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The Magnetorotational Instability in a Collisionless Plasma
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ABSTRACT

We consider the linear axisymmetric stability of a differentially rotating colli-

sionless plasma in the presence of a weak magnetic field; we restrict our analysis

to wavelengths much larger than the proton Larmor radius. This is the kinetic

version of the magnetorotational instability explored extensively as mechanism

for magnetic field amplification and angular momentum transport in accretion

disks. The kinetic calculation is appropriate for hot accretion flows onto com-

pact objects and for the growth of very weak magnetic fields, where the collisional

mean free path is larger than the wavelength of the unstable modes. We show

that the kinetic instability criterion is the same as in MHD, namely that the an-

gular velocity decrease outwards. However, nearly every mode has a linear kinetic

growth rate that differs from its MHD counterpart. The kinetic growth rates also

depend explicitly on β, i.e., on the ratio of the gas pressure to the pressure of the

seed magnetic field. For β ∼ 1 the kinetic growth rates are similar to the MHD

growth rates while for β � 1 they differ significantly. For β � 1, the fastest

growing mode has a growth rate ≈
√

3Ω for a Keplerian disk, larger than its

MHD counterpart; there are also many modes whose growth rates are negligible,
<∼ β−1/2Ω � Ω. We provide a detailed physical interpretation of these results

and show that gas pressure forces, rather than just magnetic forces, are central

to the behavior of the magnetorotational instability in a collisionless plasma. We

also discuss the astrophysical implications of our analysis.
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1. Introduction

Balbus & Hawley (1991; BH91) showed that differentially rotating accretion disks are

linearly unstable in the presence of a weak magnetic field (see Balbus & Hawley 1998 for

a review; BH98). This instability, known as the “magnetorotational instability” (MRI), is

local and extremely powerful, with a growth rate comparable to the rotation frequency of the

disk. MHD turbulence resulting from the MRI is the most promising source of the efficient

angular momentum transport needed in astrophysical accretion flows (e.g., Hawley, Gammie,

& Balbus 1995; Armitage 1998; Hawley 2000; Stone & Pringle 2001). The MRI may also be

important for the dynamo generation of galactic and stellar magnetic fields.

In this paper we present a linear analysis of the MRI in a collisionless plasma using

kinetic theory. The kinetic calculation is appropriate whenever the wavelength of the un-

stable modes is shorter than the collisional mean free path. This regime is astrophysically

interesting for several reasons:

(1) In MHD, the most unstable mode of the MRI has a wavelength λ ≈ vA/Ω, where

vA = B/
√

4πρ is the Alfvén speed and Ω is the rotation frequency of the disk. Thus, for a

very weak magnetic field, the fastest growing mode has a very short wavelength, less than

the collisional mean free path in many cases. A kinetic treatment is therefore required to

determine whether the MRI can amplify very weak fields (e.g., the “first” magnetic fields

generated at high redshift by a Biermann battery or analogous mechanism).

(2) Radiatively inefficient accretion flows onto compact objects provide a useful framework

for interpreting observations of low-luminosity X-ray binaries and active galactic nuclei (see,

e.g., Ichimaru 1977; Rees et al. 1982 [the ion torus model]; Narayan & Yi 1995 [ADAFs]; for

a review see Narayan et al. 1998 or Quataert 2001). In such models, the accreting gas is a

hot two-temperature plasma in which the proton temperature (∼ 1012 K near a black hole)

is much larger than the electron temperature (∼ 109 − 1011 K). In order to maintain such

a two-temperature configuration, the accretion flow must be effectively collisionless in the

sense that the timescale for electrons and protons to exchange energy by Coulomb collisions

is longer than the inflow time of gas in the accretion disk. In principle, a kinetic treatment

of the accretion flow structure, rather than a fluid treatment, is therefore necessary. The

calculations described in this paper represent a first step towards understanding the physics

of angular momentum transport and the structure of the accretion flow using kinetic theory.

Our analysis is restricted to wavelengths much larger than the proton Larmor radius

and frequencies below the proton cyclotron frequency. To motivate why kinetic effects can

be important even on these “large” scales, consider a uniform medium threaded by a weak

magnetic field (β � 1, where β is the ratio of the gas pressure to the magnetic pressure).
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There are three long-wavelength waves in such a system: (1) the sound wave, (2) the Alfvén

wave, and (3) the slow magnetosonic wave. It is well known that the sound wave and the

slow wave are very different in a collisionless plasma than in collisional plasmas described

by MHD (e.g., Barnes 1966). We shall see that the same is true for the MRI.

This paper is organized as follows. In the next section we describe our basic equations

and assumptions (§2). In §3 we discuss linear waves in a collisionless plasma, emphasizing

an important difference between MHD and kinetic theory that is useful for understanding

the kinetic MRI results. In §4 we numerically solve the kinetic MRI dispersion relation and

discuss its physical interpretation. We also show that a generalization of Balbus & Hawley’s

(1992; BH92) “spring” model of the MRI captures the main results of the kinetic calculation.

Finally, in §5 we summarize our results and discuss their astrophysical implications.

2. Basic Equations

In the limit that all fluctuations of interest have wavelengths much larger than the

proton Larmor radius and frequencies much less than the proton cyclotron frequency, a

collisionless plasma can be described by the following fluid equations (e.g., Kulsrud 1983;

Snyder, Hammett, & Dorland 1997):

∂ρ

∂t
+∇ · (ρV) = 0, (1)

ρ
∂V

∂t
+ ρ(V · ∇)V =

(∇×B)×B

4π
−∇ ·P + Fg, (2)

∂B

∂t
= ∇× (V ×B), (3)

and

P = p⊥I + (p‖ − p⊥)b̂b̂, (4)

where ρ is the mass density, V is the fluid velocity, B is the magnetic field vector, Fg is the

force due to gravity, b = B/|B| is a unit vector in the direction of the magnetic field, and I

is the unit tensor. Equations (1)-(3) are identical to the basic equations of (collisional) MHD

except that the pressure, P, is a tensor that is generally different perpendicular (p⊥) and

parallel (p‖) to the background magnetic field (e.g., the temperature need not be isotropic

in a collisionless plasma). Formally, the pressure in equation (4) should contain a sum over

all particle species in the plasma (electrons, protons, and ions). In what follows, however,

we consider a single fluid model in which only one contribution to the pressure response

is included. In practice, the ions dominate the dynamics under consideration and so the
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pressure can be interpreted as the ion pressure. This is particular true for hot accretion

flows in which Tp � Te.

In a collisionless plasma, the parallel and perpendicular pressures satisfy separate “equa-

tions of state” given by (e.g., Chew, Goldberger, & Low 1956):

ρB
d

dt

(
p⊥
ρB

)
= −∇·(b̂q⊥)− q⊥∇ · b̂ (5)

and
ρ3

B2

d

dt

(
p‖B2

ρ3

)
= −∇·(b̂q‖) − 2q⊥∇ · b̂, (6)

where d/dt = ∂/∂t + V · ∇ is the Lagrangian derivative, and q⊥ and q‖ represent the flow

of heat due to the motion of particles along magnetic field lines. Note that although there

is no heat flow perpendicular to the magnetic field due to the very small proton Larmor

radius, the perpendicular pressure/temperature can change due to heat transport along the

magnetic field and so q⊥ 6= 0. If one neglects the heat flux terms, equations (5) and (6)

reduce to “double adiabatic theory” (Chew et al. 1956). Equation (5) then describes the

invariance of the average magnetic moment of the plasma, µ ∝ T⊥/B ∝ p⊥/(ρB), where

T⊥ is the perpendicular temperature. And equation (6) describes adiabatic parallel pressure

changes due to the expansion or contraction of fluid elements (Kulsrud 1983).

Equations (1)-(6) can be rigorously derived by expanding the Vlasov equation in the long

wavelength, low frequency limit, and taking velocity moments (e.g., Kulsrud 1983). They

face, however, the usual problem that the heat fluxes q⊥ and q‖ depend on the third moments

of the particle distribution function and so additional equations are needed to “close” the

moment hierarchy. In Kulsrud’s kinetic MHD one avoids this closure problem by solving

the drift-kinetic equation, which is the low-frequency, long-wavelength, limit of the Vlasov

equation (see Kulsrud 1983). By taking moments of the resulting distribution function one

calculates p⊥ and p‖ for use in equation (2). For linear problems this approach is not too

difficult and is the one employed here (see eqs. [14] and [15] below). For nonlinear problems,

however, it is much more involved. Snyder et al. (1997) developed fluid approximations

for q⊥ and q‖ that model kinetic effects such as Landau damping and phase mixing. In this

approach one solves equations (5) and (6) instead of solving for the full distribution function.

For nonlinear problems, this is computationally more efficient and is a possible way of using

MHD codes to extend the linear results of this paper to the nonlinear regime.5

5Although we use the full drift-kinetic equation to calculate p⊥ and p‖, we have also found that the

closures in Snyder et al. (1997) provide an excellent approximation for the linear problems considered here.
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2.1. Linear Perturbations

We assume that the background (unperturbed) plasma is described by a non-relativistic

Maxwellian distribution function with equal parallel and perpendicular pressures (tempera-

tures). Although the equilibrium pressure is assumed to be isotropic, the perturbed pressure

will not be, which is a crucial difference between the kinetic and MHD problems. We take

the plasma to be differentially rotating, but otherwise uniform (e.g., we neglect temperature

and density gradients). Thus the velocity is given by V = V0 + δv where V0 = RΩφ̂ and

Ω(R) is the rotation rate. We consider a weak (subthermal) magnetic field with vertical

(Bz = B0 sin θ) and azimuthal (Bφ = B0 cos θ) components, where θ = tan−1[Bz/Bφ] is the

angle between the magnetic field vector and the φ direction and B0 is the magnitude of the

seed field. In a differentially rotating plasma, a finite BR leads to a time-dependent Bφ,

which greatly complicates the kinetic analysis (unlike in MHD, where a time-dependent Bφ

can be accounted for; e.g., BH91); we therefore set BR = 0. Finally, we consider fluctuations

of the form exp[−iωt+ik · x], with k = kRR̂+kz ẑ, i.e., axisymmetric modes; we also restrict

our analysis to local perturbations for which |k|R� 1. Writing ρ = ρ0 + δρ, B = B0 + δB,

p⊥ = p0 + δp⊥, and p‖ = p0 + δp‖, and working in cylindrical coordinates, the linearized

versions of equations (1)-(3) become:

ωδρ = ρ0k · δv (7)

− iωρ0δvR− ρ02Ωδvφ =
−ikR

4π
(BzδBz +BφδBφ) +

ikzBzδBr

4π
− ikRδp⊥ (8)

− iωρ0δvφ + ρ0δvR
κ2

2Ω
=
ikzBzδBφ

4π
− ikz sin θ cos θ

[
δp‖ − δp⊥

]
(9)

− iωρ0δvz =
−ikzBφδBφ

4π
− ikz

[
sin2 θδp‖ + cos2 θδp⊥

]
(10)

ωδBr = −kzBzδvR (11)

ωδBφ = −kzBzδvφ −
ikzBz

ω

dΩ

d lnR
δvR +Bφk · δv (12)

ωδBz = kRBzδvR, (13)

where κ2 = 4Ω2 + dΩ2/d lnR is the epicyclic frequency. Equations (7)-(13) are very similar

to the analogous equations in BH91 except that we do not impose incompressibility and

the pressure response is anisotropic. In particular, note that, even though we consider

axisymmetric modes, there is a pressure force in the φ-momentum equation (eq. [9]) because

the perturbed pressure is anisotropic (i.e., φ̂ · (∇ ·P) = ikzP
zφ = ikz(δp‖ − δp⊥) sin θ cos θ).

To complete our system of equations we need expressions for δp⊥ and δp‖. These can

be obtained by taking the second moments of the linearized and Fourier transformed drift-

kinetic equation and are given by (e.g., eqs. 23-25 of Snyder et al. 1997)
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δp⊥
p0

=
δρ

ρ0
+D1

(
δB

B0

)
(14)

and
δp‖
p0

=
δρ

ρ0

+D2

(
δρ

ρ0

− δB

B0

)
, (15)

where |B| = B0 + δB, δB = b̂0 · δB is the parallel magnetic field perturbation, and

D1 = 1 −R(ξ), D2 =

[
1 + 2ξ2R(ξ) −R(ξ)

R(ξ)

]
. (16)

Note that the second terms on the right hand side of equations (14) and (15) are the per-

pendicular and parallel temperature perturbations. In equation (16), R(ξ) = 1 + ξZ(ξ) is

the plasma response function,

Z(ξ) =
1√
π

∫
dx

exp[−x2]

x− ξ (17)

is the plasma dispersion function (e.g., Stix 1992), and ξ = ω/(
√

2c0|k‖|), where k‖ = b̂ · k
is the wavevector along the magnetic field and c0 =

√
T/m is the isothermal sound speed of

the particles (we have absorbed Boltzmann’s constant into T so as to not cause confusion

with the wavevector).

Because equations (14) and (15) are rather different from the MHD equation of state it

is worthwhile discussing their physical interpretation. Consider first fluctuations for which

ξ � 1, in which case Z(ξ) ≈ −ξ−1 − 0.5ξ−3 − 0.75ξ−5, R(ξ) ≈ −0.5ξ−2 − 0.75ξ−4, D1 ≈ 1,

and D2 ≈ 2. Equation (14) thus reduces to

δp⊥
p0
≈ δρ

ρ0
+
δB

B0
(18)

and equation (15) reduces to
δp‖
p0
≈ 3

δρ

ρ0
− 2

δB

B0
. (19)

These are the linearized double adiabatic equations (eqs. [5] and [6] with q⊥ = q‖ = 0).

Not surprisingly, the adiabatic limit requires ω � k‖c0, i.e., that the fluctuation timescale is

much less than the time it takes particles to stream across the wavelength of the mode.

In the opposite limit, ξ � 1, Z(ξ) ≈ i
√
π − 2ξ and R(ξ) ≈ 1 + i

√
πξ − 2ξ2, so that

D1 ≈ D2 ≈ −i
√
πξ. Equations (14) and (15) thus reduce to

δp⊥
p0
≈ δρ

ρ0
− i√πξ

(
δB

B0

)
(20)
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and
δp‖
p0
≈ δρ

ρ0
− i√πξ

(
δρ

ρ0
− δB

B0

)
. (21)

These correspond to nearly isothermal fluctuations: the temperature perturbation is smaller

than its “natural” value by a factor ∼ ξ � 1. This is because ω � k‖c0, i.e., particles stream

across a wavelength on a timescale much less than the fluctuation timescale and efficiently

wipe out temperature gradients. Equations (20) and (21) are the appropriate limit for the

MRI. This is because the MRI has |ω| <∼ kzvA and β >∼ 1, and so ξ <∼ β−1/2 <∼ 1.

2.2. The Dispersion Relation

To obtain the dispersion relation, we eliminate all non-velocity variables from the mo-

mentum equations. We first calculate δB = cos θδBφ + sin θδBz using δBφ from equation

(12) and δBz from equation (13):

δB

B0
= cos2 θ

k · δv
ω
− sin θ cos θ

kzδvφ
ω
− i dΩ

d lnR
sin θ cos θ

kzδvR
ω2

+ sin2 θ
kRδvR
ω

. (22)

Substituting equations (7) and (22) into equations (14) and (15) then yields δp⊥ and δp‖ as

functions of δv, which we substitute into the perturbed momentum equations (eqs. [8]-[10]).

Using the perturbed induction equations (eqs. [11]-[13]) we can also eliminate δB from the

momentum equations in favor of δv. This yields the following versions of the momentum

equations:

0 = δvR[ω2 − k2v2
Az − k2

R(v2
Aφ + c2

0) + ikRkz
vAzvAφ
ω

dΩ

d lnR
+ ikRkzc

2
0

D1

ω
sin θ cos θ

dΩ

d lnR

− k2
Rc

2
0D1] + δvφ

[
kRkzvAzvAφ − 2iΩω + kRkzc

2
0D1 sin θ cos θ

]

− δvz
[
kRkz(c

2
0 + v2

Aφ) + kRkzc
2
0 cos2 θD1

]
, (23)

0 = δvR[
iκ2ω

2Ω
− ik

2
zv

2
Az

ω

dΩ

d lnR
+ vAφvAzkRkz + kzkRc

2
0D1 sin θ cos θ

− i
c2

0k
2
z

ω
(D2 +D1) sin2 θ cos2 θ

dΩ

d lnR
] + δvφ

[
ω2 − k2

zv
2
Az − k2

zc
2
0 sin2 θ cos2 θ(D2 +D1)

]

+ δvz
[
k2
zvAφvAz − k2

zc
2
0D2 sin3 θ cos θ + k2

zc
2
0D1 sin θ cos3 θ

]
(24)

0 = δvR[−kRkz(v2
Aφ + c2

0) + ik2
z

vAφvAz
ω

dΩ

d lnR
− kzkRc2

0D1 cos2 θ + i
k2
zc

2
0

ω
D1 cos3 θ sin θ

dΩ

d lnR

− i
k2
zc

2
0

ω
D2 sin3 θ cos θ

dΩ

d lnR
] + δvφ

[
k2
zvAφvAz − k2

zc
2
0D2 sin3 θ cos θ + k2

zc
2
0D1 cos3 θ sin θ

]

+ δvz
[
ω2 − k2

z (v
2
Aφ + c2

0)− k2
zc

2
0D2 sin4 θ − k2

zc
2
0D1 cos4 θ

]
, (25)
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where

v2
Az ≡

B2
z

4πρ0

and v2
Aφ ≡

B2
φ

4πρ0

(26)

are the Alfvén speeds associated with the vertical and azimuthal fields, respectively. Equa-

tions (23)-(25) define a matrix equation of the form Aδv = 0. Setting det(A) = 0 gives the

dispersion relation. We have not found it particularly illuminating to write out the entire

dispersion relation, nor have we made much progress solving it analytically, so instead we

proceed to discuss its numerical solution. We will also present a simple model problem that

captures the essential physics of the kinetic MRI.

The MHD dispersion relation for the MRI, including the effects of compressibility, can

be obtained from equations (23)-(25) by setting D1 = D2 = 0. Equations (14) and (15)

show that, for D1 = D2 = 0, δp⊥ = δp‖ = δρc2
0, i.e., the perturbations are isothermal and

the perturbed pressure is isotropic. Our basic linear perturbation equations (eqs. [7]-[13])

reduce to their MHD analogues in this limit. In particular, note that in MHD the MRI is

independent of whether the perturbations are adiabatic or isothermal; this is because it is an

incompressible instability so the precise form of the sound speed is irrelevant for β � 1 (e.g.,

BH91). Thus the key simplification to the kinetic equations obtained by setting D1 = D2 = 0

is that the perturbed pressure becomes isotropic, as it is in MHD.

3. Linear Waves in Double Adiabatic Theory

Before considering the full kinetic MRI problem, it is instructive to consider the sim-

pler problem of linear waves in a uniform medium. In particular, we show that the slow

magnetosonic wave is very different in kinetic theory than in MHD. This is important for

understanding the kinetic MRI because the slow wave, along with the Alfvén wave, is central

to the dynamics of the MRI. We use double adiabatic theory throughout this section. Al-

though double adiabatic theory does not include collisionless damping, which is quite strong

for the slow mode and would alter some of the results in this section, it does show the signif-

icant differences introduced by the anisotropic pressure in a collisionless plasma. Since our

interpretation of the kinetic MRI in §4 focuses on the importance of this anisotropic pressure,

it is useful to see its implications first in a simpler problem. In §4 and the Appendix we show

that the qualitative conclusions drawn in this section carry over to the full kinetic analysis.

Double adiabatic theory in a uniform medium corresponds to setting Ω = κ = 0 and

ξ � 1 in equations (23)-(25), in which case D1 = 1 and D2 = 2. Without loss of generality

we can take Bφ = 0 so that cos θ = 0 and sin θ = 1. To make contact with standard notation,
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we also write kr = k⊥, kz = k‖, and vAz = vA. The dispersion relation is then given by
[
ω2 − k2

‖v
2
A

] [
(ω2 − k2v2

A − 2k2
⊥c

2
0)(ω2 − 3k2

‖c
2
0)− k2

⊥k
2
‖c

4
0

]
≡ DADMS = 0. (27)

The analogous MHD dispersion relation is
[
ω2 − k2

‖v
2
A

] [
(ω2 − k2v2

A − k2
⊥v

2
s)(ω

2 − k2
‖v

2
s) − k2

⊥k
2
‖v

4
s

]
= 0, (28)

where v2
s = γc2

0 is the adiabatic sound speed and γ = 5/3 is the adiabatic index.

Equation (27) shows that, as in MHD, the double adiabatic dispersion relation factors

into two parts: an Alfvén wave branch (DA = 0) and a magnetosonic branch (DMS = 0). The

Alfvén wave in double adiabatic theory is identical to that in MHD, while the magnetosonic

waves are different – this is because the “adiabatic index” in a collisionless plasma is different

for motions perpendicular and parallel to the magnetic field. Motion along the field is

one-dimensional and corresponds to γ = 3 (hence the 3k2
‖ term in eq. [27]) while motion

perpendicular to the field is two-dimensional and corresponds to γ = 2 (hence the 2k2
⊥ term

in eq. [27]). By contrast, in MHD, the pressure is isotropic and γ = 5/3.

Figure 1 shows a plot of the dispersion relation of the fast and slow magnetosonic

waves in MHD (dotted lines) and in double adiabatic theory (solid lines), taking β = 100.

The fast wave, which is essentially a sound wave, is qualitatively similar in the two cases

(the quantitative differences are due to the different γ’s). The slow wave, however, is quite

different. In MHD, the dispersion relation of the slow wave is degenerate with that of the

Alfvén wave for β � 1, namely ω = k‖vA. Except for k⊥ = 0, this is not true in double

adiabatic theory. The frequency of the slow wave depends on the sound speed; in fact, for

k⊥ 6= 0, the primary restoring force for the slow wave in double adiabatic theory is gas

pressure, not magnetic forces.

This result can be understood as follows. In MHD, the properties of the β � 1 slow

wave can be calculated by explicitly imposing incompressibility, ∇ · δv ∝ δρ ≈ 0. This

additional constraint (incompressibility) replaces the equation of state to determine the

pressure (the Boussinesq approximation). In a collisionless plasma, this cannot happen

because the pressure response is different parallel and perpendicular to the magnetic field,

i.e., there are two equations of state (one for p⊥ and one for p‖). Both equations of state

cannot be replaced by the single requirement that the fluctuations be incompressible. More

physically, a k⊥ ∼ k‖ slow wave in MHD has δp ∼ δB2/8π ∼ B0 δB⊥/4π, i.e., the gas

pressure, magnetic pressure, and magnetic tension forces are all comparable. Equivalently,

δp/p0 ∼ β−1δB/B0 � δB/B0 (for β � 1). In double adiabatic theory, however, a parallel

magnetic field perturbation δB/B0 induces a pressure perturbation δp⊥,‖/p0 of comparable

magnitude (see eqs. [18] and [19]). This means that the pressure forces are much larger than

the magnetic forces (δp ∼ β δB2/8π � δB2/8π) and dominate the dynamics of the wave.
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The exception to these arguments is if the pressure perturbation vanishes, i.e., δp⊥ =

δp‖ = 0. Alfveń waves and the k⊥ → 0 limit of the slow magnetosonic wave are the only

waves in MHD that have δp = 0 (they also have δB = 0). As a result, these pressure-free

waves are the only incompressible fluctuations in double adiabatic theory. For all other

waves, and in particular for slow waves with k⊥ 6= 0, pressure is the dominant restoring force

in a β � 1 plasma and so the frequencies depend strongly on the sound speed (Fig. 1).

The results in this section are relevant to the MRI because the MRI is an incompressible

instability with |ω| � kc0. Although pressure forces generally lead to a small modification

of the MRI in MHD, they will be substantially more important in the kinetic analysis (just

as for the slow magnetosonic wave in this section).

4. The Kinetic MRI

As noted in §2.3, the general kinetic MRI dispersion relation appears to be analytically

intractable. In this section we present its numerical solution and physical interpretation.

As a check on our numerical calculations we have confirmed that our results reproduce the

kinetic dispersion relation for the Alfvén wave and the slow and fast magnetosonic waves

when Ω = 0 (including the collisionless damping rates).6 We also reproduce the MRI in MHD

when the kinetic terms are dropped (this requires setting D1 = D2 = 0 in eqs. [23]-[25]).

Figures 2-4 show the results of numerically solving the kinetic MRI dispersion relation,

assuming a Keplerian disk for which Ω ∝ R−3/2 and κ = Ω. The figures show the kinetic

growth rate of the MRI for different values of βz ≡ 8πp0/B
2
z , for different magnetic field

geometries (defined byBφ/Bz), and for different wavevectors (kR and kz). The corresponding

MHD results are shown for comparison by the dotted lines. It is important to note that in

MHD the MRI growth rate is essentially independent of β and Bφ/Bz ; by contrast, Figures

2-4 show that the kinetic results depend sensitively on both of these parameters.

Figures 2-4 show that, although the growth rates can be very different, the region

of instability in wavevector space is the same in kinetic theory and MHD. To understand

this result, it is sufficient to consider the ω → 0 limit of the kinetic equations, since this

determines the transition between stable and unstable modes. Setting ω = 0 implies that

ξ ≡ ω/(
√

2k‖c0) = 0 as well. From equations (14)-(16), it then follows that δp⊥/p0 =

δp‖/p0 = δρ/ρ0. Physically, as ξ → 0, there is more and more time for particles moving

6We compared our results to the linear kinetic code described in Quataert (1998) and to the analytic

results in Barnes (1966) and Foote & Kulsrud (1979).
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along magnetic field lines to efficiently transport heat. This leads to nearly isothermal

fluctuations in which the pressure perturbation is isotropic and is set only by the density

perturbation. As discussed in §2.3, the kinetic equations reduce to the MHD equations in

this limit. This is an important result because it shows that the MHD instability criterion,

namely dΩ2/dR < 0, applies to the kinetic problem as well. Moreover, the set of unstable

modes is the same in MHD and kinetic theory, as is seen explicitly in Figures 2-4.

Perhaps the three most striking results of the kinetic calculation shown in Figures 2-4

are: (1) The kinetic growth rates depend sensitively on β. For β � 1 they differ significantly

from the MHD growth rates while for β ∼ 1 they are similar (see Fig. 3). (2) For Bφ = 0, or

for sufficiently large kR, the kinetic growth rates are smaller than their MHD counterparts,

particularly at large β (e.g., Fig. 3a). (3) For Bφ 6= 0, the kinetic growth rates can be larger

than their MHD counterparts (e.g., Fig. 2 and Fig. 4b). Moreover, for β � 1, the fastest

growing mode is at kzvAz � Ω, where there is negligible growth in MHD (Fig. 4b).

To understand the kinetic MRI results, we have found it useful to consider the equa-

tions that describe the displacement of a fluid element from its equilibrium circular orbit.

BH92 and BH98 showed that, for the special case of a vertical magnetic field and vertical

wavevector, the radial and azimuthal components of the MHD momentum equation can be

written in terms of the radial and azimuthal fluid displacements, ξR and ξφ, as

∂2ξR
∂t2
− 2Ω

∂ξφ
∂t

= −
(
dΩ2

d lnR
+ (kzvAz)

2

)
ξR, (29)

∂2ξφ
∂t2

+ 2Ω
∂ξR
∂t

= −(kzvAz)
2ξφ. (30)

As discussed by BH92 and BH98, equations (29) and (30) are identical to the equations

describing two orbiting point masses connected by a spring of spring constant k2
zv

2
Az (in

MHD, magnetic tension plays the role of the spring). This suggests the following physical

interpretation of the MRI in MHD (BH92). For a rotation profile with dΩ2/dR < 0 (unstable

to the MRI), a fluid element at radius R− δR is rotating slightly faster than a fluid element

at radius R. The “spring” pulls backwards on this inner fluid element, removing its angular

momentum and forcing it to move to a yet smaller radius. Similarly, a fluid element at radius

R+ δR is rotating slightly slower than a fluid element at radius R and so the “spring” pulls

forward on this fluid element, giving it angular momentum and forcing it to move to a yet

larger radius. This simple physical picture captures the essence of the MRI in MHD.

A useful toy model that provides additional insight into the physics of the MRI, both

in MHD and kinetic theory, is given by the following equations for the fluid displacement

∂2ξR
∂t2
− 2Ω

∂ξφ
∂t

= −
(
dΩ2

d lnR
+KR

)
ξR, (31)
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∂2ξφ
∂t2

+ 2Ω
∂ξR
∂t

= −Kφξφ. (32)

Equations (31) and (32) describe the displacement of rotating fluid elements coupled by an

anisotropic “spring,” for which the spring constant is different in the azimuthal (Kφ) and

radial (KR) directions (this is clearly no longer a real spring!). The unstable root in the

dispersion relation associated with equations (31) and (32) is given by

ω2 =
κ2 +KR +Kφ

2
− 1

2

[(
Kφ +KR + κ2

)2 − 4Kφ

(
KR +

dΩ2

d lnR

)]1/2

. (33)

For KR = Kφ = (kzvAz)
2, equation (33) gives the kR = 0 dispersion relation of the MRI in

MHD (this is shown by the dotted line in Fig. 4b). It is also straightforward to show that,

for KR > Kφ, the growth rates in equation (33) are smaller than the MHD growth rates (i.e.,

those with KR = Kφ) and for Kφ > KR the growth rates in equation (33) are larger than

the MHD growth rates. For example, for Kφ = 0, equation (33) gives ω = 0 for any KR and

so there is no instability. On the other hand, the Kφ � Ω � KR solution of equation (33)

is |ω| ≈
√
|dΩ2/d lnR|. For a Keplerian disk this gives |ω| =

√
3Ω, which is larger than the

growth rate of the fastest growing mode in MHD (|ω| = 3Ω/4).

These results can be understood physically by noting that it is ultimately the presence

of an azimuthal restoring force, rather than a radial restoring force, that is destabilizing in

the MRI. This is because it is the azimuthal force that removes angular momentum from

an inwardly displaced fluid element and adds it to an outwardly displaced fluid element.

By contrast, the radial force is stabilizing because it attempts to “pin” the fluid element

to its equilibrium position. Thus Kφ > KR leads to faster growth because it enhances the

destabilizing azimuthal force relative to the stabilizing radial force (and vice-versa for KR >

Kφ). For the remainder of this section we explain how thermal pressure in a collisionless

plasma plays the role of the anisotropic “spring” in the above toy model. This will account

for the behavior of the kinetic MRI seen in Figures 2-4.

Because they are restricted to kR = 0 and Bφ = 0, equations (29) and (30) do not

include the effects of gas pressure or magnetic pressure (both of which vanish in this special

case). To understand the kinetic MRI we need to include these restoring forces using the

radial and azimuthal momentum equations (eqs. [8] and [9], respectively). This yields the
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following equations for the fluid displacement7

∂2ξR
∂t2
− 2Ω

∂ξφ
∂t

= −
(
dΩ2

d lnR
+ (kzvAz)

2

)
ξR − ikR

(
δB2

8πρ0
+
δp⊥
ρ0

)
, (34)

∂2ξφ
∂t2

+ 2Ω
∂ξR
∂t

= −(kzvAz)
2ξφ − ikz

(
δp‖ − δp⊥

ρ0

)
sin θ cos θ. (35)

In equations (34) and (35) we have simply rewritten the pressure gradients from equations

(8) and (9); in the Appendix we calculate these explicitly in terms of the fluid displacement.

It is worth noting again that there is a pressure force in the φ-momentum equation (eq. [35])

because the perturbed pressure is anisotropic. In MHD, δp‖ = δp⊥ and so this term vanishes.

Following the arguments in §3 and Figure 1 we expect that the pressure gradients in

equations (34) and (35) will be much more important in kinetic theory than in MHD. In the

Appendix we calculate the magnitude of these pressure forces and confirm this hypothesis.

We use these results below to present a physical interpretation of the kinetic MRI, focusing

on two important special cases: (1) Bφ = 0, kR 6= 0, for which the kinetic growth rates are

smaller than their MHD counterparts (e.g., Figs. 3a & 4a), and (2) kR = 0, Bφ 6= 0, for

which the kinetic growth rates are larger than the MHD growth rates (e.g., Fig. 4b).

Consider first the special case of Bφ = 0 and kR 6= 0 (e.g., Fig. 3a & 4a). In this case a

displaced fluid element feels a restoring force in the radial direction due to gas and magnetic

pressure; there is, however, no analogous pressure gradient in the φ direction (only magnetic

tension). This corresponds to KR > Kφ in the toy model of equation (33); the growth rates

should therefore be suppressed with respect to the kR = 0 growth rates. The presence of a

stabilizing radial pressure gradient provides a physical explanation for why the MHD growth

rates decrease with increasing kR (see, e.g., the dotted line in Fig. 3a). Moreover, in the

Appendix we show that the pressure gradient in kinetic theory is larger than in MHD by a

factor of ∼ β1/2. The kinetic growth rates should therefore be even smaller than the MHD

growth rates, with stronger suppression at larger β. This is precisely what is seen in the

kinetic calculation; e.g., Figures 3a and 4a show the Bφ = 0 growth rate for different β.

Consider now the special case of kR = 0, but Bφ 6= 0 (e.g., Fig. 4b). In this case the

radial pressure force vanishes, but there is an azimuthal pressure force due to the anisotropic

pressure. As suggested by the toy model in equation (33) this azimuthal pressure force,

which is not present in MHD, is destabilizing because it removes angular momentum from

7Strictly speaking, equations (30) and (35) should have an additional term on the right hand side given

by kzvAzvAφ(k · ξ). For β � 1, this term is negligible because the MRI is nearly incompressible and so we

do not consider it further.
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an inwardly displaced fluid element and adds it to an outwardly displaced fluid element

(just as the azimuthal component of magnetic tension does). Moreover, for Bφ ∼ Bz the

destabilizing pressure force is larger than the destabilizing magnetic tension force by a factor

of ∼ β1/2 (see the Appendix). This explains why the kR = 0, Bφ 6= 0 growth rates are larger

than their MHD counterparts, and why the growth rates increase with increasing β (see, e.g.,

Fig. 4b). It also explains why the growth can be rapid even at kzvAz � Ω, when magnetic

tension (which drives the MRI in MHD) is very weak. In fact, for β � 1 and kzvAz � Ω,

the forces in the kinetic MRI are arranged as follows: azimuthal pressure � Coriolis �
magnetic tension. We therefore expect the growth rates to approach the Kφ � Ω � KR

limit of equation (33), namely |ω| ≈
√

3Ω. As shown in Figure 4b, the fastest growing modes

do approach this maximal growth rate.

Although the above interpretation focuses on two special cases, the results in Figures

2-4 can be readily understood as a competition between the stabilizing radial pressure force

and the destabilizing azimuthal pressure force. The importance of gas pressure, rather than

magnetic forces, also explains why the kinetic results depend sensitively on β.

5. Summary and Discussion

In this paper we have presented a linear axisymmetric calculation of the magnetorota-

tional instability (MRI) in a collisionless plasma. Our analysis is restricted to wavelengths

much larger than the proton Larmor radius, frequencies below the proton cyclotron frequency,

and “seed” magnetic fields with no radial component (BR = 0). The MRI is believed to give

rise to MHD turbulence and efficient angular momentum transport in astrophysical accretion

flows, and may also be important for the dynamo generation of galactic and stellar magnetic

fields (e.g., BH98). Our kinetic calculation, rather than an MHD calculation, is appropriate

whenever the collisional mean free path of the protons exceeds the wavelength of the MRI.

The instability criterion for the kinetic MRI is the same as in MHD, namely that the

angular velocity decrease outwards. The set of unstable modes is also the same in kinetic

theory and MHD. However, nearly every mode has a linear kinetic growth rate that differs

from its MHD counterpart. For example, the fastest growing mode in kinetic theory has

a growth rate ≈
√

3Ω for a Keplerian disk, which is larger than its MHD counterpart by

a factor of 4
√

3/3 ≈ 2.3.8 More generally, the kinetic growth rates can be either larger or

smaller than the MHD growth rates, depending on the orientation of the magnetic field and

the wavevector of the mode (Fig. 2). The kinetic growth rates also depend explicitly on β,

8This rapid growth is obtained only for kRvAz � Ω, kzvAz � Ω, β � 1, and Bφ >∼ Bz (see Figs. 3 & 4).
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i.e., on the ratio of the gas pressure to the magnetic pressure. For β � 1 the kinetic results

differ significantly from the MHD results while for β ∼ 1 they are similar (see Fig. 3).

We have argued that the kinetic MRI can be understood by considering the force due

to pressure gradients in a high β collisionless plasma. In MHD, pressure leads to a relatively

minor modification of the MRI. In kinetic theory, however, the pressure forces are ∼ β1/2

times larger than in MHD and are therefore dynamically much more important (see §3 and

the Appendix). Moreover, in kinetic theory there is an azimuthal pressure force even for

axisymmetric modes (so long as Bφ 6= 0; see eqs. [10] and [35]). This is because the pressure

response is anisotropic in a collisionless plasma: it is different along and perpendicular

to the local magnetic field. This azimuthal pressure force, which is not present in MHD, is

destabilizing because it removes angular momentum from an inwardly displaced fluid element

and adds it to an outwardly displaced fluid element (just as the azimuthal component of

magnetic tension does in MHD). The destabilizing pressure force explains why the kinetic

growth rates of the MRI can be larger than the MHD growth rates (e.g., Fig. 4b).

The importance of gas pressure shows that the character of the MRI is somewhat dif-

ferent in a collisionless plasma than in a collisional plasma described by MHD. The crucial

function of the magnetic field is to enforce an anisotropic pressure response, rather than to

directly destabilize the plasma via magnetic tension. The importance of pressure gradients

also explains why the kinetic results depend sensitively on β. For β ∼ 1 pressure forces are

comparable to magnetic forces, and the kinetic growth rates are not that different from the

MHD growth rates, while for β � 1 pressure forces dominate over magnetic forces and the

kinetic results differ substantially from the MHD results (e.g., Fig. 3).

BH92 showed that the MRI in MHD could be understood using a simple model in

which magnetic tension acts like a spring coupling different fluid elements in the plasma.

We have presented a generalization of BH92’s “spring” model that captures many of the

results of the full kinetic MRI calculation (see eqs. [31]-[33]). In this model the radial and

azimuthal “spring constants” are different; physically, this corresponds to the anisotropic

pressure response in a collisionless plasma.

To conclude, we briefly discuss the astrophysical implications of our results, focusing

on the two applications mentioned in the introduction: (1) the amplification of weak fields

generated by a Biermann battery or analogous mechanism, and (2) hot two-temperature

accretion flows onto compact objects.

(1) For a very weak magnetic field MHD predicts that the fastest growing mode of the MRI

has a very small wavelength ≈ vA/Ω ∝ B. This will be less than the collisional mean

free path in many cases. Our kinetic analysis shows that there is rapid growth of the MRI
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even in this limit. This is encouraging for the hypothesis that the MRI contributes to the

dynamo amplification of very weak magnetic fields, e.g. the generation of galactic fields from

a cosmological seed field. To further assess this question, however, it is necessary to extend

our analysis to include finite Larmor radius effects. In particular, the “battery” generation

of magnetic fields is limited by self-induction to field strengths such that the proton Larmor

radius is comparable to the size of the system (e.g., Balbus 1993). Finite Larmor radius effects

will always be important on these scales, particularly since the wavelengths of unstable MRI

modes are then much less than the proton Larmor radius.

(2) In radiatively inefficient accretion flows onto compact objects, which have been applied

extensively to low-luminosity accreting sources (e.g., Narayan et al. 1998), the inflowing gas

is a hot two-temperature plasma in which the proton temperature is much larger than the

electron temperature. In order to maintain Tp � Te, the timescale for electrons and protons

to exchange energy by Coulomb collisions must be longer than the inflow time of the gas.

This requires a sufficiently small accretion rate, Ṁ <∼ α2ṀEDD (e.g., Rees et al. 1982),

where ṀEDD is the Eddington accretion rate and α is the dimensionless Shakura-Sunyaev

viscosity parameter. Since the timescale for proton-electron collisions to modify the proton

distribution function is comparable to the proton-electron energy exchange timescale, the

proton dynamics is effectively collisionless for any two-temperature radiatively inefficient

accretion flow;9 the kinetic calculation presented in this paper is therefore appropriate for

describing angular momentum transport by the MRI in such models.10

It is, however, difficult to apply our linear calculations to the nonlinear saturated state

expected in the accretion flow. Nonetheless it is worth noting that there are rapidly growing

modes in a collisionless plasma even for β � 1 so weak fields can be efficiently amplified.

Moreover, MHD simulations find saturation at β ∼ 1 − 100 with a predominantly toroidal

field (e.g., BH98; Stone & Pringle 2001). For this magnetic field configuration, the linear

kinetic growth rates of the MRI are not that different from their MHD counterparts (if

anything, they may be somewhat larger; e.g., Figs. 3b & 4b). While this suggests that

the saturated turbulence may be qualitatively similar in kinetic theory and MHD, there will

undoubtedly be quantitative differences. In addition, the fact that the fastest growing modes

occur at somewhat different wavenumbers could change the nonlinear results. Perhaps more

importantly, collisionless damping of the sound wave and the slow magnetosonic wave is very

strong and operates on all scales in a collisionless plasma, while strong damping in MHD is

9Proton-electron collisions are more important than proton-proton collisions because Tp � Te.

10 By contrast, geometrically thin accretion disks (e.g., Shakura & Sunyaev 1973) are much cooler and

denser; MHD accurately describes the dynamics of thin disks so long as the gas is sufficiently ionized.
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restricted to very small scales. This may alter the nonlinear behavior of the MRI. Numerical

simulations that address these issues would be extremely interesting.

Our results may also have implications for understanding particle heating in radiatively

inefficient accretion flows. The radiative efficiency of such models is set by the amount of

electron heating in the plasma. This depends on how the energy in MHD turbulence is

dissipated (e.g., via a turbulent cascade, reconnection, etc.). The prominent role of pressure

fluctuations in the kinetic MRI suggests that the resulting turbulence may couple better to

slow waves (which have a pressure perturbation) than Alfvén waves (which do not). Slow

waves primarily heat the protons in the collisionless plasmas of interest (e.g., Quataert 1998;

Blackman 1999) while an Alfvènic cascade may lead to significant electron heating if β <∼ 10

(e.g., Gruzinov 1998; Quataert & Gruzinov 1999). Kinetic simulations of the MRI should be

able to assess the relative importance of slow wave and Alfvén wave excitation.

We thank Steve Balbus, Steve Cowley, Barrett Rogers, Alex Schekochihin, and Anatoly

Spitkovsky for useful discussions. GH was supported in part by the U.S. Department of
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A. Calculation of the Pressure Forces

In this Appendix we calculate the radial and azimuthal pressure forces in equations (34)

and (35) in terms of the fluid displacements ξR and ξφ. These are used in our interpretation of

the kinetic MRI results in §4. We restrict our analysis to the two important limits highlighted

in §4: (1) Bφ = 0; kR 6= 0 and (2) Bφ 6= 0; kR = 0.

A.1. Bφ = 0; kR 6= 0

In this case there is a radial pressure force given by (eq. [34])

FR ≡ −ikR
(
δB2

8πρ0
+
δp⊥
ρ0

)
= −ikR

[
δρ

ρ0
c2

0 +
δB

B0

(
v2
Az +D1c

2
0

)]
, (A1)

where we have used δp⊥/p0 = δρ/ρ0 +D1δB/B0 from equation (14) in the second equality.

We now rewrite all of the terms in FR in terms of ξR, the radial displacement. For Bφ = 0,

δB = δBz. The radial component of the induction equation (eq. [11]) thus yields

δB

B0
=
kRδvR
ω

= −ikRξR. (A2)

To calculate δρ/ρ0 = (kzδvz + kRδvR)/ω in terms of ξR alone we need to find δvz as a

function of δvR. To do this note that the z-component of the momentum equation (eq. [10])

implies

kzδvz =
k2
zδp‖
ωρ0

. (A3)

Since δρ/ρ0 − δB/B0 = kzδvz/ω, equation (15) gives δp‖ as a function of both δvz and δvR.

Substituting this into equation (A3) we solve for δvz in terms of δvR and thus find

δρ

ρ0
= −ikRξR

(
1 +

c2
0k

2
z

ω2 − c2
0k

2
z (1 +D2)

)
. (A4)

Substituting equations (A2) and (A4) into equation (A1), and assuming β � 1 so that

|ω2| � k2
zc

2
0, yields

FR = −k2
RξR

[
c2

0

(
D1 +

2D2

1 + 2D2

)
+ v2

Az

(
1 − ω2

k2
zv

2
Az(1 + 2D2)2

)]
. (A5)

The MHD limit of equation (A5) can be obtained by setting D1 = D2 = 0 (see §2.3). In

this case FR = −ξRk2
Rv

2
Az[1 + |ω|2/(k2

zv
2
Az)] ∼ −ξRk2

Rv
2
Az. Consider instead double adiabatic
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theory, for whichD1 = 1 and D2 = 2. In this case FR ∼ −ξRk2
Rc

2
0; this is larger than the MHD

pressure force by a factor of ∼ β. Finally, for the full kinetic problem we need to evaluate

D1 and D2 using equation (16). Since the MRI has |ω| <∼ kzvA we can take ξ � 1 so long as

β � 1. In this case D1 ≈ D2 ≈ −i
√
πξ ∼ −iω/kzc0, so that FR ∼ −k2

RξRc
2
0(−iω/kzc0). To

estimate the magnitude of FR, note that |ω| ∼ kzvA in MHD, in which case FR ∼ −ξRk2
RvAzc0.

This is∼ β1/2 times larger than the pressure force in MHD. This large radial pressure gradient

suppresses the growth rates of the MRI, as seen in Figures 2-4.

A.2. Bφ 6= 0; kR = 0

In this case there is an azimuthal pressure force given by (eq. [35])

Fφ ≡ −ikz sin θ cos θ
δp‖ − δp⊥

ρ0
= −ikzc2

0 sin θ cos θ

[
D2

δρ

ρ0
− (D1 +D2)

δB

B0

]
, (A6)

where we have used equations (14) and (15) to eliminate δp⊥ and δp‖. For β � 1 the MRI

is nearly incompressible and δρ/ρ0 � δB/B0.
11 We therefore neglect the δρ/ρ0 term in

equation (A6). Using δvφ = ∂ξφ/∂t − ξRdΩ/d lnR one can rewrite equation (22) for δB in

terms of ξφ. Again neglecting δρ/ρ0 relative to the other terms, this yields

δB

B0
= −ikz sin θ cos θξφ. (A7)

Substituting equation (A7) into equation (A6) yields

Fφ = −ξφk2
zc

2
0 sin2 θ cos2 θ(D2 +D1). (A8)

In MHD, Fφ = 0, and magnetic tension, which ∼ −k2
zv

2
Azξφ (see eq. [35]), plays the

destabilizing role. By contrast, in kinetic theory the azimuthal pressure force is given by

Fφ ∼ −ξφ sin2 θ cos2 θk2
zc

2
0(−iω/kzc0). For Bφ ∼ Bz, so that sin θ ∼ cos θ ∼ 1, this is larger

than the destabilizing azimuthal tension force by a factor of ∼ β1/2. This large destabilizing

azimuthal pressure force enhances the growth rates of the MRI, as seen in Figures 2-4.

11The calculation in Appendix A.1 shows this explicitly: eqs. [A4] and [A2] imply that δρ/ρ0 ∼ D2δB/B0

where D2 ∼ β−1/2 � 1. The same qualitative result holds for the different geometry considered here.
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Fig. 1.— The dispersion relation for the magnetosonic waves in MHD (dotted lines) and in

double adiabatic theory (solid lines), taking β = 100. In MHD, the slow wave dispersion

relation is identical to that of the Alfvén wave (ω = k‖vA) while this is only true for k⊥ � k‖
in double adiabatic theory (see the text for an explanation).
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Fig. 2.— The kinetic growth rates of the MRI for βz ≡ 8πp0/B
2
z = 104 and for different

geometries of the seed magnetic field. The MHD results, which are independent of Bφ, are

shown for comparison (dotted line). The vertical wavenumber is taken to be kzvAz/Ω =√
15/16, which is the fast growing mode in MHD.
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Fig. 3.— The kinetic growth rates of the MRI for varying βz (solid lines). The MHD results,

which are nearly independent of βz, are shown for comparison (dotted line). The vertical

wavenumber is taken to be kzvAz/Ω =
√

15/16, which is the fast growing mode in MHD.

Fig. 4.— The kinetic growth rates of the MRI as a function of kz for different βz (solid lines).

The corresponding MHD results are shown by the dotted line.


