equilibrium distribution.F1 is
the fluctuating distribution function,f is the electrostatic po
tential ~which is assumed to have no equilibrium comp
nent!, anddB is the fluctuating component of the magne
field.

Gyrokinetics averages over the fast gyromotion of
particles around a strong magnetic field, reducing the kin
equation from three to two velocity space dimensions, a
leaving the magnetic momentm as a rigorously conserve
quantity. The gyrokinetic ordering takes advantage of
spatial anisotropy created by the strong magnetic field. P
allel to the field, particles can stream freely, and fluctuat
wavelengths are long,kiL;1. Perpendicular to the field, pa
ticle motion is strongly restricted, and wavelengths sc
with the gyroradiusk'r i;1.

The fluctuating distribution function is ordered sma
compared to the equilibrium distribution, which here is tak
as a Maxwellian. Nonetheless, perpendicular gradients
fluctuating quantities are the same order as perpendic
gradients of the equilibrium (k'F1;F0 /L), and hence the
perpendicular nonlinearities due to theE3B drift and field
line bending are kept, while parallel nonlinearities are sm
and are ordered out here.

Brizard’s electromagnetic gyrokinetic equation can
written in the form

]F

]t
1Ẋ•¹F1 v̇ i

]F

]v i
5C~F !, ~2!

whereF is the gyrocenter distribution function in the gyro
center phase space coordinates (X,v i ,m,z). Within the gy-
rokinetic ordering (v!V i), the gyrophase anglez is effec-
tively averaged over, and does not appear explic
(]F/]z50). The gyrocenter magnetic momentm5v'

2 /2B
Downloaded 12 Nov 2003 to 198.35.8.52. Redistribution subject to AIP
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1O(«) is exactly conserved and enters the equations onl
a parameter. An as yet undefined collision operatorC(F) has
been added to the right-hand side.

Equation~2! is solved throughO(«2) in the gyrokinetic
ordering defined above. When ordering terms in the gyro
netic equation, all frequencies are compared toV i , and all
lengths tor i . Hence, for example,]F/]t;vF1 is O(«2),
because]F0 /]t50, F1 /F0;«, andv/V i;«. Any gradient
operator acting onF0 or B is O(«) becauser i /L;«. A
parallel gradient onF1 is O(«2) becausekir i;«. However,
a perpendicular gradient acting onF1 is O(«) because
k'r i;1. Because¹F is O(«), Ẋ is needed only toO(«),
while v̇ i must include terms throughO(«2).

The fluctuating magnetic fielddB is described to lowes
order in terms of a magnetic potential along the equilibriu
field, dB5¹3Aib̂, whereb̂ is a unit vector along the equi
librium field. Note thatAi andA' are fluctuating quantities
The equilibrium magnetic field is denoted byB or Bb̂, never
as a magnetic potential. The perturbation along the equ
rium field (dBi) is small for b!1, as can be seen from
perpendicular force balance, anddBi is neglected here.

The gyrocenter velocity is then given by

Ẋ5v iF b̂1
^dB'&

B G1vE1vd , ~3!

where the angular brackets denote gyroangle averages.
first term on the right represents free streaming along
total magnetic field. The second term is the gyroavera
E3B drift velocity, vE5(c/B)b̂3¹^f&. vd is the combined
curvature and¹B drift velocity. In general,vd can be written

vd5
v i

2

V
b̂3~ b̂•¹b̂!1

m

V
b̂3¹B

5
v i

21mB

VB2 B3¹B1
v i

2

VB2 b̂3~¹3B3B!. ~4!

Using the equilibrium relations¹p5(1/c)J3B and ¹3B
5(4p/c)J, this can be written

vd5
v i

21mB

VB2 B3¹B1
v i

2

VB2 b̂3¹p. ~5!

The second term on the right is small forb!1,36 and is
neglected here for simplicity and to maintain consisten
with neglectingdBi . A cancellation occurs between the¹p
term in vd and a finitedBi term.17,37 Hence it does not im-
prove accuracy to keep the¹p term untildBi has been fully
included. The definition

vd8
v i

21mB

VB2 B3¹B, ~6!

is used henceforth.
The gyrocenter parallel acceleration can be written

v̇ i52
e

mc

]^Ai&
]t

2
e

m S b̂1
^dB'&

B D •¹^f&

2mS b̂1
^dB'&

B D •¹B1v i~ b̂•¹b̂!•vE . ~7!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The first two terms on the right-hand side represent the t
parallel electric field, which includes both a magnetic indu
tion term 21/c(]^Ai&/]t), and an electrostatic term evalu
ated along the total magnetic field. The next term is the to
mirror force, and the final term is important for phase spa
conservation.30,38

Using the definitiondB5¹3Aib̂, the termdB' can be
written as follows:

dB'5b̂3~dB3b̂!52b̂3¹Ai1b̂3b̂•¹b̂ Ai , ~8!

or upon gyroaveraging

^dB'&52b̂3¹^Ai&1b̂3b̂•¹b̂ ^Ai&. ~9!

The second term on the right hand side isO(«2) and does
not enter Eq.~2! to the required order.

The gyroangle averages are expressed in terms of a
roaveraging operatorJ0 as follows:

^f&5J0~a!f, ^Ai&5J0~a! Ai ,

wherea is the operator defined by

a82 i
A2mB

V i
¹' ,

or, in Fourier space

a5
A2mB

v t i
k'r i .

The operatorJ0 ,

J0~a!5
1

2p E
0

2p

dz exp~ ia cosz!

5 (
n50

`
1

~n! !2 S ia

2 D 2n

5 (
n50

`
1

~n! !2 SA2mB

2V D 2n

¹'
2n , ~10!

is a simple Bessel function in Fourier space. In real spaceJ0

does not in general commute with other operators, and m
be manipulated with care.J0 operates only on the electro
static potentialf and the parallel magnetic potentialAi .

Defining the unit vector along the total magnetic fie
b̃5b̂1(^dB'&/B) and the total parallel electric fieldẼi

52(1/c)(]/]t)J0Ai2b̃•¹J0f, the gyrokinetic equation
can be written

]F

]t
1~v ib̃1vE1vd!•¹F

1F e

m
Ẽi2mb̃•¹B1v i~ b̂•¹b̂!•vEG ]F

]v i
5C~F !. ~11!

III. ELECTROMAGNETIC GYROFLUID EQUATIONS

Gyrofluid equations are derived by taking velocity spa
moments of Eq.~11!, and implementing closures to mod
kinetic effects. For simplicity of notation, the derivation for
single ion species is presented here. The subscripti is omit-
ted in this section, and all quantities~v t ,V,T, etc.! are taken
Downloaded 12 Nov 2003 to 198.35.8.52. Redistribution subject to AIP
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to refer to the single ion species unless otherwise noted.
full, normalized equations for the multispecies case are gi
in Sec. III E.

Becausek'r i;1, finite-Larmor-radius~FLR! effects
must be accounted for, both in the moment equations an
the closures.

In order to simplify the process of taking velocity spa
moments, all functions of velocity space~F,J0 ,m,v i , etc.!
are moved to the same side of the spatial and temporal
erators.

The first two terms in Eq.~11!, B(]F/]t)5(]/]t)FB

andBv ib̂•¹F5B•¹(FBv i /B) are easily put in a form suit-
able for taking moments. The next three terms require mo
fication.

Noting that spatial derivatives are taken withm and v i

fixed, we can write for any fieldA

¹J0A5J0¹A1A¹J0 , ~12!

where

¹J0~a!5
]J0

]a
¹a5J1~a!

a

2B
¹B. ~13!

The term representing free streaming along the fluctu
ing magnetic field,2v i /B(b̂3¹J0Ai), can be combined
with the E3B drift by introducing the operator notation:

f85f2
v i

c
Ai , vE85

c

B
b̂3¹J0f8, vf8 5

c

B
b̂3¹f8. ~14!

Using Eqs.~12! and ~13!

BvE8•¹F5B
c

B
b̂3S J0¹f81J1

a

2B
f8¹BD •¹F. ~15!

TheJ1 term above can be neglected as it isO(«3) due to the
presence off8, ¹B, and ¹F, each of which areO(«).
Noting thatJ0¹F5¹J0F2(a/2B)FJ1¹B, and introducing
the operator notation

ivd8
v t

2

VB2 B3¹B•¹, ~16!

allows us to write

B
c

B
b̂3J0¹f8•¹F

5B
c

B
b̂3¹f8•¹~J0F !2F

ca

2B
J1b̂3¹f8•¹B

5vf8 •¹~J0FB!1
e

T
FBS J01J1

a

2 D ivdf8. ~17!

Invoking the approximation outlined in Eqs.~4!–~6!, and
noting thativdB50, the¹B and curvature drift term can b
written

Bvd•¹F5 ivd@FB~v i
21mB!#. ~18!

Turning now to thev̇ i(]F/]v i) terms, we note first tha
all components ofv̇ i except the lowest order mirror forc
2mb̂•¹B areO(«2) and therefore involve only the equilib
rium distribution, which is taken to be
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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F05
n0

~2pv t
2!3/2e2v i

2/2v t
2
2mB/v t

2
. ~19!

The electric field terms can be written as follows
O(«2)

2B
e

m
b̂•¹~J0f!

]F

]v i
52

e

m

]F0

]v i
Bb̂•¹~J0f!

52
e

m
b̂•¹S ]F0

]v i
BJ0f D1

e

m
J0f

]F0

]v i

3BS 12
mB

v t
2 D b̂•¹ ln B, ~20!

]F

]v i

e

m
~ b̂3¹J0Ai!•¹J0f5

e

m

]F0

]v i
~ b̂3J0¹Ai!•J0¹f

5
e

m

]F0

]v i
J0Ai

J0f~ b̂3¹Ai!•¹f,

~21!

where the notationJ0Ai
andJ0f is used to indicate the field

on which the Bessel function operator acts. AllJ1 terms
above have been dropped as they areO(«3).
o
to
e

la

e

m

a
or

m
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The mirror force terms can be written

]F

]v i
B~2mb̂•¹B!52mB2

]F

]v i
b̂•¹ ln B, ~22!

]F

]v i
m~ b̂3¹J0Ai!•¹B5

]F0

]v i

m

B
J0~¹B3B!•¹Ai

52
]F0

]v i
BJ0

emB

cT
ivdAi , ~23!

where theJ1¹B term has cancelled exactly.
Finally, the phase space conservation term can be rew

ten, omitting the finiteb component for consistency with th
treatment of the curvature drift

]F

]v i
Bv i~ b̂•¹b̂!•vE52

]F0

]v i
v i

c

B2 B3¹B•¹J0f ~24!

52
e

T F ]

]v i
~F0BJ0v i!2F0BJ0G ivdf.

~25!

Combining all the above terms, and defining¹ i5b̂•¹,
the electromagnetic gyrokinetic equation can be written
the following cumbersome but useful form:
]

]t
FB1B¹ iFv i1vf8 •¹~FBJ0!12FBJ0ivd

ef8

T
1FBJ1

a

2
ivd

ef8

T
1

e

cT
v iFBJ0ivdAi1

1

v t
2ivd@FB~v i

21mB!#

2
e

mc

]

]v i
S F0BJ0

]Ai

]t D2
e

m
¹ iS ]F0

]v i
BJ0f D1

e

m
J0f

]F0

]v i
BS 12

mB

v t
2 D¹ i ln B1

e

m

]F0

]v i
J0Ai

J0f

3~ b̂3¹Ai!•¹f2mB2
]F

]v i
¹ i ln B2

]F0

]v i
BJ0

emB

cT
ivdAi2

]

]v i
~FBJ0v i!

e

T
ivdf50. ~26!
-
nd

no
tion

the
Nearly all terms with velocity space dependence are n
grouped on the same side of spatial and temporal opera
so that moments may easily be taken. The exception is thv i

term which appears inf85f2(v i /c)Ai and vf8 5(c/B)b̂
3¹f8. However,v i commutes withJ0 , J1 and all spatial
operators, and may be easily moved to the appropriate p
inside velocity space integrals. The collision operatorC(F)
has been omitted here. Collisions are considered in S
III D.

Equation~26! contains terms throughO(«2) in the gy-
rokinetic ordering. Assuming a time independent equilibriu
distribution F0 with gradients that scale as 1/L, only two
first-order terms remain. These terms represent free stre
ing along the equilibrium field, and the lowest order mirr
force. To first order, the equation can be written

B¹ iF0v i2mB2
]F0

]v i
¹ i ln B50, ~27!

a condition which is satisfied exactly by the equilibriu
Maxwellian
w
rs

ce

c.

m-

F05FM5
n0

~2pv t
2!3/2e2v i

2/2v t
2
2mB/v t

2
.

This leaves only second-order terms in the equation.
We furthermore divide the first-order distributionF1 into

two parts,F18 f̃ 1F1nc . HereF1nc is defined to be an equi
librium part of the distribution with no time dependence a
gradients which scale as 1/L. It is further defined to be an
exact solution of the equation

B¹ iF1ncv i1
1

v t
2 ivd@F0B~v i

21mB!#2mB2
]F1nc

]v i
¹ i ln B

50. ~28!

Note that theF1nc contribution to all other terms isO(«3) or
higher and can be neglected. This removes all terms with
time dependence, and leaves us with an evolution equa
for the fluctuating first-order distributionf̃ , containing only
second-order terms which are either linear or quadratic in
fluctuating quantitiesf̃ , f, andAi
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]

]t
f̃ B1B¹ i f̃ v i1vf•¹@~F01 f̃ !BJ0#2vAi

•¹F ~F01 f̃ !B
v i

c
J0G12F0BJ0ivd

ef

T
2F0B

v i

c
J0ivd

eAi

T
1F0BJ1

a

2
ivd

ef

T

2F0B
v i

c
J1

a

2
ivd

eAi

T
1

ivd

v t
2 @ f̃ B~v i

21mB!#2
e

mc

]F0

]v i
BJ0

]Ai

]t
2

e

m
¹ iS ]F0

]v i
BJ0f D1

e

m
J0f

]F0

]v i
BS 12

mB

v t
2 D¹ i ln B

1
e

m

]F0

]v i
J0Ai

J0f~ b̂3¹Ai!•¹f2mB2
] f̃

]v i
¹ i ln B2

]F0

]v i
BJ0

mB

c
ivd

eAi

T
2

]

]v i
~F0BJ0v i!ivd

ef

T
50. ~29!
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Terms containingf andAi have been separated by definin
vf5(c/B)b̂3¹f andvAi

5(c/B)b̂3¹Ai . Nonlinear terms

enter through vf•¹@ f̃ BJ0#, vAi
•¹@ f̃ B(v i /c)J0#, and

e/m(]F0 /]v i)J0Ai
J0f(b̂3¹Ai)•¹f.

It is also possible to derive Eq.~29! starting with the
conservative form of the gyrokinetic equation. Making su
to include the second-order part of^dB'& from Eq. ~9!, it is
possible to prove Liouville’s theorem to the required orde

]B*

]t
1¹•@B* Ẋ#1

]

]v i
@B* v̇ i#50, ~30!

where B* 5B1(mc/e)v ib̂•¹3b̂ contains the parallel ve
locity correction. The gyrokinetic equation can then be w
ten

]

]t
FB* 1¹•@FB* Ẋ#1

]

]v i
@FB* v̇ i#50. ~31!

Again working within the context of the lowb approxima-
tion b̂3(b̂•¹b̂)5(1/B2)B3¹B, and rearranging terms, on
finds Eq.~29! to second order as expected.

A further check on Eq.~29! is to calculate the linea
nonadiabatic response in the local limit. Dividing the dist
bution into adiabatic and nonadiabatic pieces,f̃ 5g
2F0J0ef/T0 , linearizing, transforming, and taking th
¹ i ln B50 limit, we find the expected nonadiabatic distrib
tion

g5F0

v2v
*
T

v2kiv i2vdv

e

T
J0S f2

v i

c
Ai D , ~32!

wherev
*
T 5v* @11h(v i

2/2v t
21mB/v t

223/2)#, vdv5vd(v i
2

1mB)/v t
2 , and we have introduced the diamagnetic f

quency iv* 82(cT0 /eBn0)¹n0•b̂3¹, and the ratio of
scale lengthsh5Ln /LT .

A. The moment equations

Fluid moment equations can now be derived by tak
velocity space moments of Eq.~29!. In this section a carefu
distinction is made between equilibrium and fluctuating co
ponents, and equilibrium quantities are written with a su
script 0. Bothv t5AT0 /m andr i5v t /V are defined in terms
of equilibrium quantities. It should also be noted that b
cause all terms in Eq.~29! areO(«2), only their lowest-order
components need be kept, e.g.,T→T0 .

Velocity space moments are often defined in terms of
total distribution functionF. Here we again separateF into
Downloaded 12 Nov 2003 to 198.35.8.52. Redistribution subject to AIP
-

-

g

-
-

-

e

equilibrium and fluctuating componentsF5F01 f̃ , noting
that F1nc and its moments do not enter the equations to
required order and can be neglected. Velocity space
ments of

F05FM5
n0

~2pv t
2!3/2e2v i

2/2v t
2
2mB/v t

2
,

are all well defined. We define the following moments of t
fluctuating distribution:

ñ5E f̃ d3v, n0ũi5E f̃ v i d3v,

p̃i5mE f̃ v i
2 d3v, p̃'5mE f̃ Bm d3v,

q̃i523mv t
2n0ũi1mE f̃ v i

3 d3v,

q̃'52mv t
2n0ũi1mE f̃ Bm v i d3v,

r̃ i ,i5mE f̃ v i
4 d3v, r̃ i ,'5mE f̃ Bm v i

2 d3v,

r̃','5mE f̃ B2m2 d3v,

s̃','522mv t
4n0ũi1mE f̃ B2m2v i d3v,

s̃i ,i5215mv t
4n0ũi1mE f̃ v i

5 d3v,

s̃i ,'523mv t
4n0ũi1mE f̃ Bm v i

3 d3v,

where d3v52pdv i B dm. The definitions of theq and s
moments above have been chosen for consistency of nota
with Beer.30 Each moment is coupled to higher momen
through the terms in Eq.~29! which contain factors ofv i or
m, including terms due to parallel free streaming, toroid
drift, FLR effects, and the mirror force. This moment hiera
chy is truncated using closures described in the follow
sections in order to generate a useful set of equations.

Taking integrals of Eq. ~29! of the form
2p*dv i dm v i

jmk, and defining the shorthan
^A&82p*Adv i Bdm yields the following set of momen
equations:
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]ñ

]t
1B¹ i

n0ũi

B
1vf•¹^FJ0&2

1

c
vAi

•¹^Fv iJ0&

1 K F0S 2J01J1

a

2 D L ivd

ef

T0
1

1

T0
ivd~ p̃i1 p̃'!50,

~33!

n0

]ũi

]t
1B¹ i

p̃i

mB
1vf•¹^Fv iJ0&2

1

c
vAi

•¹^Fv i
2J0&

2 K F0v i
2S J01J1

a

2 D L ivd

eAi

cT0
1

1

T0
ivd

3~ q̃i1q̃'14p0ũi!1^F0J0&
e

mc

]Ai

]t
1

e

m
¹ i^F0J0&f

2
e

m
fK F0J0S 12

mB

v t
2 D L ¹ i ln B2

e

mB
^F0J0Ai

J0f&b̂

3¹Ai•¹f1
p̃'

m
¹ i ln B1^F0mBJ0& ivd

eAi

cT0
50, ~34!
iu
f
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er
on
a
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o
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] p̃i

]t
1B¹ i

q̃i13p0ũi

B
1mvf•¹^Fv i

2J0&2
m

c
vAi

•¹^Fv i
3J0&

1mK F0v i
2S 2J01J1

a

2 D L ivd

ef

T0
1

1

v t
2 ivd~ r̃ i ,i1 r̃ i ,'!

12~ q̃'1p0ũi!¹ i ln B12m^F0v i
2J0& ivd

ef

T0
50, ~35!

] p̃'

]t
1B2¹ iF 1

B2 ~ q̃'1p0ũi!G1mBvf•¹^FmJ0&

2
mB

c
vAi

•¹^Fmv iJ0&1mBK F0mS 2J01J1

a

2 D L
3 ivd

ef

T0
1

1

v t
2 ivd~ r̃ i ,'1 r̃','!50, ~36!
]

]t
~ q̃i13p0ũi!1B¹ i

r̃ i ,i

B
1mvf•¹^Fv i

3J0&2
m

c
vAi

•¹^Fv i
4J0&2mK F0v i

4S J01J1

a

2 D L ivd

eAi

cT0

1
1

v t
2 ivd~ s̃i ,i1 s̃i ,'118mv t

4n0ũi!1
3e

c
^F0v i

2J0&
]Ai

]t
13e¹ i^F0v i

2J0&f23eK F0v i
2S 12

mB

v t
2 D J0L f¹ i ln B

2
3e

B
^F0v i

2J0Ai
J0f&b̂3¹Ai•¹f13r̃ i ,'¹ i ln B13mB^F0mv i

2J0& ivd

eAi

cT
50, ~37!

]

]t
~ q̃'1p0ũi!1B2¹ i

r̃ i ,'

B2 1mBvf•¹^Fv imJ0&2
mB

c
vAi

•¹^Fv i
2mJ0&2mBK F0v i

2mS J01J1

a

2 D L ivd

eAi

ct0

1
1

v t
2 ivd~ s̃i ,'1 s̃','15mv t

4n0ũi!1
eB

c
^F0mJ0&

]Ai

]t
1eB¹ i^F0mJ0&f2eBK F0mS 12

mB

v t
2 D J0L f¹ i ln B

2e^F0mJ0Ai
J0f&b̂3¹Ai•¹f1 r̃','¹ i ln B1mB2^F0m2J0& ivd

eAi

cT0
50. ~38!
the
B. Finite Larmor radius terms

Closures are developed for the finite Larmor rad
terms appearing in Eqs.~33!–~38!, using the techniques o
Dorland39 as adapted to the toroidal case by Beer.30 We
choose to evolve ion moments in guiding center space ra
than real space in order to better describe both linear
nonlinear FLR effects, including the Bakshi–Linsk
effect.40 Nonetheless, our FLR terms, when expanded, c
tain higher velocity space moments and these must be c
fully closed to properly model kinetic behavior.

Turning first to the Maxwellian FLR terms, we mu
close terms of the formŝF0v i

2im j J0& and ^F0v i
2im j J1a&,

where i 50,1,2 andj 50,1,2. Note that purely Maxwellian
FLR terms with odd powers ofv i vanish identically, asFM

is even inv i , while J0 andJ1a are independent ofv i .
The FLR closures are chosen in careful consideration

the entire system of equations. It is the combination ofJ0
s

er
d

-
re-

f

terms from theE3B and vAi
terms with theJ0 terms in

Poisson’s equation and Ampere’s Law which motivates
basic approximation ^J0&'^J0

2&1/2'G0(b)1/2, where b
5k'

2 r i
2 . Following and extending Ref. 39, we choose

^F0J0&5n0G0
1/2, ~39!

^F0J0v i
2&5n0v t

2G0
1/2, ~40!

^F0J0m&5
n0v t

2

B

]

]b
~bG0

1/2!5
v t

2

2B
~2G0

1/21¹̂'
2 !, ~41!

^F0J0v i
4&53n0v t

4G0
1/2, ~42!

^F0J0v i
2m&5

n0v t
4

B

]

]b
~bG0

1/2!5
v t

4

2B
~2G0

1/21¹̂'
2 !, ~43!
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^F0J0m2&'
v t

4

B2 Fb
]2

]b2 ~bG0
1/2!12b

]

]b
~bG0

1/2!G
5

v t
4

B2 ~2G0
1/21¹̂'

2 1¹9'
2 !. ~44!

The modified Laplacian operators¹̂'
2 and ¹9'

2 are de-
fined as follows:

1

2
¹̂'

2 F5b
]G0

1/2

]b
f, ~45!

¹9'
2 F5b

]2

]b2 ~bG0
1/2!f, ~46!

where the notationF5G0
1/2f has been introduced for th

gyroaveraged electrostatic potential. The analogous nota
Ai5G0

1/2Ai is used for the gyroaveraged magnetic potent
The J1 terms are evaluated following Ref. 30, using t

following trick:

^FJ1a&'2
]

]z U
z51

^FJ0~za!&. ~47!

Again using^FJ0&'G0
1/2 yields

^F0J1a&'2
]

]z U
z51

G0
1/2~z2b!522b

]G0
1/2

]b
52¹̂'

2 ,

~48!

^F0J1v i
2a&'22v t

2b
]G0

1/2

]b
52v t

2¹̂'
2 , ~49!

^F0J1ma&'2
]

]z U
z51

v t
2

B

]

]T'

@T'^F0J0~za!&#

522
v t

2

B

]

]b S b2
]G0

1/2

]b D 522
v t

2

B
¹9 '

2 , ~50!

^F0J1v i
4a&'26v t

4b
]G0

1/2

]b
523v t

4¹̂'
2 , ~51!

^F0J1v i
2ma&'22

v t
4

B ¹9 '
2 . ~52!

The Maxwellian terms which contain more than one fa
tor of J0 are closed analogously

^F0J0Ai
J0f&5n0G0Ai

1/2 G0f
1/2 , ~53!

^F0v i
2J0Ai

J0f&5n0v t
2G0Ai

1/2 G0f
1/2 , ~54!

^F0mJ0Ai
J0f&5

v t
2

2B
@~2G0

1/21¹̂'
2 !Ai

1~2G0
1/21¹̂'

2 !f#, ~55!

where the subscriptf or Ai again designates the field o
which the operator acts. These closures can be thought
terms of separate expansions of the two Bessel function
erators, through first order inb, so that no cross term enter

The vf•¹^FJ0 ¯& andvAi
•¹^FJ0 ¯& terms introduce

two additional complications. These terms contain both
Maxwellian and the perturbed distribution, and the gyroa
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e
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eraging terms are acted on by a perpendicular gradient
erator, requiring that gradients of both fluctuating and eq
librium quantities be kept. In considering these terms,
redefineb8(1/V)A(T' /m), in terms of the total perpen
dicular temperatureT' , which contains both an equilibrium
part (T0 , as the equilibrium is assumed isotropic! and a fluc-
tuating part,T̃'5( p̃'2T0ñ)/n0 . The gradient ofb is then
calculated as follows:

¹b5
b

T0
~¹T01¹T̃'!2

2b

B
¹B. ~56!

Closing these FLR terms analogously to Eqs.~39!–~44! leads
to, for example,

vf•¹^J0F&5vf•¹@nG0
1/2~b!#, ~57!

wheren is the total density,n01ñ. Introducing the diamag-
netic frequencyiv* 82(cT0 /eBn0)¹n0•b̂3¹, and ratio
h i5Ln /LT , whereLT is the scale length of the equilibrium
temperature, this leads to three linear terms

vf•¹^J0F&52n0iv* G0
1/2ef

T0
2

n0

2
h i¹̂'

2 iv*
eF

T0

1n0¹̂'
2 ivd

ef

T0
1NL . ~58!

Nonlinear terms arise both fromñ andb, and can be written

NL5vF•¹ñ1
n0

2T0
@¹̂'

2 vF#•¹T̃' . ~59!

To account for thevAi
•¹ andvf•¹ terms with higher pow-

ers ofv i andm, we note that the linear terms from Eq.~58!
can be generalized as follows:

vf•¹n0g~b!52n0g~b!iv*
ef

T0
2n0h ib

]g

]b
iv*

ef

T0

12n0b
]g

]b
ivd

ef

T0
. ~60!

The treatment of the nonlinear terms is somewhat m
subtle, as these can involve higher moments which are
evolved. Following Ref. 39, and introducing the notatio
NL(x) for the nonlinear terms generated byvf•¹^FJ0x&

NL~v i!5n0vF•¹ũi1
1

2T0
@¹̂'

2 vF#•¹q̃' , ~61!

NL~mv i
2!5vF•¹ p̃i1

n0

2
@¹̂'

2 vF#•¹T̃' , ~62!

NL~mBm!5vF•¹ p̃'1 1
2@¹̂'

2 vF#•¹q̃' , ~63!

NL~mv i
3!5vF•¹q̃i13p0vF•¹ũi1

3
2@¹̂'

2 vF#•¹q̃' ,
~64!

NL~mBv im!5vF•¹q̃'1p0vF•¹ũi1
p0

2
@¹̂'

2 vF#•¹ũi

1 1
2@¹̂'

2 vF#•¹q̃'1@¹9'
2 vF#•¹q̃' . ~65!
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The vA•¹ ¯ nonlinear terms are closed identically to th
above with the substitutionF→Ai . However, thevA•¹ ¯

terms in theq̃i and q̃' equations contain higher momen
which are closed using results from the next section.

To simplify the equations, we introduce the followin
normalization. Time, parallel lengths, and perpendicu
na
a-
k
ar

s,
ui
nt

in
ic

an

-

o

tic
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er
tr

o
he
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lengths are normalized tov t /Ln , Ln andr i , respectively:

~ t̂ ,k̂i ,k̂'!5S tv t

Ln
,kiLn ,k'r i D , ~66!

and the fluctuating quantities are normalized as follows:
~f̂,Âi ,n̂,û,p̂,q̂, r̂ ,ŝ!5
Ln

r i
S ef

T0
,

Ai

r iB
,

ñ

n0
,

ũ

v t
,

p̃

n0mv t
2 ,

q̃

n0mv t
3 ,

r̃

n0mv t
4 ,

s̃

n0mv t
5D . ~67!
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Normalized quantities appear on the left. The caret desig
ing a normalized quantity is dropped for simplicity of not
tion. Note that these normalizations mesh with the gyro
netic ordering such that all characteristic drift scales
O(1). Becauseb is formally taken to beO(1), all shear
Alfvén scales areO(1) as well.

C. Closures

Closures must be introduced for the highest momentr
ands, in order to have a complete and useful set of gyrofl
equations. The terms requiring closure divide naturally i
three categories, the parallel terms¹ ir i ,i and ¹ ir i ,' , the
toroidal terms vd(r i ,i1r i ,'), vd(r i ,'1r','), vd(si ,i

1si ,'), and vd(si ,'1s','), and the mirroring terms
r i ,i¹ i ln B, r i ,'¹ i ln B, andr','¹ i ln B. Following the work
of Beer,30 we separately treat each group of terms, mak
closure approximations that accurately model the phys
processes that each set of terms represents.

1. Parallel Landau closures

Closures which provide an accurate model of linear L

dau damping are chosen for the parallel terms,¹̃ ir i ,i and

¹̃ ir i ,' , where we have introduced the notation¹̃ i5¹ i

2vAi
•¹5¹ i2b̂3¹Ai•¹. Landau damping along the mag

netic field occurs due to the velocity dependence of thekiv i

term in the kinetic equation. Components with differentki

stream along the field at different velocities, causing m
ments ofF to phase mix away.

As an illustration, consider the one-dimensional kine
equation

] f

]t
1v i

] f

]z
5d~ t ! f 0~z,v !, ~68!

where f 0 provides the initial condition. The solution to th
simple equation f (z,v,t)5 f 0(z2vt,v)H(t), provides
Green’s functions which can be used to solve more gen
problems with additional source terms, such as the elec
field 2(e/m)Ei(]FM /]v). Consider an initial condition
with a small single harmonic perturbationf 05(n0

1n1eikz)FM(v). The general solution is just@n0

1n1eik(z2vt)#, which simply oscillates in time atv5kv and
does not damp. However, upon taking velocity space m
ments, the velocity integration introduces mixing of t
phases as follows:
t-

i-
e

d
o

g
al

-

-

al
ic

-

n~z,t !5E f dv5n01n1

eikz

A2pv t
2 E dv e2 ikvte2v2/(2v t

2).

~69!

The perturbed densityn15n1(t50)e
2k2v t

2t2/2 decays with a
Gaussian time dependence. This decay due to linear Lan
damping is not captured by a simple fluid model with a fin
number of moments, and hence it must be accounted fo
the fluid closure if it is to be included in a fluid model.

A number of different ‘‘Landau closures’’ which mode
linear Landau damping in fluid models have be
developed.41–46Here the four moment model of Refs. 13, 3
and 44 is employed. This closure accurately models lin
kinetic response functions, conserves energy, and tak
simple, frequency independent form in Fourier space, allo
ing for easy implementation in nonlinear initial value sim
lations. The introduction of electromagnetic effects does
significantly alter the process of deriving linear Landau c
sures. Response functions are simply written in terms of
total Ei rather thanf. In Ref. 47, Landau closures are d
rived for the general electromagnetic case with both para
and perpendicular magnetic fluctuations. Here we cons
only perpendicular fluctuations, hence the magnitude of
fluctuating fieldB̃ is zero to first order in the perturbation
The general response functions and closures are given in
IV of Ref. 47. Here we take theB150 limit of that result, for
the case in which the equilibrium distribution is isotropic.
this limit the result is identical to the earlier result of Ref. 1

r i ,i53~2pi2n!1ciTi2&D i

i ukiuqi

ki
, ~70!

r i ,'5pi1p'2n2&D'

i ukiuq'

ki
, ~71!

where ci5(3229p)/(3p28), D i52Ap/(3p28), and
D'5Ap/2. Note that here and elsewhere the dissipat
terms in the closure (;ukiu/ki) are written in their Fourier
space form for conciseness. In configuration space th
terms are convolution integrals.

Because the dissipative part of the closure above~the
ukiu/ki terms! is written in terms of moments with no equ
librium component, the fluctuating field makes no contrib
tion to the linear Landau closures. Hence the linear Lan
closure is equally accurate in the electrostatic and elec
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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magnetic cases. However, there is an additional nonlin
Landau damping term due toAi which is discussed in Sec
VII of Ref. 47. This and other nonlinear Landau dampi
mechanisms are not accounted for in the fluid closures g
here. As discussed in Ref. 39, nonlinear phase-mixing m
be important at large amplitudes or largek'r, and exten-
sions to include some nonlinear phase mixing effects ar
interest for future work.

2. Toroidal closures

The velocity dependence of the¹B and curvature drifts
also introduces phase mixing. This process is modeled u
toroidal closures of Beer,30 which include dissipative piece
proportional touvdu/vd .

Beer’s closures include both Maxwellian parts and d
sipative pieces derived by careful fitting with all parts of t
kinetic toroidal response function, and can be written in
following form:

r i ,i1r i ,'57pi1p'24n22i
uvdu
vd

~n1Ti1n2T'!, ~72!

r i ,'1r','5pi15p'23n22i
uvdu
vd

~n3Ti1n4T'!, ~73!

si ,i1si ,'52 i
uvdu
vd

~n5ui1n6qi1n7q'!, ~74!

si ,'1s','52 i
uvdu
vd

~n8ui1n9qi1n10q'!, ~75!

where the complex coefficients take the formn5n r

1 in i uvdu/vd . The coefficients chosen are, in th
form (n r ,n i), n15(2.019,21.620), n25(0.433,1.018),n3

5(20.256,1.487), n45(20.070,21.382), n55(28.927,
12.649), n65(8.094,12.638), n75(13.720,5.139), n8

5(3.368,28.110), n95(1.974,21.984), n105(8.269,
2.06). As shown in Figs. 2.1 and 2.2 of Ref. 30, these c
sures provide a good fit to the linear toroidal response fu
tions, including a reasonable model of the toroidal branch
at v/vd52ki

2v t
2/4vd

2 .
As noted in Ref. 30, this set of toroidal closures acc

rately models the fast linear collisionless damping of zo
flows for t,qR/v t iAe, but does not account for the residu
undamped component of the zonal flow noted by Rosenb
and Hinton.48 Efforts to incorporate this residual flow an
other neoclassical effects into a new toroidal closure
ongoing.49

3. Mirroring closures

The mirroring terms r i ,i¹ i ln B, r i ,'¹ i ln B, and
r','¹ i ln B incorporate trapped ion effects and magne
pumping. However, they do not introduce new dissipat
processes and hence they are closed with simple Maxwe
closures, again following Ref. 30

r i ,i56pi23n, ~76!

r i ,'5pi1p'2n, ~77!
Downloaded 12 Nov 2003 to 198.35.8.52. Redistribution subject to AIP
ar

n
y

of

ng

-

e

-
c-
ut

-
l

th

e

e
an

r','54p'22n. ~78!

Taken together, the closure approximations prov
models of linear and nonlinear FLR effects, as well as p
allel phase mixing, drift resonance, and trapped particle
fects. The accuracy of these closures is tested extensi
through linear benchmarks with kinetic theory given in Se
VI and Ref. 32.

D. Ion collisions

Ion–ion collisions are modeled with a simple particl
momentum and energy conserving Bohm–Gross–Kro
~BGK! operator50

C~F j !52(
k

n jk~F j2FM jk!, ~79!

wherej andk are species indices, andn jk is the collision rate
of speciesj with speciesk. Collisions cause the distribution
to relax to a shifted Maxwellian with the appropriate tot
(equilibrium1fluctuating) momentum and energy. Upon lin
earizing, the single species operator can be written

C~F !52n i i H F12Fn1ui

v i

v t
1TS v2

2v t
2 2

3

2D GF0J , ~80!

wheren, ui , andT5(Ti12T')/3 are normalized fluctuat
ing moments, andv25v i

214B2m2.
Ion–electron collisions are negligible due to the sma

ness of the electron–ion mass ratio. Electron–ion collisio
are considered in Sec. IV C.

E. Final gyrofluid equations

Incorporating the parallel, toroidal, and mirror term cl
sures defined above, and including moments of the ion–
collision operator, yields the final set of single species el
tromagnetic gyrofluid equations.

The derivation in the previous sections has focused o
single ion species for simplicity. In general, tokamak pla
mas contain multiple ion species, as well as electrons
some cases, such as the deuterium–tritium plasmas use
fusion experiments, the bulk plasma may contain more t
one dominant ion species. In addition, impurity ions are
pected to play an important role, especially near the plas
edge.

The extension to multiple species is reasonably straig
forward. A separate set of gyrofluid equations is solved
each speciesj , noting that chargee, massm, and the equi-
librium moments~n0 , T0! and scale lengths are functions
the speciesj .

Here each species is normalized to its ownn0 , v t , etc.,
but one ion species is chosen as a reference. The refer
species is designated with the subscripti , and the following
dimensionless constants are introduced,t j5T0 j /T0i , v j

5v t j /v t i , andr̂ j5r j /r i . Z is the ratio of the species charg
to the unit charge,Z5ej /ueu, and the reference speciesi is
assumed to haveZ51. h j is the usual ratio of scale length
h j5Ln j /LT j . The basic macroscopic length is taken to
the electron density scale lengthLne , and the following nor-
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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malized scale length is defined for each ion species,L̂n j

5Ln j /Lne .
The multispecies equations are then written as follow

dn

dt
1v jB¹̃ i

ui

B
1S 1

2
¹̂'

2 vFD •¹T'2v j S 1

2
¹̂'

2 vAD •¹q'

2S 11
h j

2
¹̂'

2 D iv*
L̂n j

F1S 21
1

2
¹̂'

2 D ivdF

1 ivdr̂ jv j~pi1p'!50, ~81!

dui

dt
1v jB¹̃ i

pi

B
1S 1

2
¹̂'

2 vFD •¹q'2v j S 1

2
¹̂'

2 vAD •¹T'

1
v jZ

t j

¹̃ iF1
v jZ

t j

]Ai

]t
1F11h jS 11

¹̂'
2

2
D G iv*

L̂n j

v jAi

1S p'1
Z

t j

¹̂'
2 F

2
D v j¹ i ln B1 ivdr̂ jv j~qi1q'14ui!

50, ~82!
ub
av

e

tly
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:

dpi

dt
1v jB¹̃ i

qi13ui

B
1S 1

2
¹̂'

2 vFD •¹T'

12v j~q'1ui!¹ i ln B2F11h jS 11
¹̂'

2

2
D G iv*

L̂n j

F

1S 41
¹̂'

2

2
D ivdF1 ivdr̂ jv j~7pi1p'24n!

12uvdr̂ jv j u~n1Ti1n2T'!52 2
3ns~pi2p'!, ~83!

dp'

dt
1v jB

2¹̃ i

q'1ui

B2
1F1

2
¹̂'

2 vFG•¹p'1@¹9'
2 vF#•¹T'

2v j@
1
2¹̂'

2 vA#•¹~q'1ui!

2F11
¹̂'

2

2
1h jS 11

¹̂'
2

2
1¹9'

2 D G iv*
L̂n j

F

1~31 3
2¹̂'

2 1¹9'
2 !ivdF1 ivdr̂ jv j~5p'1pi23n!

12uvdr̂ jv j u~n3Ti1n4T'!5 1
3ns~pi2p'!, ~84!

dqi

dt
1~31ci!v j ¹̃ iTi1&D iv j ukiuqi

1 ivdr̂ jv j~23qi23q'16ui!1~31ci!h j

iv*
L̂n j

v jAi

1uvdr̂ jv j u~n5ui1n6qi1n7q'!52nsqi , ~85!
dq'

dt
1v j ¹̃ iT'1&D'v j ukiuq'1S 1

2
¹̂'

2 vFD •¹ui1~¹9'
2 vF!•¹q'2v j~¹9'

2 2 1
2 ¹̂'

2 !vA•¹T'

1Fh j~11¹9'
2 !~11h j !

¹̂'
2

2
G iv*

L̂n j

v jAi1
Zv j

t j

¹̂'
2

2
S dAi

dt
1¹̃ iF2 ivdr̂ jv jAi D 1 ivdr̂ jv j~2qi2q'1ui!

1F p'2pi1
Z

t j

S ¹9'
2 F2

¹̂'
2 F

2
D Gv j¹ i ln B1uvdr̂ jv j u~n8ui1n9qi1n10q'!52nsq' , ~86!

whered/dt5(]/]t)1vF•¹.
We emphasize that in the above equations, the fluid quantities (n,ui ,pi ,p' ,...) are all forspeciesj , and an impliedj

subscript as been dropped. For clarity, we explicitly write here their relation to the physical quantities

~n,ui ,pi ,p' ,Ti ,T' ,qi ,q'!5
Lne

r i
S n1 j

n0 j
,
u1 j

v t j
,

pi1 j

n0 jmjv t j
2 ,

p'1 j

n0 jmjv t j
2 ,

Ti1 j

T0 j
,
T'1 j

T0 j
,

qi1 j

n0 jmjv t j
3 ,

q'1 j

n0 jmjv t j
3 D , ~87!
of
full
ly
where 0 subscripts refer to equilibrium values and 1 s
scripts refer to unnormalized fluctuating values. The gyro

eraging operatorsG0
1/2, ¹̂'

2 , and¹9'
2 , which act only on the

fields f and Ai , are also species dependent through th
implied argumentbj , which in Fourier space isk'

2 r j
2 . Since

F and A are gyroaveraged quantities, they also implici
depend on speciesj , via
-
-

ir

~F,Ai!5
Lne

r i

e

T0i
S G0

1/2f,
v t

c
G0

1/2Ai D . ~88!

IV. THE ELECTRON LANDAU FLUID EQUATIONS

Electron dynamics can be described by the full set
gyrofluid equations in the previous section. However, the
set of ion and electron equations will then contain wide
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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separated spatial and temporal scales which make fully
solved explicit numerical simulation challenging.

For many problems, a reduced set of equations, desc
ing fluctuations on a smaller range of scales is appropri
Here we will develop a reduced electron model appropr
for the description of fluctuations on the ion drift and she
Alfvén scales often associated with tokamak plasma mic
turbulence. An analytic expansion in the electron to ion m
ratio is constructed, allowing electron dynamics on the ch
acteristic ion and Alfve´n scales to be treated explicitly, whil
the fast electron transit time scale and the small spatial sc
associated with the electron gyroradius and the electron
depth are removed from the set of fluid equations to
solved numerically.~This is not to suggest that microturbu
lence onre andc/vpe scales does not exist or is not impo
tant in some phenomena. When these scales are impo
the full electron gyrofluid equations, or another appropri
physics model should be used.!

The resulting electromagnetic electron Landau flu
equations include the effects of electron temperature
density gradients, electronE3B motion, Landau damping
electron–ion collisions, and the parallel electron curre
which, along with parallel ion currents, give rise to the p
allel magnetic potential. The equations given here focus
the dynamics of the passing electrons. Developing an e
tromagnetic model of trapped electron dynamics analog
to the electrostatic model of Beer30 is left as an important
piece of future work.

A. Analytic expansion in the electron mass ratio

We invoke an analytic expansion in the electron–i
mass ratio, similar to the technique employed by Kadomt
and Pogutse.51 This expansion removes the small electr
gyroradius scale and the fast electron transit time scale f
the equations, leaving an efficient model appropriate for
study of turbulence on ion and shear Alfve´n scales.

A lowest order model, containing no finite electron ma
terms, will be derived first. This simple model wi
then be extended to include higher order dissipative term
Sec. IV C.

1. Electron FLR and transit

To efficiently study fluctuation scales on the order of t
ion gyroradius, we employ a subsidiary formal ordering
the smallness of the electron–ion mass ratio in order to
move electron finite Larmor radius terms. The gyroaverag
operatorJ0 can be expanded 11k'

2 re
21 ¯ . In the gyroki-

netic ordering employed here,k'r i;1 the first electron FLR
term isO(me /mi). We introduce the subsidiary ordering p
rameterd;Ame /mi and note that electron FLR effects fir
enter atO(d2).

The small electron mass also implies a fast electron th
mal speed (v te@v t i), and rapid electron streaming along th
magnetic field. The speed of this streaming motion along
field introduces a Courant constraint on the size of the t
step which can be used in an explicit numerical simulati
Adding electron parallel dynamics to a simulation which p
viously modeled only ions reduces this time step constr
by a factor of ATemi /Time;60 for a deuterium fusion
Downloaded 12 Nov 2003 to 198.35.8.52. Redistribution subject to AIP
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plasma. This is a severe numerical burden, though perh
one that it may be possible to contemplate bearing in the n
future, as computational power continues to increase. Imp
ing the mass ratio orderingAme /mi;d!1, allows the fast
electron transit motion to be analytically removed.

2. General ordering

The use of the electron–ion mass ratio as an orde
parameter has a long history in plasma physics. It has b
invoked in many forms of the magnetohydrodynamic eq
tions as well as in the more detailed equations of Kadomt
and Pogutse,51 and in many other fluid and simplified kineti
formulations. In the context of gyrokinetics, the mass ra
expansion has generally been used to justify the neglec
electron FLR terms, and treatment of electron dynamics w
the drift kinetic equation. Here we wish to consistently app
the orderingme /mi;O(d2) to all terms in the drift fluid
equations.

The fundamental assumption is that the fluctuat
scales of interest are those typical of ion thermal, drift a
gyro-motion, and those of shear Alfve´n waves. Length and
time scales associated with electron thermal and gyromo
are taken to be small.

For a typical perpendicular wave numberk' , we impose
the following ordering:

k'
21;r i;c/vpi@re ,c/vpe , ~89!

wherevp is the plasma frequency. The lengths on the left
independent of the electron mass, while the two lengths
the right are proportional toAme. Note that the skin depth
c/vp j can be written asr jA2/b j for the single species case
where the speciesb j58pn0 jT0 j /B2. Formally taking b
;O(1), theabove ordering of lengths follows directly from
Ame /mi;O(d).

For a typical fluctuation frequencyv we choose the or-
dering

v;kiv t i;v* ;vDi;vDe;kics;kivA!kiv te;vETG,
~90!

where vD is the curvature and¹B drift frequency,
cs5AT0e /mi is the cold ion sound speed, an
vA5B/A4pn0mi is the Alfvén speed. We definevETG to be
a frequency characteristic of the electron temperature gr
ent ~ETG! mode. These short wavelength modes typica
haveku;1/re , and hencevETG;Ami /me v* , wherev* is
the diamagnetic frequency taken withkur i;1. The quanti-
ties on the left are independent ofme while those on the right
are proportional tome

21/2.
The desired time and length scale orderings above

low directly from me /mi;O(d2) and b j;O(1). Thecon-
straints on the validity of this expansion are found throu
inspection of Eqs.~89! and ~90!. The separation of scale
between the shear Alfve´n frequency and the electron trans
frequency~and equivalently betweenr i and the electron skin
depth! requiresbe@2me /mi . In fusion relevant plasmas
this condition is generally satisfied everywhere except v
near the plasma edge. Another constraint is provided by
conditionv* !kiv te . Using a typical ballooningki'1/qR,
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and v* 'kur iv t i /Ln , this requireskur iAme /mi!Ln /qR.
For largekur i'1, this condition can break down in the edg
region whereq is often large, whileLn can become rathe
short.

B. Derivation of the electron equations

The formal expansion in mass ratio can now be used
derive a set of equations which describe electron dynam
consistent with the time and space scale orderings descr
above.

All fluctuations, including those in the electron momen
ñe , ũie

, p̃e , etc., are taken to occur on the ion/Alfve´n scales.
It is thus convenient to normalize fluctuating electron m
ments to the ion quantities,v t i andmi , so that a consisten
ordering is easily maintained.52 The fluctuating electron mo
ments are normalized as follows:

~ n̂e ,ûe ,p̂e ,q̂e , r̂ e ,ŝe!

5
Ln

r i
S ñe

n0
,
ũe

v t i
,

p̃e

n0miv t i
2 ,

q̃e

n0miv t i
3 ,

r̃ e

n0miv t i
4 ,

s̃e

n0miv t i
5 D ,

~91!

where the normalized quantities on the left are allO(1). In
the general multiple ion species case, the quantitiesmi and
v t i above refer to the reference ion species, as in Sec. II

This normalization differs from that employed in Se
III E, where each species’ moments are normalized to
own mass and thermal velocity. Lengths, times, and
fields f andAi are normalized as in the ion equations. T
unsubscripted normalized operators are again defined
terms of theZ51 ion charge (e), the reference ion specie
mass (mi) and temperature (T0i), and the equilibrium elec-
tron density (n0) and density scale length (Ln)

i v̂* 52
Ln

v t i

cT0i

eBn0
¹n0•b̂3¹, ~92!

i v̂d5
Ln

v t i

cT0i

eB3 B3¹B•¹. ~93!

The normalized electron density equation is

]ne

]t
1vE•¹ne1B¹̃ i

uie

B
2 iv* f

1 ivd~2f22ne /t2Tie
2T'e

!50, ~94!

where the carets on normalized quantities have been dro

for conciseness of notation. The notation¹̃ i5¹ i2b̂3¹Ai

•¹ has been employed. Note that no factors ofme appear in
the above equation, and all terms are of the same order

The momentum equation can be written

me

mi

]uie

]t
1

me

mi
vE•¹uie

1B¹̃ i

pie

B
1~11he!iv*

Ai

t

1
me

mi
ivd~qie

1q'e
14uie

/t!2
]Ai

]t
2¹̃ if1p'e

¹ i ln B

50. ~95!
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The electron inertia term, which is associated with the el
tron skin depth, and the curvature and¹B drift terms are
both small by a factor ofme /mi;d2. Neglecting these
higher-order terms, and expanding the pressure, noting
pie

5Tie
1ne /t because of the normalization to ion temper

ture, the momentum equation can be recast as a time ev
tion equation for the magnetic potential

]Ai

]t
1¹̃ if2

1

t
¹̃ ine2¹̃ iTie

2~11he!iv*
Ai

t

1~Tie
2T'e

!¹ i ln B50. ~96!

The equations forTie
and T'e

needed to complete th
above set come from theqie

andq'e
moment equations. The

pie
and p'e

moment equations provide information on th
next order evolution of the temperature fluctuations.

The qie
and q'e

equations contain the higher momen
r e and se which are closed as in Sec. III C. However, th
electron closure terms are not in generalO(1). Consider, for
example, the Maxwellian closure for the momentr i ,ie

. This
closure is derived by taking the first-order fluctuating part
the generalized Maxwellian resultr i ,ie

53pie

2 /mene . The

factor of 1/me insures that this term isO(d22). In the nor-
malized units

r i ,ie
→6

mi

tme
Tie

13
mi

t2me
ne , ~97!

and similarly forr i ,'e
andr','e

. The Landau damping por
tion of the closure is smaller than the Maxwellian part
Ame /mi , and is neglected here, though it is reconsidered
Sec. IV C.

Before normalizing or substituting in the closures, t
qie

equation can be written to lowest order

B¹̃ i

r̃ iie

B
23T0eB¹̃ i

p̃ie

meB
13he

n0T0e
2

me
iv*

eAi

cT0i

13S r̃ i'e
2

T0i

me
p̃'eD¹ i ln B50, ~98!

where thed/dt and vd terms again drop out, as they a
higher order inme /mi .

Substituting the Maxwellian closures, normalizing a
simplifying gives

¹̃ iTie
1heiv* Ai /t50. ~99!

The second term on the left is the gradient of the equilibri
temperatureT0e along the perturbed field,b̂3¹Ai•¹T0e , or

equivalently the gradient along the total field¹̃ iT0e , asT0e

is constant along the equilibrium field. Equation~99! can
thus be written in the more physically intuitive form

¹̃ i~Tie
1T0e!5

1

B
~B01B1!•¹~Tie

1T0e!50. ~100!

Quite simply, the total temperature is constant along the t
magnetic field including fluctuations. This result is expect
from our ordering of the velocitiesv t i ,vA!v te . The speeds
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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of the microturbulence being evolved are all slow compa
to v te , and furthermore the Alfve´n speed at which the mag
netic field fluctuates is also much less than the electron t
mal speed. Hence as the field fluctuates across the equ
rium temperature gradient, the electrons are able to alm
instantaneously re-thermalize, leaving no electron temp
ture gradient along the total field. Note that this condition
quite different from the occasionally employed closur
¹ iT̃e50, or T̃e50, both of which fail to properly account fo
the magnetic fluctuations across the equilibrium tempera
gradient, and lead to errors whenhe is finite.

Turning now to theq'e
moment equation, and agai

inserting Maxwellian closures, normalizing, and keepi
only the dominant terms, the equation becomes

¹̃ iT'e
1

heiv* Ai

t
1~T'e

2Tie
!¹ i ln B50. ~101!

Again the second term is simply the derivative along
perturbed field of the equilibrium temperature (T0e). A mir-
ror force term enters as well.

Equations~99! and ~101! can be recast by definingTe

5(Tie
1T'e

)/2 and dTe5(T'e
2Tie

). Note that once Eq
~99! has been substituted into the momentum equation,
temperature enters the momentum equation only as a mi
ing termdTe¹ i ln B, and enters the density equation only
2 ivdTe . The equations forTe anddTe are

¹̃ iTe1
heiv* Ai

t
1

dTe

2
¹ i ln B50, ~102!

~¹̃ i1¹ i ln B! dTe50. ~103!

In either the small mirror force limit (¹ i ln B→0) or the high
collisionality limit (dTe→0), the above equations reduce

¹̃ iTe52heiv* Ai /t. Because the model only describ
passing electrons, we employ this simple limit.

The full set of normalized electron equations is then

]ne

]t
1vE•¹ne1B¹̃ i

uie

B
2 iv* f12ivdS f2

ne

t
2TeD50,

~104!

]Ai

]t
1¹̃ if2

1

t
¹̃ ine2

1

t
iv* Ai50, ~105!

¹̃ iTe52
he

t
iv* Ai , ~106!

where thevdTe term in Eq.~104! is evaluated by numeri
cally inverting Eq.~106!. It is assumed that any fluctuatin
component ofTe which is constant on a field line does n
contribute significantly to thevdTe term.

We emphasize that, provided an appropriate numer
inversion of Eq.~106! can be achieved, no separate closu
approximations are required for nonlinear terms. In this lo
est order expansion inme /mi , nonlinear closure terms suc
as those associated with nonlinear Landau damping drop
naturally, and no separate assumptions about the smal
of nonlinear terms are needed.
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The above equations provide a simple description
electromagnetic electron dynamics on shear Alfve´n and ion
scales. While only two moment equations need be solv
the physics content of a full six moment model has be
incorporated to lowest order inme /mi .

Though the model is simple, it represents a substan
improvement over the adiabatic electron models (ne /t5f
2^f&surface) that have been used to describe the passing e
trons in many previous gyrofluid and gyrokinetic partic
simulations. In addition to finite-b effects and Alfve´n wave
dynamics, the above model also incorporates electronE
3B, curvature, and¹B drift motion, as well as theE3B
nonlinearity and nonlinear terms due to magnetic flutter. T
accuracy of this model in describing both finite-b ion drift
waves and shear Alfve´n waves is gauged in Sec. VI with
series of linear benchmarks.

Furthermore, the numerical challenge of resolving sh
electron space and time scales has been entirely remo
The electron mass appears nowhere in Eqs.~104!–~106! or
in the normalizations@Eq. ~91!#, and it is apparent that the
electron scales,~re , c/vpe , kiv te , vETG!, all of which con-
tain the electron mass, have been successfully removed
the equations which are numerically evolved.

It can be shown, in a proof analogous to that
Cowley,53 that this electron model preserves magnetic fl
surfaces.

C. Electron collisions and Landau damping

One consequence of keeping only the lowest order te
in the mass ratio expansion is the absence of any dam
mechanism in the electron channel. It is well known th
damping terms, even when linearly small, can significan
impact the nonlinear dynamics of an otherwise dissipati
less system. While the gyrofluid system has dissipat
through ion collisions and ion Landau damping, it is e
pected that damping in the electron channel may play
important role as well.

The dominant electron damping mechanisms are
pected to be Landau damping and pitch angle scattering
lisions with ions. These effects are introduced by extend
the mass ratio expansion to include terms ofO(Ame /mi).
Equations~94! and ~96! remain unchanged, but additiona
terms are introduced into the closures forT'e

andTie
. The

lowest orderTie

(0)5T'e

(0)5Te
(0) is given by Eq.~106!. The full

expressions for the first order correctionsT'e

(1) and Tie

(1) can

be derived from Eqs.~81!–~86!. Here thev* ,vd→0 limit is
taken, leaving only the correction due to Landau damp
along the field

¹ iTie

(1)5Ap

2t

me

mi
ukiuuie

, ~107!

and T'e

(1)50, where the operatorukiu is again written in its

Fourier space form for conciseness. A more precise desc
tion of finite electron mass effects is possible either by us
the full expressions forTie

(1) and T'e

(1) , or by employing the

full six moment equation set@Eqs.~81!–~86!# to describe the
electrons. As in the general multispecies case, discusse
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Sec. III C 1, nonlinear phase mixing effects are not incor
rated in this closure. The range of resonant electron vel
ties Dv i;v/ki!v te is fairly small in core plasmas, and on
might worry about nonlinear particle trapping causing el
tron Landau damping to turn off. However, even a sm
amount of collisions can be important for such narrow re
nances. The rate of scattering out of the resonant regio
neive

2/(Dv i)2, and for a wide range of core parameters this
large compared to relevant linear or nonlinear rates e
thoughnei is small. While one would thus expect linear La
dau damping to hold, nonlinear kinetic effects can be sub
and comparisons between the simulation results using
reduced electron model and fully kinetic calculations inclu
ing collisions will be interesting future work.

Electron–ion collisions are modeled with a Lorentz pit
angle scattering operator. Adding this operator to the rig
hand side of the drift kinetic equation and taking mome
leads to the following collision term in the normalized ele
tron momentum equation:

2nei

me

mi
~uie

2ui i
!, ~108!

where nei is the effective scattering rate, normalized
v t i /Ln . Becausenei;me

21/2, this term is orderednei;d21

so that the collision term enters atO(d). This caveat allows
a formally consistent ordering in the mass ratio. It is reco
nized that the collision term may be smaller than other
glected terms. The collision term is kept to assess the im
of this damping mechanism in the electron channel.

Including the pitch angle scattering model and the fir
order temperature correction@Eq. ~107!# in Eqs. ~94! and
~96!, in the limit of small mirror force, yields the following
set of electron equations:

]ne

]t
1vE•¹ne1B¹̃ i

uie

B
2 iv* f12ivdS f2

ne

t
2TeD50,

~109!

]Ai

]t
1¹̃ if2

1

t
¹̃ ine2

1

t
iv* Ai2Ap

2t

me

mi
ukiuuie

5nei

me

mi
~uie

2ui i
!, ~110!

¹̃ iTe52
he

t
iv* Ai . ~111!

The wdTie

(1) term has been neglected, and the¹ iTie

(1) intro-

duces a two moment Landau damping model.44 Note that the
Landau damping operator (ukiu) acts on an odd momen
(ui), which has no equilibrium component, so that there
no linear magnetic flutter contribution to the Landau closu
avoiding a concern expressed by Finn and Gerwin.54 How-
ever, magnetic flutter does introduce an additional nonlin
Landau damping term, as discussed in Ref. 47. The siz
this term has been calculated in simulations and found to
small.

This electron model can be viewed as an extension of
equations of Kadomtsev and Pogutse51 to include toroidal
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drifts, parallel ion flow, and an improved Landau dampi
model which properly phase-mixesE3B driven perturba-
tions.

The model can be reduced to the familiar adiabatic
sponse in the appropriate limits. Taking the limitsb→0,
which implies Ai→0 from Eq. ~114!, and me /mi→0, Eq.
~110! reduces to the adiabatic electron response¹ i(f
2ne /t)50; or, with the appropriate choice of constan
ne5t(f2^f&). The adiabatic response can also be deriv
in the formal limit ki→`.

Upon neglect of the ‘‘small scale’’ effects associat
with the ¹p term in the momentum equation~here these are

the ¹̃ ine and iv* Ai terms!, and in the limitme /mi→0, Eq.
~110! reduces to the parallel ideal magnetohydrodynam

~MHD! Ohm’s Law Ei52(]Ai /]t)2¹̃ if50. Including
the collisional term gives the parallel resistive MHD Ohm

Law. Adding the 21/t(¹̃ ine2 iv* Ai) terms gives a
version of the extended MHD Ohm’s Law appropriate f
v!kiv te .

V. POISSON’S EQUATION AND AMPERE’S LAW

The system of equations is completed using the gyro
netic Poisson’s equation and Ampere’s Law. In the limit
small Debye length,klD!1, the gyrokinetic Poisson’s equa
tion becomes a quasineutrality constraint2

ne5n̄i2~12G0!f, ~112!

wheren̄i is the gyrophase independent part of the real sp
ion density. The (12G0)f term, often called the polariza
tion density, arises from the gyrophase dependent part of
distribution function, and accounts for the difference b
tween guiding center density and ion particle density.

Following Beer,30 the transformation from gyrocenter t
real space is accomplished with the simple Pade´ approxima-
tion:

n̄i5
1

11b/2
ni2

2b

~21b!2 T' i
, ~113!

whereb5k'
2 r i

2 . This approximation is first order accurate
b for both ni andT' i

, and it behaves properly (n̄i→0) for
largeb.

Within the gyrokinetic ordering, the parallel Ampere
Law is33

¹'
2 Ai52

tbe

2
~ ūi i

2uie
!, ~114!

wherebe58pn0T0e /B2.
The transformation to real space is again accomplis

with a Pade´ approximation

ūi i
5

1

11b/2
ui i

2
2b

~21b!2 q' i
. ~115!

Poisson’s equation@Eq. ~112!# and Ampere’s Law@Eq.
~114!#, together with six ion moment equations@Eqs. ~81!–
~86!#, the two electron moment equations@Eqs. ~109!–
~110!#, and theTe condition@Eq. ~111!#, provide a complete
description of the ten unknowns (ni , ui i

, pi i
, p' i

, qi i
, q' i

,
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ne , uie
, Te , f, andAi). The system is solved by evolvin

the eight partial differential equations in time, while usin
Eq. ~112! to solve forf, Eq. ~114! to solve foruie

, and Eq.
~111! to solve forTe .

It is shown in Sec. II C of Ref. 55 that this system
equations exactly reproduces the kinetic dispersion rela
in the local fluid limit (ki

2v t i
2 !v2!ki

2v te
2 , uvdu!uvu, k'

2 r i
2

!1). The ability of the equations to model nonlocal kine
toroidal drift instabilities is tested in the following sectio
with a series of linear benchmarks.

VI. LINEAR BENCHMARKS WITH KINETIC THEORY

Benchmarking the model against linear kinetic theory
an important step in verifying the accuracy and reliability
both the electromagnetic gyrofluid physics model and
simulation code used to implement the model.

An extensive series of linear benchmarks in the elec
static case is given in Ref. 30, so we focus here on the im
of finite plasmab. Finite-b effects on the collisionless ion
temperature gradient~ITG! instability are benchmarked in
toroidal flux tube geometry. In addition, the growth rates a
real frequencies of the kinetic ballooning mode~KBM ! are
benchmarked in toroidal geometry. Both the case with
temperature gradient and the more interesting case with fi
ion temperature gradient are investigated. It is shown that
gyrofluid model is able to reproduce the finite growth ra
of the KBM below the ideal MHDb-limit in this case.

It is important to note that this set of benchmarks p
vides a test of the electron physics model, as well as the
physics model. While a simple adiabatic electron model
produce the correct ITG growth rate in the electrostatic lim
this is not the case for the finite-b ITG and KBM modes
considered here, as discussed for example in Sec. II C of
55. A description of electron¹B and curvature drift motion
and proper consideration of magnetic flutter across equ
rium electron temperature gradients are required to ac
rately calculate growth rates of both the finite-b ITG and
KBM instabilities.

A. The finite- b ITG instability

The toroidal ion temperature gradient~ITG! instability is
widely thought to play an important role in core transpo
Capturing the finite-b effects on this mode has been a pri
cipal motivation for developing an electromagnetic turb
lence model.

Linear kinetic theory for the electromagnetic case
nonlocal toroidal geometry is quite involved, and a fair
limited set of codes is available. A code developed by K
Horton, and Dong,16 solves a simplified set of integral equ
tions in ballooning coordinates, using ans2a equilibrium
model. Figure 1 shows a benchmark using parameters
lected from Fig. 6~a! in Ref. 16. The plot shows linea
growth rate vs the safety factorq, at two values ofb. Quan-
titative agreement in the finite-b case is found to be as goo
as in the electrostatic case. The trend emphasized in Ref
that finite-b effects become more important at higherq, is
reproduced by the gyrofluid model.
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The structure of the eigenfunctions off and Ai in bal-
looning space has also been analyzed. For the paramete
b50.8%, h i52.5, he52, kur i50.5, en50.2, s50.6, q
51.5, and t51, the gyrofluid eigenfunctions have bee
compared to Fig. 5 of Ref. 16. Good agreement is found
both the shape and parity of the real and imaginary eig
functions off and Ai as well as in the ratioAi /f!1. We
note that the real part off has even parity, while the real pa
of Ai is odd, and in the normalized units, the rat
fmax/Aimax.15. The eigenfunctions extend roughly 2p in
ballooning angle before becoming negligible. The shape
parity of these eigenfunctions and the ratioAi /f!1 are all
typical of the finite-b ITG mode.

A second set of toroidal benchmarks employing t
widely used GS2 linear gyrokinetic code developed b
Kotschenreuther56 is given in Ref. 32. Good agreement
found in the growth rate and frequency spectra of the finiteb
ITG mode.

B. The kinetic ballooning mode

The electromagnetic gyrofluid model also introduces
stabilities in the shear Alfve´n branch of the dispersion rela
tion not found in the electrostatic case. An example is
kinetic ballooning mode~KBM !,17–22 here defined to be an
instability in the shear Alfve´n branch of the dispersion rela
tion, analogous to the ideal MHD ballooning mode, with t
addition of kinetic effects such as FLR, drift resonance, a
Landau damping. The KBM is driven unstable largely
bad curvature effects in the presence of density and/or t
perature gradients, though kinetic effects impact the insta
ity threshold and growth rate.@Because the plasma equilib
rium is taken to be Maxwellian, there is no fast partic
drive, and hence no unstable toroidal Alfve´n eigenmode
~TAE!.# The KBM is expected to play an important role
transport in cases where it is driven unstable below the id
MHD threshold by the toroidal ion drift resonance. Benc
marks are performed both in the flat temperature grad
case, where the KBM goes unstable exactly at the id
MHD bc , and the finite ion temperature gradient case, wh
the KBM is unstable belowbc .

FIG. 1. Linear growth rates of the toroidal ITG mode as a function of
safety factorq, for b50 andb50.8%, with h i52.5, he52, kur i50.5,
en50.2, s50.6, andt51. The gyrofluid model is compared to linear k
netic theory inŝ2a geometry, witha5q2be /en@11he1t(11h i)# cho-
sen to be consistent withb andq.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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1. Benchmarks with zero ion temperature gradient

A set of benchmarks is performed against the kine
code developed by Hong, Horton, and Choi.21 It should be
noted that this code does not solve the complete kin
equations, but rather focuses on the coupling between
and shear Alfve´n waves, and neglects ion transit and boun
frequency resonant effects.

Figure 2 shows a comparison with Fig. 1 in Ref. 21@the
figure captions on Figs. 1 and 2 on p. 1593 of this arti
have been reversed; the figure in the upper right is Fig
while the figure in the lower left is Fig. 2#. Growth rate and
frequency spectra are compared in a simple circular ge
etry at b56.25%. Good agreement is found for the fr
quency, which is nearly dispersionless with a phase velo
of roughly 20.6csrs /Ln in the ion diamagnetic direction
Agreement for the growth rate is also good, though so
variance is seen at short wavelengths. A comparison of
growth rate and frequency of the KBM as a function ofb is
given in Ref. 32, and good agreement is found.

2. Benchmarks with finite ion temperature gradient

The KBM becomes particularly interesting in the pre
ence of finite ion temperature gradient because, as show
Andersson and Weiland,57 finite h i is a necessary and suffi
cient condition for instability of the shear Alfve´n branch be-
low the ideal MHD b limit. Hence this mode may play a
significant and direct role in driving transport in plasm
which are ideal MHD stable.

A set of benchmarks is again performed, using para
eters and results from Ref. 21. Figure 3 shows frequency
growth rate spectra for the toroidal KBM at two values
b53.125%,6.25%. Other parameters are identical to Fig
except thath i52. Agreement between the two models
fairly good, with the gyrofluid model correctly accountin
for the dramatic increase in growth rates at finiteh i . A com-
parison of the growth rate of the finite-h i toroidal KBM is
given in Ref. 32, and good agreement is found, with
gyrofluid model accurately reproducing the finite growth ra
of the mode both below and above the ideal ballooningb
limit.

A final benchmark, Fig. 4, shows the growth rate dep
dence on the magnetic shear, for two different values ofen .

FIG. 2. Linear growth rate~positive! and frequency~negative! spectra of the
toroidal kinetic ballooning mode. The gyrofluid model is compared to
kinetic code of Ref. 21, in a simple circular equilibrium atb56.25%. Other
parameters ares51, q52, t51, en50.25, h i5he50.
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Again quantitative agreement is reasonably good, with
gyrofluid model successfully reproducing the trends emp
sized in Ref. 21.

VII. SUMMARY AND CONCLUSION

A model has been developed to describe electromagn
microturbulence and transport in long mean-free-path p
mas. The model consists of a set of electromagnetic mu
species gyrofluid and electron Landau fluid equations
rived by taking moments of the nonlinear toroid
electromagnetic gyrokinetic equation,4,33 along with the gy-
rokinetic Poisson equation and Ampere’s Law.

A full hierarchy of six multispecies electromagnetic g
rofluid equations is derived, which can be used to desc
both ions and electrons. However, a key result of this pa
is the derivation of a reduced set of electron equations,
propriate for the efficient description of the passing elect
response to turbulence on scales characteristic of ion
and kinetic ballooning instabilities. The reduced set of el
tron equations is derived via an analytic expansion in te
poral (v;v* ,vd ,kiv t i ,kivA!kiv te) and spatial (k'

21;r i

@re ,c/vpe) scales, formally carried out as an expansion
the electron–ion mass ratio, treating plasmab as an order
unity quantity. This expansion results in a simple set of el
tron fluid equations which describe electromagnetic elect
dynamics on the typical ion drift and shear Alfve´n length and
time scales, while analytically removing the numerica

FIG. 3. Frequency~negative! and linear growth rate~positive! spectra for
the toroidal kinetic ballooning mode in the presence of a finite ion tempe
ture gradient. Parameters chosen areh i52, he50, en50.25, s51, q52,
andt51. The gyrofluid model is compared to a linear kinetic calculation
two values ofb53.125%,6.25%.

FIG. 4. Linear growth rate of the kinetic ballooning mode vs magne
shear, at two values ofen50.1,0.25, forb59.375%, kur i50.3, q52, t
51, h i52, andhe50. The gyrofluid model is compared to linear kinet
theory ~Ref. 21!.
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challenging electron transit time scale as well as the sm
electron gyroradius and skin depth length scales. While
resulting electron model is simple and relatively straightf
ward to implement numerically, it describes substan
physics not incorporated in the adiabatic electron models
have been used to describe the passing electrons in m
previous gyrofluid and gyrokinetic simulations. In additio
to finite-b effects and Alfve´n wave dynamics, the model als
incorporates electronE3B, curvature, and¹B drift motion,
as well as theE3B nonlinearity and nonlinear terms due
magnetic flutter. The use of an electron temperature clos
appropriate forv;vA!kiv te allows for the proper inclusion
of the¹Te as well as the¹ne drive of the kinetic ballooning
mode.

In the lowest order form, including no finite electro
mass effects, the reduced electron equations lead to an
tron response in which the total, equilibrium plus fluctuatin
electron temperature is constant along the total magn

field, (B01B̃)•¹(T0e1Tie
˜ )50. This intuitive result is ex-

pected from our ordering of the velocitiesv/k;v t i ,vA

!v te , implying the characteristic time scale of both plasm
and magnetic fluctuations is long compared to the time s
on which the electrons thermalize. It is important to note t
this isothermal response is quite different from the occas

ally employed closures¹ iT̃e50, or T̃e50, both of which fail
to properly account for magnetic fluctuations across the e
librium temperature gradient. In the finiteme version of the
reduced electron model, formally carried to ord
(me /mi)

1/2, models of parallel electron Landau damping
well as electron–ion collisions enter, and the isothermal e
tron condition is only approximate.

Ion species are described with the full set of six gy
fluid moment equations, truncated with kinetic closur
based on Refs. 12, 30, and 44, incorporating both para
and toroidal kinetic effects. The full set of electromagne
ion gyrofluid equations include models of parallel Land
damping, ion drift resonance, ion–ion collisions, and line
and nonlinear finite-Larmor-radius~FLR! effects. Magnetic
fluctuations enter the ion equations through the induc
electric field, as well as through several linear and nonlin
magnetic flutter terms.

The model has been benchmarked with linear gyro
netic calculations, and good agreement has been found
the growth rates and real frequencies of both the finitb
toroidal ion temperature gradient~ITG! and kinetic Alfvén
ballooning~KBM ! instabilities. In particular, the model ha
been found to accurately reproduce the finite-b stabilization
of the toroidal ITG mode. The model is also able to rep
duce the behavior described by Refs. 21, 22, and 57
which the kinetic ballooning mode is driven unstable bel
the ideal MHD ballooning limit (bc) by ion drift resonance.

The model with reduced electron equations is intend
for use in nonlinear simulations of ion drift/shear Alfve´n
turbulence and transport. Use of the full six moment mo
for the electrons should allow simulation of turbulence
the smaller scales characteristic of electron drift instabiliti
Considerations associated with the use of linearized kin
closures in nonlinear simulations have been discussed ex
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sively in the gyrofluid literature.10–14,30,31,39An important
strength of the reduced electron equation derivation gi
here is that it requires no separate closure approximations
nonlinear terms in the limitme /mi→0. One important cavea
for the multispecies gyrofluid equations is that the closu
employed here reproduce the fast linear collisionless da
ing of zonal flows fort,qR/v t iAe, but do not account for
the residual undamped component of the zonal flow noted
Rosenbluth and Hinton,48 which can be important at low
collisionality. Efforts to incorporate neoclassical effects su
as this residual flow into the toroidal closure are ongoing49

Nonlinear Landau damping processes may also be impor
particularly in weak turbulence/low-collisionality regime
where the rate of scattering out of the resonant region
small. Important avenues for future work include nonline
benchmarking with gyrokinetic codes to assess the impac
nonlinear kinetic effects, and incorporation of an appropri
model for trapped electrons.

Simulations of nonlinear toroidal microturbulence usi
the reduced electron model have been carried out, and
described in Refs. 32 and 55.
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