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Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the
multiscale gyrokinetic code TRINITY �M. Barnes, “TRINITY: A unified treatment of turbulence,
transport, and heating in magnetized plasmas,” Ph.D. thesis, University of Maryland, 2008
�eprint arXiv:0901.2868�� is described. The coupling of the microscopic and macroscopic physics is
done within the framework of multiscale gyrokinetic theory, of which we present the assumptions
and key results. An assumption of scale separation in space and time allows for the simulation of
turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which
the transport equations are implicitly evolved. This leads to a reduction in computational expense of
several orders of magnitude, making first-principles simulations of the full fusion device volume
over the confinement time feasible on current computing resources. Numerical results from TRINITY

simulations are presented and compared with experimental data from JET �M. Keilhacker, Plasma
Phys. Controlled Fusion 41, B1 �1999�� and ASDEX Upgrade �O. Gruber, Nucl. Fusion 47, S622
�2007�� plasmas. © 2010 American Institute of Physics. �doi:10.1063/1.3323082�

I. INTRODUCTION

A fundamental challenge of fusion science is to maxi-
mize fusion power, which is determined primarily by macro-
scopic profiles of density and temperature. These profiles,
which vary spatially on the system scale and evolve on the
energy confinement time scale, drive turbulence at
microscales in space and time. In the absence of magnetohy-
drodynamic �MHD� instability, this microturbulence is the
dominant source of heat flux observed in standard tokamaks,
which sets rigid constraints on the macroscopic profiles.1

Consequently, it is of critical importance to understand the
self-consistent interaction between the macroscopic profiles
and the microturbulence.

This is a challenging task due to both the wide range of
scales involved and the high dimensionality of the system.
The electron turbulence space scale, which is comparable to
the electron Larmor radius, will be on the order of 0.1 mm
for a device such as ITER,2 which has a minor radius of
about 2 m. Similarly, the electron turbulence time scale is
approximately 1 �s, much smaller than the expected energy
confinement time of several seconds. Additionally, the
instabilities driving the turbulence are kinetic in nature, re-
quiring treatment of the velocity space in addition to the
configuration space. Including all of these dynamics directly
in a single simulation is not feasible on current computing
resources.

As long as all relevant dynamics occur on time scales

long compared with particle gyromotion, it is possible to
average over the gyro-orbits and eliminate the gyroangle as a
phase space variable. Furthermore, for magnetic confinement
devices with sufficiently small �� �ratio of ion Larmor radius
to plasma minor radius�, there is expected to be a separation
between micro- and macroscales in space and time.3,4 The
�f-gyrokinetic model5–7 exploits these scale separations,
simplifying the system considerably. Given a set of fixed
macroscopic profiles, it allows for the calculation of turbu-
lent fluxes in a five-dimensional �5D� phase space. Such cal-
culations have been performed numerically in gyrokinetic
codes for more than two decades, providing much insight
into the nature of kinetic instabilities and microturbulence.
First-principles �f-gyrokinetic simulations have steadily ad-
vanced in their sophistication and physical fidelity and have
become routine in recent years.

However, these codes only model the effect of macro-
scopic profiles on microturbulence: they do not provide
quantitative information on how this turbulence subsequently
affects the evolution of the macroscopic profiles. Accurately
calculating fluxes from experimental profiles is also prob-
lematic because of the acute sensitivity of the fluxes to small
changes in the input profile gradients �which would arise due
to uncertainty in experimental measurements�.8 In an attempt
to address these issues, full-f gyrokinetic codes have been
developed, which do not explicitly assume the scale separa-
tions listed above. Subsequently, they are able to take into
account the two-way interaction between turbulence and
equilibrium thermodynamic profiles. However, well-resolved
full-f simulations would be extremely expensive numerically
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because of the wide range of scales described above and
because of the necessity of calculating the distribution func-
tion and fields to very high order. It has also recently been
argued that this approach as currently formulated leads to an
unphysical source of toroidal angular momentum.9

An alternative approach commonly used to study the in-
teraction of the micro- and macrophysics is to solve fluid
transport equations with a reduced model for the turbulent
fluxes. Typically, the transport is modeled as a diffusive pro-
cess, with turbulent diffusivities coming from a wide range
of models, including empirical fits to experiment or simula-
tion and theory-based estimates.1,10–14 These reduced models
have provided a basic qualitative understanding of the mul-
tiscale interaction and are capable in some cases of giving
good quantitative agreement with first-principles, nonlinear
gyrokinetic calculations.15,16 However, such models do not
permit detailed validation studies because they do not pro-
duce fluctuation spectra or other data that can be experimen-
tally challenged. Without careful validation, even first-
principles reduced models �with no adjustable parameters�
cannot be fully trusted for predictions of performance in new
operational regimes, and reduced models with fit parameters
adjusted for current experiments have even less credibility.
There are known cases for which even first-principles re-
duced models currently available are inadequate.17,18

Consequently, it is desirable to couple not only reduced
flux models, but also direct numerical simulations of the tur-
bulence, to transport solvers. This has been done in Ref. 19
for a Hasegawa–Wakatani two-dimensional fluid model of
the turbulence using an implicit relaxation technique and al-
lowing for nonlocality. Here, we describe coupling to local,
nonlinear, 5D gyrokinetic turbulence calculations using a
Newton method �similar to that described in Ref. 20�, which
accelerates convergence by more than an order of magnitude
for typical parameters. This coupling is achieved using the
multiscale gyrokinetic code TRINITY,21 which can use nonlin-
ear fluxes from the continuum gyrokinetic code GS2 �Ref. 22�
or GENE.23 Our approach is similar to that employed in
TGYRO,24 with the key distinction that TRINITY evolves the
macroscopic profiles in time, whereas TGYRO assumes a
steady state and solves the volume-integrated transport equa-
tions for profile gradients.

It should be noted that some mesoscale phenomena in
space and time are not formally considered in the standard
multiscale gyrokinetic model. Our simulations ignore low-
order magnetic islands and so are directly applicable only
during MHD-quiescent periods of plasmas. Rapid cold/heat
pulse propagation �such as following a sawtooth or edge lo-
calized mode �ELM� crash� is possible in the TRINITY code
because of the presence of stiff critical gradients in ion tem-
perature gradient �ITG� and trapped electron mode turbu-
lence, although the transport time step would of course have
to be reduced in TRINITY during such a transient event to be
able to follow its propagation. It should be noted that flux
tube simulations include the contribution to the heat flux of
avalanches on all scales up to the radial size of the flux tubes.
If even longer wavelength avalanches were important, then
the heat flux would increase as the flux tube simulation do-
main was made larger, so convergence studies can be used to

test this. Particle-in-cell and continuum flux tube simulations
generally find that the flux converges with sufficiently large
simulation size, of order of the sizes we are using here. Pre-
vious gyrokinetic studies have found that some modest non-
local turbulence spreading may occur over distances of a few
radial eddy sizes,25 but in the core region of the large toka-
maks we are studying here �and even more so at reactor
scales� this should usually be a small effect. It should be
acknowledged that the separation of scales assumed for the
core plasma in this paper may break down in the edge region
of the plasma because gradient scale lengths and eddy sizes
may not be very different near the edge, so nonlocal effects
may be important there.

This paper is organized as follows. In Sec. II we state the
fundamental assumptions of the multiscale model and
present the closed system of equations that results from gy-
rokinetic expansion of the Maxwell–Boltzmann system. In
Sec. III, we describe the numerical scheme used in TRINITY

to simulate the multiscale gyrokinetic system of equations.
We also give estimates for the space and time domain sav-
ings provided by the multiscale scheme. Section IV contains
results from TRINITY simulations of L-mode and H-mode dis-
charges from JET �Ref. 26� and ASDEX Upgrade.27 We
show that the numerical data from TRINITY are in good quan-
titative agreement with reconstructions of experimental data.
Finally, we conclude in Sec. V with a summary and a dis-
cussion of possible future directions for research.

II. THEORETICAL FRAMEWORK

In this section, we state the fundamental assumptions
present in our multiscale model and present the resulting
closed system of equations that must be solved. These equa-
tions, which are a rigorous asymptotic limit of the full
Maxwell–Boltzmann system, have been derived in detail in
Refs. 28 and 29. We include a brief overview of the key
results here for completeness.

As the starting point for our analysis, we begin with the
coupled system consisting of Maxwell’s equations and the
driven Fokker–Planck equation

dfs

dt
= C�fs� + Ss�fs� , �1�

where fs= fs�x ,v , t� represents the distribution of particles of
species s in position �x� and velocity �v� space, C represents
the effect of two-particle Coulomb interactions, and Ss is a
source term accounting for the external injection of particles,
momentum, and energy. This system of equations describes
all of the important dynamics in fusion plasmas and is con-
sequently intractable, both analytically and numerically.
Since we are interested in studying the interaction of the
plasma microturbulence with the macroscopic profiles, we
simplify the system by adopting a variant of the standard
�f-gyrokinetic ordering.6 This ordering imposes constraints
on the relative amplitudes and space-time scales of the
macro- and microphysics.

We first decompose the distribution function into macro-
scopic and microscopic quantities by ensemble averaging:
f = �f�+�f , with the angled brackets denoting an ensemble
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average. Defining the smallness parameter to be ��� /L,
where � is the Larmor radius and L is a macroscopic scale
length, we order each of the terms in the Maxwell–
Boltzmann equations. The assumptions employed in ordering
the terms are as follows. �1� The fluctuations are assumed to
be low amplitude compared with macroscopic quantities,
such that �f ���f�. This is in good agreement with core mea-
surements from a number of modern fusion experiments,
which find density and temperature fluctuations �1% of the
macroscopic densities and temperatures.30–32 �2� The micro-
turbulence is assumed to be spatially anisotropic with mac-
roscale variations along and microscale �i.e., Larmor radius�
variations across the equilibrium magnetic field. Experimen-
tal measurements of turbulence parallel and perpendicular
correlation lengths support this hypothesis.30,33,34 �3� All fre-
quencies of interest are assumed to be well below the ion
cyclotron frequency, and the evolution of the macroscopic
profiles is taken to be much slower than the turbulent fluc-
tuations ���f� /�t����f /�t�. Again, this transport ordering is
in agreement with experimental evidence.33 �4� We order
��f /�t�C��f� with the collision frequency � defined such
that ���� ln �f /�t. Consequently, �f is allowed character-
istic scales in velocity space, �v, of size 	�vth��v�vth.
This collision frequency ordering is satisfied even in nearly
collisionless plasmas such as anticipated in ITER. �5� Mac-
roscopic flows are assumed to be comparable to the ion ther-
mal speed, with microscopic flows �i.e., turbulent E�B ve-
locity� taken to be much smaller. For simplicity, we consider
in this paper the case in which the Mach number of the
macroscopic flow is taken to be small as a subsidiary order-
ing. �6� The external particle, momentum, and energy
sources are assumed to affect the system evolution on the
confinement time scale, consistent with experiment.

Expanding the distribution function and fields in � and
applying the above ordering assumptions to the Maxwell–
Boltzmann system results in a hierarchy of equations that is
ultimately closed by ensemble and flux surface averaging
and taking moments of the evolution equation for the lowest
order �macroscopic� distribution function, f0= �f0�. One finds
that f0 is a gyroangle-independent, shifted Maxwellian
whose evolution is governed by the transport equations

�ns

�t
+

1

V�

�

�	
�V��
s�� = �Sn� , �2�
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�t
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1

V�

�
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�V���s��

=
1

4�
� · ��B�B · ��R2� + 
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�SLs
� , �3�
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�ps

�t
+

1

V�

�

�	
�V��Qs��

= − �Hs� +
3

2
ns


u

�su

 �Tu − Ts� + �Sp� , �4�

where R is the major radius, � is the physical toroidal
angle, 	 is the flux label, the overline denotes a flux surface

average, and V�=dV /d	, with V being the volume enclosed
by the flux surface. The evolved quantities ns, ps, and L are
the ensemble-averaged density, pressure, and species-
summed toroidal angular momentum, respectively. In the
low Mach limit we are considering, the density and pressure
are constant on flux surfaces. Terms denoted by S represent
external sources, with subscripts indicating the relevant in-
jected quantity. The collisional energy exchange frequency
�su


 is given in Ref. 35. The terms 
, �, Q, and H are fluxes
and heating generally consisting of classical, neoclassical,
and turbulent contributions. They are given by


 � �	 ·� d3v�v��f1 + vB�f1� + �C�� · �f0�� , �5�

Q � �	 ·� d3v
mv2

2
�v��f1 + vB�f1� + �C�� · �f0�� , �6�

� � �	 ·� d3v�mR2v · ���v��f1, �7�

H �� d3ve�D�

Dt
+ �

��

�	
+

v

c
·
�A0

�t
��f1� + � · �f0�
 , �8�

where �=��−v ·�A /c is the generalized electromagnetic

potential fluctuation, v�=c /Bb̂��� is the particle drift due

to the fluctuating fields, vB= �b̂ /��� �v�
2 � ln B /2

+v�
2b̂ ·�b̂� contains the magnetic drifts, e is the species

charge, � is the gyroradius vector, and D /Dt=� /�t+u ·�,
with u=R��	��̂ the equilibrium flow velocity.

The components of the first-order distribution function
f1 and the fluctuating potentials are obtained by solving the
neoclassical and gyrokinetic equations, coupled to the low-
frequency Maxwell’s equations. These equations are all self-
consistently obtained as part of the multiscale gyrokinetic
expansion. The neoclassical equation governing �f1� is

C��f1�� − v�b̂ · ��f1� = vB · �f0 +
ef0

cT
v�b̂ ·

�A0

�t
. �9�

The gyrokinetic equation determining the evolution of �f1 is

Dh

DtR
+ �v�b̂ + �v��R + vB� · �h − �C�h��R

=
f0

T
�D���R

DtR
+ �v��R · �	�mv�

I

B

��

�psi
−

� ln f0

�	

� ,

�10�

where �f1=h− �q�� /T�f0, I�	�=q�	� / �1 /R2� is the toroidal
flux function, q�	� is the safety factor, � · �R denotes a gyroav-
erage at fixed guiding center position R, and the subscript on
the D /Dt operator indicates that it is to be evaluated at R.
The low-frequency Maxwell’s equations are given by

��
2 �� = − 4�


s

es� d3vhs, �11�
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��
2 �A� = −

4�

c



s

es� d3vv�hs, �12�

���B� =
4�

c



s

es� d3v�b̂ � v��hs. �13�

The final elements needed to close this system are equa-
tions for the evolution of the magnetic geometry. In particu-
lar, the magnetic field can be specified in an axisymmetric
system if given the poloidal flux 	 and the toroidal flux
function I�	�. The toroidal flux function is evolved by taking
the toroidal component of Faraday’s law and flux surface
averaging

�

�t
� I�	�

R2 
 = −
1

V�

�

�	
�V�

B

c
·
�A0

�t

 , �14�

with the B ·�A0 /�t term obtainable from the neoclassical
equation �Eq. �9��. Equations �9� and �14� are then coupled to
the Grad–Shafranov equation, which uses the updated mac-
roscopic pressure from Eq. �4� to obtain 	 and close the
system

R2 � · ��	

R2 
 = − I
�I

�	
− 4�R2


s

�ps

�	
. �15�

III. NUMERICAL METHOD

We describe in this section the numerical model we have
developed for solving the system described by Eqs. �2�–�15�.
This model is implemented in the multiscale gyrokinetic
transport solver TRINITY.21 Currently, there are a few addi-
tional assumptions employed in TRINITY to simplify the mul-
tiscale system presented in Sec. II. In what follows, we pro-
vide a numerical prescription for solving the full system,
pointing out the places where the TRINITY model has been
simplified.

A simple sketch of our multiscale numerical model is
given in Fig. 1. A direct numerical simulation would require
a fine space-time mesh over the full device volume and over

at least a confinement time. We exploit the scale separation
present in the system to drastically reduce the domain over
which a fine mesh is required. Our assumption of time scale
separation between the turbulence and the equilibrium allows
us to fix equilibrium quantities while we evolve the turbu-
lence to saturation. Additionally, it allows us to use steady-
state, time-averaged fluxes in our transport equations. Con-
sequently, we need only to resolve turbulence time scales for
short periods of time, between which we can take large time
steps characteristic of the confinement time. As the separa-
tion of scales gets wider, the simulation domain savings from
this approach grows: the cost of simulating small �� devices
is no greater than that for moderate �� devices. The time
domain savings for a device like ITER is a factor of
hundreds.

Similarly, spatial scale separation allows us to assume
that macroscopic quantities �and their associated gradient
scale lengths� are constant across the radial domain in which
we simulate turbulent dynamics. As long as the turbulence
simulation domain is wide enough in each dimension, the
turbulence at the ends of the domain is uncorrelated. Statis-
tically periodic boundary conditions then apply. The result of
this local approximation is a flux tube simulation domain for
the turbulence �Fig. 1�, which can be used to periodically
map out a flux surface. Comparisons between local and glo-
bal gyrokinetic simulations have shown that the local ap-
proximation is valid for small ��,36 as it must be for the
gyro-Bohm scaling suggested by high confinement
experiments33 to hold. Once again, the spatial domain sav-
ings increases with the scale separation. On small �� devices,
the simulation volume is reduced by a factor of tens.

A. Discretization of the transport equations

The transport equations �Eqs. �2�–�4�� are stiff, nonlinear
partial differential equations. In order to take the large time
steps required by our multiscale scheme, we must treat them
implicitly. We allow for a general, single-step time discreti-
zation, but we primarily use first-order backward differences
for steady-state systems and second-order backward differ-

FIG. 1. �Color online� �Left� Cartoon of multiscale space-time grid used in TRINITY. Vertical and horizontal regions represent the radial and time domains,
respectively, over which a fine mesh is used to calculate turbulent fluxes. The overlapping regions denote the reduced space-time domain used in TRINITY.
These patches, each of which corresponds to a nonlinear gyrokinetic flux tube simulation �right�, are grid points in the coarse space-time mesh used to solve
the transport equations. The flux tube visualization is taken from a GS2 simulation of electron-scale turbulence in MAST.
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ences for time-dependent systems. An adaptive time step is
employed, allowing for accurate time evolution with large
time steps. The nonlinear terms are treated implicitly by lin-
earizing them using a standard, multi-iteration Newton’s
method similar to that given in Ref. 20. For instance, the
normalized heat fluxes, which are nonlinear functions of the
macroscopic profiles, are expanded as

Q̃m+1,p+1 = Q̃m+1,p + �ym+1,p+1 − ym+1,p�� �Q̃

�y
�

ym+1,p
, �16�

where m denotes the time step index, p denotes the iteration

index within the time step, and Q̃��Q / pvth��a /��2. The vec-
tor y contains the profiles of the fundamental macroscopic,
time-dependent quantities in the simulation. This consists of
the two free flux functions from the Grad–Shafranov equa-
tion, 	 and I�	�, as well as the species density and pressure
and the species-summed toroidal angular momentum. We are
not currently evolving the magnetic equilibrium in TRINITY,
so that 	 and I�	� are fixed in time.

Discretizing Eq. �16� in space, we obtain

Q̃j
m+1,p+1 = Q̃j

m+1,p +�

k

�yk
m+1,p+1 − yk

m+1,p�
�Q̃j

�yk
�

yk
m+1,p

,

�17�

where the subscript denotes the spatial index. In the local
approximation, the fluxes depend only on the local values of
macroscopic quantities and their gradients. The above ex-
pression thus reduces to

Q̃j
m+1,p+1 = Q̃j

m+1,p +�

k

�yk
m+1,p+1 − yk

m+1,p�

�� �Q̃j

�y j
+

�Q̃j

�y j�

dy j�

dyk

�

yk
m+1,p

. �18�

In TRINITY, we make the further simplifying assumption that
the fluxes depend more strongly on profile gradients than the
local values themselves. We then neglect �Q /�y, giving us
the final expression

Q̃j
m+1,p+1 = Q̃j

m+1,p +�

k

�yk
m+1,p+1 − yk

m+1,p�
�Q̃j

�y j�

dy j�

dyk
�

yk
m+1,p

.

�19�

If this assumption is not satisfied, it affects only the rate of
convergence of the solution, not its accuracy.

In order to numerically calculate �Q̃j /�y j�, we must em-

ploy finite differences. This requires us to compute Q̃j at
multiple values of y j�. This is equivalent to calculating the
fluxes for both the nominal profiles and for additional pro-
files corresponding to each gradient that must be perturbed.
The total number of flux tube calculations required during
each transport time step N is given by

N = nr � �1 + np� , �20�

where nr is the number of radial grid points in the transport
solver and np is the number of macroscopic profiles being
evolved.

Once the transport equations are linearized, it is straight-
forward to implicitly evolve them. The expense of the im-
plicit evolution is negligible when compared with the cost of
the nonlinear turbulence calculations so that there is no need
to use an approximate Jacobian. Because inversion of the
Jacobian is essentially free, a dense matrix, arising from high
order spatial derivatives, is tractable.

B. Schematic

To begin the numerical calculation, the initial state of the
plasma must be specified. In particular, enough information
must be given to calculate the fluxes and heating from Eqs.
�5�–�8�. This requires local information about the magnetic
equilibrium as well as values for the macroscopic density,
flow, and temperature and their gradients at each of the flux
surfaces comprising the radial grid for the transport solver.
TRINITY is currently capable of both an analytic and numeri-
cal specification of these quantities, with experimental values
taken from the publicly accessible ITER profile database.37

Once these quantities are obtained at each of the radial grid
points, TRINITY calls a solver for the fluxes. For the ion neo-
classical heat flux, TRINITY currently uses the simplified ana-
lytic model given in Ref. 38. All other neoclassical and clas-
sical fluxes, which are typically small compared with
turbulent fluxes,39,40 are neglected. For a more accurate treat-
ment of neoclassical effects, one could interface to a code
such as that given in Ref. 41, which solves Eq. �9� directly.
This will be the subject of future work.

For the turbulent fluxes, there are interfaces within TRIN-

ITY to two widely used, nonlinear gyrokinetic codes, GS2

�Ref. 22� and GENE.23 Additionally, there are options to use
the Institute for Fusion Studies–Princeton Plasma Physics
Laboratory �IFS-PPPL� model1 and other simpler analytic
models. Because we are using the local approximation, the
flux calculations at each radius are independent for a given
transport time step. Consequently, each flux tube calculation
can be run in parallel, with the only communication occur-
ring when the fluxes are gathered to advance the transport
equations. Since each flux tube calculation parallelizes with
high efficiency to thousands of processors, our scheme with
tens of flux tubes can easily scale to hundreds of thousands
of processors.

Once the steady-state turbulent fluxes are computed,
they are time and flux tube averaged and passed back to the
transport solver. The discretized transport equations are then
solved to obtain updated densities, pressures, and the
species-summed toroidal angular momentum. Boundary con-
ditions are required to obtain unique solutions. At the outer-
most radius in the simulation, we fix the values of the ther-
modynamic profiles, typically to values taken from
experiment. As the other boundary condition, we take the
product of V� with the fluxes to vanish at the magnetic axis.
Within each transport time step, the equations are iterated
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until the relative error upon successive iterations is less than
a user-specified tolerance. In practice, we find that two itera-
tions are sufficient to obtain accurate results.

Currently, we only consider static magnetic equilibria in
TRINITY. This eliminates several terms in Eqs. �2�–�4� and
foregoes the necessity of solving Eqs. �14� and �15�. This
approximation is strictly valid in the limit of �=8�p /B2

�	me /mi�i,neo /�turbulence, where the magnetic geometry
evolves on a resistive time which is much longer than the
energy confinement time. However, if one were to evolve the
magnetic equilibrium, then the next step would be to use the
parallel current obtained from Eq. �9� in Faraday’s law �Eq.
�14�� to calculate I�	�. When combined with the updated
pressure gradient, this allows us to solve for 	 in Eq. �15�.
With the updated thermodynamic profiles and magnetic equi-
librium, we complete the feedback loop by solving for up-
dated fluxes. This process is repeated as many times as is
necessary to evolve the macroscopic profiles beyond the time
of interest. For steady-state simulations, approximately
10–15 transport time steps are typically required in TRINITY

for convergence.

IV. SIMULATION RESULTS

We illustrate the utility of our multiscale model in this
section by presenting numerical results from TRINITY simu-
lations and comparing these results with experimental data.
We consider an L-mode discharge from JET �shot 19649�
and H-mode discharges from JET �shot 42982� and ASDEX
Upgrade �shot 13151�. For simplicity, we consider time
slices taken from approximately steady-state periods of each
discharge. Initial thermodynamic profiles and external
sources used in TRINITY are taken during these steady-state
time slices from the TRANSP �Ref. 42� or ASTRA �Ref. 43�
reconstructions provided in the ITER profile database. Some
key experimental parameters for these shots are given in
Table I. In all gyrokinetic simulations, we consider electro-
static turbulence with gyrokinetic ions and electrons.

First, we consider JET shot 19649.44 This was a standard
JET L-mode pulse with 9.2 MW of neutral beam heating. For
the TRINITY simulation, nonlinear fluxes from GS2 were used
in the transport solver. We used a Miller local equilibrium
model45 for the magnetic geometry in these GS2 simulations,
with the necessary parameters taken from the ITER profile
database. In physical space, we used 16 grid points along
the equilibrium magnetic field and a 40�25 grid in the per-
pendicular plane, with perpendicular box widths at the out-
board midplane of 64�i. In the dealiased Fourier space,
this corresponds to covering �k��i�=0,0.1,0.2, . . . ,0.8 and
�kr�i�=0,0.1,0.2, . . . ,1.3. The velocity space grid consisted

of ten velocities and 32 pitch angles, giving approximately
107 mesh points for each two-species GS2 simulation. These
simulations employed a hyperdiffusion operator whose mag-
nitude is scaled by the shearing rate of the turbulence, which
provides a subgrid model of the cascade of fluctuations to
smaller scales.46,47 Previous tests of these kinds of subgrid
models have found that they can reduce the needed reso-
lution, but more detailed convergence studies in the future
could be useful. Note also that because of the nonlinearities
and stiffness of the transport, changes in the turbulence level
of a few tens of percent at fixed temperature gradient have
little effect on the final self-consistent temperature profile.

Each flux tube simulation was run for 104 time steps,
corresponding to average physical simulation times at each
radius of approximately 400–1400LTi

/vth,i. Electron density
and ion and electron pressures were evolved at eight radial
locations, giving a total of 32 flux tube simulations per trans-
port time step. The total number of mesh points required for
each transport time step was thus approximately 3�108.
With a total of 15 transport time steps taken, the simulation
lasted approximately 4 h on 5760 CRAY XT4 processors.

A comparison of the steady-state profiles calculated in
TRINITY with the TRANSP-reconstructed experimental profiles
is given in Fig. 2. We find good agreement for all profiles
across the simulation domain �r /a=0.053–0.8�, with a rms

relative error among all profiles �	��n
2+�Ti

2 +�Te

2 � /3� of 12%
�Table II�. The total and incremental stored energies differ
from TRANSP values by 9% and 12%, respectively. A com-
parison of the gradient scale lengths is given in Fig. 3. For
r /a�0.6, the ITG scale lengths from TRINITY and TRANSP

match almost perfectly. However, the electron density and
temperature gradient scale lengths do not agree as well, de-
spite a reasonable profile agreement. This illustrates a diffi-
culty in using experimental profile measurements in standa-
lone gyrokinetic turbulence calculations: small changes in

TABLE I. Experimental parameters.

Shot
Time

�s�
B�

�T�
a

�m�
Ip

�MA�

JET 19649 8.7 3.12 1.16 3.05

JET 42982 14.8 4.0 0.95 3.76

AUG 13151 1.35 2.48 0.48 1.0

FIG. 2. �Color online� Comparison of steady-state density and temperature
profiles constructed from JET shot 19649 by TRANSP �points and dotted
lines� with those calculated in TRINITY �solid lines�.
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experimental profiles can lead to significant changes in ex-
perimental gradient scale lengths, which drastically affect the
turbulent fluxes. An example of this is seen in Fig. 4. Here,
we compare the volume integrated source terms with the flux
surface integrated fluxes, which should be equal in steady
state. We see that this balance is satisfied for the self-
consistent profiles obtained in TRINITY, but not with the pro-
files taken from TRANSP. As an example of the sort of diag-
nostic information available in our multiscale gyrokinetic
calculations, we show the steady-state fluctuation amplitudes
for density, temperature, and electrostatic potential in Fig. 5.
All fluctuation amplitudes are small compared with equilib-
rium quantities, giving us a check on our �f � f assumption.
Interestingly, we see peaked electron temperature fluctua-
tions at the magnetic axis, while the electrostatic potential
increases with radius.

Next, we consider JET shot 42982,48,49 which achieved a
record fusion energy yield of 22 MJ with 21.5 MW of neutral
beam heating. The plasma in this shot was a 50–50
deuterium-tritium mixture, operating in ELMy H mode.
Again, GS2 was used to calculate the turbulent fluxes with a
Miller local equilibrium model for the magnetic geometry.
The perpendicular spatial grid used was the same as for the
L-mode discharge, but the resolution in the remaining di-
mensions was increased to 24 parallel grid points, 12 veloci-
ties, and 40 pitch angles. We again employed a hyperdiffu-

sion operator to model the cascade to subgrid scales. Each
flux tube simulation was run 104 time steps with average
simulation times ranging from 250 to 1000LTi

/vth,i. This time
the electron density and ion and electron pressures were
evaluated at ten radial locations, resulting in 40 flux tube
simulations per transport time step. A total of 20 transport
time steps were taken and the full simulation ran just under
10 h on 8640 CRAY XT4 processors.

As with the L-mode case, all profiles show a relatively
good quantitative agreement with their TRANSP counterparts

TABLE II. Analysis of TRINITY profile fits. �W and �WI
are the relative errors

in total and stored energy, respectively. � is the rms relative error associated
with the subscripted quantity.

Shot �W �WI
�n �Ti

�Te

JET 19649 0.09 0.12 0.11 0.12 0.13

JET 42982 0.06 0.14 0.13 0.11 0.12

AUG 13151 0.16 0.29 0.13 0.16 0.06

FIG. 3. �Color online� Comparison of experimental �dotted lines� and simu-
lated �solid lines� gradient scale lengths for JET shot 19649.

FIG. 4. �Color online� Power balance for JET shot 19649. Solid lines are the
steady-state, flux surface integrated fluxes calculated in GS2 at the end of the
TRINITY simulation. Dotted lines are the volume integrals of the source terms
on the right-hand side of Eqs. �2� and �4�. In steady state, the solid and
dotted lines should match. The small discrepancy near the outer edge of the
simulation domain is likely due to numerical inaccuracy in flux calculations
at the boundary.

FIG. 5. �Color online� Radial profiles for fluctuations of density, tempera-
ture, and electrostatic potential calculated in GS2 for JET shot 19649. These
fluctuations are obtained by time averaging the instantaneous fluctuations
computed in GS2 over the steady-state period at the end of the TRINITY

simulation.
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�Fig. 6�, with a rms relative error averaged over all profiles
of 12%. In this case, there appears to be a systematic over-
prediction of the ion and electron heat fluxes over the outer
half of the minor radius, with the profiles pinned by the
critical gradient �Fig. 7�. A possible explanation for this dis-
crepancy is the fact that the radial flow shear, which has been
found to have a significant effect on this discharge,50 was not
included in our GS2 simulations. This capability does exist in
GS2

51,52 and will be included in future TRINITY studies with
evolving toroidal angular momentum. Again, fluctuation am-
plitudes are on the order of a percent of equilibrium ampli-
tudes, with electron temperature fluctuations peaking on axis
and electrostatic potential fluctuations increasing with radius
�Fig. 8�.

In order to study the effect of the edge temperature on
the profiles, we repeated this simulation with electron and
ion edge temperatures increased by 20%. The results are
shown in Figs. 9–11. We see that the 20% increase in edge
temperature leads to an increase of approximately 14% at the
magnetic axis, as expected from the stiff profiles indicated in
Fig. 7. The gradient scale lengths are similar to the base case
across most of the minor radius, with the only significant
discrepancies occurring near the edge where the stiffness of

FIG. 6. �Color online� Comparison of steady-state density and temperature
profiles constructed from JET shot 42982 by TRANSP �points and dotted
lines� with those calculated in TRINITY �solid lines�.

FIG. 7. �Color online� Comparison of experimental �dotted lines� and simu-
lated �solid lines� gradient scale lengths for JET shot 42982.

FIG. 8. �Color online� Radial fluctuation profiles for density, temperature,
and electrostatic potential calculated in GS2 for JET shot 42982. The fluc-
tuation levels for this H-mode discharge are generally lower than for the
L-mode discharge shown in Fig. 5, but they exhibit the same qualitative
trends in their radial profiles.

FIG. 9. �Color online� Comparison of steady-state density and temperature
profiles for TRINITY simulations of JET shot 42982 with different edge tem-
peratures. The dotted lines with points correspond to a simulation using the
edge temperatures reported by the experiment and the solid lines correspond
to a simulation with the edge temperatures increased by 20%. We see that
the increased edge temperatures lead to an increase in the temperatures near
the magnetic axis of about 14%.
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the profiles is less pronounced �Fig. 10�. Fluctuation levels
also do not differ significantly from those obtained for the
base case �Fig. 11�.

Finally, we consider ASDEX Upgrade shot 13151,53

which was an ELMy H-mode discharge with 5 MW of neu-
tral beam heating. Here, we used GENE to calculate the tur-
bulent fluxes, with a numerical magnetic equilibrium gener-
ated by TRACER.54 We used 16 parallel grid points and a
64�48 grid �corresponding to a 96�72 grid for GS2 due to
the use of a 3/2 dealiasing rule instead of a 2/3 rule� in the
perpendicular spatial plane, with perpendicular box widths of
approximately 64�i at the outboard midplane. The velocity

space was sampled with 32 parallel velocities and eight
magnetic moments, resulting in a total of approximately
2.5�107 �5.6�107� mesh points for each GENE simulation.
A linearized Landau–Boltzmann operator was used to model
the effect of collisions.55 The number of time steps taken in
each flux tube simulation varied from about 3–4�104 de-
pending on radial location, corresponding to simulation
times of approximately 400–1000LTi

/vth,i. Electron density
and ion and electron pressures were again evolved at eight
radial locations, resulting in 32 flux tube calculations per
transport time step. Within each transport time step, the total
mesh points required was thus �8�108 �1.8�109�. Due to
the increased spatial resolution in the perpendicular domain
�and, to some degree, the use of a physical collision opera-
tor�, the GENE simulations were more expensive computa-
tionally than the GS2 runs. In total, the simulation took just
under 24 h for 16 transport time steps on 16384 CRAY XT4
processors.

The electron density and temperature agree relatively
well across the minor radius, but the ion temperature is un-
derpredicted near the magnetic axis �Fig. 12�. This is re-
flected in the profile gradient scale lengths shown in Fig. 13.
The rms relative error averaged over profiles is nonetheless
only 12%. A lack of flow shear in the calculation of the
turbulent fluxes is again a possible explanation for the dis-
crepancy in ion temperature near axis. Another possibility is
the fact that no MHD model was used for the q profile com-
puted by ASTRA, which resulted in q�1 inside r /a�0.4,
with q�0��0.5. Consequently, there is a significant uncer-
tainty in modeling the system in this region.

V. CONCLUSIONS

We have presented in this paper a complete theoretical
and numerical model for the interaction of micro- and mac-
rophysics in axisymmetric fusion devices. This model arises
from a rigorous asymptotic expansion of the full Maxwell–

FIG. 10. �Color online� Comparison of gradient scale lengths for two dif-
ferent TRINITY simulations of JET shot 42982. Dotted lines correspond to a
simulation with edge temperatures taken from the experiment and solid lines
correspond to a simulation with the edge temperatures increased by 20%.
While the gradient scale length profiles are quite similar, the case with
higher edge temperature leads to lower gradient scale lengths near the edge,
where the profiles are likely less stiff.

FIG. 11. �Color online� Radial fluctuation profiles for density, temperature,
and electrostatic potential calculated in GS2 for JET shot 42982 with in-
creased edge temperatures. They are quite similar to the case with edge
temperatures taken from the experiment.

FIG. 12. �Color online� Comparison of steady-state density and temperature
profiles constructed from ASDEX Upgrade shot 13151 by ASTRA �points and
dotted lines� with those calculated in TRINITY �solid lines�.
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Boltzmann system. The ordering assumptions used in the
expansion were given in Sec. II, along with the resulting
closed system of equations for the evolution of the macro-
scopic thermodynamic profiles and magnetic geometry
�Eqs. �2�–�15��. These profiles depend on fluxes and heating
�Eqs. �5�–�8�� arising from classical, neoclassical, and turbu-
lent dynamics, requiring solution of the neoclassical and gy-
rokinetic equations �Eqs. �9� and �10��. In order to evolve the
magnetic geometry and close the system, the toroidal com-
ponent of Ampere’s law �Eq. �14�� and the Grad–Shafranov
equation �Eq. �15�� also have to be solved.

In Sec. III, we described the numerical scheme used in
TRINITY to solve the multiscale gyrokinetic system of equa-
tions. The key idea in the approach is to use scale separations
in space and time to embed a fine mesh for turbulent dynam-
ics in a coarse grid for the transport solver. A local, nonlinear
gyrokinetic code is used to calculate the turbulent fluxes,
which are then passed to the transport solver. The macro-
scopic thermodynamic profiles are then evolved in a manner
consistent with the small �� limit of the orderings used to
derive the nonlinear gyrokinetic equation. Thus, TRINITY can
be used to simulate time-dependent experimental phenom-
ena. A Newton method is used to devise an implicit time
stepping algorithm, allowing for large time steps character-
istic of the confinement time. With updated pressure profiles,
one could then couple to solvers for the toroidal component
of Faraday’s law and the Grad–Shafranov equation to evolve
the magnetic geometry.

Simulation results from TRINITY are provided in Sec. IV,
with comparisons to JET and ASDEX Upgrade plasmas. A
relatively good agreement is found for all evolved profiles
�density and electron/ion pressures� with a rms relative error
averaged over all profiles of 12%. Fluctuation levels for den-
sity, temperature, and electrostatic potential are on the order

of a percent across the minor radius, in general agreement
with experimental evidence.

While currently capable of faithfully simulating a range
of interesting experimental conditions, there are several use-
ful additions that could be made to the numerical model
implemented in TRINITY. Coupling to a neoclassical code
which solves Eq. �9� would provide more accurate neoclas-
sical fluxes, which can be important in certain experimental
regimes �for instance, when a strong shear flow partially sup-
presses turbulent flux levels�. Additionally, it would allow for
the calculation of the parallel current necessary to evolve the
safety factor and the poloidal flux. Coupling to a Grad–
Shafranov solver would then allow for a study of the effects
associated with evolving magnetic geometry. Additionally,
coupling to a linear MHD code could be useful in monitoring
macroscopic profiles to ensure that MHD stability bound-
aries are not crossed.

In conclusion, we emphasize that the multiscale gyroki-
netic model presented here is not meant to be a comprehen-
sive model for all physics present in a tokamak discharge.
Instead, it is meant to be used as a tool for studying the
self-consistent interaction between microturbulence and
macroscopic profiles. The ultimate goal of this approach is to
obtain both a better qualitative and quantitative understand-
ing of this interaction in order to enhance our ability to
suppress turbulence and improve confinement in fusion
experiments.
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