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A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in
understanding turbulence �T.-D. Lee, Q. Appl. Math. 10, 69 �1952�� is taken to study gyrokinetic
plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept
and the statistical equilibria are calculated; possible implications for plasma turbulence in various
situations are discussed. For the case of two spatial and one velocity dimension, in the calculation
with discretization also of velocity v with N grid points �where N+1 quantities are conserved,
corresponding to an energy invariant and N entropy-related invariants�, the negative temperature
states, corresponding to the condensation of the generalized energy into the lowest modes, are
found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some
classical results, such as those of Charney–Hasegawa–Mima in the cold-ion limit. There is a
universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity
dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG
zonal flows, and to a critical balance hypothesis are also discussed. © 2010 American Institute of
Physics. �doi:10.1063/1.3514141�

I. INTRODUCTION

Plasma dynamics encompasses a hierarchy of scales
with distinct physical processes. At scales much larger than
the mean free path and gyroradius, and time scales much
larger than the collision time and gyroperiod, the magneto-
hydrodynamics �MHD� model is good �and is often quite
useful over a wider range of collisionality, particularly for
phenomena where the parallel kinetic dynamics are not im-
portant�; while, in the opposite limit of high frequencies and
small scales, a complete kinetic description with the
Boltzmann or Vlasov equation is necessary. In between, for
frequencies well below the ion cyclotron frequency but that
may still involve scales comparable to the gyroradius, a de-
tail of the particle helical motion around the field line, the
cyclotron angle, may be averaged out, resulting in a reduced
system called gyrokinetics.1–6 With one dimension �the cy-
clotron angle� and the fast time scales associated with that
dimension excluded, gyrokinetics helps the tractability of
turbulent kinetic cascades of plasma turbulence numerically
and analytically.

In this contribution, we will present the equilibrium sta-
tistical mechanics of the Fourier–Galerkin truncated gyroki-
netic system and discuss the possible implications for plasma
turbulence.

Equilibrium-statistical-mechanics approaches to explore
turbulence have long been attempted to identify the flows or
to provide some relevant solutions to track the mechanisms
of fluid turbulent motions, which have been very illuminat-
ing and promising, if not completely successful.7,8 One
simple but efficient strategy, initiated by Lee,9 is calculating

the Gibbs statistics of the Galerkin-truncated system. The
flow of the Euler equation in phase space is incompressible
�where the coordinate axes �i�k� of this phase space are the
real and imaginary parts of the Fourier amplitude of the in-
compressible velocity field with an upper bound of the wave
number k�, i.e., the dynamics of �i�k� satisfies the Liouville
theorem, by which an equipartition of energy, which was
considered as the conserved quantity, among � was then pre-
dicted �cf. Appendix A for a pedagogical elaboration�. There
are several reasons that the study of the statistical mechanics
of such idealized systems can be of interest.10–12 First is that
this can give analytic �or semianalytic� predictions for the
equilibrium statistics that can be used as a nonlinear bench-
mark to test codes. Such nonlinear analytic tests are rare and
thus valuable. �This has been useful for fluid codes and, in
plasma physics, for particle-in-cell codes,13–17 and could be
used for continuum kinetic codes as well.� Second, such ana-
lytic spectra can also be useful test cases for analytic theories
of turbulence. Equilibrium statistics has been shown to have
subtle and deep relevance to statistically nonequilibrium tur-
bulence. It has been used to provide insights into two-
dimensional �2D� guiding-center plasma and 2D vortex fluid
models10,18,19 and other plasma models.20,21 More recently, it
has provided insights22 into the unexpected phenomena of
spontaneous “spin-up” in bounded 2D fluid turbulence
simulations.23,24 �Interestingly, a current research topic in the
fusion field is spontaneous rotation observed in
tokamaks.�25,26 The most well-known result from this ap-
proach may be the prediction of inverse energy cascade in
two dimensional turbulence by Kraichnan,27 following which
Frisch et al.28 calculated the MHD absolute equilibrium and
illustrated how the inverse cascade of magnetic helicity maya�Also at Princeton Plasma Physics Laboratory.
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help explain the generation of large-scale magnetic fields in
some astrophysical systems. Another example is how the
concept of “partial thermalization” has recently been used to
understand some observed phenomena such as the “bottle-
neck” near dissipation scales in Fourier space and the reduc-
tion of intermittency, or its scaling, in physical space,29,30

which emphasizes the persistence of some aspects of equi-
librium statistical mechanics in turbulence, complementing
the other side of our knowledge of the persistence of aspects
of cascade physics beyond the inertial range �see, e.g.,
Zhu�.31 Revisiting and further extending such powerful tools
to accumulate relevant knowledge and to examine the rel-
evance to definite realities is then important. More recently,
this approach has been taken to analyze Hall MHD by
Servidio et al.,32 finding that, among others, equipartition of
kinetic and magnetic energy predicted by Lee9 for Alfvénic
MHD turbulence no longer holds. Here we will take this
paradigm to investigate the gyrokinetic model of plasma tur-
bulence. The nontrivial new feature in our problem is that the
integrations over the distributions are functional integrals be-
cause of the extra dependence on velocity of the gyrokinetic
variable.

More generally, understanding the statistical mechanics
of truncated gyrokinetics can help shed light onto the general
nature of nonlinear coupling in these equations and phenom-
ena such as direct or inverse cascades. A better understanding
of nonlinear processes in gyrokinetics may also help in the
development of more effective subgrid models for large-eddy
simulations and could improve understanding of the ultimate
heating mechanisms as the fluctuations cascade to very small
spacial and velocity scales where collisional dissipation
occurs.4,33

Related to these subgrid dissipation issues, the three-
dimensional �3D� energy spectrum of thermal fluctuations
that we calculate here for a discretized Eulerian gyrokinetic
algorithm turns out to be closely related to the noise spec-
trum calculated earlier for particle-in-cell �Lagrangian� gyro-
kinetic algorithms.34

In the two-spatial-and-one-velocity-dimension case, the
negative temperature state, leading to the condensation of the
generalized energy at the lowest modes, indicates a generic
feature of inverse energy cascade. Comparisons are made
with some classical results, such as those of Charney–
Hasegawa–Mima in the cold-ion limit, though more gener-
ally the spectra are modified by finite Larmor radius �FLR�
effects which depend on the temperature parameters. The
shape of the statistical equilibrium for gyrokinetics in three
spatial and two velocity dimensions, where there is just one
conserved quantity, has a universal energy spectrum shape,
resulting from FLR effects.

In the main body we emphasize the general conceptual
ideas with only necessary details for illustration; specific
mathematical calculations, physical examples, and other in-
teresting digressions are referred to the appendices for fur-
ther interests.

II. FORMULATING THE PROBLEM AND CALCULATING
THE ABSOLUTE EQUILIBRIA

To be self-contained, here we very briefly introduce the
nonlinear gyrokinetic theoretical framework under which we
will be working. We will not review the complete history of
the linear and nonlinear gyrokinetic theories3 but will just
present the basic ideas and results, borrowing from some of
the treatment and notation of Plunk et al.35,36 There are sev-
eral published derivations of gyrokinetic equations with var-
ied assumptions and techniques, including recent papers with
a tutorial emphasis.5,6 The starting point is the Boltzmann
equation for the particle distribution function fs�r ,v , t�
for plasma species s located at r moving with velocity v at
time t,

� fs

�t
+ v ·

� fs

�r
+

qs

ms
�E +

v � B

c
� ·

� fs

�v
= C�fs� .

Here the operator C�f� accounts for the effects of collisions
and the particles with mass ms and charge qs are accelerated
by the electric �E� and magnetic �B� fields, which are subject
to the classical Maxwell equations. The next step is introduc-
ing the gyrokinetic ordering �which is fundamentally to fo-
cus on fluctuations that are low frequency compared to the
fast gyromotion of particles around the magnetic field� and
the resulting expansion parameter. A key operation in the
resulting equations is the average of any particular quantity
� around a ring of gyroradius � perpendicular �� � to the
magnetic field direction � � � surrounding the gyrocenter R,37

	�
R =
���r���r� − R�����r� − R�� − ��R��d3r

2���R�
. �1�

Using a Fourier representation ��r�=
kexp�−ik ·r��̂k and
considering a straight magnetic field for simplicity here, this

becomes 	�
R=
kexp�−ik ·R�J0�k����̂k, where J0 is a
Bessel function.

Writing v=v�+v�ẑ and f =F01+h+h.o.t �and suppress-
ing the species subscript s for now�, with h.o.t representing
“higher order terms,” the resulting gyrokinetic equations for
the case of slab geometry with a homogeneous plasma in a
straight equilibrium magnetic field B0=B0ẑ� is

�h

�t
+ v�ẑ ·

�h

�R
+

c

B0
�ẑ �

�	�
R

�R
� ·

�h

�R
= q

�	�
R

�t

F0

T0
,

complemented with the similar ordering-gyroaveraging treat-
ment of the Maxwell equations for the electrostatic potential
	 and the perturbed vector potential A which compose the
gyrokinetic potential �=	−v ·A /c. Here the collisional term
is omitted. The zeroth and first order term F01 is in general
taken to be the equilibrium Maxwell distribution �F0� multi-
plied by a Boltzmann factor, exp�−q	 /T0��1−q	 /T0. In
what follows below, as in Plunk et al.,35,36 we will work with
the gyroaveraged, perturbed, guiding center distribution
function g=h−F0q		
R /T0, instead of with the nonadiabatic
component h, and for simplicity we will focus on the case of
electrostatic fluctuations �neglecting magnetic fluctuations,
A=0� with one particle species governed by the gyrokinetic
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equation and the other species having a Boltzmann response
of some form �discussed below�.

To make it easier to compare with other codes and theo-
ries that use a variety of normalizations and in particular to
make it easier to take the cold-ion limit in 2D to compare
with the Hasegawa–Mima equations, we will use a general-
ized normalization for space and time scales based on a ref-
erence temperature Tr, a reference sound speed cr=�Tr /m,
and a reference gyroradius �r=cr /
c �here the mass m and
Larmor �cyclotron� frequency 
c=qB /mc are for the species
that is governed by the gyrokinetic equation�, but still scale
v� and the velocity dependence of F0 and g to vth=�T0 /m,
where T0 is the temperature of the gyrokinetic species.
More specifically, we use the following normalizations and
definitions, with physical �dimensional� variables having
subscript p:

t = tpcr /L x = xp /�r y = yp /�r z = zp /L ,

v�,� =
v�,�,p

vth
	 = 	p

qL

Tr�r
h = hp

vth
3 L

n0�r
F0 =

F0pvth
3

n0
.

The equilibrium density and temperature of the gyrokinetic
species of interest are n0 and T0, the thermal velocity is vth

=�T0 /m, L is the reference macroscopic scale length �i.e.,
system size�, satisfying � /L�1 for consistency with gyroki-
netic ordering.

In these normalized units, the Maxwellian back-
ground distribution function is given by F0=exp�−�v�

2

+v�
2� /2� / �2��3/2 and the gyrokinetic equation for the gyroav-

eraged, perturbed, guiding center density g�R ,v� ,v� , t� is
given by

�g

�t
+ �0v�

�g

�z
+ �ẑ �

�		
R

�R
� ·

�g

�R
= −

v�

�0

�		
R

�z
F0, �2�

where �0=�th /�r=vth /cr=�T0 /Tr is the thermal gyroradius
�th of the gyrokinetic species normalized to the reference
gyroradius �r. �Our normalization reduces to that used in
Plunk et al.35,36 if we choose Tr=T0 so �0=1, which in fact
we will do in the 3D case.�

The gyrokinetic equation expresses how the guiding cen-
ters evolve in time due to parallel motion along the magnetic
field, the gyroaveraged E�B drift across the magnetic field
�this is the nonlinear term� and parallel electric field accel-
eration. �Note that the slow E�B drift of the guiding center
location R is different than the rapid gyration velocity v� of
a particle around its guiding center.�

This equation is closed by using the gyrokinetic
quasineutrality equation to determine the electrostatic poten-
tial, which in Fourier space with these normalized units is
given by

	̂�k,t� =
��k�
2�

� d3vJ0�k��0v��ĝ�k,v�,v�,t�

= ��k��
−





dv��
0




dv�v�J0�k��0v��ĝ�k,v�,v�,t� ,

�3�

where

��k� =
2�

��k� +
Tr

T0
�1 − �̂�k�

2 �0
2��

, �4�

�̂�k2�= I0�k2�e−k2
is an exponentially scaled modified Bessel

function, I0�k2�=J0�ik2�, and ��k� represents the shielding by
the species that is treated as having a Boltzmann response of
some form, the choice of which depends on physical situa-
tion. If we are treating the ions gyrokinetically �such as for
ion-scale drift waves or ion temperature gradient-driven tur-
bulence� and using an adiabatic approximation for electrons
because of their fast parallel motion relative to a typical fre-
quency, k�vte�� �except for modes with k� =0�, then
��k�= �Tr /Te��1−�k�

�, where Te is the electron temperature
and the discrete Kronecker � function ensures that the elec-
trons do not respond to zonal modes with k� =E� =0. If we are
treating electrons gyrokinetically �such as for small electron
scale electron temperature gradient-driven turbulence� with
an adiabatic approximation for ions because k�vti�� �the
k�=0 mode is not driven by any nonlinearities in a periodic
domain�, then �=Tr /Ti.

Finally, one can also consider a no-response model,
�=0, which in the 2D cold-ion limit T0→0 leads to
�→2� /k�

2 , J0→1, and the gyrokinetic equation reduces to
2D hydrodynamics. The above difference in zonal flow dy-
namics for ion versus electron scale fluctuations is respon-
sible for a large enhancement in zonal flows for ion-scale
turbulence, so that zonal flows play a key role in the satura-
tion dynamics of ITG turbulence38–40 and leads to the Dimits
nonlinear shift in the critical gradient.41,42 It is also respon-
sible for a significant reduction in the effect of zonal flows
for electron-scale turbulence, so that they can get to larger
amplitude than one would at first expect from scaling from
ion-scale turbulence.43,44

A. 2D gyrokinetic absolute equilibria

For a plasma in a two dimensional �� /�z=0� cyclic box,
the collisionless gyrokinetic equation in wavenumber space
reads

�tĝ�k,v� = ẑ � 

p+q=k

pJ0�p�0v�	̂�p� · qĝ�q,v� , �5�

with the potential 	 determined by the quasineutrality con-
dition

	̂�k� = ��k�� vdvJ0�k�0v�ĝ�k,v� , �6�

where the subscript on v� has been dropped and the parallel
velocity v� has been integrated out of the problem.

The only known rugged �still conserved after mode
truncation� invariants are the “energy” E= �1 /2V��d2r
����+ �Tr /T0��	2− �Tr /T0�	�	� and a parametrized set
of invariants related to the “perturbed-entropy” G�v�
= �1 /2V��d2Rg2 �in these equations, V is the volume �area�
of the integration domain and � is a convolution operator in

real space given by the Fourier transform of �̂�. �See Refs. 4,
35, and 36 and references therein for a discussion of
these conserved quantities and their interpretation.� In
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Fourier space these become E=�
k�	k�2 /��k� and G�v�
=
k�g�k ,v��2 /2. As promised in the introductory discussion,
following Lee,9 in what follows we will keep summations
over only a finite subset K of all possible wavenumbers
k—the Fourier Galerkin truncation.45 The Fourier modes in
the lower half plane are determined by the reality condition,
g�−k ,v�=g��k ,v�, so the state of a system can be uniquely
specified by the values of the real and imaginary parts of the
Fourier coefficients g�k ,v� for wavenumbers in the upper
half plane. We will thus consider a further subset K+, defined
as the modes in K in the upper half plane, which satisfy
ky �0 if kx�0, or ky �0 if kx�0 �see also Krommes and
Rath�.17 All spectral sums will be expressed in terms of the
finite set of independent modes in K+, and we denote this

summation by 
̃k.
We can discretize Eq. �6� into

	̃̂�k� = ��k�

i=1

N

wi�k�ĝ�k,vi� , �7�

where wi�k�=miviJ0�k�0vi� and mi is the weight of velocity
grid point vi. This discrete form can correspond to the case
that ĝ�k ,v� is uniform on the lattice around node i; in gen-
eral, it is used as a numerical approximation for the arbitrary
distribution over v as applied in the present continuum
codes.46 For a simple midpoint integration rule on a grid that
extends up to some maximum velocity vmax=vN, the weight
is given by the grid spacing, mi=�vi. �More general integra-
tion algorithms can also be represented in this form.�47

With this velocity discretization, there are now N+1
conserved quantities, given by the energy Ẽ= 
̃k2���k�
�
i,j

N wiĝ
��k ,vi�wjĝ�k ,v j� and the entropy-related quantities

G̃i= 
̃k�ĝ�k ,vi��2.
So, with the common belief of the applicability of

Gibbsian statistical mechanics or Jaynes’48,49 idea of “statis-
tical mechanics as a form of statistical inference,” we have

the distribution function �exp�−S̃�, where S̃ is a linear com-
bination of conserved quantities, which will be written as

S̃ = 

i=1

N

�iG̃i + �0Ẽ . �8�

Here, the �i are the “�inverse� temperature parameters” in-
troduced as Lagrangian multipliers to form the constant of
the motion. The Gibbs measure can be shown to be con-
served by the flow as a generalized Liouville theorem, the
incompressibility of the flow of the phase points in the hy-
perplane spanned by the real and imaginary parts of the Fou-
rier modes.9 Note that, importantly, conservation laws and
the Liouville theorem are inherited, which, with some more
assumptions �such as ergodicity�, makes the discrete system
possible to produce a Gibbs ensemble. A pedagogical illus-
tration on the Gibbs canonical distribution for this system
can be found in Appendix A.

As this is a multivariate Gaussian distribution, one
can numerically invert the matrix of the quadratic form
S=
i,j��ij�i+�02���k�wi�k�wj�k��ĝ�k ,vi�ĝ��k ,v j�, but, ac-

tually, using the Sherman–Morrison formula �see Appendix
B�, one can write down the N�N covariances,

ci,j�k� = 	g��k,vi�g�k,v j�
/2

=
�i,j

2�i
−

�0���k�wi�i
−1wj� j

−1

1 + �02���k�
lwl
2�l

−1 . �9�

The spectral energy density D�k� then can be calculated as
follows:

D�k� =
�

��k�
	�	̂�k��2


= 2���k�

i,j

wiwjcij

=
���k�
lwl

2��l�−1

1 + �02���k�
lwl
2�l

−1 . �10�

The isotropic energy spectrum then is E�k��kD�k�. The
spectral density of the perturbed entropy Gi is

Gi�k� =
1

2
	�ĝ�k,vi��2


= ci,i�k� =
1

2�i
�1 −

�02���k�wi
2�i

−1

1 + �02���k�
lwl
2�l

−1� , �11�

which expresses the nearly equipartition on Fourier modes
when the second term in the brackets has negligible
contribution.50 �Note that D�k� and Gi�k� depend on wave-
number not only through ��k� but also through wi=wi�k�.�

The temperature parameters are determined by the val-

ues of the invariants G̃i and Ẽ. Note that these give the in-
variants as nonlinear functions of the temperature parameters
�0 and �i, so this requires numerical solution or further ana-
lytic approximations to invert.

1. Discussion concerning 2+1D gyrokinetic spectra

To gain insight into the behavior of these spectra, we
will explore them in various simplifying limits, such as the
small and large-k limits and the cold-ion Hasegawa–Mima
limit. We will also plot example spectra for particular values
of the �0 and �i parameters.

The gyroaveraging by plasma particles through Eq. �1�
�finite Larmor radius effects� introduces several special func-
tions whose asymptotic behaviors help shape the energy
spectrum. For convenience, let us write here the asymptotic
recipes for these special functions:

k → 0, J0�k�0vi� � 1 − k2�0
2vi

2/4, �̂�k2�0
2� � 1 − k2�0

2,

k → 
, J0
2�k�0vi� �

2 cos2�kvi − �/2�
��kvi�

,

�̂�k2�0
2� �

1
�2�k�0

.

The simplest limit to consider first is �0=�T0 /Tr→0, i.e., the
cold-ion limit considered by Hasegawa and Mima in their
study of drift-wave turbulence51 �see Appendix C for more

122307-4 J.-Z. Zhu and G. W. Hammett Phys. Plasmas 17, 122307 �2010�

Downloaded 07 Jan 2011 to 128.112.70.73. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



details�. The Hasegawa–Mima equation coincides with the
Charney equation for geophysical flows52 formulated earlier,
so it is also called the Charney–Hasegawa–Mima �CHM�
equation.

In this limit, J0�k�0v�→1 and wi�k�=miviJ0�k�0v�
→mivi so the factor of 
lwl

2�k� /�l in Eq. �10� becomes in-
dependent of k and can just be taken as a constant, which we
will define as 1 / �2�2�̄�. In the expression for ��k� in Eq.

�4�, we use �̂�k2�0
2�→1−k2�0

2 and find ��k�→2� / ��+k2�.
For comparison with Hasegawa and Mima, we set the refer-
ence temperature to the electron temperature, Tr=Te �the
electrons are the adiabatic species for ion-scale drift waves�
and neglect the �k� factor and associated zonal flow effects53

in the expression for � so that �=1. Note that our normalized
k=k�=k�,p�s, where k�,p is the physical perpendicular

wavenumber, and �s=�Te /mi /
ci is the ion sound radius.
�Alternatively, one can consider these as equations for
electron-scale turbulence where the role of ions and electrons
is reversed: the ions are adiabatic and a cold electron limit is
used, in which case the normalizing length is an “electron
sound radius,” �se=�Ti /me /
ce.�

The result is that the isotropic energy spectrum given by
Eq. �10� reduces in the cold ion limit to

E�k� � kD�k� �
k

�̄�1 + k2� + 2�0

, �12�

where �̄ and �0 are coefficients that are determined by the
values of the invariants E and Gi. Note that this is of the
same form of a two-parameter family of spectra as in CHM
or 2D Euler absolute equilibrium, E�k��k / ��CHM+�CHMk2�
�Appendix C�.

A remarkable feature of this type of spectrum is that if
�CHM or �CHM are negative, corresponding to a negative tem-
perature, then the denominator has the opportunity of tending
to zero leading to the energy condensation at the lowest or
highest wave numbers. Energy condensation to the lowest
modes �one example is shown in Fig. 1� would indicate an
inverse cascade of energy following the argument of Kraich-

nan for the 2D Euler equation27 �see also Hasegawa and
Mima51 and Fyfe and Montgomery.�54 It then seems that the
inverse cascade of energy in 2D gyrokinetics could be quite
a generic feature. Recent relevant theoretical arguments and
numerical simulation results4,36,55 are consistent with this.

Instead of the cold-ion limit, we now consider the more
general case of warm ions �for ion-scale turbulence, or warm
electrons for electron-scale turbulence�, and for simplicity let
us take Te=Ti=Tr �so that �0=1� and neglect zonal flow
effects �so that �=1�. In the limit k�1, we have ��k�→�,
and the magnitude of wi�k�2�J0

2�kvi� will be bounded by
C / �kvi� for some constant C. Assuming positive �i for i
�0, we find that the denominator in Eq. �10� approaches 1
for large k, so D�k��1 /k and E�k��kD�k��k0. This could
give a larger tail for gyrokinetics than for CHM, which has
ECHM�k��1 /k �for �CHM�0�. In this same k�1 limit, Eq.
�11� simplifies to Gi�k�=1 / �2�i�, which corresponds to eq-
uipartition of the generalized entropy. We plot the spectra
over the reachable wave number regime with given tempera-
tures just to sketch the physical picture without even bother-
ing to accurately calculate the realizable wave number
bounds but only with estimations sufficient to directly illus-
trate the problem. �Another way to think about the problem
and do the corresponding plots is to take the bounds of wave-
numbers to be prescribed and then realizable temperature
parameters are determined accordingly. Detailed computa-
tions and illustrations of more example spectra with possible
physical discussions are given in Appendix D for those who
are interested.� Actually, much is already known from the
knowledge of absolute equilibria of 2D Euler27 and
Hasegawa-Mima,51 though it may still be helpful to give
some general physical picture, especially the finite Larmor
radius effects, with some example spectra as shown in Fig. 1.
The �i for i�0 were set by �i

−1=10−3 exp�−vi
2 /2�. We take

N=40 with vi homogeneously collocated between 0 and V
=3, and K= �k �1�kx,y �150� for positive temperatures
cases while K= �k �4�kx,y �150� for a negative temperature
case. Some details, including the values of mi �=1 here�, are
not important, and reasonable changing of them �as a renor-
malization of the variables� will not affect our results. Here,
as E�k��kD�k�, the low-k equipartition range have E�k�
�k and E�k��k0 for large k, both of which can be easily
checked with the asymptotic recipe of the special functions
given in the beginning of this subsection. The transition in
between represents the FLR effects, the details of which also
depend on the details of the temperature parameters. Other
temperature parameter values may change the k ranges
where such asymptotic behaviors can be realized; or, if the
truncation wave numbers in the computations kmin and kmax

�which may be relevant to some characteristic, such as the
collisional, scales in real physical systems� were not chosen
properly, we would not be able to reach such asymptotic
behaviors.

A negative value of �0 corresponds not only to an en-
hancement of energy at larger spatial scales �low k� but also
to an enhancement of fluctuations at larger velocity scales, as
given by Eq. �9�. If �0=0, then this equation indicates that
different velocity grid points i� j are uncorrelated, while
making �0 more negative will increase the correlation length

FIG. 1. �Color online� Example spectra for various values of �0, with
�i=103 exp�vi

2 /2� for i�0, and �0=10−1, �=1. Negative �0 state can occur
which corresponds to condensation of most of the energy into the longest
wavelength modes.
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in the velocity, particularly at low k. If collisions are in-
cluded, they will cause dissipation at both small velocity
scales and small spatial scales �through FLR effects corre-
sponding to classical diffusion�,56 so the inverse cascade
found here in 2D will tend to reduce both forms of dissipa-
tion.

We end up this subsection by remarking that, since the
CHM limit absolute equilibrium statistics has already been
verified by numerical experiment,54 our theoretical calcula-
tion for gyrokinetic is then also, to some degree, endorsed.

B. 3+2D gyrokinetic absolute equilibria

The mathematical treatment for the calculation of
Galerkin truncation absolute equilibrium is basically the
same for 3+2D and 2+1D cases. However, some brief re-
marks about the system and the conserved quantity, followed
by some technical details in the calculation are still neces-
sary.

In the full gyrokinetic equation with three spatial and
two velocity dimensions, notice that two linear terms, from
parallel motion along the magnetic field and from the parallel
electric field acceleration, are simply added to the equation
for the �2+1�D case, without changing anything about the
nonlinear term. While the gyroaveraged E cross B drift con-
serves E and G separately, the parallel motion makes them
talk to each other and combines them into another conserved
quantity, the generalized energy W=E+Wg0 �see Refs. 4, 33,
36, and 57 and references therein for further discussions of
this quantity�,

W =� d3r

2V
��1 + ��	2 − 	�	� +� d3v� d3R

2V

g2

F0
. �13�

�For simplicity in all of our 3+2D work, we will set the
reference temperature Tr used in normalizations to the tem-
perature of the kinetic species T0, so �0=1.� The Fourier–
Galerkin truncated form of the generalized energy is

S = 2
˜
k
� �

��k��
�	̂�k��2 + �� � v�dv�dv�

�ĝ�k,v��2

F0
� .

We will discretize velocity space in a way that makes it easy
to reduce the previous 2D spatial+1D velocity results to the
3D spatial+2D velocity results here. Specifically, we will
discretize velocity integrals as

� d3vg�v� = 2��
0




dv��
−





dv�v�g�v�,v��

� 2�

i

N

miv�,ig�vi� , �14�

where i now indexes over all points vi= �v�i ,v�i� in the 2D
velocity space grid. For a logically rectangular mesh in
�v� ,v�� there would be a total of N=Nv�

Nv�
grid points, with

Nv�
points in the perpendicular velocity direction and Nv�

in
the parallel velocity direction. �As in the 1D velocity case,
for a simple midpoint integration algorithm, mi is the weight
of the ith velocity cell, mi=�v�,i�v�,i, while more generally
the weights mi and grid point locations �v�,i ,v�,i� can be

chosen to give high-order Gaussian quadrature.� The 2D ve-
locity generalization of Eq. �7�, the discretized quasi-
neutrality equation to determine the potential, now reads
	̂�k�=��k�
iwi�k��ĝ�k ,vi�, where wi�k��=miv�,iJ0�k�v�,i�.

We then can calculate the absolute equilibria following
the same procedure as in the 2D case, but now only one
inverse temperature parameter � shows up in the canonical
distribution �exp�−�S�. Using the above velocity discretiza-

tion for S̃=�S=��E+Wg0� gives

S̃ = �
˜
k

2���k��i,jwiĝ
��k,vi�wjĝ�k,v j�

+ �
i=1

N
2�miv�,i
˜

k
�ĝ�k,vi��2/F0�vi� .

We note from this that a negative temperature is not

realizable any more. Comparing this expression for the 3D S̃
with the 2D result in Eq. �A1�, we see that they become
identical if we make the substitutions �0=� and �i

=2��miv�,i /F0�vi�. All of the 2D results thus generalize to
the 3D case with these variable substitutions. For example,
the electrostatic component of the spectral energy density in
Eq. �10� becomes

D�k� =
1

2�
� ��k�
imiv�,iF0�v� i�J0

2�k�v�,i�
1 + ��k�
imiv�,iF0�v� i�J0

2�k�v�,i�
� . �15�

In the small lattice size limit,50 where we can use
2�
imiv�,iF0�v� i�J0

2�k�v�,i���d3vF0�v� i�J0
2�k�v�,i�=�0�k�

2 �,
the electrostatic potential spectral density becomes

	�	k�2
 =
��k�

�
D�k� =

1

�

�0�k�
2 �

�� + 1 − �0�k�
2 ���� + 1�

. �16�

The shape of this spectrum is consistent with the discrete-
particle thermal noise spectrum for gyrokinetic PIC codes
calculated by one of us previously, as given in Eq. �5� of Ref.
34, which reduces to the above result in the limit where
numerical details such as spatial filtering and finite
differencing58 are ignored by setting SG�k�=1 and d��k�=1,
and by taking the �=1 limit in our expression. �The thermal
spectrum in Ref. 34 was calculated for the case of one gyro-
kinetic species and one adiabatic species, as also assumed in
the present paper, and also accounted for various numerical
factors as used in typical PIC codes. The first calculations of
the discrete-particle thermal noise spectrum for gyrokinetic
particle codes are in Refs. 16 and 59 and were for the case
where all species were treated gyrokinetically.�

Reference 34 found good agreement between this ana-
lytic thermal spectrum and the fluctuation spectrum in a PIC
code in a noise-dominated regime, providing support for the
calculation done here. Readers interested in a discussion of
noise in numerical schemes are referred to Appendix E.

1. Relevance to 3D plasma turbulence

There are several interesting features of the 3D spectrum
in Eq. �16�. Note that it is independent of k�, i.e., the equi-
librium spectrum corresponds to equipartition in k�, so pre-
sumably the nonlinear dynamics of a turbulent system should
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tend to drive cascades to high k�. �Gyrokinetics assumes
k� �k�, so there is a limit to how far this spectrum can ex-
tend within this model.� Also note that even with the finite-
Larmor radius averaging in gyrokinetics, the electrostatic po-
tential spectrum falls relatively slowly at high k� since
�0�C /k�, so the electrostatic energy spectrum is flat at high
wave number, E	�k���k��	�k��2�k�

0 .
For ion-scale nonzonal flows with adiabatic electrons,

the long-wavelength limit of Eq. �16� is 	�	k�2
=1 / �2�� �set-
ting �=Tr /Te=Ti /Te=1 for simplicity�. But for zonal flows,
which have ky =kz=k� =0 and thus have �=0 �see the discus-
sion after Eq. �4��, the long wavelength limit is 	�	ZF,k�2

=1 / ��kx

2� �here the “ZF” subscript refers to the zonal flow
component of the potential�, so the amplitude of long-
wavelength zonal flows is enhanced relative to other nearby
modes by a factor of �1 /kx. �While the resulting zonal po-
tential blows up as kx→0, the shearing rate �dvy /dx
�d2	ZF /dx2�kx

2	ZF,k�kx remains well-behaved.� However,
one of us, GWH, tends to believe that this enhancement in
the 3D statistical equilibrium is interesting but by itself is
probably not enough to explain the observed importance of
zonal flows in ITG turbulence, since there are very few zonal
modes compared to the many other modes with ky �0 or k�

�0. The importance of ITG zonal flows is probably due to
other effects, such as the way in which the lack of adiabatic
electron response causes an enhancement of the secondary
instabilities60 �or related parametric instabilities� that drive
zonal flows.

However, much stronger enhancement of zonal flows
can exist in the 2D absolute equilibrium of Eq. �10� where
negative �0 can strongly enhance modes with �=0. The
mechanism for this enhancement is related in a way to the
enhancement of zonal flows in secondary/parametric insta-
bilities. This 2D equilibrium effect might be related to the
enhancement of zonal flows in an actual turbulent plasma, if
there are regions of the turbulent spectrum where the parallel
dynamics is slow compared to the nonlinear decorrelation
rate k�vt���NL�k�vE�B and so act in a quasi-2D manner.
However, there will also be competition from 3D effects,
which limits the inverse cascade and tends to push the spec-
trum toward equipartition in k�.

The 2D and 3D gyrokinetic absolute equilibrium results
may also provide insight into other aspects of driven non-
equilibrium gyrokinetic turbulence, such as the directions of
turbulent cascades in �k� ,k��. The inverse cascade found in
2D may imply that in regions of a turbulent spectrum where
k�vt�k�vE�B, then the interactions may be quasi-2D and
undergo an inverse cascade to smaller k�, simultaneously
with a cascade to higher k� �toward equipartition in k��, until
the parallel dynamics becomes competitive with nonlinear
terms, k�vt�k�vE�B. At this point it might then switch to a
forward cascade to higher wavenumber, but along a path in
�k� ,k�� space such that k�vt�k�vE�B. Thus this supports the
critical balance hypothesis suggested for gyrokinetic turbu-
lence in Refs. 4 and 33, that the turbulence will primarily
cascade along a path in wave number space that has parallel
linear time scales comparable to perpendicular nonlinear
time scales, similar to critical balance ideas in astrophysical

Alfvén turbulence in Refs. 61 and 62. Further analysis of
gyrokinetic statistical equilibria may lead to more specific
insights.

There are other more subtle physics, such as the bottle-
neck and its associated weakening of intermittency growth
issues,63 as proposed to be explained as partial thermaliza-
tion by Frisch et al.29 For example, as the Fourier transform
is linear, the physical-space field of the Fourier–Galerkin
truncated absolute equilibria would also be Gaussian, whose
residual may result in a resistance in the departure from
Gaussian �intermittency� for the turbulence fluctuations.30

Before examining the details of collision and wave-particle
interaction mechanisms, so far we unfortunately are not able
to say anything more on this for the plasma turbulence. Nev-
ertheless, such considerations emphasize the importance of
implementing the correct collision operators �which is nec-
essary in many physical situations� and in interpreting the
numerical data.

III. CONCLUSION AND FURTHER REMARKS

Here we have extended previous work on statistical
equilibria of 2D and 3D hydrodynamics and MHD to the
case of higher-dimensional gyrokinetics. Previous work in
hydrodynamics found that there was a profound difference
between 2D and 3D, because the existence of two invariants
in 2D lead to the existence of negative temperature equilib-
rium states with most of the energy condensing into the long-
est wavelengths in the system �related to the inverse energy
cascade in 2D turbulence�, while in 3D there was only a
single invariant resulting in energy equipartition among
Fourier modes �related to the forward cascade of energy to
small scales in 3D turbulence�.

For gyrokinetics in the limit of two spatial and one ve-
locity dimension �2+1D�, we have worked out the Gibbs
equilibrium in the presence of N+1 invariants �where N is
the number of velocity grid points� and find that, like 2D
hydrodynamics, this can also exhibit negative temperature
states where much of the energy condenses to the longest
wavelengths in the system. For a range of typical parameters
explored so far, 2+1D gyrokinetics exhibits a very strong
inverse cascade. At high k�, the 2D gyrokinetic energy spec-
trum has an asymptotically flat tail, E�k���k�

0 , which is
enhanced relative to the high k� limit of Hasegawa–Mima’s
thermal spectrum, E�k���1 /k�. The amplitude of this tail in
gyrokinetics is found to depend sensitively on the ratio of Gi

to energy.
We also calculated the statistical absolute spectrum for

Fourier-truncated gyrokinetics in the full three spatial and
two velocity dimensions and found that the result was
equivalent to earlier thermal noise spectra calculated for
particle-in-cell gyrokinetics, indicating that the random
phase and amplitude of shielded Fourier components of the
distribution function in a continuum representation is related
to the random position and weights of shielded particles in
the Klimontovich representation of a PIC code. The resulting
3D gyrokinetic spectrum corresponds to equipartition in k�,
and even with all of the finite-Larmor radius averaging in
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gyrokinetics, the electrostatic potential spectrum only falls
relatively slowly at high k�, so E	�k���k��	�k��2�k�

0 .
As described in the introduction, statistical equilibria

spectra as calculated here have several useful purposes. In
particular, they provide an analytic nonlinear test for bench-
marking of gyrokinetic codes, which could be pursued in
future work. They may also provide insights into certain as-
pects of the nonlinear dynamics in driven, nonequilibrium
gyrokinetic turbulence simulations. For example, in regions
of the turbulent spectrum where the parallel linear dynamics
is slow compared to the nonlinear decorrelation rate, k�vt

�k�vE�B, then the interactions may behave in a quasi-2D
behavior, which can cause an inverse cascade to smaller k�

in general, and in particular can strongly enhance the ITG
zonal flows because of the lack of adiabatic electron shield-
ing for ITG zonal flows. But these may be offset by the
tendency toward equipartition of the spectrum in k�, so that
eventually k�vt�k�vE�B and parallel linear dynamics be-
comes competitive with nonlinear perpendicular dynamics.
In this region of wavenumbers, the turbulent cascade would
then switch to a forward cascade to higher �k�, along a path
where parallel and perpendicular dynamics remain compa-
rable and so stay full 3D, consistent with the critical balance
hypothesis for gyrokinetic turbulence suggested in Refs. 4
and 33. There are various directions in which the present
work could be extended in the future that may further help in
understanding plasma behavior in actual experiments, such
as extensions to include a kinetic treatment of all particle
species, electromagnetic fluctuations, and the effects of mag-
netic curvature and grad-B drifts in toroidal geometry.
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APPENDIX A: PEDAGOGICAL ILLUSTRATION
OF THE CALCULATION OF THE CANONICAL
ENSEMBLE

The line of reasoning presented by Lee9 regarding how
to apply a statistical mechanics approach to hydrodynamics
and MHD can be straightforwardly extended to the higher
dimensional gyrokinetic case considered here. We briefly
summarize that line of reasoning here, which also serves to
explain the notation that we use. Consider a system governed
by Eqs. �5� and �7� �with Eq. �5� evaluated at the same ve-
locity grid points as used in Eq. �7��. The state of a system at
a particular time can be specified by a vector g in an ex-
tended phase space of dimension NkN, where Nk is the num-
ber of Fourier modes and N is the number of velocity grid
points. The elements of g are ĝ�k ,vi�, the complex amplitude

of Fourier modes k�K+ at velocities vi, where K+ is the set
of independent modes k in the truncation K that are in the
upper half plane. One can consider an ensemble of many
such systems and define the function P�g , t� that gives
the probability of a system being in state g at time t. For
continuous dynamics, this satisfies a conservation law
�tP+�g · �ġP�=0 where an overdot is used to denote a time
derivative so ġ is given by Eq. �5�. A generalized Liouville
theorem holds for these equations, i.e., the flow in this ex-
tended phase space is incompressible, �g · ġ=0, because for a
given value of k, the right hand side of Eq. �5� vanishes if
p= �k �because q=k−p means p�q vanishes�, and thus
also vanishes if q= �k. �In other words, the rate of change
ġ�k� at any instant in time depends only on the amplitude of
other modes ĝ�p� with p�k.�

Since a Liouville theorem holds, standard results and
assumptions from statistical mechanics can be applied to
these equations. A generalized Liouville equation holds,
�tP+ ġ ·�gP=0, i.e., the probability P�g�t� , t� is constant on a
moving trajectory in this extended phase-space. Looking for
a time-independent statistical steady state, we take an equal
probability for all points along a trajectory’s path. Assuming
that the dynamics are sufficiently mixing and an ergodic hy-
pothesis holds, so that a trajectory samples all possible points
on a hyper-surface in phase-space constrained only by the
invariants, leads to the microcanonical ensemble given by
P=C��E−E0��i=1

N ��Gi−Gi0�, where E=E�g� and Gi�g� are
the previously given expressions for the energy and entropy
invariants, which are functions of g, E0 and Gi0 are the val-
ues of those invariants �set by initial conditions�, and �i=1

N

indicates repeated multiplication over all possible velocity
points i.

As is well known, for systems with a large number of
degrees of freedom, many features of a microcanonical en-
semble are often well-approximated by a Gibbs canonical
ensemble, P=Z−1 exp�−S� where S is a linear combination
of conserved quantities, which in this case is S=�0E
+
i�iGi, �0 and the N values of �i are the “�inverse� tem-
perature parameters,” and Z is a normalization coefficient
such that �dgP�g�=1. One way48,49 to derive this is to
choose P to maximize the Liouville phase-space entropy
SL=−�dgP�g�log�P�g�� �i.e., choose P to be as uniformly
distributed as possible� subject only to constraints on the
average values of the invariants �this leads to the Lagrange
multipliers �0 and �i in the canonical ensemble�. For ex-
ample, the constraint on the ensemble-averaged value of the
energy is E0= 	E
=�dgP�g�E�g�. �Note that the fact that a
Liouville theorem is satisfied is an important part of justify-
ing the maximum-entropy approach of the previous para-
graph, as it means that the probability distribution P can be
constant along trajectories in these coordinates, which is not
necessarily true in other coordinates. For example, some-
thing that is uniformly distributed in x is not uniform in x3.�

Inserting the expressions for the energy and entropy in-
variants into the expression for S gives
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S = �0
˜
k

2���k�

i,j

ĝ��k,vi�wi�k�wj�k�ĝ�k,v j�

+ 

i=1

N

�i
˜
k

�ĝ�k,vi��2. �A1�

With a little rearrangement, the Gibbs canonical distribution
becomes

P � exp�−
1

2

k

˜

g��k� · M�k� · g�k�� . �A2�

This is of the form of a multivariate Gaussian distribution,
where the elements of the k-dependent, N�N matrix M are
given by Mij =�ij2�i+�04���k�wi�k�wj�k�, and g�k� is the
N-dimensional vector of the velocity-indexed values of the
complex amplitudes ĝ�k ,vi�.

Expressing g in terms of its real and imaginary
parts, g�k�=gR�k�+ igI�k�, note that the sum over wavenum-

bers in Eq. �A2� can be written as 
˜ kgR�k� ·M�k� ·gR�k�

+
˜ kgI�k� ·M�k� ·gI�k� since M is real, so the real and imagi-
nary parts of g are uncorrelated and have the same covari-
ance, 	gR�k ,vi�gR�k ,v j�
= 	gI�k ,vi�gI�k ,v j�
=cij�k�, where
cij are the elements of the covariance matrix C�k� given by
the inverse of M, i.e., C�k�=M−1�k�.

APPENDIX B: CALCULATING THE COVARIANCE
MATRIX USING THE SHERMAN–MORRISON
FORMULA

In principle, once that M�k� in Eq. �A2� is known, one
can calculate the covariance matrix C�k�=M−1�k� and one
can then calculate various statistical properties of interest,
such as the energy spectrum of fluctuations. However, M is
in general a dense matrix, so at first it looks like this may
require a numerical treatment to invert it. To make analytic
progress, one can initially consider the limit �0=0, in which
case M is diagonal and easily invertible. One can then do a
matrix series expansion for small �0 and discover that it is
possible to sum the result to all orders in �0 because of the
special tensor product form of the coefficient of �0 in M.
This turns out to be a special case of the general Sherman–
Morrison formula.

In linear algebra, suppose A is an invertible square ma-
trix and u and v are vectors and that 1+vTA−1u�0, then the
Sherman–Morrison formula reads64

�A + uvT�−1 = A−1 −
A−1uvTA−1

1 + vTA−1u
.

To derive the covariance matrix C=M−1 in Eq. �9�, we
use the definition of M given after Eq. �A2�. Thus in
the Sherman–Morrison formula, the elements of A are
aij =2�i�ij, and we can set ui=�04��wi and vi=wi. Then the
elements of A−1uvTA−1 are xij =�02���k�wi�i

−1wj� j
−1 and

vTA−1u=�02���k�
i
 jwiwj�i
−1�ij =�02���k�
iwi

2�i
−1. So,

we have Eq. �9�.

APPENDIX C: FROM GYROKINETICS TO FLUIDS:
RECOVERING THE CHARNEY–HASEGAWA–
MIMA EQUATIONS

We first briefly reproduce the derivation of the CHM
equations from gyrokinetics by Plunk et al.36 with slight
variation. From Eqs. �5� and �6� we have

�t	̂�k� = ��k� 

p+q=k

ẑ

� p · q	̂�p�� vdvJ0�k�0v�J0�p�0v�ĝ�q,v� .

�C1�

In the cold ion limit �0→0 �as described in Sec. II A�, the
first kind zeroth order Bessel functions reduce to unity, and
��k� to 2� / ��+k2�, and then, with substitution of the
quasineutrality Eq. �6� in the second line of Eq. �C1�, gyro-
kinetics reduces to CHM. In physical space, it reads

�t�� − �2�	 = ẑ � �	 · ���2	� . �C2�

This is the inviscid �the collision operator in Plunk et al.36

also vanishes after integration over velocity by particle con-
servation� CHM equation. The scale to which gradients were
normalized in these equations corresponds to the Rossby de-
formation radius in quasigeostrophic turbulence, or to the
sound Larmor radius, �s, in a plasma. We have left a � de-
pendence in these equations for generality, as the two-
dimensional Euler equation can be obtained in the case
�=0 �the no-response model�.

There are two invariants of the CHM/Euler equation that
are relevant to our discussion, referred to as energy and en-
strophy �although their physical interpretation depends on
the specific scale of interest�,

ECHM =
1

2
� d2r

V
��	2 + ��	�2� , �C3a�

ZCHM =
1

2
� d2r

V
����	�2 + ��2	�2� . �C3b�

This leads to absolute equilibrium energy spectra of the form
E�k��kD�k��k / ��CHM+�CHMk2�, where �CHM and �CHM

will be determined by the values of these two invariants, via

ECHM=2
˜ kD�k� and ZCHM=2
˜ kk2D�k�. The first invariant,
ECHM, is formally the reduced energy, E, of gyrokinetics in
the cold-ion limit. The enstrophy, ZCHM, however is new and
deserves further inspection of its origin.

The CHM equation can be written as �n /�t= ẑ
��	 ·�n, where the potential is determined from the
guiding-center density n=2��dvvg by inverting ��−�2�	
=n. The nonlinear term on the RHS of CHM has the property
that it can be multiplied by either the density n or the poten-
tial 	 and then will vanish when integrated over all space.
This leads to the two standard energy and enstrophy invari-
ants used for the CHM equations. However, in gyrokinetics
where we keep a finite, nonzero temperature, the velocity
and wavenumber dependence in the Bessel functions in the
second line of Eq. �C1� introduces extra nonlocal position
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and velocity scale interactions that mean that ZCHM is no
longer conserved. Due to these FLR effects, gyrokinetics in-
stead has a set of invariants that hold at each velocity,
G�v���d2Rg2�R ,v�, while CHM had an additional invariant
proportional to �d2R��dvvg�2. This new CHM invariant is
not representable as a combination of the gyrokinetic G�v�
and E invariants. One way to think of this is to note that
CHM depends only on the velocity integral of g through
n=2��dvvg, so the CHM dynamics are independent of any
details of the velocity structure of g, thus allowing an addi-
tional invariant that is not present in gyrokinetics because of
its FLR effects.

APPENDIX D: EXAMPLE 2D SPECTRA FOR SPECIFIED
INITIAL CONDITIONS

Here we consider a numerical gedankenexperiment, in
which a gyrokinetic code is operated in the 2+1D limit and
is initialized with perturbations concentrated near some ini-
tial wavenumber k0 but with no other forcing.65 Those per-
turbations will then interact nonlinearly and scatter energy to
other wave numbers, while preserving certain invariants of
the motion. Presumably the spectrum will eventually reach a
statistical steady state, and here we make plots of the energy
spectra expected from canonical equilibria corresponding to
some sample initial conditions. This helps provide further
insight into the nature of these equilibria.

Before making these plots, we first consider some of the
properties of spectra and the relationship between the invari-
ants and the �i parameters in more detail. For positive �0 and
�i �i�0�, then the factor in brackets in Eq. �11� is close to
unity for all wavenumbers, and one can sum over all wave-
numbers to find Gi=Nk / �2�i� �where Nk���kmax /kmin�2 is
the number of Fourier modes�, which can be used to deter-
mine �i in terms of the conserved Gi. Equation �10� can be
summed over all wavenumbers to determine the total energy
and then determine �0. For fixed positive values of �i, the
energy is a monotonically decreasing function of �0, so if the
energy is sufficiently large �for given values of the Gi�,
then �0 must go negative to produce a “negative tempera-
ture” state. If we perturbatively use �i�1 /Gi to evaluate
the energy spectrum and assume a Maxwellian velocity
distribution for the fluctuations so Gi=�d2Rg2�R ,v� /2
�exp�−v2�, then the commonly occurring factor 
lwl

2�l
−1

�
lvl
2J0

2�kvl�exp�−v2� is a monotonically decreasing func-
tion of k, as is ��k�, so if �0 goes negative in the denomina-
tor of Eq. �10�, it will preferentially enhance the energy in
the low-k part of the spectrum. �If the denominator of Eq.
�10� gets sufficiently close to zero for some wavenumbers,
then the factor in square brackets in Eq. �11� could differ
from unity and alter the relationship between Gi and �i

assumed here.� Note that the realizability constraint that
the energy spectrum be non-negative in this case means
that the limiting value of �0 for this set of �i is
�lim=−�2���k�
lwl

2�k��l
−1�−1 evaluated at k=kmin. �If the

enhancement of ion-scale zonal flows due to the lack of elec-
tron response is accounted for, then this would strongly in-
crease the value of � for the zonal modes, reduce the mag-

nitude of the limiting value of �0, and strongly enhance the
amplitude of zonal flows.�

Returning to the numerical gedanken experiment, con-
sider an initial perturbation of the form

g�R� ,v,t = 0� = cos�k0Ry�
e−v2/2

2�
J0�k0v� �D1�

�here we set �0=1 for simplicity�, as a model that has
some characteristics of the drive by drift-wave types of in-
stabilities. This initial condition models what happens if a
linear source term −vE�B ·�F0 �representing instabilities that
drive drift-wave gyrokinetic turbulence� had been turned on
in the gyrokinetic equation for a time of order L /cr in the
presence of a background density gradient �F0=−x̂F0 /L,
where the eddy has a binormal wavenumber ky =k0. �In an
actual code, a small amount of energy must initially be put in
other Fourier modes as well, because a single Fourier mode
does not interact with itself nonlinearly.� The energy and
entropy invariants corresponding to this initial condition are

E=��k0��̂0
2�k0

2� / �8�� and Gi=exp�−vi
2�J0

2�k0vi� / �16�2�.
Given the specified values of the energy and entropy

invariants, it is not analytically easy in general to invert the
equations to determine the corresponding temperature pa-
rameters �0 and �i, because the energy and entropy are non-
linear functions of the temperature parameters, as discussed
after Eq. �11�. That is, the entropy invariants are related to

the covariance matrix by Gi=2
˜ kci,i�k� and the energy is

related by E=2�
̃k�	k�2 /��k�= 
̃k4���k�
i,j
N wiwjci,j�k�,

where the wavenumber sums are over the independent set K+

and ci,j�k� is a nonlinear function of the temperature param-
eters as given by Eq. �9�.

A code was written to numerically carry out the inver-
sion using a nonlinear root solver based on Powell’s method
and Broyden’s quasi-Newton algorithm in the MINPACK soft-
ware package.66 To aid in finding a root, a variable transfor-
mation was used for �0 to ensure that during the search �0

never exceeded the lower limit set by realizability constraints
that the energy spectra be non-negative. The results in this
section used a uniformly spaced 2D wavenumber grid,67

where the set of retained Fourier modes is K= �k �kmin� �k�
�kmax+�k /2�, with kmin=�k=0.1, kmax=10, and the number
of modes is Nk=31 576. A uniformly spaced velocity grid
was used with N=40 points, equally spaced from �v /2 to
vmax=3+�v /2, with mi=�v=3 /N. The background plasma
temperatures were set to T0=Te=Tr so �0=1 and an adiabi-
atic species response factor of �=1 for simplicity, neglecting
possible enhancements of zonal flows.

Figure 2 shows the gyrokinetic equilibrium spectrum
that results from these initial conditions with k0=0.3. �The
wavenumbers in the figures refers to the physical kp, where
the normalized k=kp�r, and the reference gyroradius is set to
�s=�Te /mi /
ci for comparison with the cold-ion Hasegawa–
Mima drift-wave equations.� This figure also shows the spec-
trum given by the Charney–Hasegawa–Mima equations for
these same initial conditions.68 Both the gyrokinetic and
CHM spectra show strong transfer of energy to large scales
relative to the initial location of the energy at k0=0.3, though
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there is more of a tail in CHM case. Both the gyrokinetic and
CHM equations result in a negative temperature state
��0�0 for the gyrokinetic case�69 with most of the energy
condensed into the longest wavelengths in the domain.

Figure 3 is similar to Fig. 2 except that the energy is
initially at a higher wavenumber of k0=5.0. There are now
significant differences between the gyrokinetic and
Hasegawa–Mima spectra, with gyrokinetics still showing a
very strong transfer to large scales while the energy remains
primarily at higher k in the Hasegawa–Mima case. This is
because the cold-ion Hasegawa–Mima equations have an ad-
ditional invariant �see Appendix C�, the enstrophy �the mean
squared vorticity�, which is not conserved by the general
warm-ion gyrokinetic equations because of FLR effects in
the Bessel functions. �This is related to the fact that although
the 2+1D gyrokinetic spectrum in Eq. �12� for the T0 /Tr

�1 regime has the same two-parameter form as the CHM
spectrum, the relationship between those two parameters and
the invariants is different for gyrokinetics than for CHM,

because CHM has an additional invariant at T0=0 that does
not exist in gyrokinetics with nonzero T0.� The initial wave-
number of k0=5 in Fig. 3 is sufficiently close to the trunca-
tion wavenumber kmax=10 that there is not much room for
the enstrophy density �k2E�k� to transfer to higher wave-
number, thus inhibiting how much transfer of energy to
larger scales can occur in the Hasegawa–Mima equations.

It is possible to increase the size of the tail in the
2+1D gyrokinetic spectrum by increasing the amplitude of
the Gi relative to the energy, as shown in Fig. 4. Considering
a long-wavelength initial condition ignoring FLR effects, this
can occur if a component is added to g�R ,v , t=0� that oscil-
lates in velocity so that it makes no contribution to the po-
tential ��dvvg, but does enhance Gi=�d2R�g�R ,vi��2. This
can model the effects of temperature gradients in the back-
ground F0 that drives the initial perturbation, or the build up
of large values of Gi in a long turbulence simulation without
adequate dissipation because of the entropy balance
relationships,34,57 thus leading to bottleneck problems.29

Note that the dependence of the tail on the enhancement of
Gi is a strongly nonlinear function.70 In the limit of very
large Gi /E, the spectrum will approach equipartition among
Fourier modes, E�k. One can also consider how the spec-
trum depends on the assumed velocity grid spacing �v. From
numerical results, confirmed by analytic scalings, one finds
that as �v goes to zero, with fixed values of E and Gi, that
�0�−1 /�v goes to negative infinity �while �i→ constant for
i�0�, corresponding to a negative temperature state with
all of the energy in the lowest k mode, so E�k�=0 for all
k�kmin.

APPENDIX E: THERMAL NOISE SPECTRA
IN NUMERICAL SCHEMES

In the 3+2D results in Sec. II B, we worked out the
electrostatic spectrum, Eq. �16�, and showed that the shape
agrees with earlier results for the spectrum in a PIC
code. Here we show that the magnitude agrees as well,
with the proper relation between certain quantities in a con-
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FIG. 2. �Color online� Spectra for 2+1D gyrokinetics and for the CHM
equations, corresponding to the model initial conditions with energy initially
at k0�s=0.3. Both spectra show a significant transfer of energy to larger
scales, resulting in a negative temperature state with most of the energy
condensed into the longest wavelength in the domain.
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FIG. 3. �Color online� Spectra for 2+1D gyrokinetics and Charney–
Hasegawa–Mima, like Fig. 2 except the energy is initially at a higher wave-
number of k0�s=5.0.
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FIG. 4. �Color online� Spectra for 2+1D gyrokinetics for initial conditions
with the energy at k0�s=0.3 like Fig. 2, but with the value of the entropy
invariants Gi enhanced relative to the model initial conditions by factors of
1�, 4�, 10�, and 500�.
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tinuum code and a PIC code. Begin by defining a weighted
mean-square average of the distribution function
g2=�d3R�d3v	g2
 / �F0V� �an overbar is used here to indicate
a combined velocity space average and an ensemble/volume
average, to be distinguished from angle brackets that indicate
an ensemble average�. This uses the same velocity weighting
as found in the Wg0 component of the generalized energy
in Eq. �13�. After discretization, this becomes

g2=2
̃k
imici,i�k� /F0�vi�. Using Eq. �11� evaluated with the
coefficients given just before Eq. �15� for the 3+2D case,
and using the same approximations as used just before Eq.
�16� �where velocity summations are approximated by inte-
grals assuming a well-resolved velocity limit�, one can show
that

g2 =
2

��N
˜
k

− 
˜
k

�0�k�
2 �� �

NNk

�
,

for N�1 �recall that 
˜ k is defined as a sum over the modes
in the upper half plane, so the total number of Fourier modes

is 2
̃k=Nk�. We thus find that the thermal noise spectrum in
Eq. �5� of Ref. 34 for �f PIC codes �using a weighted-
particle Klimontovich representation for the distribution
function� is identical to the thermal spectrum calculated
here for a continuum code using a spectral representation
for the distribution function, with the identification of
1 /�=g2 / �NNk� in a continuum code with w2 /Np in a PIC
code. So the total number of particles Np in the PIC code is
equivalent to NNk, where N is the number of velocity grid
points and Nk is the number of Fourier modes in the con-
tinuum code, and the mean squared particle weight w2

�which is called 	w2
 in Ref. 34� is equivalent to the con-
tinuum value of the mean-square particle distribution func-
tion g2. �From the PIC perspective, this is consistent because
the particle weights w are equivalent to �f /F0, and in
w2=
i=1

Np 	wi
2
 /Np, the marker particles have an F0 distribu-

tion.� This equivalence between continuum and PIC thermal
spectra is similar to that found in 2D hydrodynamics be-
tween Fourier–Galerkin and point-vortex representations of
the problem. �The finite-size particles used in most plasma
PIC codes provide a kind of ultraviolet cutoff that removes
issues that could arise from point vortices or point particles
forming tightly bound pairs.�

The thermal noise spectrum in PIC codes can be worked
out using the test-particle superposition principle, assuming
that shielded test particles can be considered independent
and random. The equivalence of the PIC and continuum ther-
mal spectra indicates that one can likewise consider the ran-
dom phase and amplitude of a Fourier-mode in g at a par-
ticular velocity �plus the plasma shielding of this mode� to be
like the random position and weight of a shielded test
particle.

Since the thermal noise level 		2
=2
̃k	�	̂k�2
 scales as
g2 /N, it is important for both PIC and continuum codes to
either have enough particles or velocity grid points per spa-
tial grid point so that the noise does not get too large on the
time scale of the simulation, or to have enough small-scale

dissipation to prevent the particle weights or g2 from grow-
ing too large during the simulation and causing a bottleneck
problem29 or a numerical diffusion problem.34 �We have con-
sidered the uniform plasma case in this paper where g2 is a
constant set by initial conditions, but in the case of turbu-
lence driven by a background gradient, g2 will increase in
time due to an entropy balance relation34,57 unless dissipation
is accounted for.� Most continuum codes avoid such prob-
lems by employing either physical collisions or numerical
dissipation such as high order upwinding or hyperdiffusion,
though work on improved subgrid models might be able to
help optimize the performance by reducing resolution re-
quirements. While �f PIC simulations can formally work
correctly for a given simulation time period if enough par-
ticles are used, eventually the noise can grow in time to
become a problem. PIC codes can avoid this issue and/or
reduce the particle resolution requirements by employing
weight-resetting methods,71 which essentially provide some
numerical diffusion to limit the growth of the weights.
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