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Abstract
Nuclear fusion is a clean, safe form of energy with abundant fuel. In magnetic fusion energy

(MFE) experiments, the plasma fuel is confined by magnetic fields at very high temperatures and
densities. One fusion reactor design is the non-axisymmetric, torus-shaped stellarator. Its fully-3D
fields have advantages over the simpler, better-understood axisymmetric tokamak, including the
ability to optimize magnetic configurations for desired properties, such as lower transport (longer
confinement time).

Turbulence in the plasma can break MFE confinement. While turbulent transport is known to
cause a significant amount of heat loss in tokamaks, it is a new area of research in stellarators.
Gyrokinetics is a good mathematical model of the drift-wave instabilities that cause turbulence.
Multiple gyrokinetic turbulence codes that had great success comparing to tokamak experiments
are being converted for use with stellarator geometry. This thesis describes such adaptations of
the gyrokinetic turbulence code, GS2. Herein a new computational grid generator and upgrades to
GS2 itself are described, tested, and benchmarked against three other gyrokinetic codes.

Using GS2, detailed linear studies using the National Compact Stellarator Experiment (NCSX)
geometry were conducted. The first compares stability in two equilibria with different β =(plasma
pressure)/(magnetic pressure). Overall, the higher β case was more stable than the lower β case.
As high β is important for MFE experiments, this is encouraging. The second compares NCSX
linear stability to a tokamak case. NCSX was more stable with a 20% higher critical temperature
gradient normalized by the minor radius, suggesting that the fusion power might be enhanced by
∼ 50%. In addition, the first nonlinear, non-axisymmetric GS2 simulations are presented.

Finally, linear stability of two locations in a W7-AS plasma were compared. The experimentally-
measured parameters used were from a W7-AS shot in which measured heat fluxes match neoclas-
sical theory predictions at inner radii, but are too large for neoclassical predictions at outer radii.
Results from GS2 linear simulations show that the outer location has higher gyrokinetic instability
growth rates than at the inner one. Mixing-length estimates of the heat flux are within a factor of 3
of the experimental measurements, indicating that gyrokinetic turbulence may be responsible for
the higher transport measured by the experiment in the outer regions. Future nonlinear simulations
can explore this question in more detail.

This work is supported by the Princeton Plasma Physics Laboratory, which is operated
by Princeton University for the U.S. Department of Energy under Contract No. DE-AC02-
09CH11466, and the SciDAC Center for the Study of Plasma Microturbulence.
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Chapter 1

Introduction: A Case for Fusion Energy

1.1 Energy Crisis
Increasingly, the world runs on electricity. We rely on computers, smartphones, iPods, and TVs.
We are always listening to music, making coffee, microwaving dinner, driving cars, air condition-
ing our offices, lighting our homes, and running factories.

Power plants that generate electricity use energy mainly from coal, natural gas, hydropower,
or nuclear fission. Our cars rely on gas made from oil. As more developing countries desire first-
world standards of living, the world energy usage is projected to increase about 40% over 2008
consumption by the year 2035 (Fig. 1.1). Electricity generation, current and projected to increase
by 84% in 2035, is broken down by type in Figure 1.2. We face a set of crises directly related to or
affecting our current energy sources.

Due to large natural resources and growing demand, the U.S., China, and India rely heavily
on coal. However, coal burning plants release greenhouse gases into the atmosphere[2]. In 2010,
U. S. coal-plant-released greenhouse gases accounted for 81% of the total released by electricity
generation (Fig. 1.3). Also, emissions from coal plants include over 76% of the US acid gas emis-
sions, over 40% of the US mercury emissions, along with many carcinogens and other emissions
that harm human, animal, and plant life[22].

The U.S. was the world’s largest petroleum consumer in 2010, at 19.1 million barrels per day
(MMbd) of petroleum products. Though we are the world’s third largest producer of crude oil, we
import about half of our petroleum (Fig. 1.4). In 2010, Canada and Saudia Arabia were our largest
importers of crude oil. While consumption and importation have decreased slightly since 2005
(Fig. 1.5), significantly reducing our dependence on foreign oil would increase national security.
Oil is also environmentally hazardous, as oil spills devastate ocean and beach ecosystems, and
vehicles running on gasoline pollute the air with carcinogens[23].

Nuclear fission power provided about 20% of the U.S. electricity in 2010[24]. While nuclear
fission plants do not produce greenhouse gases, the fission reaction (usually the splitting of the
uranium-235 or plutonium-239 nucleus) produces radioactive isotopes (i.e. of cesium, strontium)
that must be stored safely for thousands of years[25]. In geographically stable areas, such as
Europe and parts of the USA, fission reactors can be ideal power sources. However, one needs

1



CHAPTER 1. INTRODUCTION: A CASE FOR FUSION ENERGY 2

Figure 1.1: World energy consumption 1990-2035 (quadrillion Btu)[1], Fig 1

Figure 1.2: World net electricity generation by fuel type, 2008-2035 (trillion kilowatthours)[1],
Fig. 6
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Figure 1.3: Coal releases 81% of the carbon dioxide emitted by electricity generation.[2]

Figure 1.4: In 2010, the U.S. imported almost half of its petroleum.[3], Fig. 1
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Figure 1.5: Petroleum consumption, production, and import trends (1949-2010) in million barrels
per day.[3], Fig. 3
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Figure 1.6: U.S. renewable energy consumption, 2010.[4],Fig. 1

to look no further than the recent Fukushima disaster [26] to see that they are not universally
viable options: the many levels of fail-safes in this Japanese plant were destroyed by a tsunami
resulting from the earthquake. Fission can also be a security issue: fuel and waste can be turned
into weapons of mass destruction.

Fuel shortages could render some of these non-ideal energy options obsolete. By about 2100,
oil reserves could be emptied at current usage rates[27]. While natural gas has a lower carbon
output than coal or oil, at the 2010 rate of U.S. consumption, natural gas reserves could also
run out in 100 years[1, 28]. This does not even account for projected increases in world energy
usage. Unless we find an alternative, we will not be able to maintain our high standards of living
indefinitely and must plan ahead.

A promising alternative to these traditional energy sources is fusion energy. Other alternatives
are wind, solar, biofuels, geothermal. Currently, renewable energy accounts for only 8% of the
U.S. energy supply (Fig. 1.6). Clearly, we must prepare these alternatives to provide for a larger
portion of the world’s energy supply. Fusion energy is a clean option that could be universally
available and sustainable.

1.2 Nuclear Fusion Energy

1.2.1 Nuclear Energy
In atoms, protons and neutrons are bound together tightly in the nuclei by the nuclear force (or
strong interaction). Some nuclei are more stable than others; i.e. more likely to remain in that
configuration of a certain number of protons and neutrons. The nuclear binding energy describes
the stability of the atom: the higher the binding energy, the more stable the nucleus. As one can see
in Figure 1.7, there is a peak (at 56Fe) in the dependence of average binding energy with respect to
atomic mass number. For heavy nuclei on the right side of the figure, splitting into smaller nuclei
results in more stable configurations. Conversely, smaller nuclei on the left of the figure achieve
more stable configurations by combining into larger nuclei. In both of these cases, the resulting
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Figure 1.7: Nuclei smaller than the most stable nucleus, 56Fe, release energy by fusion, and larger
nuclei release energy by fission. Adapted from ref: [5]

mass is less than the individual components. This is due to Einstein’s iconic equation, E = mc2:
the mass has been converted into energy. Lots of energy.

The energy released by the splitting of large nuclei to form smaller, more stable ones is fission
energy. An example nuclear reaction used by commercial fission energy is:

235U+ n → 236U → 2n + 92Kr + 142Ba (1.1)

Fusion energy is released when small nuclei fuse to form larger, more stable nuclei. The Sun and
all stars are powered by fusion. We are trying to harness this energy to power electricity generation.
The most promising reaction is the deuterium-tritium (D-T) reaction:

D+ T → 4He(3.5MeV) + n(14.1MeV) (1.2)

where D = 2H and T = 3H are isotopes of hydrogen.

1.2.2 Advantages of Fusion
Like fission reactors, fusion reactors would emit no greenhouse gases. An advantage of fusion over
fission can be seen in Figure 1.7: the potential energy gain from fusion is much higher than that
from fission. In contrast to fission’s thousand-year-half-life radioactive waste, fusion’s radioactive
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waste has half-lives of only hundreds of years. The very nature of fusion reactors prohibits a
meltdown (such as the Fukushima disaster); this will be discussed in section 1.2.4.

Another distinct advantage of fusion over fission is the fuels. Fission reactors use isotopes
of uranium or plutonium, which, as discussed previously, can be turned into weapons of mass
destruction. Fusion uses isotopes of hydrogen: deuterium and tritium. Deuterium is commonly
found in sea water. While tritium is more rare, it can be bred using lithium in the fusion reactor
itself, via the reaction:

n + 6Li → T + 4He (1.3)

This means that fusion fuel is not only completely safe, it is available to every country. Creating vi-
able fusion could eliminate the struggle for power over energy sources and solve the fuel shortage,
while not contributing to climate change.

1.2.3 Difficulties with Laboratory Fusion
A disadvantage of fusion over fission, however, is that it takes much more energy to start a fusion
reaction than a fission reaction. Whereas nuclear fission energy can happen spontaneously or be
started with the bombardment of a neutron on a fissionable nucleus, fusion is never spontaneous.
The ions must have enough energy to overcome their repellant forces.

The reaction rate (fusions per volume per time) of two species is a function of the cross-section
σ, the reactants’ relative velocity v, and their number densities, n:

f = n1n2⟨σv⟩ (1.4)

Looking at Figure 1.8, ⟨σv⟩ is large at very high temperature. (Figure 1.8 also explains the prefer-
ence for the D-T fusion reaction: the peak of ⟨σv⟩ for D-T fusion is at the lowest temperature for
attractive fuels.) Thus, the probability of fusion reactions happening is higher with large densities
and high temperatures.

The last criterion to consider is confinement time: the ions must be held together long enough
for fusion to occur. The confinement time, τE , is defined as the energy content of the plasma, W ,
divided by the power loss, Ploss:

τE =W/Ploss (1.5)

This leads to the Lawson Criterion[29], which says that for fusion to occur, fusion heating must
exceed losses. IfEch is the energy of the charged particles in the reaction, this means fEch > Ploss.
For the D-T reaction, this works out to be nτE ≥ 1.5× 1020s/m3.

Incorporating the temperature, through considerations of pressure (∝ nT ) limits, the “triple
product” is born: neTτE . For D-T, this relationship must be satisfied:

neTτE ≥ 1021keV s/m3 (1.6)
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Figure 1.8: Reaction rates.[6]

So, we need very hot, dense, confined fuel. This fuel is usually a plasma: the fourth state of
matter, a gas of ions and electrons. Because plasmas are so hot, they cannot be held in a typical
solid container. They must be contained by gravitational, magnetic, or inertial means. The sun
uses huge gravitational fields to confine its plasma, but laboratory fusion uses inertial or magnetic
confinement.

1.2.4 Types of Fusion Experiments
Inertial confinement fusion (ICF) experiments use lasers or laser-generated x-rays focused on a
solid target (often a deuterium and tritium mixture). This creates a hot plasma layer, which blows
off the outside of the target, causing a rocket effect that compresses the core of the target. This
happens so fast (in nanoseconds), the ions do not have time to move apart because of their inertia.
The heated core can compress to large enough densities to satisfy the Lawson Criterion and produce
fusion energy. This energy can heat the rest of the target, causing a chain reaction of more fusion.
This is known at “ignition.” The largest ICF facility in the world was recently built in Livermore,
CA, at the National Ignition Facility[30]. They hope to achieve ignition in 2012.

The type of experiment on which this thesis will focus is magnetic confinement fusion (MCF).
Because plasmas are composed of charged particles, they can be controlled by magnetic fields.
MCF devices use magnetic fields to contain the plasma in a “magnetic box,” so that it does not
touch the wall of the machine. (If the plasma does touch the wall, the plasma will quickly cool
down and recombine to form a harmless neutral gas. The machine might be damaged, but no life-
endangering meltdown would occur.) A possible general design for a fusion reactor is in Figure
1.9. The core (see section 1.3.2) would produce neutrons, which would pass through a first wall
that shields the plasma from the rest of the reactor components. The amount of neutrons would be
increased via the neutron multiplier, for use in breeding tritium in the next layer (possibly a lithium
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Figure 1.9: Possible fusion reactor design. Adapted partially from Ref. [7].

wall). Outermost layers would include neutron shielding, coolants, heat exchangers, and finally,
power generators.

1.3 Magnetic Fusion Energy

1.3.1 Basics of Plasmas in Magnetic Fields
To understand magnetic fusion energy (MFE), first consider a single particle in the presence of
a magnetic field line. It will gyrate around the field line with cyclotron frequency Ωc = eB/mc
and gyroradius ρ = v⊥/Ωc (where v⊥ is the particle’s perpendicular velocity), and with a parallel
velocity, follow it (Fig. 1.10). Because ωc depends on the particle’s charge, ions and electrons
gyrate around the field in opposite directions. Also, notice that when |B| is larger, ρ is smaller and
thus the particle is more tightly held to the field line, because ρ ∝ 1/|B|. If we connect the ends
of the field line, the particle is captured (Fig. 1.11)!

We can add lots of field lines and particles to create a torus containing a plasma. Particles leak
out of this doughnut-shaped bottle, however, due to drifts caused by the shaping of the magnetic
field, including the ∇B and curvature drifts. Curvature is defined by a radius, Rc. On the inside
of the torus, in the “good curvature region,” the direction of the curvature drift is such that density
and temperature perturbations are damped. But, on the outside, the “bad curvature region,” pertur-
bations are reinforced by electric fields set up by the curvature drift, grow unstable, and can cause
loss of heat and particles–this is illustrated in Appendix A. Figure 1.12 shows the direction of the
drift velocity in the presence of ∇B and curvature. (For more information, see section 2.1.)

If we add the correct twist in the magnetic field, we can continuously move particles from the
bad region back into the good region, as in Figure 1.13. A particle gyrating around a field line
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Figure 1.10: Electrons and ions follow magnetic field lines. [8]

Figure 1.11: Charged particles can be captured by connecting a magnetic field line.

Figure 1.12: Particles experience drifts due to a) ∇B and b) curvature. Adapted from [8].
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Figure 1.13: a) Twisting the field lines moves plasma from bad to good curvature regions. b) A
particle drifts off of its surface on top of the torus, but twists around and is recaptured by the drift
at the bottom of the torus.[8]

drifts off of its surface at the top of the torus, but twists around to the bottom of the torus, where
it drifts back onto the surface and remains captured. This magnetic field configuration is used in
tokamaks.

1.3.2 Types of MFE experiments
A tokamak is an axisymmetric fusion experiment that creates its magnetic field configuration by
external poloidal and toroidal field coils, plus a plasma current produced by an ohmic transformer
(a varying current in a coil changes the magnetic flux, creating an electric field that drives the
current in the plasma). A very similar design is a spherical torus (ST), which has a smaller aspect
ratio (the ratio of the minor radius to major radius, a/R).

Another design is the stellarator: a toroidal magnetic configuration with fully 3-D, non-
axisymmetric fields, almost completely created by external coils (Fig. 1.14). These coils can be
quite complicated and thus a challenge to manufacture, but increasingly, modern engineering is up
to the task.

1.3.3 History of MFE Experiments
In 1933, Lord Rutherford declared that “anyone who looks for a source of power in the transfor-
mation of the atom is talking moonshine,” [31] but H. Bethe won the Nobel Prize in 1938 for a
quantitative theory of how stars produce energy with fusion[32]. The success of the Manhattan
project for nuclear weapons during WWII renewed interest in nuclear power. Small-scale fusion
power experiments took place in the 1940s, but it was not until the early 1950s that true progress
began.
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Figure 1.14: Types of magnetic configurations. [9]
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Figure 1.15: Spitzer and the Model A stellarator in the rabbit hutch.[10]

Birth of the Stellarator: 1950-1960

In 1951, Princeton University professor L. Spitzer created the first stellarator, the Model A, housed
in a former rabbit hutch (Fig. 1.15). It was funded under the classified Project Matterhorn, as
part of the hydrogen bomb research effort. Model A was used to compare a figure-8 magnetic
geometry (Fig. 1.16) with a simple toroidal magnetic field, showing the advantages of a twist
(known as the “rotational transform”) in the magnetic field. Later it was realized that a rotational
transform can also be produced with helical external coils in a racetrack configuration (Fig. 1.17).
The Model B-65 stellarator was built in 1957 and could be operated with or without helical coils,
allowing for a tokamak-like configuration. In 1958, controlled thermonuclear research in the U.S.
was declassified, as Princeton exhibited the B-2 stellarator in Geneva at the United Nations’ Sec-
ond International Conference on the Peaceful Uses of Atomic Energy. The Model B-3 stellarator
was used extensively throughout the 1960s to study plasma confinement[10]. The Model C stel-
larator was built in 1962, under Project Matterhorn’s new name of the Princeton Plasma Physics
Laboratory, constructed on Princeton University’s Forrestal Campus.

Dominance of the Tokamak: 1960-Present

Simultaneously in the 1950s, the Russians created the tokamak, whose name comes from the Rus-
sian acronym for “toroidal chamber with magnetic coils.” They reported their findings to the world
in 1968. Their tokamak had achieved high plasma temperatures, far surpassing other experiments
at the time, and the community switched focus to tokamaks and STs. Princeton’s Model C stel-
larator, plagued by poor confinement, was converted to a tokamak in 1969.

The Tokamak Fusion Test Reactor (TFTR) operated from 1982-1997. TFTR was the first in
the world to use 50/50 mixtures of deuterium-tritium (optimal for fusion power). In 1994, TFTR
yielded 6.2± 0.4 megawatts of fusion power[33], eventually reaching 10 megawatts.
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Figure 1.16: Figure-8 configuration.[11], Fig. 3

Figure 1.17: Racetrack configuration.[11], Fig. 4
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PPPL’s largest experiment since TFTR, the National Spherical Torus Experiment (NSTX), was
built in 1999. It has reached very large β = Pplasma/Pmagnetic (where the plasma and magnetic
pressures are Pplasma ∝ nT and Pmagnetic ∝ B2, where B is the magnitude of the magnetic field).
Fusion machine cost roughly scales with the magnetic field and size, as the magnetic coils are
the most expensive parts. Thus, also considering that high T is necessary for fusion, high β is
desirable. NSTX has also been a leader in experimentally studying plasma turbulence (section
2.4).

Other U.S. programs have also had great success, including the DIII-D tokamak at General
Atomics and Alcator C-Mod at MIT, as have Asian and European fusion programs. The Joint
European Torus (JET), in Culham, U.K., has been in operation since 1983, and is capable of
running with a deuterium-tritium mixture. In 1997, JET achieved the world record for fusion power
at 16 MW. The Japanese tokamak, JT-60, has set world records for highest projected (if tritium
had been used) Q = Pfusion out/Pin, T , and triple product nTτE[34]. Axisymmetric devices (e.g.
tokamaks and STs) have steadily made progress by increasing nTτE . Figure 1.18 indicates that this
progress is on par with particle accelerator progress and Moore’s Law for computing performance.

The next major step in tokamak development is ITER, an international collaboration between
China, the European Union, India, Japan, Korea, Russia, and the USA. Under construction in
Cadarache, France, ITER hopes to produce Q ≥ 10; i.e. for every 50MW of external input power,
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500MW of fusion power should be produced.[35]. ITER is designed to be a physics experiment
to lead into DEMO, a prototype fusion power plant.

However, there are problems with the tokamak and ST designs, leading to renewed interest in
stellarators in the 1980s.

Resurgence of the Stellarator: 1980-present

Tokamak and ST designs both require large plasma currents to create the rotational transform (the
twist in the magnetic fields), and such current causes magnetohydrodynamic (MHD) instabilities
that can break confinement. Plus, to create the plasma current, the ohmic transformers must be op-
erated in pulses. A power plant needs to operate in a steady state, so these axisymmetric machines
in their present form are not optimal options–though great strides are being made in researching
bootstrap current (self-sustained plasma current) and external beam or RF current drive.

Since their unique magnetic geometry can be created entirely by external coils, stellarators are
an attractive concept for MCF. There is a wide range of 3-D shapes of stellarators that can be
explored for performance improvement. Unlike their axisymmetric relatives, whose background
poloidal magnetic fields are generated by plasma current, their little-to-no plasma current drasti-
cally reduces current-driven MHD instabilities and enhances profile (shape) control. The lack of
plasma current also allows for natural steady-state operation, which is highly attractive in a power
plant design. Studies have been done on the viability of a stellarator-based fusion reactor, including
Refs. [36, 37].

While basic stellarator research continued through the 60s and 70s in Japan[38], Germany[39,
40], and the Ukraine[41], the Advanced Toroidal Facility (ATF), at Oak Ridge National Laboratory
(ORNL) [42] at the end of the 1980s was a major first step back for the US into stellarator research.

These traditional stellarators suffered from poor confinement relative to tokamaks. While MHD
instabilities are reduced, other types of transport can be exacerbated by the non-axisymmetric
geometry. Neoclassical transport (section 2.3) can often account for this poor confinement.[43]

However, modern stellarator designs, such as Wendelstein 7-AS (W7-AS),[44] Wendelstein 7-
X (W7-X),[45, 46] the National Compact Stellarator Experiment (NCSX),[47] the Large Helical
Device (LHD),[48] and the Helically Symmetric Experiment (HSX)[49–51] have shown or are
designed to have improved neoclassical confinement and stability properties.

Table 1.1 contains a list of major stellarators and their dates of operation.

1.4 Modern Stellarator Configurations
W7-AS, W7-X, HSX, and NCSX were designed by numerically optimizing over three-dimensional
geometric parameters for desired MHD stability and neoclassical transport[43]. Drift orbits and
neoclassical transport (section 2.3) only depend on the variation of |B|–not B⃗–on a flux surface.
One class of configurations with good properties is quasi-omnigenous. In quasi-omnigeneity (also
known as quas-isodynamicity), guiding-center drifts cancel over a bounce average. This can be
attained by putting trapped particles (see Chapter 3) (regions of low |B|) in regions with small
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Figure 1.19: W7-AS coil design.

curvature drift (B × ∇B) and putting the curvature needed to bend the system into a torus in re-
gions without trapped particles (regions of high |B|) [52]. A subset of quasi-omnigeneity is quasi-
symmetry. “Quasi-symmetric” stellarators have symmetric-like orbits, with |B| nearly symmetric
in Boozer coordinates[43] (see section 3.1.1). Two types of quasi-symmetric[53] configurations
are quasi-helical and quasi-axisymmetric.

1.4.1 W7-AS
The pentagon-shaped W7-AS (Figs. 1.19 and 1.20) ran in Garching, Germany, from 1988-2002.
“Partially-optimized,” W7-AS was designed to have a lower Pfirsch-Schlüter current (increasing
MHD stability [54] and maintaining the optimized plasma shape) than a tokamak or conventional
stellarator[55]. W7-AS had a very flexible, low-shear magnetic field configuration[56]. It was the
first currentless stellarator to observe an H-mode: an equilibrium of vastly improved confinement
properties[57].

1.4.2 HSX
HSX (Fig. 1.21) is quasi-helical stellarator at the University of Wisconsin, Madison, with an
average minor radius ⟨a⟩ = 0.15 and major radius ⟨R⟩ = 1.2m. It was built in 1996, designed to
have a reduced the Pfirsh-Schlüter current and a higher equilibrium beta. It has been demonstrated
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Figure 1.20: W7-AS

Figure 1.21: HSX
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Figure 1.22: LHD coils

that HSX has reduced parallel viscous flow damping in the helical direction [50], which may lead
to suppressed transport via larger flow shear.

1.4.3 LHD
The LHD (Fig. 1.22) is a helical stellarator in Toki, Japan, built in 1998. While not specifi-
cally designed to have optimized neoclassical transport, the LHD significantly reduces neoclassical
transport in its “inward-shifted” configuration, to the level of optimized stellarators. In this con-
figuration, the magnetic axis is shifted to a smaller radius than in “typical” LHD discharges[58].
LHD has reached enormous β values, of 5%, as well as high temperatures and densities, lead-
ing to a maximum triple product of nTτE = 4.4 × 1019m−3keV . It routinely runs in practically
steady-state, with pulses lasting over an hour[59].

1.4.4 NCSX
NCSX (Fig. 1.23-1.24) is a quasi-axisymmetric stellarator configuration with three field periods,
designed and partially constructed at PPPL before being canceled in 2008. The final design had
an aspect ratio of 3.5 and a major radius of 1.4 m. NCSX was designed to have good neoclassical
transport and MHD stability properties and drift trajectories similar to those in tokamaks. Strong
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Figure 1.23: NCSX

axisymmetric components of shaping provide desirable ballooning stability properties at lower
aspect ratio. NCSX would be more stable than an equivalent tokamak to external kink and vertical
modes (MHD instabilities), due to modified iota profiles (ι = 1/q influences MHD stability), local
magnetic shear, and other 3-D shaping effects[43].

The majority of the studies in Chapters 3-5 use NCSX geometry.

1.4.5 W7-X
W7-X, an optimized stellarator under construction in Greifswald, Germany, will be quasi-
omnigeneous. One advantage of omnigeneity is that it allows the bootstrap current to be reduced
(bootstrap current can work, especially in quasi-helical systems in which it is in the opposite
direction as that in a tokamak, to reduce the rotational transform[51]). Another advantage is that
the bulk of trapped particles can be located in regions of good magnetic curvature (which reduces
the driving term of microinstabilities). [60, 61]

1.5 Scope of this thesis
The word “stellarator” refers to the sun, a stellar object, whose energy it intends to harness. This
dissertation will develop, test, and apply the tools needed to simulate turbulence, one of the most
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Figure 1.24: NCSX is quasi-axisymmetric and has three field periods.

Figure 1.25: W7-X is quasi-omnigenous with five field periods.



CHAPTER 1. INTRODUCTION: A CASE FOR FUSION ENERGY 22

Figure 1.26: W7-X with five complete modules, 2011

Under Design/Construction
W7-X (under construction) Germany

NCSX (designed) PPPL, USA
Running or Decommissioned

LHD (1998-present) Japan
HSX (1996-present) U. Wisc., USA
W7-AS (1988-2002) Germany

CHS (1988-90s) Japan
TJ-II (1997-present) Spain
H-1 (1991-present) Australia

CTH (present) Auburn Univ., USA
ATF (1980-90s) ORNL, USA

L2 (1975-??) Russia
Uragan (1980s) Ukraine

Table 1.1: World stellarators.
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pressing issues of MFE, in stellarator geometry. Chapter 2 delves into plasma transport models, fo-
cusing on turbulence, and gyrokinetics (a mathematical model of turbulence in MFE experiments).
Chapter 3 introduces the gyrokinetic turbulence code GS2: the main computational tool used in
this thesis and explores mathematical representations of stellarator geometry and the routines used
to produce geometry input files for GS2, including a new computational grid generator. Chapter 4
describes linear benchmarks of GS2 with three other well-respected gyrokinetic codes in various
stellarator geometries. Chapter 5-6 applies this developed simulation package to a variety of inter-
esting physical phenomena in two particular stellarators: NCSX and W7-AS. Chapter 7 concludes.
Some of this work has been presented in Ref. [62], papers to be published by P. Xanthopoulos, M.
Nunami, and K. Tanaka, and numerous domestic and international conferences.



Chapter 2

Instabilities, Turbulence, Gyrokinetics

One of the most important issues for magnetic fusion is the transport of heat and particles out of
the core of the plasma. Transport decreases confinement time, density, and temperature, which
reduces the triple product, nTτE . There are different kinds of transport: classical, neoclassical,
and turbulence.

In some cases, neoclassical theory can account for the measured heat flux. However, in others,
the predicted neoclassical flux is much too low to explain the experimental values. In these cases,
turbulence may be the source of this extra transport. Turbulence may be caused by drift wave insta-
bilities. In strongly magnetized plasmas, such as those in tokamaks and stellarators, gyrokinetics
is a good mathematical model of drift-wave turbulence. Computer simulations using gyrokinetics
are widely used to explain and predict experimental turbulence. First, two related properties of
plasmas in the presence of magnetic fields must be discussed: particle drifts and trapping.

2.1 Particle Drifts
As was briefly discussed in Chapter 1, closing field lines in a magnetic field configuration reduces
parallel losses, but introduces particle drifts perpendicular to the magnetic field.

The equation of motion of a charged particle (with charge q) in a uniform magnetic field is

mv̇ = qv ×B (2.1)

B causes the particle to gyrate perpendicularly around the field line, but does not alter parallel mo-
tion (Fig 1.10). Adding a force perpendicular to B will give a “drift” component to the particle’s
velocity: motion of the particle’s guiding center perpendicular to the B. This guiding-center mo-
tion is found by averaging over a particle’s gyro-orbit (to get a “gyro average” or “ring average”),
shown in Figure 2.1.

For example, an electric field, E, changes the equation of motion to

mv̇ = q(E+ v ×B) (2.2)

24
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Figure 2.1: Averaging over an ion’s gyration around a field line, B, gives a “ring average” and
guiding-center position, which drifts off the line at a velocity vd, due to curvature or gradients in
B. Adapted from [13].

This new force adds a drift component perpendicular to B and E:

vE = E×B/B2 (2.3)

Physically, on one side of the particle’s orbit, it will be accelerated by E, while on the other, it
will be decelerated. Thus, its gyro-orbit will be nonuniform and its guiding center will drift as in
Figure 2.2.

Generally, the particle drift velocity under the influence of a force F is

vd =
F×B

qB2
. (2.4)

Once pressure gradients and curvature are introduced into magnetic field geometry, many more
drifts become important. Two that will be mentioned frequently in this dissertation are the curva-
ture and ∇B drifts (introduced in Section 1.3.1, Figure 1.12).

The ∇B induces a velocity

v∇B =
W⊥

q

B×∇B
B3

(2.5)

where W⊥ = (1/2)mv2⊥ is the energy of the particle. Intuitively, this drift arises because on the
higher field side of the gyro-orbit, the gyroradius is smaller, and conversely larger on the smaller
field side (Fig. 2.3). Therefore, the particle will drive in a direction perpendicular to |B| and ∇B.
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Figure 2.2: In the presence of an electric field, E, and magnetic field, B, particles will gyrate
around the field and drift with a velocity vE×B ∼ qE × B, where q is the charge of the particle.
[8]

The curvature drift arises from local curvature, defined by radius of curvature Rc (Section
1.3.1, Figure 1.12). The force is a centrifugal pseudo-force in the radial direction:

Fcf = mv2||
Rc

R2
c

(2.6)

A more common expression for curvature is κ = Rc/R
2
c = −(b̂ ·∇)b̂. Therefore the drift velocity

(refer to Fig. 1.12) is

vcurv =

(
2W||

qB2

)
B×

[
(b̂ · ∇)b̂

]
(2.7)

As shown in Appendix A, some curvature is “good” and stabilizing, while some is “bad” and desta-
bilizing. The “rotational transform” is the twist added to toroidal magnetic fields to continuously
move particles from bad curvature regions back to good curvature regions.

2.1.1 Rotational Transform and Flux Surfaces
The rotational transform is defined to be ι = 1/q = Ψ′/Φ′, where Ψ is the poloidal flux and Φ is
the toroidal flux. In general, lower ι (higher q) is stabilizing [15].

As mentioned in section 1.3.2, tokamaks create this transform via internal plasma currents,
resulting in axisymmetric surfaces of constant magnetic flux. Figure 2.4 illustrates a tokamak with
a circular cross section of such flux surfaces; poloidal cross-sections will be the same for each
toroidal angle.

Stellarators, on the other hand, use external magnetic coils that can entirely create the trans-
form. This necessarily results in fully-3D, non-axisymmetric magnetic surfaces (Fig. 2.5).
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Figure 2.3: A gradient in the magnetic field results in a drift velocity, “vgradB ,” such that v∇B ∼
B×∇B, due to differences in gyro-orbit sizes in strong and weak fields.
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Figure 2.4: A poloidal cross-section of a tokamak, showing surfaces of constant magnetic flux. All
poloidal cuts will be the same, as a tokamak is axisymmetric.
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Figure 2.5: Several poloidal cross-sections of a stellarator (NCSX), showing surfaces of constant
magnetic flux, for various toroidal angles (labelled by V ). Also shown are corresponding ι profiles,
with plasma current, Ip, and plasma beta, β. [14]
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2.2 Trapped Particles
In nonuniform magnetic fields, another important phenomenon is magnetic trapping. An experi-
mental device based entirely on this is called a magnetic mirror machine, but trapping is ubiquitous
in tokamaks and stellarators as well.

2.2.1 Basic Mirror Trapping in Magnetic Well
Recall that a particle’s kinetic energy can be broken into parallel and perpendicular parts:

W = W|| +W⊥ = (1/2)m(v2|| + v2⊥) (2.8)

In the absence of electric fields and for ω ≪ Ωc (where ω is the frequency of variation of the
magnetic field and Ωc is the particle’s cyclotron/gyrofrequency), W and the particle’s magnetic
moment (µ = W⊥/B ≈ W⊥/Ωc) are conserved. (The magnetic moment is actually an adiabatic
invariant: it is conserved to order ϵ ≡ ω/Ωc ≪ 1 and may change a little at higher orders.)
Therefore, the particle’s parallel velocity, when θ is the coordinate along the field line, is

W = 1
2
mv2|| +

(
W⊥
B(θ)

)
B(θ)

mv2||(θ)/2 = W − µB(θ)
(2.9)

As B(θ) increases, v||(θ) must decrease. If B(θ) is high enough, v|| → 0 and the particle’s par-
allel motion reverses direction. This is a “trapped” particle. A “passing” particle is one with a
sufficiently small µ for which B is never strong enough to reduce its W|| to zero.

With the introduction of the pitch angle parameter, λ = µ/W , this relationship becomes

W||(θ)/W = 1− µ
W
B(θ)

W||(θ)/W = 1− λB(θ)
(2.10)

Consider a magnetic well, with clearly defined maximum and minimum B(θ), in Figure 2.6. Let
θmin and θmax be such that Bmin = B(θmin) and Bmax = B(θmax). Particles with µ > W/Bmax

are trapped in this well (which means trapped particles have 1/λ ≤ Bmax). They will reflect back
and forth between the two B ≤ Bmax points.

“Marginally trapped” particles are defined as those with µ = W/Bmax (so 1/λ = Bmax). Then,
at the minimum of the well, these particles have

W⊥(θmin) = µBmin =WBmin/Bmax

W||(θmin)/W = (1−Bmin/Bmax)
(2.11)

Or (
v||(θmin)/v

)2
= 1−Bmin/Bmax(

v||(θmin)/v
)
=

√
1−Bminλ

(2.12)
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−3 0 3
θ

|B
|

Passing particle

Trapped particle

Totally−trapped particle

Barely−passing/trapped particle

Figure 2.6: An illustration of magnetic trapping.
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Figure 2.7: Passing particles have orbits that traverse the entire torus on a flux surface, poloidally
and toroidally. Adapted from [15].

Particles with v||(θmin)/v less than this will be trapped in the magnetic well, and those with greater
v||(θmin)/v are in the as passing particles. In a simple mirror configuration, particles with v||/v >
(1−Bmin/Bmax) pass the Bmax locations and are lost.

Figure 2.6 has some more definitions that will be needed later: in a magnetic well, passing
particles have 1/λ > Bmax, while trapped particles have 1/λ < Bmax. The marginally-trapped or
“barely-trapped” or “barely-passing” particle has 1/λ = Bmax: it can be treated as either passing
or trapped. A “totally-trapped” particle is one with 1/λ = Bmin: it does not have enough energy
to move to a higher B location on either side of its point at the minimum of the well.

2.2.2 Trapping in Toroidal MFE devices
Toroidal MFE devices, such as tokamaks and stellarators, have trapped and passing particles. Pass-
ing particles traverse orbits in a flux surface around the entire torus (Fig. 2.7; shown in a tokamak
for simplicity). Trapped particles execute “banana orbits:” trajectories with turning points (v|| = 0)
at a higher |B| location (Fig. 2.7).

An ideal axisymmetric tokamak has a B(θ) dependence as in Figure 2.6, with a single big
magnetic well per poloidal period in which particles can be trapped. However, in tokamaks with
ripples in the magnetic field (from non-ideal coil sizes or shapes) and all stellarators, the magnitude
of B can vary on short and long scales along a field line, such as in Figure 2.9. There can be
many shallow, wide wells or deep, narrow wells, which locally trap particles and modify transport
properties.

Locally-trapped (or “helically-trapped”) particles execute banana orbits in a single well (“su-
perbananas”), while toroidally-trapped particles have banana orbits that span many wells and turn-
ing points. As a locally-trapped particle moves toward the lower side of the well, it drifts outward
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Figure 2.8: Trapped particles have orbits that traverse only a portion of the torus, turning around
in regions of higher |B|. Adapted from [15].

toward a deeper well and may be trapped in the new well (Fig. 2.9). If the particle reaches an orbit
leading to the wall, it can be lost very quickly.

2.3 Plasma Transport
Plasma parameters and magnetic configuration properties can lead to particle drifts. These in
turn cause transport of heat and particles out of the hot, dense core of the plasma device. Three
main categories of plasma transport in MFE experiments are classical, neoclassical, and turbulent
transport.

2.3.1 Classical Transport
When a charged particle in a plasma collides with another particle, its velocity changes suddenly
by a ∆v and it eventually moves by a step ∆x to a new trajectory. This particle moves in a random
walk, stepping to the right just as likely as to the left. On average, such particles will remain where
they are. After many collisions, however, some will have moved significantly from their starting
point, and the group of particles will spread out in a process called “diffusion.” Einstein found that
the mean squared displacement of the particles’ positions, ⟨x2⟩, is[63]

⟨x2⟩ = (∆x)2

∆t
t (2.13)
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Toroidally trapped particle

Locally trapped particle

Figure 2.9: Stellarators and tokamaks with ripple can have passing, locally-trapped, and toroidally-
trapped particles.
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with ∆x being the average step size between collisions every ∆t. The displacement is related to
time by a proportionality constant, the diffusion coefficient:

D =
1

2

(∆x)2

∆t
. (2.14)

In a plasma with a non-uniform density, n(x, t), collisions tend to move particles from high-density
to low-density regions, eventually leveling the density gradient, ∂n/∂x. The process of classical
transport is governed by a diffusion equation[64]

∂n

∂t
= −∂Γ

∂x
= D

∂2n

∂x2
, (2.15)

where the particle flux is

Γ = −D∂n
∂x
. (2.16)

and n is the number density of the diffusing material, t is time, and x is the spatial coordinate.
Classical transport in a magnetic fusion device is solely collisional. When the plasma has little

electric field (E) or magnetic field (B), the step size of the particles is ∆x = λmfp = vT/ν, the
mean-free path (the average distance a particle travels before colliding with another particle), and
∆t = 1/ν (nu is the collision frequency):

D =
1

2
νλ2mfp ∼

v2T
ν

∼ T

mν
(2.17)

where the thermal velocity of the particle is vT =
√
T/m. This shows that a hotter plasma

will have stronger diffusion–even more than the explicit T dependence in equation 2.17, because
ν ∝ 1/T 3/2.

Now consider the case with a strong magnetic field. As particles move freely in the direction
parallel to the magnetic field, B does not affect the diffusion and D|| is the same as equation 2.17.
Perpendicularly, a good step size is ∆x = ρi or ρe, the gyroradius of a particle: when captured
by a magnetic field, the average distance a particle will travel after a collision is the extent of its
orbit. For ∆t, the collision frequency used is between electrons and ions, νie or νei = 1/∆t. (Like-
particle collisions do not contribute, to lowest order, to net particle transport across a magnetic
field in a plasma, due to conservation of momentum. If particles of the same mass collide, there
will be no net change in the average velocity.) Finally, the classical diffusion coefficient is [65]

Dclassical,⊥ =
1

2
νieρ

2
i =

1

2
νeiρ

2
e (2.18)

Analogously to equation 2.15, one can write an energy diffusion, or heat conduction, equation
[64]:

3

2

∂T

∂t
= −∇ ·Q = ∇⊥ · (χ⊥∇⊥T ) +∇|| · (χ||∇||T ) (2.19)
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Here, Q is the heat flux and χ is the thermal diffusivity. Once again, parallel diffusion and per-
pendicular diffusion are different. It can be shown that χ|| ≈ v2t,e/νe, because v2t /ν is much larger
for electrons than for ions (by (mi/me)

1/2). However, ions dominate the perpendicular heat flux,
because of their larger gyroradii: χ⊥ ≈ νiiρ

2
i

These classical diffusion times are not short enough to explain experimental fluxes–or perhaps
the step size is too small. Neoclassical theory enhances the transport.

2.3.2 Neoclassical Transport
Neoclassical theory takes into account cross-field drifts and trapped particles due to the magnetic
geometry. While classical diffusion was linear in collision frequency, neoclassical diffusion has
three distinct regimes.

When collision frequencies are high enough, particles cannot make banana orbits, because they
are knocked off course and out of magnetic wells too often. This occurs when ν > ωbounce, where
ωbounce = ϵ1/2(vT/Rq), the thermal velocity is vT =

√
T/m, and (for tokamaks) ϵ1/2 = (r/R)1/2

is the fraction of trapped particles (R is the major radius of the device, so (r/R) < 0). However,
passing particles can still have orbits leaving the flux surface by ∆r = qρ, where r is the radial
location of the flux surface, ρ is the particle’s gyroradius, and now q = dΦ/dΨ, the ratio of the
change of toroidal to poloidal flux. As q > 1 usually, using the step size ∆r enhances Dclassical to
get the Pfirsch-Schlüter diffusion coefficient:

DPS =
1

2
νeiq

2ρ2 ∼ q2Dclassical (2.20)

If collision frequencies are low enough (known as the “long mean free path” LMFP regime) to
allow for banana orbits, trapped particles dominate the diffusion due to the size of their excursion
from the flux surface. Their step size in a collision is modified by the trapped particle fraction:
∆r = 2qρ/ϵ1/2 (for tokamaks). Thus, the diffusion coefficient for this regime is [65]

DBanana = 4νeiq
2ρ2ϵ−3/2 ∼ q2ϵ−3/2Dclassical (2.21)

Analogously, one can estimate the electron and ion thermal diffusivities [15]

χe ≈ D ≈ νeiq
2ρ2eϵ

−3/2 (2.22)

and
χi ≈ νiq

2ρ2i ϵ
−3/2 (2.23)

So ion thermal conduction should be much greater than electron thermal conduction, by the mass
ratio:

χi ≈ (
mi

me

)1/2χe (2.24)

In between the banana regime and Pfirsch-Schlüter regime (ϵ3/2vT/Rq < ν < vT/Rq) is the
plateau domain. Here, there is no dependence on collisionality. The diffusion is dominated by
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particles that slowly traverse the torus and experience a small-angle collision in one transit such
that ∆v|| ∼ v||. A particle drifts a radial amount by δ ∼ vdτ in a transit time τ ∼ Rq/v||. As it
experiences one collision per transit, the characteristic step size is this ∆r = δ. One can estimate
the drift velocity from equation 2.7: vd ∼ mv2||/eBR ∼ v2||/ΩcR, where e is the charge of the
particle. Assuming particles mostly free-stream along the field, v|| ∼ vT , so vd ∼ vTρ/R. Finally,

DPlateau ≈ vT q

R
ρ2 (2.25)

Stellarators have modified neoclassical transport; traditionally, much higher than truly-
axisymmetric tokamaks. (Tokamaks can also have 3-D modifications.) Diffusion, for very low
collisionality (LMFP regime), is dominated by their locally-trapped (or “helically-trapped”) parti-
cles caught in their multitude of ripple wells.[65] (Collisions serve to de-trap particles and prevent
their loss.) A locally-trapped particle (section 2.2.2) in a superbanana will drift down by the ∇B
drift (eqn. 2.5) with vd ∼ mv2T/eBR ∼ ρ2Ωc/R. The fraction of particles trapped in local wells
is f =

√
δ, where δ = δB/B. Their transit time is the inverse of the effective collision frequency,

τ = δ/ν. A step size would be the distance it drifted in time τ : ∆r = vdτ = (ρ2Ωc/R)(δ/ν).
Thus, the diffusion coefficient for the superbanana regime is

DSB ∼ ρ2

R2

v2T
ν
δ3/2 (2.26)

Because ν ∝ 1/T 3/2 and ρ ∝ vT ∝ T 1/2, DSB ∝ T 7/2. Therefore, in the low-collisionality
regime, neoclassical diffusion will be higher for hotter plasmas.

While traditional stellarators suffer greatly from enhanced neoclassical transport in this LMFP
regime, modern stellarator configurations have been optimized to reduce ripple loss (the loss of
locally-trapped particles in small magnetic ripples). In addition, it was found that a radial electric
field, Er, can reduce losses. This Er is set up by the ambipolarity condition that electron flux must
balance ion flux:

ZiΓi(r, Er)− Γe(r, Er) = 0 (2.27)

where the radial particle flux is (a more complete version of equation 2.16) [66]

Γs = −ns

[
Ds

11

(
n′
s

ns

− qsEr

Ts

)
+Ds

12

T ′
s

Ts

]
(2.28)

The subscript s denotes species and qs is the charge. The heat flux, Q, is also a function of Er:

Qs = −nsTs

[
Ds

21

(
n′
s

ns

− qsEr

Ts

)
+Ds

22

T ′
s

Ts

]
(2.29)

The diffusion coefficients, Ds
ij are functions of Er and part of the neoclassical diffusion matrix.

Codes such as DKES [67] calculate Ds
ij to find solutions to equation 2.27, which are the neoclassi-

cal roots ofEr. The number of roots is always odd [68], but the roots in between the “electron root”
and the “ion root” are not stable: the “electron root” is the most positive solution (Er > 0), and the
“ion root” is the most negative solution (Er < 0). Clearly seen from equations 2.28-2.29, Er > 0
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decreases the ion particle and heat fluxes and could even reverse them. A strongly positive electron
root is accessible when the electrons are in the LMFP region and Γe(Er = 0) ≫ Γi(Er = 0). This
has been attained in the W7-AS experiment, with the use of electron cyclotron resonance heating
(ECRH). [66, 69].

While all three regimes predict higher diffusion coefficients than classical diffusion, neoclas-
sical theory often still under-predicts the transport in MFE devices. These higher transport levels
are largely attributed to turbulence.

2.4 Turbulent Transport
While neoclassical theory is high enough to predict transport seen in certain situations, some ex-
periments see additional transport. Originally called “anomalous transport,” it is clear now that it
is turbulent transport. Turbulent eddies that cause radial transport of particles and energy come
from fluctuating fields, which are the nonlinearly saturated state of instabilities in drift waves.[15]

2.4.1 Fluctuations
For a single species, a continuity equation is

∂

∂t
n = −∇ · (nv⃗) (2.30)

Particle transport can be described by an averaged continuity equation:[65]

∂

∂t
⟨n⟩ = − d

dt
Γ (2.31)

where Γ is the particle flux and the average ⟨n⟩ is over a flux surface. Averaging equation 2.30
over a flux surface and comparing it with equation 2.31 gives

Γ = ⟨δnδv⊥⟩ (2.32)

(magnetic perturbations have been ignored). This shows that not only are the amplitudes of fluctu-
ations important in predicting their transport, so is their correlation.

The velocity produced by turbulent fluctuations is the E × B velocity [15] (see Appendix
A). Describing fluctuations in terms of their Fourier components (e.g. the electrostatic potential
becomes δϕ =

∑
k δϕke

ik·x, so E = −∇δϕ = −
∑

k ikδϕk), a particular mode is

δvk = −ik×B

B2
δϕk (2.33)

One can investigate and describe each mode separately, but they all combine to produce turbulent
diffusion. If the transport is local, one finds a similar equation to equation 2.16:

Γ = −D∂⟨n⟩
∂x

(2.34)
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A random walk argument again leads us to an estimation of D. If the velocity δvk lasts for a
correlation time τk, a corresponding step size is δrk ≈ δvkτk. Thus,

D =
∑
k

(δrk)
2

τk
=

∑
k

(
k⊥δϕk

B

)2

τk (2.35)

The correlation time between particles and the E×B, τk, is approximated by the process that most
quickly limits the E×B drift. The limiting processes are the time variation in the fluctuations (τk ∼
1/ωk), the effect of linear motion of the particle (τk ∼ 1/k||vT for a particle moving parallel to the
field line a wavelength ∝ 1/k|| or τk = 1/ωd, the time for particles to be carried a perpendicular
wavelength by magnetic drifts), or the time for collisions to change the particle’s trajectory (τk =
1/νeff , e.g. νeff = ν/E for trapped particles).

When the turbulence is strong enough, the process that restricts the E×B drift is the turbulent
velocity, δvk, carrying a particle a length 1/k⊥. In this case, τ−1

k = Ωk = k⊥δvk = (k2⊥δϕk)/B,
and

D =
∑
k

δϕk

B
. (2.36)

If the turbulence is on the microscopic scale of the ion Larmor radius, ρs, the potential fluctuation
scales as

eδϕ

T
∼ ρs
Ln

(2.37)

where 1/Ln = k⊥δn/n is the density gradient scale length. Then the diffusion coefficient becomes

D = Dgyro−Bohm ∼ ρs
Ln

T

eB
. (2.38)

Electric field fluctuations can be electrostatic or electromagnetic. If there are magnetic fluctua-
tions, δB, the perturbed parallel velocity combines with the perturbed radial magnetic field to give
a flux:

Γ =
n

B
⟨δv||δBr⟩ (2.39)

In addition to particle flux, temperature fluctuations lead to a heat flux:

q =
3

2
n⟨δv⊥δT ⟩ (2.40)

where n is the equilibrium density (and the part of the heat flux due to particle transport has been
left out).
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2.4.2 Drift Waves
These turbulent fluctuations (δn, δϕ, etc) come from nonlinear saturation of drift wave instabilities
(see Appendix A). There is much benefit to linearly analyzing these modes, as it can identify key
drives of the instabilities and conditions for their existence.

Drift waves have a wavelength comparable to the ion sound gyroradius, ρs = cs/Ωc, where cs
is the sound speed and Ωc is the cyclotron/gyro frequency. They gain energy from and are driven
by density and temperature gradients, often parameterized as 1/LT = − 1

T
dT
dρ

, 1/Ln = − 1
n
dn
dρ

,
and η = Ln/LT , where T is temperature, n is density, ρ is the minor radial coordinate (not to
be confused with the sound gyroradius, ρs). Magnetic geometry also plays a role in influencing
microturbulence through magnetic field line curvature and local shear.

Usually, instabilities have a threshold gradient value below which they are stable. Each Fourier
component (parameterized by k⊥ρs) of the mode may become unstable at a different threshold.
Linear analysis typically involves identifying the fastest growing mode, the Fourier component
with the highest growth rate, and the threshold/stability map.

Particularly important modes, believed to be the strongest candidates for causing drift-wave
turbulence in toroidal MFE devices, are the Ion Temperature Gradient (ITG) mode (Appendix
A)[70–72], Trapped Electron Mode (TEM) [73], and Electron Temperature Gradient (ETG) mode
[74]. Microtearing modes are also increasingly believed to play a role in tokamak plasmas [75].

2.4.3 Zonal Flows
Turbulence has been shown to be strongly affected by poloidal E ×B flows within a flux surface
in the plasma [76–80]. These “zonal” flows, driven by coupled unstable drift wave modes, break
up large potential streamers that are responsible for radial transport. In nonlinear simulations near
marginal stability, the zonal flows can become so strong that the effective ITG critical gradient
can be upshifted (the “Dimits shift”) with respect to the linear gradient, due to the suppression of
transport by a linearly undamped component of zonal flows [81, 82]. Further above this effective
critical gradient, the zonal flows are in turn regulated by the turbulence and can reach a balance
with it [74]. The linear shielding of zonal flows by neoclassical effects [83] (on time scales longer
than the damping time for the Geodesic Acoustic Mode component of zonal flows) can play a
role in their saturation amplitude. Section 4.3.2 describes a simulation of this neoclassical residual
value.

2.5 Gyrokinetic Turbulence
From comparisons of simulations to axisymmetric experimental data, the turbulence in many ar-
eas of fusion devices can be described well by gyrokinetics: a mathematical description of plasma
dynamics on the scale of particle gyro-orbits (k⊥ρs ≈ 1) and frequencies much lower than gyrofre-
quency, ω ≪ Ωi. This is valid in strong enough magnetic fields such that the gyroradii are very
small compared to the system size.[84] First, a brief summary of related plasma models.
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2.5.1 Descriptions of Plasmas
Plasmas are complicated systems of 1020 or more charged particles. These particles interact with
each other and, through electric and magnetic fields, affect dynamics from a distance. There are
many mathematical descriptions of such systems, depending on the particular phenomenon one
wants to study (macroscopic or microscopic properties) and the particular situation (space plasmas,
IFE, MFE). Often it is useful to describe the plasma as a fluid, through magnetohydrodynamics,
and other times one should use a kinetic approach. The fluid approach works best for macroscopic
properties of highly collisional plasmas. When one has a low-collisionality plasma, such as a very
high temperature plasma, one should use the kinetic approach (though the MHD equations are
valid if the wavelength of the phenomenon is long and parallel dynamics are not important).

In magnetic fusion energy devices, one might simulate the movement of every particle in the
plasma through a many-body equation of motion that incorporates electromagnetic fields, such
as the Klimontovich equation [85]. This quickly scales out of computational viability, when one
has 1023 particles. With weak coupling of the particles, meaning n0λ

3
D ≫ 1 (where λD is the

Debye length, over which a charged particle’s electric field has effect), one can instead model
a distribution function of the plasma: f(x,v, t), which provides a density distribution in both
physical and velocity space[64]:

n(x, t) =
∫
f(x,v, t)d3v

nu =
∫
vf(x,v, t)d3v

p(x, t) = m
3

∫
|v − u|2f(x,v, t)d3v

(2.41)

where n is the density, u is the fluid velocity, and p = nT is the pressure.
In thermal equilibrium, after many collisions have occurred, the distribution function relaxes

to the isotropic Maxwellian velocity distribution:

FM(v) = n
( m

2πT

)3/2

exp

(
−mv

2

2T

)
(2.42)

An equation of motion for the distribution function is obtained by introducing particle number:

N =

∫
f(x, v, t)d3vd3x (2.43)

and invoking the conservation of N as a group of particles moves through space:

0 =
dN

dt
=

∫
∂f

∂t
+∇ · (fU)d3vd3x (2.44)

U = (ẋ, v̇) = (v,F/m) and ∇ = (∇x,∇v). For equation 2.44 to hold, it needs (assuming
∇ ·U = ∇x · v +∇v · F

m
= 0)

∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

= 0 (2.45)
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In the plasma, the force is the Lorentz force: F = q(E + v×B
c

), leading to the Vlasov kinetic
equation for particle distribution function evolution for collisionless plasmas:

∂f

∂t
+ v · ∇f +

q

m
(E+

v ×B

c
) · ∂f
∂v

= 0 (2.46)

Adding in a collision operator, one gets the Fokker-Planck equation:

∂fs
∂t

+ v · ∇fs +
qs
ms

(E+
v ×B

c
) · ∂fs

∂v
= C[f ] (2.47)

Here, s denotes species; each has its own evolution equation. Maxwell’s equations describe the
evolution of the electromagnetic fields:

∇ · (ϵ0E) = 4π
∑

s qsδns

∇×B = 4π
c
δj+ 1

c
∂E
∂t

∇ ·B = 0
c∇× E = −∂B

∂t

(2.48)

The distribution function is separated into the background and perturbed part: f = F0 + δf .
The δn and δj denote perturbations on the background density and currents. Usually, one takes
F0 = FM , the Maxwellian distribution function. While this system of equations is much smaller
than the Klimontovich equation for every single particle, this system of six degrees of freedom
(x = (x, y, z),v = (vx, vy, vz)) can be further reduced. In a strongly magnetized plasma, when
the particles are very tightly coupled to the magnetic field lines, one can average over the fast parts
of the Fokker-Planck equation to reduce the degrees of freedom to five and obtain the gyrokinetic
equation.

2.5.2 Gyrokinetics
As previously stated, gyrokinetics is a mathematical description of plasma dynamics particularly
suited to turbulence in MFE experiments, where the magnetic fields are strong enough to make the
gyroradii very small compared to the system size. It describes phenomena on the scale of particle
gyro-orbits (k⊥ρs ≈ 1) and frequencies much lower than gyrofrequency, ω ≪ Ωi. [84]

Figure 2.10 illustrates the gradient scale lengths and motion of a particle in a strong magnetic
field. The particle gyrates around the field line, B, with gyroradius ρc and gyrofrequency Ω.
The magnetic field changes over a parallel distance l|| and a perpendicular distance l⊥, causing
the particle’s guiding center to drift off the field line with velocity u⊥. Gyrokinetics is a valid
description of plasma turbulence when the spatial scales can be separated into the fast gyromotion
and slower variation along the field line: l|| ≫ l⊥, or k||vt ≪ Ωc.

One can further break up the distribution function, f = F0+ δf , into δf = δfp+h, where δfp,
the adiabatic part, is dependent on gyrophase angle, and h, the non-adiabatic part, is independent of
the gyrophase. Defining the gyrokinetic potential χ = ϕ− v·A

c
, and integrating over the gyro-angle,

one arrives at the gyrokinetic equation[13, 86]:
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Figure 2.10: A particle gyrates around a field line (B), experiencing a guiding-center drift (vd).
The field line varies on parallel (l||) and perpendicular (l⊥) length scales. [13]

∂h

∂t
+ v||z ·

∂h

∂R
+

c

B0

[⟨χ⟩R, h] + vB · ∇h = C[h] +
q

T0

⟨χ⟩R
∂t

F0 (2.49)

The integral over phase angle is

⟨a(R,v, t)⟩R =
1

2π

∫
dθa

(
R− v × z

Ωs

,v, t

)
(2.50)

where R is the guiding center location, Ω is the gyro-angle, z is the direction parallel to B and

[⟨χ⟩R, h] =
(
∂⟨χ⟩R
∂R

× ∂h

∂R

)
· z (2.51)

Finally the curvature and ∇B drifts are contained in

vB ≡ b̂

Ω0

×
[
v2||b̂ · ∇b̂+

v2⊥
2

∇B0

B0

]
, (2.52)

In this way, the number of velocity variables has been reduced from three to two; instead of one
vz = v|| and two perpendicular velocities, vx, vy, the set is now (v||, v⊥), one parallel velocity and
one averaged perpendicular velocity.

There are several different forms of the gyrokinetic equation, and a specific instance used in a
gyrokinetic turbulence code will be described in Chapter 3.
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Returning to examine equation 2.49: the first term, ∂h
∂t

, is the time change of h at a certain
location. v||z · ∂h

∂R
is the change in h due to particles streaming along the field lines, while the

perpendicular motion is described in c
B0

[⟨χ⟩R, h], which contains the E × B drift, and vB · ∇h,
which contains the ∇B and curvature drifts. Collisions are described by C[h]. The time change of
the electromagnetic fields is described by the final term, q

T0

⟨χ⟩R
∂t
F0.

In terms of h, and accounting for the gyrokinetic orderings [13], Maxwell’s equations take the
form (allowing each species to have a separate distribution function, hs):∑

s
q2sn0s

T0s
ϕ =

∑
s qs

∫
d3v⟨hs⟩R

−∇2
⊥A|| =

∑
s
4π
c
qs
∫
d3vv||⟨hs⟩R

∇⊥δB|| =
∑

s
4π
c
qs
∫
d3v⟨z× v⊥hs⟩R

(2.53)

In certain situations, one can simplify further with the adiabatic approximation. When k||vTe ≫
ω, ω∗, ω∗d, the electrons move rapidly along the field line to respond to electrostatic potential,
resulting in a the Boltzmann distribution δn/n0 = eδϕ/Te (this is ignoring electrons trapped in
the magnetic well and ignoring magnetic fluctuations). (ω∗ and ω∗d are discussed in Chapter 3.)
One can save computational time by using this for the electrons and treating only the ions with the
full gyrokinetic formalism. Simulating the simpler cases forms a good test of codes, while still
learning theoretical properties of the plasma. However, for most experimentally-interesting cases,
one should not use the adiabatic-electron approximation, as it results in ITG turbulent heat fluxes
that are too low. In addition, by treating electrons kinetically, one captures the physics of the TEM.

2.6 Turbulent Transport in Stellarators
While the prevailing situation for many years was that stellarator transport was much worse than
tokamak transport, not only has neoclassical transport in stellarators decreased (since the early
1990s), tokamak transport has decreased as their size increased. Ref. [60] shows, through the In-
ternational Stellarator Scaling law, that stellarator transport is on par with tokamak L-mode trans-
port. The transport is also similar between equivalently-sized devices, giving another reason to
continue to consider stellarators. In addition, stellarators even seem to have unique, improved con-
finement features, such as the electron cyclotron resonance heating (ECRH)-driven electron root,
which leads to a highly-peaked electron temperature profile. Some stellarators have developed
internal transport barriers (ITBs) and H-modes like tokamaks, as well.[19, 87]

Neoclassical transport has been studied in great detail, experimentally and theoretically [55,
88]. While turbulent transport causes a significant amount of heat loss in tokamaks and STs,[89]
it has not been studied in great detail in stellarators. Preliminary experimental measurements
indicate that temperature and density fluctuations could be at high enough levels to contribute to
overall transport. For example, beam emission spectroscopy (BES) measured appreciable electron
density fluctuations in the edge of W7-AS plasmas [90], and electron cyclotron emission (ECE)
radiometry on W7-AS detected electron temperature fluctuations in the core of the plasma that
could contribute to turbulent flux[91]. Measured fluctuation values lead to an estimate of the
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electron heat diffusitivity χe ≈ 0.4m2/s. Because W7-AS χe is typically 1m2/s for these plasmas,
electron temperature turbulence could significantly contribute.[91]

Understanding plasma turbulence and transport could further improve their performance.
Studying transport properties of 3-D configurations benefits other toroidal devices as well, as
more and more 3-D modifications are used on tokamaks or STs[92]. One of the primary tools for
understanding plasma turbulence is gyrokinetic simulation. Many gyrokinetic turbulence codes
were developed to study transport in axisymmetric devices, with GS2 (chapter 3) being the first
nonlinear turbulence code to incorporate full, realistic plasma effects such as electromagnetic
fluctuations, kinetic electrons, and general, non-circular tokamak geometry [93]. Gyrokinetic
simulations have been used successfully in many parameter regimes in the core of tokamaks
and STs to predict or describe phenomena seen in experiments.[74, 94–96]. Several turbulence
simulation codes are now capable of studying stellarator geometry, and one project is underway to
couple a turbulence code to a configuration optimization code.[97]

Gyrokinetic studies of drift-wave-driven turbulence in stellarator geometry are relatively
recent and comprehensive scans are scarce, but the community is making progress. The first
non-axisymmetric linear gyrokinetic stability studies, for both the ion-temperature-gradient-driven
(ITG) mode and the trapped-electron mode (TEM), were done with the linear eigenvalue FULL
code [98–100]. GS2 was first used for stellarator geometry to compare to Ref. [100]; results will be
discussed in section 4.2. GENE (the first to do nonlinear gyrokinetic stellarator simulations[101])
and GKV-X [102] are also capable of non-axisymmetric simulations.

2.6.1 The history of simulations of gyrokinetic instabilities
Before gyrokinetic turbulence simulations are used to predict experimental values in future devices,
the linear stability of drift waves should be characterized in existing configurations. As mentioned
previously, the ion temperature gradient (ITG) mode, trapped electron mode (TEM), and electron
temperature gradient (ETG) mode are the most important in most toroidal MFE devices. Prelimi-
nary studies have been done for each of the major modern stellarators.

As previously mentioned, the first gyrokinetic NCSX studies were done in Ref. [100]. E.
Belli and W. Dorland applied GS2 to stellarator geometry for the first time using the same NCSX
geometry as part of a non-axisymmetric benchmark of FULL and GS2. Results will be discussed
in section 4.2. GS2 was also used to study HSX plasmas (see section 2.6.3).

A two-fluid code was used to study the linear stability of ITG in the electrostatic limit for a
fully 3-D W7-X [103]. Both small and large temperature ratios as well as small and large density
gradients stabilized the ITG mode. Small magnitude (positive and negative) local shear coupled
with bad curvature led to the highest growth rates, while large magnitude (either sign) local shear
was stabilizing. These are typical results for tokamaks as well. However, researchers found a pro-
nounced ballooning ITG mode in W7-X that was different from a tokamak.[104] It was localized
toroidally, but shifted with respect to the minimum of curvature due to local shear: it was shifted
into regions of smaller shear. Indeed, other linear, collisionless simulations of W7-X found unique
ITG modes, substantially different from modes in axisymmetric equilibria.[105] The differences
are due to the separation of regions with helically-trapped particles and bad curvature. In a stan-
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dard tokamak case, the ITG mode smoothly transitions to a trapped ion mode (TIM). Here, they
found a sharp change in growth-rate slope when the fastest-growing mode switched, indicating
that perhaps both modes existed simultaneously. In addition, unstable TEM is less pronounced
in W7-X than in tokamak cases (specifically the circular cross-section analytic “ŝ − α” tokamak
configuration).

Nonlinear ITG turbulence is a possibly dominant transport mechanism in modern stellarators
(section 2.4.3). The first attempt to study turbulence in optimized stellarators found strong zonal
flow (ZF) activity, moderate transport levels, and confirmed the coexistence of ITG and TIM in a
W7-X case.[101] The Dimits shift (an upshift in the nonlinear over the linear critical temperature
gradient [82]) was present, as in axisymmetric geometries. The ion thermal diffusivity was χi ∝
(R/LTi − κc), where κc is the critical gradient. So, χi has an offset-linear dependence on R/LT ,
in contrast to early tokamak simulations in a fixed box size, in which the thermal flux, Qi ∝
(R/LTi)χi, has an offset-linear dependence on R/LT [82], while more recent tokamak simulations
show that larger box sizes are needed for adequate resolution at larger gradients, giving Qi ∝
(R/LTi)(R/LTi−κc)

2 [106]. In addition, the “stiffness” was much lower for W7-X than a typical
tokamak–they obtained significant ion heat fluxes only for R/LTi ≫ κc. Lastly, the turbulence
showed a significant influence of ZFs. When they artificially suppressed ZFs, the transport level
was much higher, indicating that ZF still regulate turbulent transport in this configuration.

2.6.2 Cross-configuration comparisons of gyrokinetic instability
Comparing transport properties in different magnetic configurations is important for planning fu-
ture devices, because one wants to ultimately find the configuration with the strongest confinement
(or least amount of transport). Several such studies have been done. For example, Ref. [104]
compared growth rate and mixing-length transport estimates in W7-X to axisymmetric geome-
tries. They defined two “equivalent” tokamaks, both with the same plasma volume as W7-X: a
conventional tokamak (circular cross section, tokamak ι profile) with a/R = 3 and a circular toka-
mak with W7-X’s ι profile and a/R = 10. The first tokamak had much smaller ITG growth rates
than W7-X. But, a mixing-length estimate of the diffusion coefficient shows that DW7−X < Dtok,
meaning the transport should be lower in W7-X. The tokamak with the similar ι profile had very
similiar growth rates and D to W7-X.

The inward-shifted LHD case (the magnetic axis is shifted inward relative to the standard
configuration), with its large helical magnetic field wells and correspondingly large fraction of
helically-trapped particles, was compared to an artificial case in which helical components were
set to zero.[107] ITG and TEM branches were unstable, with a more greatly destabilized TEM
in the realistic case with helically-trapped particles and helical curvature. The ITG was actually
slightly stabilized in the realistic case. These modes could be responsible for experimentally-
observed anomalous transport, which has mainly gyro-Bohm scaling (consistent with these
instabilities)[108] (see section 2.6.3).

Nine magnetic configurations were compared in Ref. [109] for stability: LHD, NCSX (with a
non-zero net current), a variant NCSX case with zero net current, W7-X, HSX, the quasi-poloidal
stellarator (QPS), the axisymmetric, NCSX-SYM case (created by setting all of the non-zero
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toroidal mode number Fourier coefficients for the magnetic field of NCSX to zero in the equilib-
rium calculations), the NCSX-TOK case (same as NCSX-SYM, but with a more typical tokamak
q-profile), and lastly NCSX-BETA (same as NCSX, but with a higher β value). The stability of the
ITG and TEM modes was studied for all configurations at their field line value with the maximum
growth rate. While the configurations’ growth rates respond differently with η = Ln/LT (recall
1/LT = − 1

T
dT
dρ

and 1/Ln = − 1
n
dn
dρ

), they are all unstable with large enough η (and therefore
temperature gradient) and thus susceptible to ITG instability. One point of note: NCSX-BETA’s
growth rates were lower than NCSX’s, which is relevant for Chapter 5’s linear studies of stability
dependence on plasma beta.

When a radial electric field was applied to simulated collisionless W7-X and LHD plasmas,
their linear response showed that the electric field and ZF oscillate before reaching the R-H flow
residual.[110] This was due to locally-trapped particles: helically-trapped particles radially drift
and modify the plasma’s dielectric effect, until they reach a steady-state response that partially
shields the ZFs. LHD’s linear ZF oscillation frequency was much higher than W7-X’s. This
frequency is related to the speed of the bounce-averaged radial drifts of trapped particles [111].

In the first nonlinear stellarator-tokamak comparison, anomalous ion heat diffusivity in DIII-
D was compared to that in four different flux tubes in NCSX[112]. (Using several flux tubes is
important in stellarator simulations, as they are not all equal.) The diffusivity did not vary much
between flux tubes in this case. DIII-D had a higher diffusivity than that in NCSX by about 40%,
meaning it had higher transport than this NCSX case.

More comparisons will be briefly mentioned in section 2.6.4.

2.6.3 Comparisons of gyrokinetic simulations to experiment
There are few comparisons of turbulence simulation to stellarator experimental data. One was for
the HSX: the TEM mode was characterized and found to be highly linearly unstable and scaling
similarly to tokamaks[113]. The Weiland model [114] for transport produced linear growth rates
that matched those from GS2 calculations, providing some assurance that its predicted transport
results were valid. Calculations without HSX’s quasihelical geometry and helically-trapped parti-
cles predicted energy confinement times 2-3 times larger than the experimental values, indicating
that these considerations are very important.

The LHD team is pursuing this research as well. Two LHD configurations were compared in
Ref. [108]: the “standard” LHD case, and the inward-shifted case, in which the magnetic axis is
shifted inward fromR ≈ 3.75m toR ≈ 3.60m. The inward-shifted case had smaller total transport
than the standard case, a difference that is almost accounted for by the lower neoclassical transport
in the inward-shifted case. A TEM-ITG hybrid mode was found in the inward-shifted case with
lower growth rates than the two separate ITG and TEM modes that were found in the standard
configuration. However, these differences were most likely due to differences in plasma profiles,
rather than magnetic configuration. The quasilinear particle and energy fluxes were calculated as
well; the standard case appeared to be most unstable near the edge, while the inward-shift case
was most unstable further into the plasma. This corresponds to experimentally-observed large
improvements in the electron thermal conductivity at large minor radii and smaller improvements
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at small minor radii. The calculated turbulent transport had gyro-Bohm scaling, consistent with
the observed transport.

Ref. [115] compared quasilinear fluxes for the standard and inward-shifted cases, for three
different density profiles (peaked, hollow, intermediate), confirming Ref. [108] that profiles af-
fected ITG and TEM stability more than magnetic configurations. They also compared a tokamak
case: the LHD’s particle flux was more negative, due to the smaller density gradient (more hollow
profile) and the helical ripples of the LHD’s magnetic configuration. Additionally, the neoclassical
flux was significantly reduced in the inward-shifted case as compared to the standard case, due
to the reduction in effective helical ripple (reducing trapped particles). The results of the density
profile studies and balancing the neoclassical and quasilinear particle fluxes indicated that the den-
sity profile should be hollow in the standard case and peaked or flat in the inward-shifted case,
consistent with LHD experiments.

The LHD has achieved high Ti ( 5.6keV ). In order to explore experimentally-observed density
fluctuations (measured by two-dimensional phase contrast imaging), linear gyrokinetic simulations
were performed using experimentally-relevant profiles.[116] The unstable ITG mode growth rates
peaked at radial positions close to regions where the density fluctuations were measured to be the
highest, with temperature gradients furthest from the stability threshold, indicating that the ITG
could be responsible. Nonlinear simulations are currently underway.

In Chapter 6, studies using the magnetic configuration and experimental parameters of a W7-
AS plasma form the basis for future comparisons of GS2 simulations to W7-AS data.

2.6.4 Controlling Turbulence
The goal of studying turbulence is, naturally, to learn how to control and reduce it. Zonal flows
(ZF) play an important role in the saturation of turbulence in tokamaks (see section 2.4.3). (An
unsolved question is how important the ZFs in stellarators are and how well they are treated in
flux-tube codes. To fully address this numerically would require toroidally and poloidally global
stellarator simulations–work on this is underway in Germany for the GENE code and Japan for
GKV-X.) While ZFs reduce collisionless ITG turbulence and increase the critical gradient in toka-
maks, according to Ref. [101], they have a weaker effect on stellarator ITG turbulence, possibly
due to differences in magnetic shear. Global magnetic shear can also be stabilizing in tokamaks,
when it is negative or sufficiently positive. Because some stellarators (in particular NCSX) have
natural reversed (negative) local magnetic shear, there is great potential for improved stability.

Sugama has an analytic theory for ZFs in helical systems (such as the LHD) [117–120]. Be-
cause of helically-trapped particle dynamics, ZFs in a given plasma are weaker for lower radial
wave numbers and deeper helical ripples. A high-level ZF response can be maintained for longer
times by reducing the bounce-averaged radial drift velocity of helically-trapped particles. There-
fore, optimizing helical configurations to reduce neoclassical ripple transport can also enhance ZFs
and thus reduce turbulent transport.

Zonal flows and ITG turbulence were studied computationally in the LHD standard and inward-
shifted model configurations.[121] The inward-shifted case has a higher zonal-flow response than
the standard model, and larger ITG growth rates. However, ITG turbulent transport levels (non-
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linear heat fluxes) in the inward-shifted model are lower than in the standard case, because of
zonal-flow regulation of the ITG mode. (The inward-shifted case is also advantageous due to its
lower neoclassical transport levels.)[122]

In addition to zonal flows, local reversed magnetic shear has also been shown to be stabilizing
in tokamaks [7, 114, 123, 124] and stellarators. Ref. [125] details a study of local shear in the
H1-NF heliac [126] using a drift-wave model, focusing on electron drift modes. Many high-
frequency, unstable modes were localized along the field lines in large, positive magnetic shear
regions. Negative magnetic shear regions had much more weakly localized modes. Ref. [125]
suggests that negative local magnetic shear is indeed stabilizing in stellarators.

Lastly, high plasma β is very desirable. High β ∼ nT/B2 implies high density and tempera-
ture, which are necessary for fusion (see Ch. 1). It also implies low |B|, an attractive proposition
because this means smaller magnetic coils: the most expensive parts of an MFE experiment. It
may be stabilizing to turbulence in tokamaks and spherical tori, because it changes the Shafranov
shift and other effects. Ref. [127] found in a circular tokamak (“ŝ − α” geometry) that as β in-
creases, the ITG mode completely stabilizes as beta increases–but at a certain β value, the kinetic
ballooning mode (KBM) becomes unstable. The linear ITG critical gradient modestly increased
with beta as well, but the nonlinear critical gradient increased significantly–over the usual Dimits
shift. This thesis will begin to study beta’s affect on NCSX (see Chapter 5).

Optimizing for Turbulence

Now that current stellarators are optimized for neoclassical transport, hopefully future devices
can be optimized to have low turbulent transport. The gyrokinetic code GENE[128] will soon be
coupled to the configuration optimization code STELLOPT[129] to aid this process.

Initial results [97] beginning with an NCSX configuration and minimizing a cost function, a
proxy function representing the turbulent heat flux, Stellopt and GENE found two initial proof-of-
principle configurations in which the bad curvature regions were much narrower than in NCSX.
These designs reduced NCSX’s predicted ITG transport by a factor of 2-2.5. The corresponding
reduction in heat flux is comparable to the difference in tokamak L- and H-modes. Follow-up stud-
ies found configurations in which ETG and ballooning transport were also reduced.[130] Evolving
a tokamak configuration, holding quasi-axisymmetry, resulted in a design with inboard indentation
at the midplane; a single change that was sufficient to reduce ITG transport.

2.6.5 Conclusion and Motivation
These studies indicate that trapped particles, curvature, local magnetic shear, zonal flows, and
plasma beta are integral in the drive and regulation of microinstabilities in toroidal magnetic con-
figurations, but there is still much to be learned about drift-wave instabilities and turbulence in
stellarators. The field needs to understand what and how instabilities are driven in the wide variety
of stellarator geometries, how much nonlinear heat flux can be expected from these instabilities,
and whether the level of turbulent transport is relevant to experiments–is it large enough to even be
measured, or too large to reach desired core temperatures. There is a small group of researchers
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using gyrokinetic turbulence codes previously used for axisymmetric geometry (e.g. tokamaks,
spherical tori) and applying them to non-axisymmetric geometry (stellarators). Before one can
confidently compare one’s simulation results to experimental data, one should compare to other
simulations’ results.

I will adapt, benchmark, and use the gyrokinetic code, GS2, previously used extensively for ax-
isymmetric configurations, to add another tool for use by the stellarator gyrokinetic turbulence re-
search community. GS2 was used non-axisymmetrically initially by E. Belli and W. Dorland[131],
to simulate the NCSX configuration. Their results are expanded upon and discussed in section 4.2.
As mentioned, W. Guttenfelder used GS2 to simulate linear gyrokinetic instabilities in the HSX
[113]. However, the more complicated W7-AS and W7-X configurations necessitated upgrades to
GS2 and its computational grid generator: GS2’s trapped particle treatment proved too inflexible
for the multitude of helically-trapped particles in W7-AS and W7-X stellarator geometry (see Ch.
3). After developing and benchmarking (Ch. 4) GS2 for stellarators, I approached the questions
of how plasma beta affects linear instabilities in NCSX, how NCSX linear stability compares to
a tokamak example, and whether GS2 is ready to nonlinearly simulate phenomena in stellarator
geometry (Ch. 5). Finally, because our ultimate goal is to compare our simulations to experiments
for interpretive and predictive capabalities, I begin a study of linear instabilities in a W7-AS plasma
for experimentally-relevant parameters (Ch. 6).



Chapter 3

Computational Tools: GS2 and FIGG

The initial-value gyrokinetic turbulence code GS2 was developed to study low-frequency turbu-
lence in magnetized plasmas in axisymmetric configurations (e.g. tokamaks and spherical tori)
by M. Kotschenreuther and W. Dorland[74], building on an earlier linear gyrokinetic code [132].
GS2 contains a full implementation of the 5-D Frieman and Chen nonlinear gyrokinetic equation,
which is in the local flux-tube limit [13, 74, 132], with an efficient parallelization for modern
supercomputers[93, 133]. The only modification to the 5-D Frieman and Chen equation is that the
equilibrium distribution function is taken to be a Maxwellian at present.

The gyrokinetic equation and Maxwell’s equations are solved for the perturbed distribution
function, the electric potential, and the magnetic field, on fixed Eulerian grids in phase-space, us-
ing a combination of finite difference and spectral algorithms. The linear terms are treated implic-
itly, while the nonlinear terms are treated explicitly with a 2nd-order-accurate Adams-Bashforth
scheme[13]. The geometry is specified through field-line-following coordinates (section 3.1.1) in
a flux tube [76, 134].

GS2 treats electrons and an arbitrary number of ion species on an equal footing, and in-
cludes trapped particles, electromagnetic perturbations, and a momentum-conserving pitch-angle-
scattering collision operator, recently upgraded to have the option of a more complete linearized
collision operator including FLR effects and model field particle terms [135, 136]. It can return
linear growth rates, real frequencies, and eigenfunctions, nonlinear heat and particle fluxes, and
nonlinear fluctuation spectra. Details of the algorithm can be found in Refs. [132, 133, 137].

GS2 has been extended to treat the more general case of non-axisymmetric stellarator geometry.
This extension of the code not only retains all of the above dynamics of the axisymmetric version,
but also allows, most importantly, multiple trapped particle regions and multiple totally-trapped
pitch angles at a given parallel spatial grid point. E. Belli and W. Dorland[131] made the original
extensions, while this thesis work included the upgrades to the totally-trapped pitch angle region
and other modifications for flexibility.

51
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3.1 Equations and Input
GS2 requires as geometry input the variation of |B| along the field line (B(θ)), the curvature drift
(split into ωκ and ω0

κ, section 3.1.3), the ∇B drift (split into ω∇B and ω0
∇B, section 3.1.3), the

parallel gradient of the magnetic field ((b̂ ·∇)N ), the metric coefficients (g1, g2, g3) (section 3.1.2),
and the pitch angle parameter grid (λ, section 3.1.4).

This section follows GS2’s Notes on Local Equilibrium Implementation, also documented in
App. A of Ref. [86]. Here, some issues specific for non-axisymmetric stellarator geometry are
noted; more details are in Refs. [86].

3.1.1 General Geometry
GS2 uses a general geometry formalism in which the equilibrium magnetic field is described by a
Clebsch formulation [138]:

B0 = ∇α×∇Ψ (3.1)

where Ψ is the poloidal flux function, α = ζ−qθ is used to label the field line, ζ is a toroidal angle-
like coordinate, and q = Φ′/Ψ′ is the safety factor (Φ is the toroidal flux and Ψ is the poloidal flux).
θ is a poloidal-angle-like coordinate used to parameterize distance along a field line (at fixed α).
In stellarators, an important system is the Boozer coordinate system[139], which uses equation 3.1
as a representation of the magnetic field and sets the Jacobian g = 1/B2. GS2’s set of coordinates
are (ρ, α, θ), where ρ(Ψ) (the radial coordinate) chooses the flux surface, α labels the field line, θ
measures the distance along that field line (Fig. 3.1).

This radial variable, ρ(Ψ), can be taken to be any flux function, given by the geometry input
to GS2. GS2 is often run with ρ chosen as the normalized midplane half-width of a flux surface,
though for some earlier stellarator benchmarking, it used ρ(Ψ) = ΨN = Ψ/(a2NBa), the poloidal
flux normalized by a length (aN , free to be chosen) and a magnetic field value (Ba, usually the
average B(θ) of the particular field line). This coordinate was used in the benchmarks of section
4.2, and described in more detail in Appendix C. However, the stellarator community generally
uses ρ =

√
s, where s = Φ/Φedge is the toroidal flux normalized by the value at the last closed

magnetic flux surface[112]. Thus, for all other studies in this thesis, ρ =
√
s is used. See Figure

3.2 for a diagram of magnetic flux.

3.1.2 Perturbed Quantities and Perpendicular Wavenumber
In the ballooning or field-line following limit, perturbed quantities vary as

A = Â(θ)exp(iS), (3.2)

where ∇S = k⊥ and b̂ ·∇S = 0, allowing for fast variation across a field line, and slow variations
along the field line.
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Figure 3.1: Coordinate system: (ρ, α, θ). Here ρ =
√
s (where s is the normalized toroidal flux)

chooses the flux surface, α labels the field line, θ measures the distance along that field line, and
θ0 locates the beginning of the simulation. These are lines of constant s and α. This is a non-
orthogonal coordinate system, so the θ and α coordinates are not perpendicular: here simply is
shown the direction of increasing θ along a line of constant α.

Figure 3.2: Types of flux illustrated in simple tokamak geometry. Adapted from [16]
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A useful parameter is θ0, the standard ballooning angle. The ballooning representations of
variables leads to modes that are often centered at or localized around θ0 in simulations. θ0 = 0 is
usually at the horizontal midplane of the device.

The perpendicular wavenumber is k⊥ = ∇S = n∇(α+ qθ0) = n∇[ζ − q(θ− θ0)], where n is
the toroidal mode number. (In non-axisymmetric devices, n is not a conserved quantum number,
because toroidal variations in the equilibrium give coupling between n modes. However, in the
small-ρ* (= ρs/a), high-n limit, this coupling is weak, and n can just be considered a coefficient
to select a particular value of k⊥.)

In GS2 notation,
|k⊥|2 = |∇S|2 = k2θ

∣∣g1 + 2θ0g2 + θ20g3
∣∣ (3.3)

where g1, g2, and g3 are the Jacobian metric coefficients that are functions of θ and are in the
geometry file read by GS2 (see Appendix B). Also, kθ = ky = (n/aN)dρ/dΨN , where aN is
the free-to-be-specified normalizing length, ρ is the radial coordinate, and ΨN is the normalized
poloidal flux, ΨN = Ψ/(a2NBa). Because ρ =

√
s in much of this thesis, dρ/dΨN is not in

general equal to unity. (The GS2 variable aky is defined as kyρi, with ρi = vT/Ωa, vT =
√
Ti/mi

Ωa = |e|Ba/(mic). Here, Ba is a free-to-be-specified normalizing magnetic field. Because g1 may
be not equal to unity, in general k2y ̸= k2⊥ at θ0 = 0.)

3.1.3 Gyrokinetic Equation and Drift Frequency
GS2 assumes that the distribution function is f = F0 + δf , where F0 = FM is the background
Maxwellian distribution function. It further takes δf = δfp + ĥ, separating out the the adiabatic
(slowly-varying) and non-adiabatic parts of the distribution function. ĥ is the gyro-averaged non-
adiabatic part of the distribution function. The nonlinear gyrokinetic equation GS2 solves is [86]

∂h

∂t
+ v||b̂ · ∇h+ ⟨vχ⟩R · ∇(F0 + h) + vB · ∇h = ⟨C [ht]⟩R +

qF0

T0

∂⟨χ⟩R
∂t

(3.4)

Here, χ is the gyrokinetic potential defined in equation 2.51, the curvature and ∇B drifts are
contained in

vB ≡ b̂

Ω0

×
[
v2||b̂ · ∇b̂+

v2⊥
2

∇B0

B0

]
, (3.5)

and the generalized E×B velocity is

vχ ≡ c

B0

b̂×∇χ. (3.6)

In the linear limit, the final equation evolved in GS2, as an initial value problem, is [140]

−i
(
ω − ωd + iv||b̂ · ∇

)
ĥ = ⟨C⟩ (3.7)

+iω

(
∂F0

∂ϵ
− [B0 ×∇S] · ∇F0

B0mΩω

)[
J0

(
v⊥|∇S|

Ω

)(
qϕ̂−

v||
c
qψ̂

)
+ qσ̂

|∇S|v⊥
c

J1

(
v⊥|∇S|

Ω

)]
,
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where the unperturbed magnetic field B0 = B0(θ) and ⟨C⟩ is the gyro-averaged collision operator.
More notation is explained in Ref. [140], but an important quantity for stability calculations is the
drift frequency:

ωd ≡ ∇S ·
[
B0 ×

(
mv2||b̂ · ∇b̂+ µ∇B0 + q∇Φ0

)]
/(mB0Ω). (3.8)

The geometry input files to GS2 include the curvature drift terms, ωκ and ω0
κ, and the ∇B drift

terms, ω∇B and ω0
∇B. Up to normalization terms (Ref. [86]),

ωκ + ω0
κ ∝ ∇S ·B0 ×

(
mv2||b̂ · ∇b̂

)
/(mB0Ω).

ω∇B + ω0
∇B ∝ ∇S ·B0 × (µ∇B0) /(mB0Ω).

(3.9)

3.1.4 Pitch Angle Grid
Finally, the geometry input for GS2 contains the perpendicular velocity coordinate: the pitch angle
parameter, λ = µ/E (= v2⊥/(Bv

2) = sin2χ/B, where this χ is the actual pitch angle). GS2
divides the pitch angle grid into trapped and untrapped (passing) regions. (See Chapter 2 for more
discussion on trapped particles.) It takes as input the trapped pitch angle grid, which is calculated
by GS2’s grid generator, to be discussed in section 3.4.

3.2 GS2 Upgrades

3.2.1 GS2 and Rungridgen’s Original Algorithm
GS2 and its grid generator, Rungridgen (section 3.3.1) worked well together on axisymmetric
geometry. GS2’s velocity integration scheme was accurate and fast, requiring that every parallel
spatial grid point (θj) along the field line to correspond exactly to the turning point of trapped pitch
angle parameter (λi) grid point, and all the turning points of each λ were required to be present in
the θ grid. In other words, for every θj , there was a corresponding pitch angle parameter λi = µ/E
such that v||/v =

√
1− λiB(θj) = 0 [132]. Rungridgen created θ and λ grids that satisfied this

requirement (Fig. 3.3).
Tokamaks normally only have one trapped particle region per poloidal period (Fig. 2.6, except

in some cases such as those with indented flux surfaces), but stellarators can have many deep, nar-
row magnetic wells, which can trap particles (Fig. 2.9). NCSX was not a problem for Rungridgen.
It has only a single deep well (per poloidal period), with other shallow wells (see Fig. 3.5), and is
therefore a bridge in configuration space between tokamaks and other stellarators.

However, with more complicated magnetic geometry, Rungridgen failed. It added θ values
without corresponding λ values, and vice versa (Fig. 3.4). In order to treat the trapped particles
accurately in W7-X (Fig. 3.6) or W7-AS (Fig. 3.7), impractically high grid resolution (1000 θ
points per poloidal period, as opposed to 200 θ points for NCSX or 16 for tokamaks) was needed
to resolve their deep wells. Even these grids, though, contained spurious points that did not satisfy
the θ-λ requirement, as in Figure 3.4.
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Figure 3.3: Original GS2 algorithm required tied θ and λ grids.

Figure 3.4: New GS2 algorithm allows for independent θ and λ grids.
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Figure 3.5: NCSX |B|norm = |B|/⟨B⟩ vs. θ, distance along a field line.
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Figure 3.6: W7-X |B|norm = |B|/⟨B⟩ vs. θ, distance along a field line.
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Figure 3.7: W7-AS |B|norm = |B|/⟨B⟩ vs. θ, distance along a field line.

Besides giving unphysical results on these grids, such as eigenfunctions that would never con-
verge to smooth functions, GS2 would often experience a segmentation fault with divide-by-zero
errors.

3.2.2 GS2’s Upgraded Trapped Particle Treatment
The GS2 modifications allow for more flexible, decoupled pitch angle and parallel spatial grids,
relative to the original GS2 algorithm that required every grid point (θj) along the field line to
correspond exactly to the turning point of trapped pitch angle parameter (λi) grid points. These
modifications were buried in the boundary conditions of GS2’s implicit solver.

Multiple Totally-Trapped Pitch Angles Allowed

A “totally-trapped particle” is one with such a small parallel velocity that it is limited to one grid
point at the bottom of a well (Fig. 3.3); its bounce point occurs before the next θ grid point. GS2’s
original algorithm only allowed for one totally-trapped pitch angle (related to parallel velocity via
v||/v =

√
1− λB(θ)) at each θ grid point. This is perfectly fine for shallow or wide magnetic

wells, but W7-X grids had points with multiple totally-trapped pitch angles (Fig. 3.4).
GS2 was modified to accommodate this. Specifically, in the original dist fn.f90 module,

ittp(ig) was the index of the only totally-trapped pitch angle at θ index ig. In loops involving
calculations for only the totally-trapped pitch angles (indexed by il), the formalism would be as
in Algorithm 3.1. Instead, ittp(ig) is now the index of the lowest totally-trapped pitch angle at
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θ index ig. Algorithm 3.2 describes the new the totally-trapped formalism. A cleaner algorithm
to find each ittp(ig) was also included.

Algorithm 3.1 Original totally-trapped-particle handling example
il = pitch angle index, nlambdatotal = number of pitch angles
nlambdatotal = (# trappedparticles) + (# passingparticles)
ig = θ index, ntheta =number of θ values
il ∈ [1, nlambdatotal]
for ig = 1, ntheta do

if il ̸= ittp(ig) then
cycle

else
Totally-trapped pitch angle calculation

end if
end for

Algorithm 3.2 New totally-trapped particle handling example
il ∈ [1, nlambdatotal]
nlambdatotal = (# trappedparticles) + (# passingparticles)
for ig = 1, ntheta do

if il < ittp(ig) then
cycle

else
Totally-trapped pitch angle calculation

end if
end for

All Trapped Particles Treated Consistently

The “World’s Fattest Banana” (or WFB, where “banana” refers to the banana orbit) is the orbit of
the particle with a pitch angle such that it has a turning point at the largest peak in the magnetic
well (max(B)) (Fig. 3.3). As the “barely trapped” or “barely passing” pitch angle, it should be
treated as either trapped or passing. In GS2, which separates the pitch angle grid into passing
(indices il=1:ng2) and trapped pitch angles (indices il=ng2+1:nlambda+ng2), the WFB
is assumed to be il=ng2+1. This should be the first trapped particle. However, there were places
in the boundary condition calculations for trapped particles in which il=ng2+1was not included,
thus it was treated there as a passing particle. This works well, except for cases of ours in which
il=ng2+1 did not exactly match 1/max(B). In this case, il=ng2+1 is definitely a trapped
particle and should never be treated as passing.

The algorithm was standardized and il=ng2+1 was added to trapped-particle loops from
which it had been missing.
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3.2.3 GS2 Upgrade Summary
These subtle changes solved all of the GS2 stellarator simulation problems to date. Any properly-
built grid given to GS2 now will run and produce physical results. These changes were tested
with standard tokamak simulations (the case used in Ref. [82]) and the upgraded GS2 performed
identically to the older version. Several stellarator simulation benchmarks were performed with
other gyrokinetic codes; see Chapter 4.

However, producing the computational grids still proved to be challenging. The next two sec-
tions describes GS2’s geometry formulation, stellarator geometry codes, and final computational
solutions.

3.3 Geometry Input Methods
Stellarator geometry requires its own set of codes to create GS2 computational grids. First, the
original GS2 stellarator geometry method is discussed (used in section 4.2). A new, more efficient
and flexible geometry method (used for all other sections) has been implemented; including a new
grid generator for GS2, FIGG.

3.3.1 Original Geometry Method
Originally, for non-axisymmetric simulations, the geometrical coefficients were based on a VMEC-
calculated[141, 142] 3D MHD equilibrium, which was transformed into Boozer coordinates[143]
by the MHD stability code TERPSICHORE [144]. From this equilibrium, the ballooning code
VVBAL[145] constructed data along a chosen field line necessary for the microinstability calcula-
tions: B = |B|, the ∇B drift, the curvature drift, and the metric coefficients.

The version of VVBAL used with GS2 transformed the radial coordinate from
√
s (where s is

the normalized toroidal flux) to ψN (the normalized poloidal flux). As the stellarator community
uses the standard

√
s, choosing to use ψN necessitated careful transformation when benchmarking,

because differences in coordinate systems translate to differences in mode frequencies. Section 4.2,
is the only section in this thesis that uses this original method.

Rungridgen, a grid generator packaged with GS2, would then create the computation grid. It
coarsened the VVBAL grid to required resolution and calculated the pitch angle grid. Rungridgen
was meant to complement GS2’s trapped pitch angle requirements: for every B(θ), there was
a corresponding λ such that v||/v =

√
1− λB(θ) = 0. With stellarator grids and their deep

magnetic wells, Rungridgen was no longer able to satisfy this requirement consistently. These GS2
upgrades (section 3.2.2) relaxed that requirement, and thus some grids were compatible again.

However, Rungridgen would also occasionally add spurious points at the ends or in the middle
of θ grids, take half an hour to create a grid (while it should take a couple of minutes), or never
finish making a grid at all. Apparently, Rungridgen could get stuck while trying to optimize the
layout of the θ and λ grids by making the two as uniform as possible and adjusting the locations of
some grid points slightly to satisfy the matching constraints.
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In addition, as GS2 allows decoupled θ and λ grids, it would be useful to have complete flexibil-
ity and ability to conduct resolution studies in space and pitch angle grids separately. Rungridgen
will only take an input ntheta, and bases nlambda on that. Section 3.4 describes the solution
to this problem.

3.3.2 New Geometry method
Non-axisymmetric geometry grid building still begins with a VMEC-calculated 3D MHD equilib-
rium. From here, GIST[112] and finally FIGG, described in section 3.4, are used. The bulk of this
thesis (all studies besides section 4.2) uses this new geometry method.

GIST packages TERPISCHORE and VVBAL into a more straightforward, easy-to-use routine.
It takes a VMEC equilibrium and parameter list as input, and can create either a GENE input file or
a GS2 input file. Furthermore, for GS2 output, there are two options for radial coordinate: ψN , or
the more standard stellarator choice,

√
s. GS2 runs have used GIST extensively with great success.

After creating high-resolution ballooning coefficients with GIST, the new GS2 grid generator,
FIGG, is run.

3.4 FIGG: Flexible Improved Grid Generator
FIGG: the Flexible Improved Grid Generator was written to replace Rungridgen. It is faster, run-
ning on the order of a few seconds relative to Rungridgen’s typical few minutes. It allows for more
flexibility: the pitch angle (λ) and spatial (θ) grids can be scaled independently, from impractically
low resolution to GIST-input-matching high resolution. FIGG has been tested on a wide range of
geometries: NCSX, W7-X, W7-AS, and LHD with success.

3.4.1 Input and Output
FIGG takes as input a high-resolution, GIST-produced file containing the spatial grid (θ), the vari-
ation of |B| along the field line (B(θ)), the curvature drift (split into ωκ and ω0

κ), the ∇B drift
(split into ω∇B and ω0

∇B), the coefficient g11 in the expression for the normalized parallel gradient
((b̂·∇)N = g11(θ)∂/∂θ), the metric coefficients (g1, g2, g3), and the coefficient ⟨|∇Nρ|⟩ in the nor-
malized area of the flux surface (AN = 2π⟨|∇Nρ|⟩

∫
Jdθ′, where J is the Jacobian). It creates the

GS2 geometry input file (traditionally labeled grid.out fileextension) after calculating
the pitch angle grid (λ), adjusting the θ grid to satisfy user-imposed constraints, and coarsening the
θ resolution of the other geometrical parameters to user-requested specifications. See Appendix B
for a glossary of algebraic variable names and their corresponding source code names.

Run in MATLAB, by either GUI or command-line interface, FIGG requires the input file name,
a file string to be included in the output file name, requested number of pitch angles nlambdain,
suggested number of spatial points nthetain, and optional flags to make diagnostic plots and to
require that for every λ, there is a corresponding 1/B(θ).
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3.4.2 Algorithm
FIGG creates grids with exactly the nlambdain requested, but nthetain is only approximately
satisfied. It first creates the pitch angle (λ) grid, evenly-spaced between (1/max(B), 1/min(B)),
as in Algorithm 3.3.

Algorithm 3.3 FIGG creates an evenly-spaced λ grid between (1/max(B), 1/min(B)).
∆λ = (1/min(B)− 1/max(B))/(nlambdain− 1)
for j = 1, nlambdain do
λ(j) = 1/max(B) + (j − 1)∆λ

end for

Next, ignoring nthetain, FIGG finds its first set of θs by satisfying ∀λj , ∃1/B(θi) = λj ,
and ∀1/B(θi), ∃λj = 1/B(θ1). Shown in Algorithm 3.4, for each λj , it finds the closest two
(1/B(θ(k)), 1/B(θ(k+1))), one above and one below, interpolates between them (with a scheme
dependent on whether or not the B(θ)s are local extrema) to find θi such that λj = 1/B(θi), and
adds (θi, B(θi)) to the new set (θnew, B(θnew)). It then ensures that there are an odd number of θ
points and that there is a θ = 0 point (and not just a very small number).

If nthetain is smaller than the length of the θnew found initially by FIGG, it will remove θ
points in particularly dense regions as described in Algorithm 3.5. The spacing between θ points,
∆θ, is compared to the requested average grid spacing (∆θreq = (θend − θ1)/nthetain). If ∆θ <
∆θreq, one of the endpoints of ∆θ is thrown out. This process is continued until ∆θsmall ≥ ∆θreq.

Conversely, if nthetain is larger than the length of the θnew found initially by FIGG, it
will add θ points in particularly sparse regions as described in Algorithm 3.6. Again, the spac-
ing between θ points, ∆θ, is compared to the requested average grid spacing (∆θreq = (θend −
θ1)/nthetain). If ∆θ > ∆θreq, a point is added between the endpoints of ∆θ. This process is
continued until ∆θlarge ≤ ∆θreq.

FIGG then displays to the screen the requested (nlambdain, nthetain), the initial val-
ues (coupling the (λ, θ) grids), and the final (nlambda, ntheta) pair. It calculates the rest
of the output variables (including the drift terms and metric coefficients) with a spline fit on the
original grids. It finally produces diagnostic plots of all variables and writes the output file.

3.4.3 Resolution studies
Before using FIGG for physics studies, GS2 resolution studies were conducted to verify that it
scaled at least as well as Rungridgen. Figures 3.8-3.9 show these results. As Rungridgen produces
grids with fixed nlambda (number of trapped pitch angles) for a given ntheta (number of θ grid
points from [−endpoint, endpoint]), FIGG was run with these pairs of (nlambda, ntheta)
for comparison. Figure 3.8 shows the GS2-calculated growth rates and real frequencies for an
electrostatic ITG mode with adiabatic electrons case (with Ti = Te, a/LT = 3, and a/Ln = 0)
in NCSX geometry versus ntheta (from (−5π, 5π)), and Figure 3.9 versus nlambda. Both
routines converge at about the same rate, FIGG’s to a value within 0.3% of Rungridgen’s. The non-
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Algorithm 3.4 FIGG creates an initial θnew grid from GIST’s θ grid by satisfying λ↔ 1/B(θ)

for i = 1, nlambda do
Find two min(1/B − λ(i)): s.t. 1/B1 ≥ λ(i) and 1/B2 ≤ λ(i)
if 1/B1 = λ(i)||1/B2 = λ(i) then
θnew(j) = θ1||2
Bnew(j) = B1||2

else
if 1/B1&1/B2 are local extrema then
Bnew(j) = 1/λ(i)
θnew(j) = linear interpolation between (θ1, θ2)

else
if only one of (1/B1, 1/B2) is a local extremum then
Bnew(j) = 1/λ(i)
θnew(j) = linear interpolation between (θ1, θ2) and θneighbor−non−extremum

else
if neither (1/B1, 1/B2) is a local extrema then
Bnew(j) = 1/λ(i)
θnew(j) = linear interpolation between (θ1, θ2, θneighbor−left, θneighbor−right)

end if
end if

end if
end if

end for
if ̸ ∃θnew = 0 then

Add a θnew = 0 point between (θnew < 0, θnew > 0)
if ∃θ = 0 then
Bnew(0) = B(0)

else
Bnew(0) = linear interpolation between (B(min(θ > 0)), B(min(θ < 0)))

end if
end if
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Algorithm 3.5 Reducing FIGG’s initial θ to θsmall such that length(θsmall) ≈ nthetain.
∆θreq = (θ(end)− θ(1))/nthetain
while ∆θ < ∆θreq do
nθ = length(θ)
for i = 1, nθ do

if ∆θ(i) < ∆θreq then
if θ(i) < 0 then

Keep (θ(i), B(θ(i)) ∈ (θsmall, B(θsmall))
Throw out (θ(i+ 1), B(θ(i+ 1))

else
Keep (θ(i+ 1), B(θ(i+ 1)) ∈ (θsmall, B(θsmall))
Throw out (θ(i), B(θ(i))

end if
end if

end for
Set θ = θsmall

Recalculate ∆θ
end while

Algorithm 3.6 Increasing FIGG’s initial θ to θlarge such that length(θlarge) ≈ nthetain.
∆θreq = (θ(end)− θ(1))/nthetain
if nthetain > length(θorig) then

Set nthetain = length(θorig)
end if
while ∆θ > ∆θreq do

for i = 1, length(θ) do
if ∆θ(i) > ∆θreq then

if ∃θorig ∈ (θ(i), θ(i+ 1)) then
Add the midpoint of (θ(i), θ(i+ 1)) to θlarge
Linearly interpolate on B(θorig) : θorig ∈ (θ(i), θ(i+ 1)) to find B(θlarge)

end if
end if

end for
Set θ = θlarge
Recalculate ∆θ

end while
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Figure 3.8: FIGG vs. Rungridgen (RG): γ and ω vs. θ resolution for NCSX geometry (for θ ≈
(−5π, 5π)).

monotonic behavior in FIGG’s convergence suggests that further improvements could be made to
the algorithm; smooth convergence, such as Rungridgen’s, is preferred.

Here are the same figures for W7-X: Figure 3.10 shows growth rates and frequencies ver-
sus ntheta (from (−3π, 3π)), and Figure 3.11 versus nlambda. FIGG’s ITG growth rate and
frequency converge to a value within 1% of Rungridgen’s. Note the extremely coarse values of
ntheta FIGG is able to achieve and still maintain accuracy of 10%; Rungridgen fails to even
create a grid if the requested mesh is too coarse. Coarse grids are preferred when conducting quick
qualitative studies, as the simulations scale with grid size.

Also, Figure 3.12 shows that the electrostatic potential eigenfunctions are almost identical. Pos-
sible reasons for the small difference in growth rates are the fact that the (nlambda,ntheta)
pairs are not exact matches, the λ grid spacings are slightly different, and the fact that Rungridgen
grids are unsymmetric in point placement about θ = 0.

Next, to test FIGG’s flexibility, θ and λ resolution studies were conducted independently. Fig-
ure 3.13 demonstrates good convergence of growth rates and real frequencies in ntheta (from
(−3π, 3π)) for NCSX with nlambda=10 and nlambda=35. For nlambda=35, growth rates
are converged to within 3% in this plot with ntheta=65, within 10% with ntheta=55, and
within 20% with ntheta=38. When nlambda=10, growth rates are converged to within 3% in
this plot with ntheta=56, within 10% with ntheta=54, and within 20% with ntheta=25.
For simulations in which one does not need high accuracy, but a qualitative result is acceptable,
one can use these lowest values of ntheta.
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Figure 3.9: FIGG vs. Rungridgen (RG): γ and ω vs. λ resolution for NCSX geometry
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Figure 3.10: FIGG vs. Rungridgen (RG): γ and ω vs. θ resolution (from (−3π, 3π)) for W7-X
geometry.
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Figure 3.11: FIGG vs. Rungridgen (RG): γ and ω vs. λ resolution for W7-X geometry.
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3.5 Conclusion
GS2’s trapped particle treatment was upgraded to allow for complicated stellarator grids. In addi-
tion, a more flexible and straightforward 3D geometry package has been written, tested, and im-
plemented for GS2 stellarator runs. Besides section 4.2, all GS2 studies in this thesis use VMEC,
GIST, and FIGG-created geometry input files. Having shown that GS2 and its geometry packages
run seamlessly together, GS2’s physics results will be compared to other gyrokinetic codes in the
next chapter.

3.6 Future Work
Several further improvements could be made to the GS2 geometry package. First, it could be
possible to have different λ grids for each magnetic well or at every θ grid point. This could
improve velocity resolution and give more flexibility, in addition to the fact that the distribution
function velocity integrals are more accurate with a point at v|| = 0 (i.e. a λ = 1/B(θ) point). (If
the integration of the distribution function starts at v1||, and v1|| ̸= 0, the integral misses the portion
of the distribution function from v|| = 0 → v1||. However, due to the success of the benchmarks in
Chapter 4, any error introduced in the presented calculations is presumed to be small.)

Second, FIGG’s algorithm may be improved in order to ensure monotonic convergence of
GS2’s growth rates with θ resolution. The current non-monotonic behavior stems from the algo-
rithm that adds or subtracts θ points from the initial, tied-to-λ-grid θ grid. While the converged
values are accurate enough, smooth convergence is preferrable.

Finally, further computational speed up could be obtained through averaging the drift coeffi-
cients. This could be done by averaging in θ over a fine grid to obtain a coarser grid in FIGG: an
integration over the length along the field line,

∫
dl ωd. Or, one could do a formal orbit averaging

of these coefficients in GS2 itself (
∫
dl v

|v|||
ωd). This would allow for even lower resolution.



Chapter 4

Benchmarks: Comparisons with Other
Codes

4.1 Why Benchmark?
Before simulations can be trusted, they need to be verified and validated. Verification evaluates the
implementation of equations and models in codes, while validation compares the result of the code
to experimental results. A “benchmark,” a method of verification, is the comparison between two
codes that intend to solve for the same physical phenomena.

In this section, three benchmarks of the GS2 stellarator geometry capabilities are described,
with gyrokinetic codes FULL, GENE, and GKV-X.

4.2 GS2 vs. FULL
The first use of GS2 for non-axisymmetric geometry was by E. Belli and W. Dorland during the
summer of 2000, for benchmarks with FULL. GS2 has gone through many upgrades since then,
and geometry normalizations were not properly recorded. Improving the benchmarks with FULL
was the beginning of this thesis. This work is published in [62].

Here, the non-axisymmetric extension of GS2 is compared with FULL on NCSX plasmas.
Good agreement between the GS2 code and the FULL code in the axisymmetric limit was previ-
ously demonstrated.[132, 146] While the non-axisymmetric upgrade of GS2 retains the nonlinear
dynamics, in these studies the focus is on systematic scans of gyrokinetic linear stability, as FULL
has no nonlinear capability.

4.2.1 The QAS3-C82 Equilibrium
Geometry input for this benchmark was built using the old method described in section 3.3.1.

The FULL benchmark calculations use a VMEC equilibrium based on a 1999 NCSX design
known as QAS3-C82[129], for which is shown the outermost flux surface in Figure 4.1. This con-

70
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Figure 4.1: Equilibrium of NCSX design QAS3-C82 which is quasi-axisymmetric and has 3 field
periods.

figuration is quasi-axisymmetric with three field periods. It has an aspect ratio of 3.5 and a major
radius of 1.4 m. NCSX was designed to very small helical ripple so as to have good neoclassical
transport and MHD stability properties and good drift trajectories similar to those in tokamaks.
Strong axisymmetric components of shaping provide good ballooning stability properties at lower
aspect ratio. Furthermore, the QAS3-C82 equilibrium has a monotonically increasing rotational
transform profile which provides stability to neoclassical tearing modes across the entire cross
section.[129, 147]

The standard case used in most of these runs is at the surface s = 0.875 (s ∼ ⟨(r/a)2⟩ is the
normalized toroidal flux) and the field line at α = π/3 (α = ζ − qθ; ζ is the Boozer toroidal angle,
θ is the Boozer poloidal angle[139]) (recall Fig. 3.1). The cross-section at this point is the crescent
shape, seen in Figure 17 of Ref. [148]. The coordinate along the field line is θ, the poloidal angle.
At this surface, the safety factor q = 2.118 and the average β (the ratio of the plasma pressure to
the magnetic pressure) is ⟨β⟩ = 0.01%. Lastly, the ballooning parameter[145] is θ0 = 0, except in
Figure 4.6.

Figure 4.2 shows the variation of the magnitude of the magnetic field along the chosen field
line. Resolution studies for the spatial grid used in the GS2 runs indicate that 330 theta grid points
per poloidal period and about 90 pitch angles (λ = µ/E) showed convergence in the growth rate
to within 2%, however < 10% error is possible with coarser grids. It was also found that a θ
range extending from −3π to 3π was sufficient for a typical simulation grid, meaning that the
eigenfunctions for the modes decayed to insignificant values before reaching these boundaries.
(The endpoints of B(θ) were increased slightly, by less than 1%, to be global maxima, per normal
GS2 operations.)

The curvature drift and the variations of (k⊥/n)2 (where n is the toroidal mode number) along
the same chosen field line can be seen in Figures 4.3 and 4.4 (see Ch. 3 for definitions). By
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Figure 4.2: Standard B vs. θ grid for QAS3-C82, with s = 0.875, α = π/3, and θ0 = 0.

convention, positive curvature drifts are “bad” or destabilizing, while negative curvature drifts are
“good” or stabilizing. Significant unstable modes occur where k⊥ is small, which is near θ = 0 for
this equilibrium, since instabilities are generally suppressed at large k⊥ by FLR averaging. Also,
because Figure 4.3 indicates that the curvature is bad in this region near θ = 0, where k⊥ is the
smallest, it is expected that unstable modes will appear here.

4.2.2 The Linear Studies
Comparisons between the GS2 code and the FULL code in non-axisymmetric geometry over a
range of parameters using the QAS3-C82 equilibrium show linear agreement for the standard case,
whose local parameters are shown in Table 4.1. The product of the perpendicular wave number
and the gyroradius at θ = 0, kyρi, is 0.3983 (where the toroidal mode number n = 25; see C)
for all cases unless otherwise specified. The standard case is relatively close to the edge, which
accounts for the low values of ion temperature, Ti, electron temperature, Te, and relatively large
values for the gradients. The parameter η = Ln/LT is usually η = 3, placing most of these
studies in an ITG regime (see Fig. 4.7). Correspondingly, aN/Lni = aN/Lne = 13.096 and
aN/LTi = aN/LTe = 39.288. The normalizing scale length is aN = n/k⊥(θ = 0) = 0.352m,
not the minor radius, and is described in detail in Appendix C. The major radius is approximately
R ≈ 1.4m. These studies are done with electrons and deuterium ions.

Previously, FULL scans showed that the largest linear growth rate occurs at flux surface label
s = 0.875 (corresponding to a minor radius of r/a ≈

√
s ≈ 0.94), for α = π/3 and θ0 = 0.

GS2 and FULL scans over α and θ0 (Figs. 4.5 and 4.6) adopted this s value. The toroidal mode
number, n, was fixed at 25 (thus, kyρi = n

aN
ρi varied for each data point, because from Appendix

C, aN = 1/|∇α| and ρi ∝ 1/Ba vary). These figures indicate good agreement between the GS2
code and the FULL code. The maximum growth rate in Figure 4.5 occurs for α = π/3, and GS2
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s ≈ (⟨r/a⟩)2 0.875
α = ζ − qθ π/3

θ0 0
q 2.118
⟨β⟩ 0.01%
kyρi 0.3983(n = 25)

Ti = Te 1keV
ηi = ηe 3

aN/Lni = aN/Lne ≈ 13.096
aN/LTi = aN/LTe ≈ 39.288

R ≈ 4aN ≈ 1.4m
aN = ( n

k⊥(θ=0,θ0=0)
) ≈ 0.352m

Ba = ⟨B⟩ 1.15T
mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 6.214× 105sec−1

Table 4.1: The set of local parameters used in a standard case microinstability simulation based on
the QAS3-C82 equilibrium. Note: aN is not the minor radius; it is discussed in Appendix C.

and FULL agree well around this value. In Figure 4.6, GS2 and FULL again agree well around the
growth rate peak at θ0 = 0.

In all further calculations presented in this section, s = 0.875, α = π/3 and θ0 = 0, the
location of the maximum growth rate.

GS2 was used to find the instability growth rate dependence on η = Ln/LT , used to determine
the driving gradient of the mode, and compared it with FULL. The total pressure gradient was kept
fixed to maintain consistency with the MHD equilibrium. Both codes found large growth rates at
low η (high density gradient) and high η (high temperature gradient) (Fig. 4.7), and agree well,
though it can be seen in the frequencies that GS2 found a mode switch (a change from lower to
higher frequencies) earlier than FULL. This can happen since GS2 automatically finds the most
unstable mode, whereas FULL usually finds the mode closest to the initial guess provided to the
root finder. In fact, there are three distinct eigenmodes within these regimes of η: at small η,
even-symmetry TEM modes dominate; at medium η, odd-symmetry TEM modes dominate; and at
larger values of η, an even-symmetry ITG-driven mode dominates[100] (Fig. 4.8). This is typical
of an equivalent axisymmetric configuration.[149]

Benchmarks with FULL for scans over Ti/Te, shown in Figure 4.9, were also successful. For
this scan, Te was varied while Ti was kept constant at 1keV . As Ti/Te increases, at this very large
value of R/LTi

≈ 157, the linear growth rate falls slowly due, most likely, to an enhancement
of shielding by adiabatic electrons at large

√
Ti/Te. This is a very well-known phenomenon in

tokamaks [150].
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Figure 4.5: Variation of γ and ωr with α at constant s = 0.875 and θ0 = 0 with ηi = ηe = 3 and
kyρi(α = π
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Figure 4.6: Variation of γ and ωr with θ0 at constant s = 0.875 and α = π/3 with ηi = ηe = 3 and
kyρi = 0.3983.
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Figure 4.7: Variation of γ and ωr with ηi = ηe with kyρi = 0.3983.

Comparison scans over kyρi for η = 0 and η = 3 are shown in Figure 4.10. For the η = 0
curve, the dominating eigenmodes are even in the ranges 0.1 < kyρi < 0.2 and 0.6 < kyρi < 1.1.
Overall, the results from the GS2 code and the FULL code agree well; growth rates differ by at
most ∼ 10% except at transitions between modes.

Finally, GS2 found high frequency, electron-temperature-gradient-driven (ETG) modes at short
wavelengths (Fig. 4.11) in the extended kyρi spectrum for the case of η = 3.

4.3 GS2 vs. GENE and GKV-X

4.3.1 Axisymmetric Benchmark: GS2, GENE
Reference [17] describes a benchmark for axisymmetric geometry with an analytic ŝ − α and a
numerical DIII-D equilibrium of GS2 and GENE. The agreement was very good for both growth
rates and frequencies of an ITG mode with adiabatic electrons. Figure 4.12 shows the ŝ− α case:
the frequencies overlay exactly, while the growth rates agree best for low kyρi, but the overall
agreement is acceptable: at maximum growth rate difference, GS2 is within 10% of GENE.

In order to test the geometry method described in section 3.3.2, axisymmetric geometry input
files were created using the non-axisymmetric framework. Figure 4.13 shows the magnitude of the
magnetic field for this symmetrized NCSX (“NCSX-SYM”) case, Figure 4.14 the curvature drift,
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Figure 4.8: Variation of the normalized GS2 eigenfunctions of electrostatic, collisionless toroidal
drift modes along the field line at η = 3 (top figure) and at η = 0.5 (bottom figure) with kyρi =
0.3983.
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Figure 4.9: Variation of γ and ωr with Ti/Te with kyρi = 0.3983 and ηi = ηe = 3.
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Figure 4.10: Variation of γ and ωr with kyρi. Circles: GS2, η = 0; triangles: FULL, η = 0;
squares: GS2, η = 3; diamonds: FULL, η = 3.
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Figure 4.11: Extended variation from GS2 of γ and ωr with kyρi and ηi = ηe = 3.

Figure 4.12: ky scan for ŝ− α geometry from GS2 (line) and GENE (crosses). Units are in cs/R,
where cs is the sound speed and R is the major radius. [17]
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Figure 4.13: B vs. θ grid for NCSX-SYM.

and Figure 4.15 the metric coefficient (k⊥
n
)2(θ). As in the ŝ−α study, an electrostatic, collisionless,

ITG-adiabatic-electron mode was simulated with Ti = Te, a/Ln = 0, a/LT = 5.
The results are shown in Figures 4.16 and 4.17. As in Figure 4.12, the frequencies agree per-

fectly, but the growth rates have a systematic disagreement. The maximum growth rate discrepancy
is within 15%. Conducting more thorough convergence studies in spatial, energy, pitch angle, and
time step for both codes could reduce this discrepancy, but it is sufficient for the purpose of testing
the geometry method.

4.3.2 NCSX benchmark: GS2, GENE, GKV-X
Finally, GS2, GENE[101], and GKV-X[102] results were compared for an NCSX equilibrium,
again created by the new method from section 3.3.2.

Geometry

The GENE benchmark calculations use a VMEC equilibrium based on the standard S3 configu-
ration of NCSX design. This configuration is again quasi-axisymmetric with three field periods.
It has an aspect ratio of 3.5 and a major radius of 1.4 m. These runs used the surface at s = 0.5
(r/a ≈ 0.7), the α = 0 field line, and the ballooning parameter θ0 = 0, a somewhat standard
NCSX case[151](recall Fig. 3.1). At this surface, the safety factor q = 1.978 and the average β is
⟨β⟩ = 4%.

Figure 4.18 shows the variation of the magnitude of the magnetic field along the chosen mag-
netic field line, with a resolution of 209 theta grid points per poloidal period. There were approxi-
mately 30 pitch angles. Again, the θ range extends from −3π to 3π.
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Figure 4.14: Variation of the curvature drift term (ωcv = (dΨN/dρ)(k⊥/n) · b × [b · ∇b]) (for
n = 1) along θ for NCSX-SYM.
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Figure 4.18: B vs. θ grid for NCSX QAS3, with s = 0.5, α = 0, and θ0 = 0.

For reasons identical to section 4.2.1, unstable modes are expected to be found around θ = 0.
Figures 4.19 and 4.20 are the variations of (k⊥/n)2, where n is the toroidal mode number, and the
curvature drift along the same chosen field line.

Linear Studies

The test case was an electrostatic, collisionless ITG mode with adiabatic electrons. The tem-
peratures were Ti = Te, the temperature gradient was aN/LT = 3, and the density gradient
was aN/Ln = 0, where the normalizing length was chosen to be an averaged minor radius,
aN ≈ 0.323m. See Table 4.2.

Figure 4.21 shows the growth rate and real frequency spectrum for this mode. The maximum
discrepancy in growth rate between GS2 and GKV-X is 8%, with GENE always in between. The
frequencies agree to within 5%. This agreement is excellent.

GS2 and GKV-X’s electrostatic potential, ϕ, for a particular kyρi = 0.9 is shown in Figure
4.22. These electrostatic eigenfunctions also agree well.

Zonal Flows

As discussed in section 2.6.4, zonal flows are important in regulating turbulence. Linearly, one
can look at the zonal flow response of the plasma relaxing from an initial potential perturbation.
The electrostatic potential is damped by linear processes, and settles after some oscillations to a
non-zero value, known as the Rosenbluth-Hinton zonal flow residual [83].

As a first test, an NCSX-SYM tokamak case was compared with GENE and GS2 for kyρi = 0
and kxρi = 0.15. Figure 4.23 shows good agreement in amplitude and frequency of ϕ vs. time for
the many periods.
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Figure 4.19: Variation of the curvature drift term (ωcv = (dΨN/dρ)(k⊥/n) · b × [b · ∇b]) (for
n = 1) along θ for NCSX QAS3, with s = 0.5, α = 0, and θ0 = 0.
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s ≈ (⟨r/a⟩)2 0.5
α = ζ − qθ 0

θ0 0
q 1.978
⟨β⟩ 4%

Ti = Te 1keV
aN/Lni = aN/Lne 0
aN/LTi = aN/LTe 3

R ≈ 4aN ≈ 1.4m
aN ≈ 0.323m

Ba = ⟨B⟩ ≈ 1.6T
mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 6.782× 105sec−1

Table 4.2: The set of local parameters used the microinstability simulation based on the NCSX
QAS3 equilibrium.
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Figure 4.23: Variation of ϕ with time, comparing GS2’s results for a tokamak to GENE’s.
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Figure 4.24: Variation of ϕ with time, comparing GS2’s results for NCSX to GENE’s.

For the same non-axisymmetric geometry as the previous section, the GS2 and GENE zonal
flow responses were compared using parameters in table 4.2 and kyρi = 0 and kxρi = 0.15 (Fig.
4.24).

The agreement is not nearly as good as for the tokamak case. The differences could stem from
different definitions of kxGENE and GS2’s input variable akx (in which case, the differences in the
tokamak case were small enough to not matter). The variables are normalized in the same way,
by ρi, but can still differ, because the physical radial wavenumber varies along a flux tube as the
flux-tube cross-sectional shape varies, so there is a choice of where along the flux tube the radial
wavenumber input variable is defined.

If there is a difference in definitions, this will only affect zonal flow tests. It will not affect
linear growth rate comparisons with nonzero ky (due to GS2 and GENE’s excellent matching in
several cases, it was deduced that kyGENE and GS2’s ky parameter, aky, are equivalent). See
Appendix D for details of unsuccessful attempts to match the zonal flow residuals.

4.3.3 W7-X: GS2, GENE
As a final benchmark, results from linear stability simulations of W7-X geometry were compared
for GS2 and GENE.
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Figure 4.25: B vs. θ grid for W7-X, with s = 0.2, α = 0, and θ0 = 0.

Geometry

The VMEC-calculated W7-X high-mirror equilibrium has five field periods, an aspect ratio of 10.5,
and a major radius of 5.5m. The average β is ⟨β⟩ = 1.6%. For these runs, the geometry had the
surface s = 0.2 (r/a ≈ 0.45), the α = 0 field line, and the ballooning parameter θ0 = 0 (recall
Fig. 3.1).

Figure 4.25 shows the variation of the magnitude of the magnetic field along the chosen mag-
netic field line, with a resolution of 276 theta grid points per poloidal period and 33 pitch angles.
Here, the θ range extended from about −5π to 5π.

Unstable modes are expected around θ = 0, because of the positive curvature (Fig. 4.26) and
small (k⊥/n)2 (Figure 4.27) along the same chosen field line.

Linear Studies

For these linear studies, again the simplest mode was used: an electrostatic, collisionless ITG
mode with adiabatic electrons. The Ti = Te, aN/Ln = 0, and aN/LT = 3, where aN = 0.5m is
an averaged minor radius (Table 4.3).

Despite early problems with W7-X geometry (section 3.2.1), the GS2 W7-X results match
GENE’s frequencies to within 2% and growth rates to within 6%. The electrostatic potential
eigenfunctions also agreed, exhibiting the same ballooning structure as in the NCSX case (Fig.
4.22).

4.3.4 Conclusion
The nonlinear gyrokinetic code GS2 was benchmarked against FULL, GENE, and GKV-X.
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Figure 4.26: Variation of the curvature drift term (ωcv = (dΨN/dρ)(k⊥/n) · b × [b · ∇b]) (for
n = 1) along θ for W7-X, with s = 0.2, α = 0, and θ0 = 0.
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2 for W7-X, with s = 0.2, α = 0, and θ0 = 0.
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s ≈ (⟨r/a⟩)2 0.2
α = ζ − qθ 0

θ0 0
Ti = Te 1keV

aN/Lni = aN/Lne 0
aN/LTi = aN/LTe 3

R ≈ 10.5aN ≈ 5.5m
aN ≈ 0.5m

Ba = ⟨B⟩ 2.29T
mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 4.162× 105sec−1

Table 4.3: The set of local parameters used the microinstability simulation based on the W7-X
equilibrium.
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Linear, collisionless, electrostatic GS2 simulations of the quasi-axisymmetric, three-field pe-
riod NCSX stellarator design QAS3-C82 have been successfully benchmarked with the eigenvalue
code FULL for scans over a range of parameters including η, kyρi, Ti/Te, α, and θ0. Quantitatively,
the linear stability calculations of GS2 and FULL agree to within about 10% of the mean, except
at transitions between modes. Considering the differences in algorithms and geometry implemen-
tation, and that small changes in temperature and density profiles in experiments result in changes
to growth rates and nonlinear heat fluxes of more than 10%, this agreement is excellent.

In addition, linear, collisionless, electrostatic GS2 simulations of the standard S3 configuration
of NCSX have been successfully benchmarked with the codes GENE and GKV-X for an ITG mode
with adiabatic electrons scan over kyρi. Quantitatively, the growth rates and frequencies of GS2,
GENE, and GKV-X agree well, to within about 8%. The zonal flow response benchmark is not
satisfying, but is left to future work.

Finally, GS2 and GENE were compared using the a high-mirror W7-X case. The growth rates
and frequencies of the linear, collisionless, electrostatic ITG mode with adiabatic electrons again
agree well, to within 6%.

Now that GS2 runs, its geometry modules function (chapter 3), and its results have been bench-
marked, these tools can be used to investigate interesting physics properties of different machines.



Chapter 5

NCSX Studies: Linear, Nonlinear, and a
Tokamak Comparison

The National Compact Stellarator design, with its quasi-axisymmetric magnetic configuration, is
a bridge in configuration space between tokamaks and the rest of the stellarator world. Therefore,
it is an excellent configuration to begin gyrokinetic stellarator studies with GS2, which has been
used successfully on axisymmetric geometry for many years (Ch. 3). Building in small steps away
from known results helps to eliminate potential sources of error. This chapter details three main
categories of studies that build in complexity.

At the time of its design, a series of flexibility studies [14] were performed using a magnetic
coil set similar to the final design. The equilibrium optimization code STELLOPT was used to
find currents in these coils needed to meet desired configuration properties. As a consequence, sets
of configurations exist in which only one parameter, such as magnetic shear and plasma β, was
varied significantly. Studies in Section 5.1 survey linear stability in two configurations that differ
significantly only by plasma equilibrium β and compare them to each other.

Besides comparing good stellarator configurations, one would like to compare stellarators and
tokamaks. These considerations are important when designing the next generation of experiments.
Section 5.2 compares linear stability of an NCSX configuration with a tokamak configuration.
Because their geometry differs so significantly, it is hard to pinpoint what parameter has the greatest
effect.

After performing convergence tests in various parameters to reduce numerical error, Sections
5.1-5.2 compare growth rates of the electrostatic adiabatic ITG mode, electrostatic collisionless
kinetic ITG-TEM, and, in the case of Section 5.1, electromagnetic collisionless kinetic ITG-TEM
growth rates. This order increases the number of physical effects included, and thus more oppor-
tunities for the code to break.

Ultimately, one wishes to compare nonlinear heat fluxes to experimental measurements. The
final study, Section 5.3, tests GS2’s nonlinear capability on stellarator geometry. These electro-
static adiabatic ITG runs are in low-resolution NCSX geometry demonstrate that GS2 is capable
of nonlinear, non-axisymmetric runs and motivate future work.

95
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5.1 NCSX β Studies
High plasma beta is important for fusion because the fusion power at fixed magnetic field is approx-
imately proportional to β2. Also, as seen in Chapter 2, beta can be stabilizing to microinstabilities
up to the kinetic ballooning mode threshold. Computationally, gyrokinetic turbulence codes have
run into an apparent beta limit for tokamaks at half the critical MHD beta limit for the “Cyclone
case” [82], a simple ŝ− α circular model equilibrium, though this appears to be surmountable by
including E×B flow shear [152]. Also, this may be an atypical case due to the simple geometry,
which has a very low MHD β limit. Because of this and other simplifications, the Cyclone case
had ion temperature gradients that were so far above the instability threshold that the simulation
heat diffusivity χITG ≈ 50χexp and so it is not directly relevant to experiments[153]. One hopes
that gyrokinetic simulations for relevant plasmas do not have this issue.

Stellarators have reached high beta. The LHD routinely runs with β = 5%. Stellarators did not
appear to have a hard beta limit: in LHD experiments, a strong MHD mode grew as the plasma
approached the boundary of the ideal interchange mode, but it saturated at an acceptable level and
the plasma suffered no major disruptions[154]. However, recent LHD experiments showed that
stellarators can disrupt in extremely unstable configurations.

To start studying the effect of plasma beta in stellarators, the differences in linear ITG and
TEM stability were compared for two configurations, one with equilibrium β = 0% and one with
β = 4%. Figure 5.1 shows the poloidal cross-sections for three toroidal angles, along with ι
profiles for various plasma currents (Ip). The plasma shape varies very little with Ip. This section
uses set of beta scans with Ip = 174kA, because their ι profiles varied the least and this would
allow us to isolate the effects of β.

5.1.1 Geometry and Plasma Parameters
For these β studies, the geometry used had the surface with normalized toroidal flux s ≈
(⟨r/a⟩)2 = 0.25, field line α = 0, and ballooning parameter θ0 = 0 (recall Fig. 3.1). The
magnitude of magnetic field, curvature and ∇B drift components, and |k⊥|2 along the field line
are plotted for both β = 0% and β = 4% in Figures 5.2-5.4. Comparing the |k⊥|2|θ0=0 terms,
β = 4% has lower values near the edges of the domain, which indicates that more eigenfunction
structure could exist near the edges than for the β = 0% case.

More parameters for both equilibria are in Table 5.1. All growth rate and frequency values
are normalized such that (γ, ω) = (γphysical, ωphysical)(a/vthi). For the following studies, several
plasma parameters were varied around the base case parameters shown in Table 5.2

For each equilibrium (β = 0% and β = 4%), convergence studies were run in θ, λ, and
velocity-space (energy) resolution for a single ion species, ITG-driven adiabatic electron modes.
Figures 5.5-5.8 show the results of the θ and λ resolution studies for the growth rate and real
frequency spectra of this ITG mode. For the remainder of this section, GS2 studies use grids with
nlambda = 30 for both the β = 0, 4% equilibria, ntheta ≈ 750 for β = 4%, and ntheta ≈ 630
for β = 0%. These grids’ results were well-converged (to within a few percent of the results from
higher-resolution grids). There are 32 energy grid points.
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Figure 5.1: NCSX beta flexibility studies: poloidal cross-sections for three toroidal angles (labelled
by V ) and ι profiles for various plasma currents (Ip) and β values. The dashed lines are the physical
vacuum vessel wall. [14]
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Figure 5.2: NCSX beta flexibility studies comparing |B| vs. θ for both β = 0% and β = 4%, at√
s = r/a = 0.5, α = 0, and θ0 = 0.
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Figure 5.4: NCSX beta flexibility studies comparing
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√
s = r/a =

0.5, α = 0, and θ0 = 0.

Parameter β = 0% β = 4%

s ≈ (⟨r/a⟩)2 0.25 0.25
α = ζ − qθ 0 0

θ0 0 0
qs 2.175 2.011
ŝ 0.356 0.278
⟨β⟩ 0.0% 4%
R ≈ 4.7aN ≈ 1.5m ≈ 4.7aN ≈ 1.5m
aN ≈ 0.322m ≈ 0.322m

Ba = ⟨B⟩ 1.58T 1.55T

Table 5.1: Geometry values for the NCSX β = 0, 4% equilibria.

a/LTi = a/LTe 3
a/Ln 0
kyρi ∈ [0.6, 1.4]

Ti = Te 1keV
ν 0

mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 6.214× 105sec−1

Table 5.2: The base set of local parameters used in the NCSX β studies.
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Figure 5.5: NCSX β = 0% equilibrium ITG growth rates vs. kyρi, for various total (over the range
[−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 5.6: NCSX β = 0% equilibrium ITG frequencies vs. kyρi, for various total (over the range
[−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 5.7: NCSX β = 4% equilibrium ITG growth rates vs. kyρi, for various total (over the range
[−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 5.8: NCSX β = 4% equilibrium ITG frequencies vs. kyρi, for various total (over the range
[−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 5.9: ITG adiabatic electron growth rates vs. kyρi for NCSX βequil = 0%, a/Ln = 0,
a/LT = 1.6.

5.1.2 Electrostatic ITG stability with adiabatic electrons
The ion-temperature-gradient-driven (ITG) mode with adiabatic electrons is the simplest mode
one can study. The relevant parameter for these studies is the temperature gradient scale length:
a/LT = −a(1/T )dT/dρ (see Section 2.4.2). The “critical temperature gradient” is the value at
which the plasma becomes marginally stable.

Simulation

Using the base parameters in section 5.1.1, linear ITG stability as a function of temperature gradi-
ent, a/LT , was compared for both equilibria, over a wavenumber range of kyρi ∈ (0.6, 1.4) (note
in Figs. 5.5, 5.7, and 5.9 that this range is sufficient to capture the peak of the growth rate spectrum,
and therefore the fastest growing mode). The peak growth rates of both cases occur at kyρi = 1.0
and are shown in Figure 5.10, indicating that the critical gradient of the β = 0% equilibrium is
a/LT,crit ≈ 1.27 and that of the β = 4% equilibrium is a/LT,crit ≈ 1.30. The fact that a/LT,crit

for β = 0% is lower than that of β = 4% is a first indication that β is stabilizing to the ITG mode,
as found in the tokamak studies in Ref. [127].

Looking at the effect of the density gradient on the critical temperature gradient in Figures
5.11-5.12, with a/Ln = 1, a/LT,crit lowers by ≈ 0.23 with respect to the a/Ln = 0 value in
each case, appearing to be somewhat destabilizing. a/Ln ≥ 2, however, appears to be strongly
stabilizing, consistent with a transition to the slab limit of the ITG mode where a density gradient
is stabilizing[155].

As expected, when one compares the growth rates as a function of a/Ln for various values
of a/LT (Figs. 5.13-5.14), the growth rates increase monotonically with a/LT . Also, the growth
rates for β = 0% are higher than those for β = 4%.
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Figure 5.10: ITG adiabatic electron growth rates vs. temperature gradient for NCSX βequil = 0, 4%,
a/Ln = 0, kyρi = 1.0. Fits obtained through piecewise linear interpolation on the lowest half of
the growth rate curve.
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Figure 5.11: Electrostatic ITG adiabatic electron growth rates (at kyρi = 1) vs. temperature gradi-
ent for NCSX βequil = 0% for various density gradients, a/Ln.
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Figure 5.12: Electrostatic ITG adiabatic electron growth rates (at kyρi = 1) vs. temperature gradi-
ent for NCSX βequil = 4% for various density gradients, a/Ln.
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Figure 5.13: Electrostatic ITG adiabatic electron growth rates (at kyρi = 1) vs. density gradient for
NCSX βequil = 0% for various temperature gradients, a/LT .
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Figure 5.14: Electrostatic ITG adiabatic electron growth rates (at kyρi = 1) vs. density gradient for
NCSX βequil = 4% for various temperature gradients, a/LT .

5.1.3 Electrostatic ITG-TEM stability with kinetic electrons
Adding kinetically-treated electrons allows one to study the trapped electron mode (TEM) and
hybrid ITG-TEM (driven by both a/LT and a/Ln) modes. Figures 5.17-5.18 show growth rates
vs. a/LT (where a/LT = a/LTi = a/LTe) for several values of a/Ln, for both the equilibrium with
β = 0% and that with β = 4%, for the kyρi ∈ [0.4, 1.4] with the highest growth rate (see Fig 5.15
for the kyρi spectrum for a/Ln = 1, a/LT = 0.5 and Fig 5.16 for the kyρi spectrum for a/Ln =
1, a/LT = 2.0; the two distinct regimes seen–this range is sufficient to cover the peak). Both have
the same general trend: for all values of a/Ln, past a critical temperature gradient, the growth rates
increase almost linearly with a/LT , indicating that this mode is driven by the temperature gradient.
When a/Ln = 0, in both cases, there appears to be a critical temperature gradient, which is lower
than in the adiabatic electron case. Here, a/LT,crit,β=0 ≈ 0.75 and a/LT,crit,β=4 ≈ 0.25. Also as
in the adiabatic case, increasing a/Ln first further destabilizes the mode–the large linear growth
begins for a lower temperature gradient than for a/Ln = 0–but then it is stabilizing for higher
density gradients (this is more easily seen in Figures 5.19-5.20). Though, as density gradient
increases, the value of the flat part of the growth rate for low a/LT increases: this is a density-
gradient-driven regime. Comparing the two β equilibria, the β = 4% growth rates for the flat part
of the plot are lower than the β = 0% case, though it appears that the “critical gradients,” for the
strong linear growth at higher a/LT , are lower as well.

These results seem to differ some from Ref. [156], which appears to find a larger region of
stability for sufficiently small a/Ln and a/LT , for a particular set of tokamak parameters. Ref.
[156], however, included finite collisions, while these studies are collisionless. Including finite
collisions in these simulations may increase the stability window for TEM at weak gradients, as
has been found in tokamaks [157] and STs [158].
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Figure 5.15: ITG-TEM kinetic electron growth rates vs. kyρi for NCSX βequil = 0%, a/Ln = 1,
a/LT = 0.5.
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Figure 5.16: ITG-TEM kinetic electron growth rates vs. kyρi for NCSX βequil = 0%, a/Ln = 1,
a/LT = 2.0.
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Figure 5.17: ITG-TEM kinetic electron growth rates vs. temperature gradient for NCSX βequil =
0% for various density gradients, a/Ln.
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Figure 5.18: ITG-TEM kinetic electron growth rates vs. temperature gradient for NCSX βequil =
4% for various density gradients, a/Ln.
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Figure 5.19: Electrostatic ITG-TEM kinetic electron growth rates vs. density gradient for NCSX
βequil = 0% for various temperature gradients, a/Ln.

Figures 5.19-5.20 show growth rates vs. a/Ln for several values of a/LT (again for both equi-
libria and for the kyρi ∈ [0.8, 1.4] with the highest growth rate). Here, for a/LT > 1, one can more
easily see the increased destabilization of the mode as a/Ln increases, until about a/Ln = 1, when
the growth rate decreases. For values of the temperature gradient lower than the adiabatic electron
critical temperature gradient of a/LT ≈ 1.3, the mode is density-gradient driven: the growth rate
increases slowly with a/Ln. The growth rates are again higher for the β = 0 case.

Scaling the ion and electron temperature gradients independently (and set a/Ln = 1) identifies
the primary drive of the linear part of the γ vs. a/LT plots (Fig. 5.21). a/LT i has a noticeable
affect on the growth rates as it is scaled, much more than a/LTe, therefore this mode is primarily
ion-temperature-gradient driven in this parameter regime. Note the transition to TEM at lower
a/LTi, where the growth rate curve flattens.

Finally, Figure 5.22 (β = 0%) and Figure 5.23 (β = 4%) are contour plots of growth rates
as functions of both a/LT and a/Ln. For each (a/LT , a/Ln), the growth rate shown is the peak
growth rate on the range kyρi ∈ [0.8, 1.4]. Generally, both plots show a region of relatively low
growth rates (< 0.05) for a/LT < 1.2, a/Ln < 1. The β = 0% maximum growth rate is larger
than the β = 4% growth rate in this range of (a/LT , a/Ln) ∈ (0, 3).

5.1.4 Electromagnetic simulations: considerations of βGS2 and δB||

As a preliminary investigation of electromagnetic effects, the GS2 beta parameter, βinput =
2µ0nrefTref/B

2
ref (the ratio of the reference pressure to the reference magnetic energy density),

was scaled using a fixed equilibrium, with temperature gradient a/LT = 5. The physical beta
enters into GS2’s equations (the gyrokinetic and Maxwell’s equations, see Ch. 3 and Ref. [93])
in two main ways, through its indirect effect on the MHD equilibrium (such as the Shafranov
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Figure 5.20: Electrostatic ITG-TEM kinetic electron growth rates vs. density gradient for NCSX
βequil = 4% for various temperature gradients, a/Ln.
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Figure 5.21: Scaling each species’ temperature gradient separately indicates which drives the
mode. a/LTi has a noticeable affect on the growth rates as it is scaled, much more than a/LTe,
therefore this mode is primarily ion-temperature-gradient driven in this parameter regime. Here,
a/Ln = 1.
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Figure 5.22: Maximum electrostatic ITG mode with kinetic electrons growth rates on the range
kyρi ∈ [0.8, 1.4] as a function of a/LT and a/Ln for NCSX β = 0%.
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Figure 5.24: Growth rates and real frequencies, in normalized units (γGS2, ωGS2) = (γ, ω)/(vT/a)
as a function of βGS2, for equilibrium β = 0, 4% and kyρi = 1.0.

shift and the curvature drift) and through its direct effect in the gyrokinetic equations, controlled
through the parameter βinput. This GS2 parameter is used in the scaling of δB|| = ∇⊥ × A⊥
and δA||, through, for example, the weighting of the contribution of each species to the total
parallel current by a factor ws = 2βinputZsns

√
Ts/ms. βGS2 must be set to match βequil in the

geometry files for consistent results, but setting βinput = 0 is a convenient way to turn off magnetic
fluctuations and focus only on electrostatic fluctuations. For all following discussions, the notation
used is βGS2 = 2 ∗ 100βinput, to convert from total beta for a single species to percent beta for two
species (an electron and an ion species of equal T and n).

In order to demonstrate the effect βGS2 has on the growth rate, equilibrium β was held fixed and
βGS2 scanned. Figure 5.24 compares two βGS2 scans based on configurations with equilibrium β =
0, 4%. The frequencies and growth rates match closely when βGS2 = 0%. But, the apparent mode
switch occurs earlier for β = 0% (around βGS2 = 1.5%) than β = 4% (βGS2 = 2.0%). In addition,
the values in growth rate and frequency differ by about 20% when βGS2 = 4%, indicating that
matching this GS2 parameter with the equilibrium value does matter. The general trend, similar
to tokamak results, is that βGS2 is stabilizing to the ITG mode at moderate values, but switches
to a high frequency mode (perhaps a kinetic ballooning mode) at higher βGS2. Equilibrium β is
stabilizing for this higher frequency instability (this is the stabilizing mechanism can give rise to
the second stability regime for MHD ballooning modes [15]).

Representative eigenfunctions are shown in Figures 5.25-5.28). It appears that βGS2 determines
the shape of the eigenfunctions, so the explicitly electromagnetic parts of the gyrokinetic equation
are more important than the geometric variations in the equilibrium when beta is changed.

Figures 5.29-5.30 show the magnetic potential, A||, for βequil = 4% and βGS2 = 1, 4%. This
demonstrates the effect βGS2 has on the perturbed magnetic fields–the magnitude of A|| is much
larger in the βGS2 = 4% case than in the βGS2 = 1% case.
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Figure 5.25: The electrostatic potential eigenfunction for βequil = 0%, βGS2 = 0%, kyρi = 1.0.
Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.26: The electrostatic potential eigenfunction for βequil = 4%, βGS2 = 0%, kyρi = 1.0.
Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.27: The electrostatic potential eigenfunction for βequil = 4%, βGS2 = 4%, kyρi = 1.0.
Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.28: The electrostatic potential eigenfunction for βequil = 0%, βGS2 = 4%, kyρi = 1.0.
Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.29: A|| for βequil = 4%, βGS2 = 1%, kyρi = 1.0. Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.30: A|| for βequil = 4%, βGS2 = 4%, kyρi = 1.0. Blue: Im(ϕ), Green: Re(ϕ).
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Figure 5.31: NCSX βequil = 0%: growth rates and frequencies ((γGS2, ωGS2) = (γ, ω)/(vT/a))
vs. βGS2 for δB|| ̸= 0 and δB|| = 0.

In electromagnetic GS2 runs, one always includes δB⊥ = ∇A||× ẑ when calculating the fields
(in equations 2.53), but one can choose to include δB|| = ∇⊥ × A⊥[13] or set it to zero (see
eqn. 2.48). One might want to ignore this term to save computational time. Figures 5.31-5.32
demonstrate the importance of including δB|| for high βGS2 values. For βGS2 . 1.5%, the growth
rates and frequencies for δB|| = 0 and δB|| ̸= 0 are approximately equal, because βGS2 scales
the δB|| field, so that βGS2 is low, the contribution from δB|| is small. However, as βGS2 increases
past βGS2 = 2%, the contribution from δB|| is increases: including δB|| is a destabilizing effect at
higher βGS2.

5.2 NCSX vs. a Shaped Tokamak
To understand the trade-offs between stellarator and axisymmetric geometry and their confinement
capabilities, designs are compared computationally. One metric of confinement quality is the ratio
of the core temperature to the pedestal temperature, T0/Tped, as MFE devices need very high core
temperatures. This ratio is related to the linear critical temperature gradients. If −∂T/∂r ≈
T/LT,crit, temperature-gradient-driven instabilities are marginally stable. At marginal stability
(assuming 1/LT,crit is independent of minor radius),

T (r) = T0e
−r/LT,crit (5.1)

The minimum temperature is at the edge where r is maximum, rmax = a. So, T (a) = Tmin =
Tped = T0e

−a/LT,crit . Therefore, the core temperature’s dependence on the critical temperature
gradient for typical tokamak values of a/R ≈ 1/3.5 and R/LT,crit ≈ 5 [82, 155, 159] is
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Figure 5.32: NCSX βequil = 4%: growth rates and frequencies ((γGS2, ωGS2) = (γ, ω)/(vT/a))
vs. βGS2 for δB|| ̸= 0 and δB|| = 0.

T0/Tped = ea/LT,crit

= e(a/R)(R/LT,crit)

≈ e(1/3.5)5 ≈ 4.2,
(5.2)

One wants to maximize the core temperature, T0, and equation 5.2 indicates that a/LT,crit plays
an important role in this. If an alternative fusion device design could increase a/LT,crit by just 30%,
this would increase the central temperature by 50%, and more than double the fusion power. (A
caveat–this is a simple estimate, and does not take into account the MHD stability changes with
higher core temperature.) In this section, the critical temperature gradients are compared for NCSX
and a strongly-shaped tokamak design. One issue is that while tokamaks have clearly defined minor
and major radii, the radii of stellarators change with toroidal angle. The stated stellarator minor
and major radii are the average values.

5.2.1 Setting up a Miller equilibrium for a strongly-shaped tokamak
NCSX runs were compared to a potential high-elongation tokamak based on a kind of hybrid
between ARIES-AT [160] (the real q and ŝ values differ from this study) and JET shot #52979.
It is well known that tokamak performance improves at high elongation and triangularity [161–
163] (in large part because this leads to more plasma current at fixed q), so when designing future
tokamaks, one would like to use the highest possible values of elongation and triangularity, though
elongation is limited by vertical stability control if it becomes too large. Some initial studies of
shaping effects with GS2 were carried out in Ref. [159], using a range of shapes scaled from the
particular JET shot #52979 (available in the ITER profile database [164]). Since this JET case
is fairly well studied, parameters were chosen from the same shot, but the shaping parameters
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were scaled to the higher levels achievable in tokamaks. These values of edge elongation and
triangularity are from ARIES-AT, which generally tried to maximize these parameters subject to
engineering and vertical stability constraints. The JET shot from which these parameters are scaled
has a conventional q profile, which is used here, while the ARIES-AT design study assumed that
a reversed shear scenario can be stably maintained in steady state. A future study could compare
stellarators with tokamaks in various operating regimes that may potentially improve performance
further, including reversed magnetic shear and hybrid low-shear scenarios. This is one, simple case
to use as a starting point. The Miller equilibrium [165] for this prototypical or generic strongly-
shaped tokamak was set up in the following way.

The shaping study in Ref. [159] chose to focus on the radius r/a = 0.8 in order to be fairly far
out near the plasma edge where shaping effects are stronger, but not too far out because because
gyrokinetic codes often do not compare well with experiments very near the edge (perhaps because
edge turbulence is driven by mechanisms other than ITG/TEM modes that require higher resolution
than usual or additional effects that are not included in present gyrokinetic codes). Therefore, the
study in this section uses r/a = 0.8.

The JET shot had an edge value (just inside the separatrix at the 95% poloidal flux surface) of
elongation κ95 = 1.73 and edge triangularity of δ95 = 0.46, while the core elongation is κcore ≈
1.3. At the radius of interest, r/a = 0.8, R/a = 3.42, κ0.8 = 1.46, κ′0.8 = 0.57, δ0.8 = 0.19,
δ′0.8 = 0.60, and the Shafranov shift is ∂R0/∂r = −0.14. Finally, the safety factor q0.8 = 2.03 and
magnetic shear ŝ = 1.62.

Keeping JET’s Shafranov shift, q, and ŝ, a modified ARIES-AT case was created using its
κ95 = 2.08 and δ95 = 0.76. Assuming, from the tokamak shaping studies, that κ′ ∝ (κ95 − κcore)
and δ, δ′ ∝ δ95:

κtok0.8 = κJET
core + (κ0.8,JET − κJET

core )
(κ95,tok − κJET

core )

(κ95,JET − κJET
core )

= 1.59 (5.3)

κtok
′

0.8 = κJET ′

0.8

(κ95,tok − κJET
core )

(κ95,JET − κJET
core )

= 1.03 (5.4)

δtok0.8 = δJET
0.8

δtok95

δJET
95

= 0.31 (5.5)

δtok
′

0.8 = δJET ′

0.8

δtok95

δJET
95

= 0.99 (5.6)

Representative flux surfaces for this prototype strongly-shaped tokamak are shown in Figure
5.33.

5.2.2 NCSX geometry
For the comparison to this tokamak, the NCSX β = 0 equilibrium was used at r/a = 0.8 (these
runs are electrostatic and thus β is not important for calculating the fields). Figures 5.34-5.38
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Figure 5.33: Illustration of flux surface shapes for a prototype strongly-shaped tokamak at r/a =
0.8, 0.9 and 0.98

show the magnitude of the magnetic field, curvature drift, and (|k⊥|/kθ)2 for both the tokamak and
NCSX field lines, for the entire domain and a close-up around θ = 0. Overall, the NCSX case
is similar to the geometry at r/a = 0.5 used earlier in this chapter, except that ŝ ≈ 0.835 and
q0.8 ≈ 1.70.

Notice that the bad (positive) curvature regions of NCSX are much more localized than the
tokamak case. Coupled with the much stronger local magnetic shear (as seen by the sharp peaks in
k⊥ ∝ ŝ, Fig. 5.38), this explains why NCSX’s electrostatic potential eigenfunctions are also more
localized than the tokamak’s. An example is shown in Figure 5.40. In addition, these traits could
predict better transport properties for NCSX.

5.2.3 ITG mode with adiabatic electrons
For the initial comparison between NCSX and the ARIES-AT-like tokamak, the ITG mode with
adiabatic electrons growth rates and their dependence on temperature gradient (Fig. 5.41) were
compared. The NCSX threshold is a/LT,crit ≈ 1.26 and the tokamak’s is a/LT,crit ≈ 1.22.
However, soon after the threshold, the NCSX growth rates surpass those of the tokamak.

5.2.4 ITG mode with kinetic electrons
The ITG mode with kinetic electrons threshold (with a/Ln = 0) for the tokamak was slightly lower
than that of NCSX, but the slope of the growth-rate curve is almost the same for both (Fig. 5.42).
With kinetic electrons, the growth rates for the ITG mode in NCSX increased over the adiabatic
electron case (Fig. 5.41), while the critical gradient lowered to a/LT,crit ≈ 1.20. The tokamak
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Figure 5.34: The NCSX (green) and tokamak (blue) equilibria: normalized |B| vs. θ.
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Figure 5.35: The NCSX (green) and tokamak (blue) equilibria: normalized |B| vs. θ, showing a
close-up around θ = 0.
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Figure 5.36: The NCSX (green) and tokamak (blue) the curvature drift frequency (ωcv,norm =
(2a2N/BN)(dΨN/dρ)(k⊥/n) · b× [b · ∇b]) along θ.
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Figure 5.37: The NCSX (green) and tokamak (blue) equilibria: the curvature drift frequency
(ωcv,norm = (2a2N/BN)(dΨN/dρ)(k⊥/n) · b × [b · ∇b]) along θ, showing a close-up around
θ = 0.
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Figure 5.40: Comparing electrostatic eigenfunctions for NCSX and tokamak, for an adiabatic ITG
mode with a/LT = 3, a/Ln = 0. For ARIES, kyρi = 0.55, and for NCSX, kyρi = 1.0.
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Figure 5.41: NCSX and ARIES-AT-like tokamak growth rate dependence on temperature gradient.
Fits obtained through piecewise linear interpolation on the lowest half of the growth rate curve.
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Figure 5.42: Growth rates for an ITG mode with kinetic electrons as a function of temperature
gradient for NCSX and an ARIES-AT-like tokamak configuration. Fits obtained through piecewise
linear interpolation on the lowest half of the growth rate curve.

threshold decreased as well, to a/LT,crit ≈ 0.97. The slope of the NCSX line is steeper–after
a/LTe ≈ 2.25, the NCSX growth rates are larger than the tokamak growth rates.

The growth rate vs. a/LT plot in Figure 5.42 shows improvement in the a/LT threshold of
NCSX over this tokamak by about 20%. Based on the marginal stability logic in the beginning of
Section 5.2, this corresponds to about 50% more fusion power for a NCSX-based design relative
to the tokamak (with the same edge temperature and density assumed for the two designs, and
approximating the fusion power as scaling as T 2). (Other effects that might change this result
include finite beta modifications to the equilibrium and, nonlinearly, the Dimits shift [82].)

This is much better than one might have initially guessed based on just the local value of
R/LT in NCSX vs. a tokamak. While from equation 5.2 it is clear that a/LT is the relevant
parameter for determining the core temperature, in the axisymmetric community, the threshold for
the ITG instability is usually expressed in terms of R/LT–often the key parameter numerically.
An instability threshold R/LT,crit can be derived from the dispersion relation for a local ITG mode
in the bad curvature region, ignoring the parallel dynamics. In this limit, the critical instability
parameter is the ratio of the temperature-gradient diamagnetic drift frequency (ω∗T ∝ 1/LTi

) to the
curvature drift frequency (ωd ∝ 1/R). (Particles with different energies have different curvature
drift velocities, which can result in Landau damping. This criterion essentially says that the drive
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from the temperature gradient must be strong enough to overcome this damping in order to drive
instabilities.)

A concern could be that if an NCSX design is limited to the same local Rloc/LT,loc as in
a tokamak, it would have a much lower a/LT (because at some toroidal locations–such as the
first panel of Figure 5.1–the cross-section of NCSX is very narrow, with a local plasma half-
width aloc ≈ aN/2.58), and thus would have much lower fusion power. Therefore, the local
value of the logarithmic gradient, 1/LT,loc = |∇T |/T = (a/LT )/aloc is much larger than the
average 1/LT . This is enhanced by the somewhat larger average aspect ratio (R/a)NCSX = 4.7
relative to the tokamak (R/a)tok = 3.42, and is partially compensated by the fact that the local
radius of curvature of the magnetic field, Rloc = |b̂ · ∇b̂|−1 = 0.92m (evaluated at the outer
midplane of the r/a = 0.8 flux surface in the first panel of Figure 5.1) is somewhat smaller than
the average radius of curvature R = 1.51m in NCSX. Considering these modifications, the local
Rloc/LT,loc = (Rloc/R)(a/aloc)(R/a)(a/LT ) = 7.39a/LT in NCSX, while R/LT = 3.42a/LT

for a tokamak.
Restating this concern, one may have thought that if NCSX and a tokamak had the same nor-

malized temperature gradient, a/LT , the ITG modes would be much worse in NCSX due to a
much higher Rloc/LT,loc than the tokamak. In fact, Figure 5.42 showed that NCSX has a somewhat
higher critical gradient in terms of a/LT , so the hypothesis that NCSX and a tokamak are similar
when expressed in terms of Rloc/LT,loc must be incorrect. Indeed, this is strikingly illustrated in
Fig 5.43 (same data as Fig. 5.42, renormalized), which shows that NCSX has in fact much lower
growth rates than a tokamak for the same Rloc/LT,loc. This is probably because the parallel dy-
namics are in fact not negligible in NCSX. The eigenfunctions, as seen in Figure 5.40 are more
localized along a field line in NCSX than in a tokamak, through some combination of the stabiliz-
ing effects of a narrower bad-curvature region (i.e., a shorter connection length between good and
bad curvature regions) and stronger local magnetic shear.

5.3 Preliminary Nonlinear NCSX studies
The following section presents the first nonlinear, non-axisymmetric GS2 simulations. The NCSX
β = 0% equilibrium used was described earlier in this chapter and in the GENE benchmark (Chap-
ter 4). For this study, r/a ≈ 0.7, with ntheta= 292 (between (−5π, 5π)), nlambda= 15, and
(energy grid points) negrid= 12. The perpendicular spatial grids had ny = 24, nx = 32, where
the number of ky and kx modes are nky = 1+(ny−1)/3 ≈ 8 and nkx = 1+2(nx−1)/3 ≈ 21.The
box size is determined by Ly = y0 = 10 and Lx = Lyjtwist/(2πŝ), with jtwist= 5 and
ŝ ≈ −2.6. These were electrostatic ITG adiabatic electron runs with zero collisions and zero
density gradient. Figure 5.44 demonstrates (for a/LT = 5, a/Ln = 0) that the heat flux grew
exponentially and then nonlinearly saturated to a non-zero value, as it should (see, for example,
Ref. [82]).

The dependence of the linear growth rate on temperature gradient is shown in Figure 5.45, with
a stability threshold of a/LT ≈ 1.25. Nonlinearly, the ion heat diffusivity increases monotonically
as a function of a/LT from a critical a/LT,crit ≈ 2 (Fig. 5.46). This suggests that a Dimits shift
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Figure 5.43: Similar to Fig. 5.42, except the x-axis is normalized by the local magnetic field
radius of curvature Rloc, instead of a. This demonstrates that NCSX performs much better than
would be expected if the instability was the same at the same (R/LT )loc, presumably indicating
that additional stabilizing effects in the parallel dynamics are important in NCSX.
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Figure 5.45: Linear growth rate dependence on a/LT indicates threshold of a/LT,crit ≈ 1.25. Fit
obtained through piecewise linear interpolation on the lowest half of the growth rate curve.

([82]) can occur in NCSX, particularly since NCSX has a quasi-symmetric design that minimizes
the damping of toroidal flows, though there are some uncertainties. One of the possible limitations
of flux-tube simulations of stellarators is that it is not clear how accurate their treatment of zonal
flows is for non-axisymmetric systems, because they assume the variation of B across a thin flux
tube is weak (though they keep the full variation along the flux tube). In general non-axisymmetric
systems without quasi-symmetry, there is damping of zonal flows (towards a value determined by
ambipolarity) due to the variation of B in all directions. However, quasisymmetric stellarators,
like axisymmetric tokamaks, allow linearly-undamped rotation in one direction. In very strong
turbulence regimes where the turbulent damping of zonal flows gives them a shorter decorrelation
time than the linear damping time, the linear damping may be unimportant. There is ongoing work
to develop full-surface/toroidally global versions of gyrokinetic codes for stellarators [151] which
can investigate these questions in more detail.

Finally, the dependence on kyρi for various a/LT is shown in Figure 5.47: as the temperature
gradient increases, the bulk of the transport both increases and moves to lower kyρi values. This
is qualitatively similar to recent behavior found for tokamaks [106], which has been interpreted as
the turbulence saturating at lower kyρi at stronger gradients in order to maintain a critical balance
between the nonlinear and linear terms.
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Figure 5.46: a/LT dependence of normalized heat diffusivity (χnorm = Qnorm/(a/LT )), with
apparent Dimits shift.

We have not yet compared nonlinear, non-axisymmetric GS2 results to other codes; that is left
to future work. GS2 has been benchmarked linearly and nonlinearly in axisymmetric geometries,
and benchmarked linearly in this thesis for non-axisymmetric geometries. There is nothing intrin-
sically axisymmetric about the nonlinear terms, so presumably it is working correctly nonlinearly
for non-axisymmetric cases as well, but additional tests would be useful.

5.4 Conclusion
Three categories of studies using NCSX geometry were conducted in this chapter: one compared
linear stability in two NCSX equilibria, one compared linear stability between NCSX and a toka-
mak equilibrium, and the last was the first nonlinear GS2 studies in non-axisymmetric geometry.
Comparing NCSX equilibria of differing β values revealed that the β = 4% equilibrium was
marginally more stable than the β = 0% equilibrium, though their growth rate dependencies on
a/LT , a/Ln, and kyρi were similar. In the tokamak comparison, NCSX had a higher linear crit-
ical temperature gradient than the tokamak case for both modes with adiabatic and modes with
kinetic electrons. Though highly preliminary, the nonlinear studies proved that GS2 is capable
of nonlinear, non-axisymmetric simulation, and indicated that a Dimits shift may exist in NCSX
plasmas.
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5.5 Future Work
First, benchmarking GS2 nonlinear simulations would be advisable. Next, expanding both the
NCSX equilibria comparisons and the NCSX-Tokamak studies nonlinearly would be highly useful,
as ultimately, nonlinear heat fluxes describe turbulent transport. The multitude of NCSX equilibria
created as part of the NCSX Flexibility Studies leaves a wide range of possible studies on the ef-
fects of various geometric parameters on linear growth rates and nonlinear heat fluxes. In addition,
systematically comparing the gyrokinetic stability of various axisymmetric and non-axisymmetric
geometries would better inform future experiment designs.



Chapter 6

W7-AS Studies: Instability Calculations
with Experimentally-Relevant Parameters

W7-AS was a stellarator that ran in Garching, Germany, from 1988-2002. It was “partially-
optimized” to have a lower Pfirsch-Schlüter current (increasing MHD stability [54] and maintain-
ing the optimized plasma shape) than a tokamak or conventional stellarator[55], with a confirmed
related reduction in the Shafranov shift in high β (close to 2%) plasmas. On the flux surfaces,
B depended on the rotational transform (from external toroidal field coils), an externally applied
vertical field, and the ratio of currents in coils in the maximum curvature region and in the modular
coil system[56]. It was the first currentless stellarator to observe an H-mode: an equilibrium of
improved confinement properties[57].

Neoclassical theory predicts the transport seen in the hot core of W7-AS very well[19], but
it does not account for all the transport seen farther out in colder regions, or in plasmas that are
cold at all radii, due to the fact that the low-collisionality diffusion coefficient scales as D ∝
1/ν ∝ T 3/2, due to locally-trapped particles (see Chapter 2). This is in contrast to tokamaks,
in which neoclassical transport is unimportant in hot regions, as the diffusion coefficient for low
collisionality scales as D ∝ ν ∝ 1/T 3/2. An example of W7-AS data compared to neoclassical
theory is shown in Figure 6.1: the electron and ion roots–solutions to the neoclassical flux balance
equation, introduced in Chapter 2 (equation 2.27)–match the experimental heat flux, χe, for r/a /
0.6.

Turbulence may provide the rest of the transport needed to match experimental results. With
W7-AS data, the opportunity exists to compare simulations to real experimental data for a partially-
optimized stellarator. While nonlinear simulations are needed to know whether the predicted heat
flux is significant, beginning with linear calculations provides a test that these simulations work
in this geometry and allows one to more quickly survey the general stability of the plasma, before
focusing on unstable regions with longer nonlinear studies. Gyrokinetic stability has not previ-
ously been comprehensively studied in W7-AS, and a linear survey could highlight any unusual
phenomena particular to this geometry.

After performing convergence tests in various parameters to reduce numerical error, the adia-
batic ITG mode and collisionless kinetic ITG-TEM and ETG were studied. These are the simplest

131
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exp.

e-root
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Figure 6.1: W7-AS shot #36908 neoclassical theory accounts for most of the experimental χe

(dashed and dotted line) for r < 12cm, but not farther out. The “e-root” and “i-root” are the
electron and ion root solutions to the neoclassical flux balance equation (eqn. 2.27).[19, 20]

gyrokinetic modes, and again function as a test of gyrokinetic codes before moving on to the col-
lisional kinetic studies more relevant to W7-AS. After that, general ITG-TEM and ETG stability
in W7-AS geometry was surveyed and stability compared for real experimental parameters in both
the hot core (where it is possible that not much drift wave instability exists, because only the elec-
tron temperature gradient is very large) and the colder outer region (where there is a better chance
of finding unstable ITG-TEM and ETG modes, due to the large electron temperature and density
gradients). While neoclassical theory adequately predicts the experimentally-seen transport in the
core, the assumption that turbulence is therefore weak in the core was verified.

6.1 Geometry and Plasma Parameters
W7-AS shot #36908 used electron cyclotron resonance heating (ECRH) to reach high tempera-
tures in the core. As seen in Figure 6.2, in the core, the density and ion temperature profiles are flat
(a/Ln ≈ a/LTi ≈ 0), while the electron temperature profile is peaked (a/LTe > 0). Farther out,
around r ≈ 10cm, the density gradient increases substantially, while the ion temperature profile
remains flat and the electron temperature gradient remains strong. Figure 6.3 shows the density
and temperature gradient profiles. Because of these strong gradients, one should see a/LTe-driven
drift wave modes in the core, and a/Ln- and a/LTe-driven modes past r ≈ 10cm. The actual
experimental parameters from W7-AS shot #36908 compose the base cases, shown in Table 6.1.
Unless otherwise specified, all simulations use these parameters. All growth rate and frequency
values are normalized such that (γ, ω) = (γphysical, ωphysical)(a/vthi).
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r/a = 0.28

Ti 0.3455keV
Te 2.6015keV
Zeff 3
ne 1.961× 1019m−3

aN/LTe 2.4
aN/LTi 0

aN/Lne = aN/Lni 0
aN ≈ 0.175m
mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 7.351× 105sec−1

r/a = 0.8

Ti 0.2416keV
Te 0.4036keV
Zeff 3
ne 1.549× 1019m−3

aN/LTe 7.5
aN/LTi 3.75
aN/Ln 2
aN ≈ 0.175m
mref 2mp

vt
√
Ti/mref

GS2 ω units vt/aN ≈ 6.147× 105sec−1

Table 6.1: The base set of local parameters used in the W7-AS studies.
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Figure 6.2: W7-AS shot #36908 radial profiles. Left: electron (red) and ion (green) temperatures.
Solid lines indicate fit to experimental data; red dots are measurements from a Thomson scattering
system, magenta dots are from an ECE system. Right: electron density[19, 20]

6.1.1 Hot Core: r/a = 0.28

In the inner location, r/a = 0.28, a/LTe and collisionality were varied to determine how close the
experiment lies to marginal stability at this radial location. Because of the low electron temperature
gradient, flat ion temperature gradient, and flat density gradients, there is a good chance that any
unstable drift wave modes have low growth rates.

For the inner, hotter location in W7-AS, the geometry used was the surface r/a = 0.28, field
line α = π/5, and ballooning parameter θ0 = 0 (recall Fig. 3.1). This α was chosen because it had
the global minimum of |k⊥|2 aligned with the worst (most positive) curvature drift at θ = 0 and
θ0 = 0, indicating that it probably maximizes the growth rates on the surface (one could do an α
and θ0 scan to verify this). The electrostatic eigenfunctions are thus centered at θ0 = 0 (Fig. 6.4).
The magnitude of magnetic field, curvature and ∇B drift components, and |k⊥|2 along the field
line are in Figures 6.5-6.7. More parameters for the equilibrium are in Table 6.2.

Convergence studies were run in θ, λ, and energy resolution for a collisionless kinetic electron
case. Figures 6.8-6.9 show the results of the θ resolution studies. For the remainder of this section,
the grids contain nlambda= 33 and total ntheta= 981 between θ ∈ (−3π, 3π) (or 327 points
in a poloidal period). Note in Figure 6.8 that one case was run for a much larger kyρi range than
the others, in order to find the best range. In all following studies for r/a = 0.28, the wavenumber
range simulated contains on the peak around kyρi ∈ (0.6, 1.8). There were 32 energy grid points.
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Figure 6.3: W7-AS shot #36908 radial profiles. Top: a/Ln, Bottom: a/LTe (solid) and a/LTi

(dashed). D. Mikkelsen analysis of data provided by Ref. [20]
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Figure 6.4: The electrostatic potential for a collisionless mode with kinetic electrons for W7-AS
r/a = 0.28, α = π/5, θ0 = 0, kyρi = 1.0. Blue: imaginary part, green: real part.
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Figure 6.5: W7-AS |B| vs. θ for
√
s = r/a = 0.28, α = π/5, and θ0 = 0.
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Figure 6.6: W7-AS curvature drift frequency (ωcv,norm = (2a2N/BN)(dΨN/dρ)(k⊥/n) · b × [b ·
∇b]) along θ, for

√
s = r/a = 0.28, α = π/5, and θ0 = 0.



CHAPTER 6. W7-AS STUDIES 137

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

θ (rad)

(k
⊥
/k

θ)2

Figure 6.7: W7-AS
(

k⊥
kθ

)2

vs. θ, for
√
s = r/a = 0.28, α = π/5, and θ0 = 0.

r/a 0.28

s ≈ (⟨r/a⟩)2 0.07
α = ζ − qθ π/5

θ0 0
ι = 1/q 0.23

ŝ 0.240
⟨β⟩ 0.1382%
R ≈ 11.6aN ≈ 2.04

aN = ≈ 0.175m
Ba = ⟨B⟩ 2.60T

Table 6.2: Geometry values for the W7-AS inner location of interest.
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Figure 6.8: W7-AS r/a = 0.28 collisionless ETG-TEM growth rates vs. kyρi, for various total
(over the range [−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 6.9: W7-AS r/a = 0.28 collisionless ETG-TEM frequencies vs. kyρi, for various total
(over the range [−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 6.10: The electrostatic potential for a collisionless mode with kinetic electrons for W7-AS
r/a = 0.8, α = π/5, θ0 = 0, kyρi = 1.1. Blue: imaginary part, green: real part.

6.1.2 Outer Region: r/a = 0.8

In the outer location, r/a = 0.8, a/LTe, a/Ln, and collisionality were varied to determine how
close the experiment lies to marginal stability at this radial location. Due to the strong a/LTe and
a/Ln, there could be unstable drift wave modes. The field line used is α = π/5 with ballooning
parameter θ0 = 0 (recall Fig. 3.1). Again, this α was chosen because it had the global minimum
of |k⊥|2 aligned with the worst (most positive) curvature drift at θ = 0 and θ0 = 0, indicating
that it probably maximizes the growth rates on the surface. The electrostatic eigenfunctions are
thus centered at θ0 = 0 (Fig. 6.10). The magnitude of magnetic field, curvature and ∇B drift
components, and |k⊥|2 along the field line are in Figures 6.11-6.13. More parameters for the
equilibrium are in Table 6.3.

Convergence studies in θ resolution for an adiabatic electron case (a/LT = 4, a/Ln = 0) are
shown in Figures 6.14-6.15. For the adiabatic studies in section 6.2.1, the converged grids chosen
had nlamba= 33 and ntheta= 791 (for θ ∈ (−3π, 3π)).

Convergence studies in θ and λ resolution for a collisionless kinetic electron case are shown in
Figures 6.16-6.17. For the remainder of this section, the geometry used had nlambda= 33 and
ntheta= 791 (for θ ∈ (−3π, 3π)). There are 32 energy grid points.

As in the earlier convergence tests for the inner radius, here one case was run with a much wider
range of kyρi. The increase in growth rate at very low kyρi seen in Fig. 6.16 is unexpected. As can
be seen in Figure 6.17, these fast growing modes correspond to jumping to a root of the dispersion
relation with a different frequency than the better-behaved (potential decreasing smoothly to zero
at the boundary) modes at higher kyρi. As shown in Figure 6.18, the potential |ϕ|2 is growing very
strongly with time–on a log-linear plot, a linear |ϕ|2 that grows a couple of orders of magnitude
indicates that the simulation has converged in time to the fastest growing mode (but this does
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Figure 6.11: W7-AS |B| vs. θ for
√
s = r/a = 0.8, α = π/5, and θ0 = 0.
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Figure 6.12: W7-AS curvature drift frequency (ωcv,norm = (2a2N/BN)(dΨN/dρ)(k⊥/n) · b× [b ·
∇b]) along θ, with

√
s = r/a = 0.8, α = π/5, and θ0 = 0.
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Figure 6.13: W7-AS
(

k⊥
kθ

)2

vs. θ with
√
s = r/a = 0.8, α = π/5, and θ0 = 0.

r/a 0.8

s ≈ (⟨r/a⟩)2 0.64
α = ζ − qθ π/5

θ0 0
ι = 1/q 0.34

ŝ 0.123
⟨β⟩ 0.1382%
R ≈ 11.6aN ≈ 2.04

aN = ≈ 0.175m
Ba = ⟨B⟩ 2.60T

Table 6.3: Geometry values for the W7-AS outer location of interest.
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Figure 6.14: W7-AS r/a = 0.8 collisionless ITG with adiabatic electrons growth rates vs. kyρi,
for various total (over the domain [−3π, 3π]) ntheta= nt and nlambda= nl values, showing
good convergence at kyρi & 1.0. Lower kyρi . 1.0 are not converged in θ domain size.
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Figure 6.15: W7-AS r/a = 0.8 collisionless ITG with adiabatic electrons frequencies vs. kyρi, for
various total (over the range [−3π, 3π]) ntheta= nt and nlambda= nl values, showing good
convergence.
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Figure 6.16: W7-AS r/a = 0.8 collisionless ITG-TEM/ETG growth rates vs. kyρi, for various total
(over the range [−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.

not necessarily mean that it has converged in other numerical parameters, like the grid spacing or
domain size). The eigenfunctions, however, look strange: a normal eigenfunction (localized in a
bad curvature region) for higher kyρi is shown in Figure 6.19, while Figure 6.20 shows a very-
extended eigenfunction at lower kyρ = 0.5. This clearly violates the assumption of ballooning
coordinates that the eigenfunction dies away as θ → ±∞. There are several possible ways to
improve the simulation at these low kyρi to get satisfactory eigenfunctions. One is to increase the
extent of the simulation along the field line to even larger θ, where k2⊥ eventually gets so large that
the mode decays. Another is to include collisions, particularly ion-ion collisions. GS2 includes
classical diffusion and classical viscosity through FLR effects in the collision operator [135, 136]
that will damp modes at high k⊥ρ. Finally, it might be possible to accelerate convergence as the
theta domain is extended by improving the parallel boundary conditions used in GS2. At present
it assumes that the perturbed distribution function for incoming particles at the boundary is zero,
while it might be better to assume that it is a Boltzmann/adiabatic response. This should be a
particularly good approximation for passing electrons (and for all parts of the distribution function
if k⊥ is sufficiently high that the drift frequency ωd ≫ ω), and will, among other advantages,
give an adiabatic shielding that will help reduce the amplitude of the potential near the boundaries.
The eigenfunction for kyρi = 0.8 in Fig. 6.21 is somewhat unusual (and contains oscillations on
the scale of the local ripple, as seen in Figs. 1.11-1.12, which are hard to fully resolve), but it
seems more physical than the case in Fig. 6.20, since the mode has peaks in regions where the
average curvature is bad and k2⊥ is not too large, and dies to zero at the boundaries. In any case,
the following studies focus on the better resolved modes near the peak of the growth rate spectrum
around kyρi ∈ (1.6, 2.4) and investigating lower kyρi is left to future work.
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Figure 6.17: W7-AS r/a = 0.8 collisionless ITG-TEM/ETG frequencies vs. kyρi, for various total
(over the range [−3π, 3π]) ntheta= nt and nlambda= nl values, showing good convergence.
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Figure 6.18: W7-AS r/a = 0.8. The square of the electrostatic potential |ϕ|2 grows strongly with
time for each of the low kyρi ∈ (0.1, 0.8). Blue: imaginary part, green: real part.
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Figure 6.19: W7-AS r/a = 0.8, electrostatic eigenfunction for kyρi = 2.2. Blue: imaginary part,
green: real part.
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Figure 6.20: W7-AS r/a = 0.8, electrostatic eigenfunction for kyρi = 0.5. Blue: imaginary part,
green: real part.
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Figure 6.21: W7-AS r/a = 0.8, electrostatic eigenfunction for kyρi = 0.8. Blue: imaginary part,
green: real part.

6.2 Survey of stability in W7-AS
To begin, stability thresholds in W7-AS geometry are surveyed for both the outer and inner radii,
r/a = 0.8 and r/a = 0.28. At the outer radius, r/a = 0.8, the stability of a/LTe and a/Ln was
mapped, scaling a/LTi = 0.5a/LTe. At the inner radius, r/a = 0.28, a/LTe was scanned, holding
a/Ln = a/LTi = 0. The stability dependence on collisionality (ν) was also investigated at both
radii.

6.2.1 ITG stability with adiabatic electrons
The ion-temperature-gradient-driven (ITG) mode with adiabatic electrons is the simplest mode
to study. Because a/LTi = 0 at the inner radius, here only the outer radius is studied, where
a/LTi ≈ 4. The growth rate and frequency spectrums for a/LT = 4, a/Ln = 0 are shown in Figure
6.22, with a growth rate peak around kyρi = 1.0 as in the NCSX case. Growth rate dependence on
temperature gradient (Fig. 6.23) indicates that the stability threshold is approximately a/LT,crit ≈
0.47. Thus, the experiment was well above marginal stability, because the experimental value of
a/LTi ≈ 3.75.

6.2.2 ETG stability with kinetic electrons
Adding kinetically-treated electrons allows one to study the trapped electron mode (TEM), hy-
brid ITG-TEM, and ETG modes. Because both radii have strong a/LTe values, both locations
were studied. Growth rates plotted in this section are the maximum found in the range of kyρi ∈
(1.6, 2.2) for r/a = 0.8 and kyρi ∈ (0.8, 1.2) for r/a = 0.28 (recall that these ranges capture the
peak growth rates).
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Figure 6.22: Growth rates and real frequencies of an ITG mode with adiabatic electrons vs. kyρi
for W7-AS r/a = 0.8, a/LT = 4, a/Ln = 0
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Figure 6.23: Temperature-gradient dependence of ITG mode with adiabatic electrons growth rates.
The threshold is about a/LT,crit ≈ 0.5. W7-AS, r/a = 0.8. Fit obtained through piecewise linear
interpolation.
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Figure 6.24: W7-AS r/a = 0.28 ETG-TEM kinetic electron mode growth rates as a function of
electron temperature gradient for ν = νexp/10 and ν = νexp. Fits obtained through piecewise
linear interpolation.

Figure 6.24 shows the growth rates for the inner radius, both ν = νexp/10 and ν = νexp). The
threshold for the inner radius increases slightly from a/LTe ≈ 1.78 (collisionless) to a/LT,crit ≈
1.83 (collisional), but overall, the growth rates are very similar. Therefore, one concludes that at
this radius (r/a = 0.28), the collisionality is already low enough to have little effect.

Fig. 6.25 compares the growth of the outer radius for three values of collisionality: ν =
0, νexp/10, νexp. The a/LTe = 0 value in the density-gradient-driven regime lowers to γ ≈ 0.20
for the experimental-collisionality case from γ ≈ 0.44 in the νexp/10 case. While the ν = 0 case’s
a/LTe = 0 growth rate is approximately equal to that of the ν = νexp/10 case, overall, the ν = 0
growth rates are higher.

The growth rates for the approximately collisionless mode as a function of electron temperature
gradient are shown in Figure 6.26. (It is “approximately” collisionless, as ν = νexp/10, to allow for
a more natural computation, avoiding the artificial choice of ν = 0.) The inner radius (r/a = 0.28)
has a stability threshold (a/LTe ≈ 1.78), while the growth rates of the outer radius (r/a = 0.8)
approaches a finite value (γ ≈ 0.44), due to its non-zero density gradient (a/Ln = 2). Collisions
have a stabilizing effect at low temperature gradients at the outer radii, though the same general
trends are repeated (see Figure 6.27). In both cases, note that the growth rates for the outer radius
at the experimental gradient, a/LTe = 7.5, are higher than the growth rates for the inner radius at
its experimental gradient of a/LTe = 2.4.

6.2.3 Density gradient dependence of mode with kinetic electrons
While the density gradient is flat at the inner radius, at a/Ln = 2, it is fairly steep at the outer
radius. Hence, the survey is focused at r/a = 0.8. With the parameters in the base case (Table
6.1), a/Ln was scanned in Figure 6.28, with low (ν = νexp/10) and experimental collisionalities.
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Figure 6.25: W7-AS r/a = 0.8 ITG-TEM/ETG kinetic electron mode growth rates as a function
of electron temperature gradient for ν = 0, ν = νexp/10, and ν = νexp. Fits obtained through
piecewise linear interpolation.
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Figure 6.26: W7-AS collisionless ITG-TEM/ETG kinetic electron mode growth rates as a func-
tion of electron temperature gradient for r/a = 0.8, 0.28. Fits obtained through piecewise linear
interpolation.



CHAPTER 6. W7-AS STUDIES 150

0 2 4 6 8 10
0

0.5

1

1.5

2

a/L
Te

γ

W7−AS, ITG−kin−e

r/a=0.28,ν=ν
exp

fit
r/a=0.8,ν=ν

exp

fit

Figure 6.27: W7-AS collisional ITG-TEM/ETG kinetic electron mode growth rates as a func-
tion of electron temperature gradient for r/a = 0.8, 0.28. Fits obtained through piecewise linear
interpolation.

Growth rates plotted in this section are the maximum found in the range of kyρi ∈ (1.6, 2.2).
Because the temperature gradients are so high (a/LTe = 7.5, a/LTi = 3.75), increasing the density
gradient in the low ν case from the experimental value has a stabilizing effect.

6.2.4 Collisionality dependence of mode with kinetic electrons
Finally, the effect of collisionality on the ETG kinetic-electron mode was investigated. Figure 6.29
demonstrates that ν has little effect on either radius, as ν is scaled between (1/2νexp, 2νexp). The
growth rates for the inner radius are much lower than for the outer radius, which is to expected:
the temperature and density gradients that drive these unstable modes are much stronger at the
outer radius than the inner. The maximum difference in normalized growth rates (recall that γ =
γphysical(a/vthi)) for the inner radius is 2% of the maximum, while the change in outer radius
growth rates is less than 20% in its range of ν. Growth rates plotted in this section are the maximum
found in the range of kyρi ∈ (1.6, 2.2) for r/a = 0.8 and kyρi ∈ (0.8, 1.2) for r/a = 0.28.

6.3 Mixing-length Estimate of Nonlinear Fluxes
While nonlinear gyrokinetic simulations are necessary to accurately calculate turbulent heat fluxes,
a “mixing-length” argument can be used to roughly estimate them. In the mixing-length argument,
the instability drive is assumed to stop when the perturbation amplitude is such that the perturbed
(temperature, density) gradients equal the equilibrium gradients.

There are various versions of mixing length theories (see Ref. [15, 166]). One mixing-length
estimate of the diffusivity is defined by



CHAPTER 6. W7-AS STUDIES 151

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

a/L
n

γ

W7−AS r/a=0.8, ITG−kin−e, a/L
Te

=7.5, a/L
Ti

=3.75

ν=ν
exp

/10

ν=ν
exp
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χmix =
γ

k2θ,loc
(6.1)

where γ is the growth rate of the fastest growing mode, which occurs at kθ,loc. For θ0 = 0 modes,
kθ,loc = k⊥(θ = 0): the value of the poloidal wave number at θ = 0 (where the eigenmodes peak in
these cases). In field-line-following coordinates (Ch. 3), the perpendicular wave number k⊥(θ) of
an instability varies along a field line as the flux tube is stretched and sheared in various directions,
and is given by (eqn. 3.3) k2⊥(θ) = k2yg1(θ), where the metric coefficient g1(θ) is shown in Figures
6.7 and 6.13 for these cases. Therefore, kθ,loc = ky

√
g1(0). The parameter ky is an average

poloidal wave number, defined in Chapter 3. (Note that the difference between kθ,loc and ky can be
large. For example, Figure 6.16 indicates that the fastest growing mode has kyrhoi ∼ 1.8, which
seems to be a relatively high wave number, but this corresponds to a local poloidal wavenumber
kθ,locρi = 0.65, which is more in the typical range for ITG/TEM instabilities in tokamaks.)

The experimentally-measured values of total (neoclassical and turbulent) χe are shown in Fig-
ure 6.1, and are about

χexp,inner ≈ 2× 104 cm2/s (6.2)

χexp,outer ≈ 104 cm2/s (6.3)

Using the experimental values from Table 6.1, simulations for the inner and outer radii found
the highest growth rates to be γinner ≈ 2.9× 105 sec−1 at kyρi = 1.4 (kθ,locρi ≈ 0.6, with g1(0) ≈
0.21) and γouter ≈ 7.5 × 105 sec−1 at kyρi = 2.2 (kθ,locρi ≈ 0.8, with g1(0) ≈ 0.14). Therefore,
from equation 6.1,

χmix,inner ≈ 0.7× 104 cm2/s ≈ 0.35χexp,inner (6.4)

χmix,outer ≈ 0.8× 104 cm2/s ≈ 0.8χexp,outer (6.5)

Turbulence typically peaks at a ky value half of that of the fastest growing linear mode [76, 167].
These values are, for γinner ≈ 0.9 × 105 sec−1 at kyρi = 0.7 and γouter ≈ 4.1 × 105 sec−1 at
kyρi ≈ 1.1:

χmix,inner−half ≈ 0.9× 104 cm2/s ≈ 0.4χexp (6.6)

χmix,outer−half ≈ 2.0× 104 cm2/s ≈ 2.0χexp (6.7)

Consistent with the assumption that turbulence is weaker in the core, this estimate finds that
χmix,inner < χmix,outer. The ratio of χmix/χexp is smaller at the inner radius than at the outer
radius, which is also consistent with the fact that neoclassical theory accounts for most of the flux
seen in the inner region, but not in the outer region. The fact that this simple estimation, χmix,outer,
is within less than a factor of 2−3 of χexp,outer is enough to suggest that turbulence could indeed be
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contributing to the heat flux in the outer region of W7-AS, though rigorous nonlinear gyrokinetic
studies should be conducted to quantify further.

6.4 Conclusions
A survey of linear gyrokinetic stability was conducted for a single W7-AS experimental case at
two radii of interest. The inner radius, r/a = 0.28, has flat a/LTi and a/Ln, but a/LTe = 2.4.
Scaling a/LTe revealed non-zero stability thresholds for both νexp and νexp/10. The outer radius,
r/a = 0.8, has all non-zero gradients, with a/LTe = 7.5, a/LTi ≈ 3.75, and a/Ln = 2. Thus,
there were no stability thresholds in growth rates as a function of a/LTe.

In both cases, collisions were stabilizing to modes at low values of a/LTe, though the effect was
slight for the inner radius with its very low collisionality. However, ν appears to be destabilizing
at higher values of a/LTe.

The growth rates for the outer radius with experimental parameters were higher than the growth
rates for the inner radius at its experimental parameters, as expected, considering the higher
unstable-mode-driving temperature and density gradients at the outer location.

A simple, very rough estimate of turbulent heat flux was found using a mixing-length formula.
The ratio of χmix/χexp is smaller at the inner radius than at the outer radius, but this is to be
expected, as neoclassical theory fairly accurately predicts the transport seen at the inner radius.
Within a factor of 2− 3 of the experimental value, the heat flux at the outer radius is close enough
to suggest turbulence may be causing the transport seen at the outer radius.

6.5 Future Work
Noting that the standard W7-AS eigenfunction shown in this chapter (e.g. Fig. 6.4) is so narrow,
one could investigate whether the growth rate and main eigenvalue shape could be reproduced
fairly well on a narrower domain, for instance, θ ∈ [−0.5, 0.5] or [−1, 1]. Alternatively, if the
code does not work on this narrow θ domain, perhaps some kind of modification of the boundary
conditions to match onto an analytic solution for |k⊥ρi| ≫ 1 would be useful. Motivated by the
observations in this thesis, Hammett recently suggested that a more efficient parallel boundary con-
dition may be to assume that the perturbed distribution function for incoming particles is adiabatic
δf = −FMe⟨Φ⟩/T , instead of the original boundary condition in GS2 of δf = 0 [132]. Roach
recently implemented this in GS2, and it seems to work well even on a fairly narrow domain[168].
Testing this on a wider range of parameters, including some of the stellarator cases in this thesis,
would be very useful.

Because experimentally-measured heat fluxes exist from this W7-AS shot, the natural next step
would be to perform nonlinear simulations for comparison. These should be done for a several field
lines for a more complete understanding of the plasma.



Chapter 7

Conclusions

As our world becomes more and more technologically advanced, we are using up the natural
resources that have sustained our power needs for centuries and irrevocably changing our envi-
ronment. For continued global growth and progress, we need to develop safe, innovative energy
sources. A promising alternative energy is fusion: harnessing power from the combination of nu-
clei found in seawater. Fusion happens when plasmas of these nuclei are kept for a long enough
time in a very hot, dense state. One way to contain hot, dense plasmas is to use toroidally-shaped
magnetic fields, such as those in a design known as a stellarator (Ch. 1). Turbulence in the plasma,
however, makes heat and particles leak out of the magnetic cage. While turbulence has been ex-
tensively studied in simpler, axisymmetric toroidal experiments (e.g. tokamaks and spherical tori),
until recently, it had not been studied in the non-axisymmetric stellarators (Ch. 2). To aid in the
design and operation of future toroidal experiments, we must understand how 3D geometry affects
turbulence, in the hopes of finding magnetic configurations and plasma regimes that reduce tur-
bulent transport. We are doing this by adapting gyrokinetic (Ch. 2) turbulence codes (previously
used only for axisymmetric geometry) for use in non-axisymmetric geometry, to study the linear
drift wave instabilities that lead to turbulence and the nonlinear phenomenon of turbulence itself.

7.1 Key Points
This thesis forwarded these goals with the following accomplishments.

7.1.1 Computational Improvements and Benchmarking
Through upgrading GS2, an existing turbulence code, writing FIGG, a new grid generator for GS2,
and benchmarking GS2 for stellarator geometry with three other gyrokinetic codes, this thesis work
provides the fusion community with a robust and flexible tool for studying gyrokinetic instabilities
and turbulence in general non-axisymmetric geometry.

154
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Extensions of non-axisymmetric modifications to GS2

While the nonlinear gyrokinetic turbulence code GS2 had been previously extended to treat insta-
bilities in non-axisymmetric stellarator geometry, and produced good results for NCSX geome-
try, it failed to produce physical results for the more complicated W7-X and W7-AS stellarators.
NCSX geometry resembles a tokamak, with its one wide magnetic well per poloidal period, and has
many small, shallow wells superimposed on this big well. However, W7-X and W7-AS have many
deep, narrow wells per poloidal period, which required impractically high resolution to properly
treat trapped pitch angles. In addition (as described in Chapter 3), GS2’s original grid generator
needed to tie the parallel spatial (θ) grids to the trapped pitch angle parameter (λ) grids to satisfy
a constraint of the velocity integration of the distribution function, but it was unable to create such
grids for general non-axisymmetric geometry.

This thesis (Chapter 3) included upgrades to the trapped pitch angle treatment to allow for
more flexibility in computational grids. GS2 now produces physical results on lower resolution
and decoupled pitch angle and parallel spatial grids, for all axisymmetric and non-axisymmetric
geometries tested so far.

New grid generator for non-axisymmetric geometry for GS2

Because the original grid generator for GS2 could not satisfy the stringent requirements of coupled
spatial and pitch angle grids, but was still trying to, it would often lock up and fail to produce
any grid at all. Therefore, we wrote FIGG: the Flexible Improved Grid Generator (described
in Chapter 3). FIGG is faster, cleaner, and more user-friendly than the original grid generator. It
allows for far more flexibility: the pitch angle (λ) and spatial (θ) grids can be scaled independently,
from impractically low to impractically high resolution. We have tested FIGG on a wide range of
geometries: NCSX, W7-X, W7-AS, and LHD with great success.

Benchmarks of GS2 against three other gyrokinetic codes

Once the upgrade GS2 and its new grid generator, FIGG, ran seamlessly together, we conducted
linear benchmarks with three other gyrokinetic codes (one of these is a linear code and another
assumes adiabatic electrons) to test our results quantitatively (see Chapter 4).

We successfully benchmarked linear, collisionless, electrostatic GS2 simulations of NCSX
with the code FULL for scans over a range of parameters including η, kyρi, Ti/Te, α, and θ0.
Quantitatively, the linear stability calculations of GS2 and FULL agree to within about 10% of the
mean, except at transitions between modes.

In addition, linear, collisionless, electrostatic GS2 simulations of NCSX have been success-
fully benchmarked with the codes GENE and GKV-X for an adiabatic ITG mode scan over kyρi.
Quantitatively, the growth rates and frequencies of all three codes agree to within about 8%.

Finally, GS2 and GENE were compared using the a high-mirror W7-X case. The growth rates
and frequencies of the linear, collisionless, electrostatic ITG mode with adiabatic electrons agreed
to within 6%.

These results indicate that GS2 produces accurate results for our linear simulations.
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7.1.2 Investigations into gyrokinetic instability in stellarators
Now, with our valuable implements for studying gyrokinetic instabilities in hand, we begin our
journey into discovering how their properties change in the relatively-unexplored world of stel-
larator geometry (previous research on the subject is described in Chapter 2).

Study of the effect of plasma β on NCSX linear microinstability

As further discussed in Chapters 2 and 5, high plasma β is important for fusion energy devices.
This thesis compared linear ITG mode and TEM stability in two NCSX configurations with differ-
ent β values: one with β = 0% and one with β = 4%. For the parameters studied, higher β was
mostly stabilizing to these linear modes.

First, we compared linear adiabatic ITG mode stability as a function of temperature gradient,
a/LT (for a/Ln = 0). There was little difference between the stability threshold for the β = 0%
and β = 4% equilibria. Qualitatively, this result is consistent with tokamak studies [127].

Considering the density-gradient dependence of adiabatic ITG mode stability, when a/Ln =
1, the critical temperature gradient lowered by ≈ 20% in each case, appearing to be somewhat
destabilizing. With density gradients a/Ln ≥ 2, however, the ITG mode growth rates lowered
considerably. These results were again consistent with previous work, showing a transition to the
slab limit of the ITG mode where a density gradient is stabilizing[155].

Adding kinetically-treated electrons allows us to study the electrostatic, collisionless trapped
electron mode (TEM) and hybrid ITG-TEM modes. Growth rates as a function of temperature
gradient for the β = 0% equilibrium were higher than those for the β = 4% equilibrium, another
indication that higher β is stabilizing to these modes in certain parameter ranges. However, the
stability threshold (when a/Ln = 0) for the β = 0% equilibrium was this time higher than that of
the β = 4% equilibrium. So, the higher β ITG-TEM destabilize earlier, but overall, their growth
rates remain lower than those of the lower β case.

With non-zero density gradients, we saw transitions from dominantly ITG modes at high a/LT

to dominantly TEM modes at low a/LT . Also as in the adiabatic case, increasing a/Ln first further
destabilized the mode, was stabilizing for a medium-range of density gradients, and destabilized
further for higher density gradients. Comparing the two β equilibria, the β = 4% growth rates for
the density-gradient-driven mode were lower than the β = 0% case, though the transition to the
temperature-gradient-driven mode was lower as well.

As a preliminary investigation of electromagnetic effects, we scaled the GS2 beta parameter,
βGS2, using our two equilibria and fixed density and temperature gradients, in order to demonstrate
the effect it has separately from the equilibrium β value. The frequencies and growth rates of this
electromagnetic hybrid ITG/TEM mode matched closely for the configurations with equilibrium
β = 0% and 4% when βGS2 = 0%, but they differed by about 20% when βGS2 = 4%, indicat-
ing that matching this GS2 parameter with the equilibrium value does matter. The general trend
matched tokamak results: βGS2 was stabilizing to the ITG mode at moderate values, but the mode
switches to a high frequency mode (perhaps a kinetic ballooning mode) at higher βGS2. Higher
equilibrium β is stabilizing for this higher frequency instability (this is the stabilizing mechanism
that can give rise to the second stability regime for MHD ballooning modes [15]).
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We also demonstrated the importance of including the fluctuating parallel magnetic field δB|| =
∇⊥×A⊥[13] for high β stellarator simulations. In electromagnetic GS2 runs, one always includes
δB⊥ = ∇A|| × ẑ when calculating the fields, but one can choose to include δB|| or set it to zero.
For βGS2 . 1.5%, the growth rates and frequencies for δB|| = 0 and δB|| ̸= 0 were approximately
equal. However, as βGS2 increased past βGS2 = 2%, they differ greatly: including δB|| has a
destabilizing effect at higher βGS2.

Comparison of NCSX to highly-shaped tokamak

Ultimately, for the fusion energy community to reach its goal of creating sustainable energy from
a magnetic confinement device, it will have to find the configuration with the best confinement
properties. Cross-configuration comparisons are important, but complicated. As shown in Chapter
5, a simple metric one could use is the ratio of the maximum core temperature to the pedestal tem-
perature, max T0/Tped ∝ ea/LT,crit . Because fusion power scales approximately as T 2, increasing
T0 and a/LT,crit is critical.

We compared an NCSX case to a high-elongation tokamak based on a kind of hybrid between
ARIES-AT [160] and JET shot #52979. The NCSX adiabatic electron ITG mode stability thresh-
old was about 3% higher than the tokamak’s. However, not far from marginal stability, the NCSX
growth rates surpassed those of the tokamak.

The kinetic electron ITG mode threshold, a/LT,crit, of NCSX showed even greater improve-
ment over the tokamak’s, by about 20%, corresponding to about 50% more fusion power for a
NCSX-based design (with the same edge temperature and density assumed for the two designs).

While a/LT,crit is the value that matters in the core temperature estimation, R/LT,crit is often
used in tokamak simulations as a figure of merit. Because the cross section of NCSX can become
very narrow at some toroidal angles, the local value of 1/LT,loc = |∇T

T
| can get quite large at

those locations, so if NCSX was limited to the same critical value of the local Rloc/LT,loc as in a
tokamak, NCSX would have very poor performance. However, our results show that the critical
Rloc/LT,loc is much better, approximately twice as large, in NCSX than in a tokamak, with the net
result stated before that the fusion power could be about 50% higher in an NCSX-based design
relative to a tokamak. (Other effects that might change this result include finite beta modifications
to the equilibrium and, nonlinearly, the Dimits shift [82].)

First nonlinear, non-axisymmetric GS2 simulations

GS2 has been used successfully to simulate nonlinear heat fluxes needed to compare to
experimentally-measured values in axisymmetric geometry (see Chapters 2-3). This thesis
work included the first nonlinear, non-axisymmetric GS2 simulations (Chapter 5).

We used a low-resolution NCSX case to simulate the nonlinear, electrostatic, adiabatic ITG
mode. The nonlinear heat flux behaved as it should: it grew exponentially in time and then sat-
urated at a non-zero level. The threshold for temperature-gradient-driven instability increased by
60% from the linear value to the nonlinear ion heat diffusivity threshold. This suggests that a
Dimits shift can occur in NCSX. Finally, the dependence on kyρi for various a/LT was qualita-
tively similar to recent behavior found for tokamaks [106]: the temperature gradient increases, the
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bulk of the transport both increases and moves to lower kyρi values. This has been interpreted as
the turbulence saturating at lower kyρi at stronger gradients in order to maintain a critical balance
between the nonlinear and linear terms.

Survey of stability in two locations of a W7-AS experimental plasma

Eventually, our goal is to compare our gyrokinetic simulations to experimental data for validation
in the hopes of establishing predictive and design capabilities for future devices. To that end, we
began by surveying general linear ITG-TEM stability in W7-AS geometry (see Chapter 6). We
compared stability for real experimental parameters from shot #36908 in two locations. We chose
a location in the hot core (r/a = 0.28), where neoclassical theory fairly accurately predicts the
experimentally-measured transport, both the ion temperature and density gradients are near zero,
and only the electron temperature gradient is available to drive gyrokinetic instabilities. Our second
location was in a colder outer region (r/a = 0.8), where neoclassical theory was not sufficient to
explain the transport (perhaps turbulence is the culprit!), and there are large electron temperature
and density gradients and a non-zero ion temperature gradient.

We found that electrostatic kinetic ITG or ETG modes or ITG-TEM hybrids were unstable at
both locations for the experimental gradients and collisionalities. As expected, the outer radius had
significantly higher growth rates than the inner radius.

Scanning the electron temperature gradient down revealed that the inner radius had a finite col-
lisionless ETG mode stability threshold, while the collisionless ITG-TEM growth rates of the outer
radius approached a finite value at low a/LTe, due to the non-zero density gradient. Collisions had
a stabilizing effect at low temperature gradients at the outer radii, though the same general trends
in the electron-temperature-gradient dependence were repeated.

While the density gradient is flat at the inner radius, it is fairly steep at the outer radius with
a/Ln = 2, and so we scanned a/Ln at the outer radius with low (ν = νexp/10) and experimental
collisionalities. Because the temperature gradients are so high, increasing the density gradient
from the experimental value has a stabilizing effect, as seen in our NCSX studies.

Additionally, we scanned collisionality between (1/2νexp, 2νexp) and saw that ν alone has little
effect on either radius. The maximum difference in normalized growth rates for the inner radius is
2% of the maximum, while the change in outer radius growth rates is less than 20% in its range of
ν.

Finally, a mixing-length argument for the nonlinear heat diffusivities found that χmix is greater
at the outer radius than at the inner radius, consistent with neoclassical transport theory’s agreement
with experimentally-measured transport at each location. Specifically, χmix,outer was within a
factor of 2 − 3 of the experimental transport seen at the outer radius. This is enough to suggest
that turbulence may be causing this transport, though rigorous nonlinear simulations are needed to
ascertain this fully.
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7.2 Conclusions and Future Work
In conclusion, this thesis research improved, expanded, and benchmarked a robust and flexible
computational package to study gyrokinetic instabilities in non-axisymmetric geometry. It en-
compasses several detailed linear studies in NCSX geometry–studying the effect of β on linear
instability and comparing NCSX linear stability to a tokamak case–and the first nonlinear, non-
axisymmetric GS2 simulations. Finally, it compared linear stability and mixing-length estimates
for nonlinear heat diffusivity of two locations in a W7-AS plasma for experimentally-measured
parameters.

With any interesting research project, one ends with more questions and ideas than when one
began, leading to much valuable future work.

7.2.1 Improvements to GS2 and FIGG
Several further improvements could be made to the GS2 geometry package. It could be possible
to have different λ grids for each magnetic well. This could improve velocity resolution and give
more flexibility, in addition to the fact that the distribution function velocity integrals are more
accurate with a point at v|| = 0 (i.e. a λ = 1/B(θ) point).

FIGG’s algorithm may be improved in order to ensure monotonic convergence of GS2’s growth
rates with θ resolution. The current non-monotonic behavior stems from the algorithm that adds
or subtracts θ points from the initial, tied-to-λ-grid θ grid. It is accurate enough, but could be
improved.

Further computational speed up could be obtained through averaging the various coefficients in
the gyrokinetic equation, particularly in cases where these coefficients are highly oscillatory along
a field line. It seems unlikely that such high k|| components of the particle distribution function can
be important for low-frequency drift turbulence, but at present in such cases, we have to use a very
fine grid to adequately capture the variation of these coefficients. However, a coarser grid might
be adequate if we constructed this grid by averaging the coefficients in θ over a finer grid in FIGG.
In other words, one could integrate over the length of a cell along the field line,

∫
dl ωd, instead of

just taking the value of ωd at a single grid point as done at present. Or for even higher accuracy,
one could do a formal orbit averaging of these coefficients,

∫
dl(v/|v|||)ωd. (These orbit-averaged

coefficients would then become functions of θ and pitch angle, and so would require a little more
storage than the present coefficients that depend only on θ.)

Noting that the standard W7-AS eigenfunctions from Chapter 6 are so narrow, we could in-
vestigate whether the growth rate and main eigenvalue shape could be reproduced fairly well on
a narrower domain. Alternatively, if the code did not work on this narrow theta domain, per-
haps some kind of modification of the boundary conditions to match onto an analytic solution
for |k⊥ρi| ≫ 1 would be useful. Motivated by the observations in this thesis, Hammett recently
suggested that a more efficient parallel boundary condition may be to assume that the perturbed
distribution function for incoming particles is adiabatic δf = −FMe⟨Φ⟩/T , instead of the original
boundary condition in GS2 of δf = 0 [132]. Roach recently implemented this in GS2, and it seems
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to work well even on a fairly narrow domain[168]. Testing this on a wider range of parameters,
including some of the stellarator cases in this thesis, would be very useful.

7.2.2 Further benchmarks
We are pleased with the linear benchmarks between GS2, GENE, and GKV-X. However, the zonal
flow response benchmark was not completely satisfying (which might be explained if the defi-
nitions of the radial box sizes differ between the codes, though this should not affect nonlinear
results that are converged in box size), and should be studied further. Also, we have not yet com-
pared nonlinear, non-axisymmetric GS2 results to other codes. As GS2 has been benchmarked
linearly and nonlinearly in axisymmetric geometries, and benchmarked linearly in this thesis for
non-axisymmetric geometries, and there is nothing intrinsically axisymmetric about the nonlinear
terms, one presumes that it functions correctly nonlinearly for non-axisymmetric cases as well.
Nonetheless, it is important to benchmark these codes nonlinearly.

7.2.3 Further NCSX, W7-AS, and future stellarator studies
As noted in Chapter 2, reversed magnetic shear can be stabilizing to turbulence. Because NCSX
has natural reversed magnetic shear, it is an ideal candidate in which to study this effect. The NCSX
flexibility studies noted in Chapter 5 include series of equilibria in which the only (significant)
difference is the value of magnetic shear, so these studies could be easily conducted. It might
be important to study this both linearly and nonlinearly, as there is evidence in tokamaks that
the stabilizing effect of negative magnetic shear can be much stronger nonlinearly than linearly
[7, 169, 170].

Extensions of the nonlinear studies to higher resolution, other field lines, and more parame-
ter scans would be useful. Adding to both the β and tokamak comparison studies with nonlinear
simulations would lend greater insight into how actual experiments would function. Finally, be-
cause we have experimentally-measured heat fluxes from the simulated W7-AS shot, the natural
next step would be to perform nonlinear simulations for comparison. Using GS2 and the transport
code TRINITY [86], we could further study the transport from coupled turbulence calculations of
multiple flux tubes.

As stated in Ref. [7]: “The world needs new energy sources now. It needed them yesterday.”
In order to fulfill our dream of clean, sustainable, economical fusion energy for the world, we
must understand how turbulent transport works and how it can be mitigated. The stellarator is
a creative and promising candidate for a future fusion reactor. This thesis developed and tested
tools to understand stellarator turbulence and laid the groundwork for many interesting turbulence
studies.



Appendix A

A Tutorial on Instability

An instability in a system occurs when a small perturbation leads to a big change.

A.1 The Pendulum
Consider the simple pendulum with a rigid rod of length L and bob of massm. In the configuration
on the left of Figure A.1, it is in a stable equilibrium: a small nudge will start the pendulum
swinging around the initial position, with small amplitude θ. The restoring force that brings the
pendulum bob back to its original position is

Fres = −mg sin θ (A.1)

where g is the acceleration due to gravity. Using Newton’s second law, F = ma, and the angular
acceleration (a = αL = d2θ

dt2
L), we find that Fres = md2θ

dt2
L. Finally, the equation of motion is

d2θ

dt2
+ (g/L) sin θ = 0 (A.2)

If θ is small enough, sin θ ≈ θ, and

d2θ

dt2
+ (g/L)θ = 0 (A.3)

The frequency of the motion in this situation is ω =
√
g/L. The amplitude of the motion never

grows; given damping, it eventually settles back to the initial position.
However, in another configuration (righthand side, Fig. A.1), the pendulum is in an unsta-

ble equilibrium: that small nudge will set the pendulum wildly swinging down toward the stable
equilibrium point, with equation of motion:

d2θ

dt2
− (g/L) sin θ = 0 (A.4)
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Figure A.1: Simple pendulum. Left: stable configuration. Right: unstable configuration. Adapted
from [21].

Thus, the frequency of motion is ω =
√

−g/L = i
√
g/L = iγ. The instability grows at rate γ

and the pendulum eventually settles into a very different equilibrium.

A.2 The Rayleigh-Taylor Instability
Stratified low-density (“light”) and high-density (“heavy”) fluids move analogously. If the light
fluid (for example, oil) is on top of a heavy fluid (water), ripples at the boundary layer will damp
out to the initial equilibrium position (Fig. A.2). If the density is n = exp(−y/L), where y is
the depth and L total depth, then the frequency of stable oscillation can be derived similarly to the
pendulum’s as ω =

√
g/L. However, if the heavy fluid is on top, a small boundary layer ripple will

grow and grow, until eventually the fluids switch places. For density n = exp(y/L), the growth
rate of this unstable oscillation is γ =

√
g/L. This growth is called the Rayleigh-Taylor instability.

A.3 The “Bad Curvature” Instability
A toroidal plasma can be described in the same way. Consider Figure A.3: the plasma is the heavy
fluid, while the magnetic field is the “light fluid”. The curvature provides an effective gravity
through the centrifugal force seen by the plasma: geff = v2/R. A small perturbation could lead to
plasma “spilling out” of the magnetic field, with a growth rate of γ =

√
geff/L =

√
v2T/RL =
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Figure A.2: Fluid with a density gradient. Left: heavy fluid on the bottom is stable. Right: heavy
fluid on top is unstable. Adapted from [21].

vT/
√
RL. The characteristic length, L, is related to the pressure gradient: 1/L = ∇P/P , where

P = nT is the pressure, n is the density, and T is the temperature. The particles move parallel to
the magnetic field at the thermal velocity, vT =

√
T/m. This curvature is “bad” because plasma

is lost on this side–for fusion (chapter 1), it is important to contain the plasma at a high density for
a long time!

A.4 Qualitative ITG Description
A very common drift wave instability in toroidal fusion devices is the Ion Temperature Gradient
(ITG) mode. To understand this mode qualitatively, consider the bad curvature side of simple
tokamak cross-section. The core of the plasma is hotter than the edge, so there will be a temperature
gradient. This is exaggerated in Figure A.4, which also shows the direction of B (out of the page)
and ∇B (to the left). The ∇B causes a downward drift of the ions (by velocity vd ∝ B × ∇B,
see section 2.1). Hotter ions have more energy and thus a faster vd. Say a small perturbation
occurs in the plasma (Fig. A.5), causing a ripple at the end of the hot and cold plasma regions.
Faster ions in the hot regions will leave negatively charged areas behind, which slower ions in the
cold regions cannot reach to neutralize before the charge separation sets up an electric field (Fig.
A.6). This electric field adds an E×B (section 2.1) drift to the particles’ velocity, reinforcing the
perturbation. (In reality the plasma will neutralize this apparent charge build-up by developing an
electrostatic potential that attracts electrons along the magnetic field lines and attracts ions across
magnetic field lines via the polarization drift. This shielding will maintain ”quasineutrality” in the
plasma, but the sign of the final potential will be the same as found without this shielding, so the
main qualitative picture of this instability mechanism is unchanged.)
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Figure A.3: Curvature instability arises from an effective gravity geff , and the heavy fluid (plasma)
on top of a “light fluid” (the magnetic field). Adapted from [21].

Figure A.4: A temperature gradient with cold plasma on the outside of a toroidal fusion device sets
up regions with different drift velocities. Adapted from [21].
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Figure A.5: A small perturbation in the plasma between cold and hot regions, coupled with differ-
ent drift velocities, sets up charge separation. Adapted from [21].

Figure A.6: Charge separation leads to an electric field, which causes a perturbation-reinforcing
E×B drift. Adapted from [21].
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Figure A.7: A picture of the Trapped Electron Mode (TEM): oppositely-directed curvature drifts
for ions and electrons set up electric fields that drive E × B drifts, which enhance the density
perturbation. Adapted from [15]

A.5 Qualitative TEM Description
Another common drift wave instability is the Trapped Electron Mode (TEM). Figure A.7 shows an
elongated initial density perturbation. The curvature drift for ions (vdi) is in the opposite direction
from the electrons (vde). While passing particles see the entire torus, with its good and bad curva-
ture regions, trapped particles spend most of their time in the bad curvature region and thus have a
preferred direction of drift. The resulting charge separation from the trapped particles’ drifts sets
up an electric field (E), which drives an E×B drift that enhances the density perturbation.



Appendix B

GS2 Input Geometry Glossary

This appendix relates the algebraic name for a geometric quantity with the GIST code name, GIST
reference equation number, FIGG/GS2 code name, and FIGG/GS2 equation number in Table B.1.
All GIST equations are from Ref. [112]. FIGG/GS2 references are from App. A of Ref. [86] or
this thesis as noted by section.
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Appendix C

GS2/FULL benchmark geometry details

In order to make the simulation grid for the GS2-FULL benchmark stellarator runs in Chapter 4,
VMEC created the 3-D MHD equilibrium, TERPSICHORE transformed it into Boozer coordi-
nates, and VVBAL calculated necessary geometric coefficients along a specified field line. Then,
GS2’s original grid generator, Rungridgen, created the final grid for use in the microinstability
calculations. (A new grid generator, FIGG, is used for all current GS2 stellarator calculations.)
The normalizations of geometric quantities changed between these codes, and knowing them in
detail was required for benchmarks between GS2 and FULL gyrokinetic codes. We define the
normalizing length, aN , in App. C.2.

In GS2, the field-aligned coordinate system is (ρ, α, θ). θ is the poloidal angle and distance
along the field line. The magnetic field takes the form B = ∇α × ∇Ψ, where α = ζ − qθ is
the field line label within a flux surface. The radial coordinate, ρ, can differ between codes, and
is defined in App. A.1. More details of general geometry for GS2 are documented in Chapter 3,
Appendix B, and App. A of Ref. [86].

C.1 Radial coordinate, ρ
VMEC and TERPSICHORE use the normalized toroidal flux surface label s = Φ/Φedge ∼
⟨(r/a)2⟩ as the radial coordinate, ρ. In the customized version of VVBAL used in the FULL
benchmark in Chapter 4, the radial coordinate was transformed to ρ = ΨN = Ψ/(a2NBa), where
ΨN is the normalized poloidal flux.

Because Rungridgen used VVBAL output without modification, some of the equations in this
appendix assume dρ/dψN ≡ 1. (In Ref. [86], the definition of the geometry coefficients include
the variable dρ/dψN , which can be used to choose the radial coordinate.)

C.2 Normalizing Quantities, Ba and aN
The normalizing magnetic field is Ba = ⟨B⟩, where ⟨B⟩ is a theta-average, not weighted to be a
flux-surface average (Ref. [86] chooses Ba differently).
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The normalizing length is aN , given for these calculations by VVBAL as

aN =
n√

|k⊥|2(θ = 0, θ0 = 0)
=

1

|∇α|
. (C.1)

GS2 treats perturbed quantities as A = Â(θ)exp(iS), where k⊥ = ∇S = n∇(α + qθ0) =
n∇[ζ − q(θ − θ0)]; n is the toroidal mode number. (In non-axisymmetric devices, n is not a
conserved quantum number, because toroidal variations in the equilibrium give coupling between n
modes. However, in the small-ρ∗, high-n limit, this coupling is weak, and n can just be considered
a coefficient to select a particular value of k⊥.)

In the notation of Eqn. A.11 of App. A in Ref. [86],

|k⊥|2 = |∇S|2 = k2θ
∣∣g1 + 2θ0g2 + θ20g3

∣∣ (C.2)

where g1, g2, and g3 are coefficients in the geometry file written by VVBAL and read by GS2.
Also, kθ = ky = n/aN . (The GS2 variable aky is defined as kyρi, with ρi ∝ 1/Ba.)

In the notation of Eqn. 7 of Ref. [112],

|k⊥|2 = n2

√
gB2

Ψ′2(s)
[Cp + Cs(θ − θ0) + Cq(θ − θ0)

2], (C.3)

where
√
g is the Jacobian, Cp, Cs, and Cq are defined in section II of Ref. [112].

So, VVBAL wrote:

g1 = a2N

√
gB2

Ψ′2(s)
[Cp + Csθ + Cqθ

2] (C.4)

g2 = −a2N
√
gB2

Ψ′2(s)

[
Cqθ +

Cs

2

]
(C.5)

g3 = a2N

√
gB2

Ψ′2(s)
Cq (C.6)



Appendix D

Zonal flow benchmark tests

In our attempts to benchmark GS2 and GENE for zonal flow residual, we theorized that their input
parameters for kx may be defined differently.

D.1 GS2’s akx and |k⊥|2

In GS2, aky = kyρi , akx = kxρi are the input variables. If aky ̸= 0 (as for most instability
simulations), then the |k⊥|2 term is calculated as

kperp2 = aky2|gds2 + 2θ0gds21 + θ20gds22| = aky2|g1 + 2θ0g2 + θ20g3| (D.1)

Where (gds2, gds21, gds22) = (g1, g2, g3) are the metric coefficients, defined in Chapter 3 and
below in section D.1.2. If aky = 0 (usually just for zonal flow calculations), then

kperp2 = akx2gds22/ŝ2 = akx2g3/ŝ
2 (D.2)

D.1.1 Definition of kx: in terms of ŝ− α limit
Equation D.2 can be derived by taking the ŝ − α limit, where g1 = 1 + ŝ2θ2, g2 = −θŝ2 (this
corrects a typo after Eq. A.11 of Ref. [86]), and g3 = ŝ2. Then

kperp2 = aky2[(1+ ŝ2θ2)+2θ0(−θŝ)+ θ20ŝ2] = aky2[1+ ŝ2(θ− θ0)2] = aky2+(akyŝ(θ− θ0))2.
(D.3)

Thus, kx = kyŝ(θ − θ0). So, at θ = 0, kx = −kyŝθ0 or akyθ0 = −akx/ŝ.
Assuming that as aky → 0, θ0 → ∞ to keep (akyθ0) finite:

kperp2 = (aky2)g1 + 2(akyθ0)(aky)g2 + (akyθ0)
2g3 = (akyθ0)

2g3 (D.4)

Finally, kperp2 = (akx/ŝ)2g3, as in the GS2 source.
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D.1.2 Metric coefficient definitions
The radial variable is ρ =

√
s.

• g1 = gds2 = a2N(dΨN/dρ)
2g22B |θ0=0 = a2N(dΨN/dρ)

2∇α · ∇α = |k⊥|2|θ0=0/k
2
y (and in

terms of gss,gζζ , etc., see Eqn. 60 [112])

• g2 = gds21 = −q′(s)a2N(dΨN/dρ)
2g12B |θ0=0 = q′(s)a2N(dΨN/dρ)

2∇s · ∇α.

• g3 = gds22 = q′(s)2a2N(dΨN/dρ)
2g11B |θ0=0 = q′(s)2a2N(dΨN/dρ)

2∇s·∇s = q′(s)2a2N(dΨN/dρ)
2gss =

q′(ρ)2(dρ
ds
)2a2N(dΨN/dρ)

2gρρ( ds
dρ
)2 = a2Nq

′(ρ)2(dΨN/dρ)
2gρρ

D.2 ZF Benchmark Attempts
These attempts are plotted in Figure D.1. The GS2 ϕ/ϕ(0) with akx = kxGS2 = kxGENE = 0.15
has a residual that is higher than GENE’s.

D.2.1 One possibility for an alternative definition of kx,GENE .
As mentioned before, the radial wavenumber varies along a flux tube as the cross-sectional shape
of the flux-tube changes. If GENE’s input variable kx,GENE is defined to give the same k2⊥ at θ = 0
as that same value of ky,GENE would, then we should choose GS2’s akx input variable to satisfy:

k2⊥(θ = 0) = k2x,GENEg1(θ = 0) =
(akx)2

ŝ2
g3(θ = 0). (D.5)

This leads to

akx = kx,GENE ŝ
√
g1(θ = 0)/g3(θ = 0) = 0.15(0.487853)

√
0.217463/0.917523 ≈ 0.035

(D.6)
However, as can be seen in Figure D.1, this leads to a residual that is too low.

D.2.2 Comparing GS2 and GKV-X’s definitions of k⊥
Because GENE and GKV-X agree very well in their zonal flow benchmark, their kx definitions
must be the same. So, we compare GS2 and GKV-X’s definitions. From Ref. [102],

k2⊥GKV−X = k2xGKV−Xa
2gρρ (D.7)

Section D.1.2 and [112] define GS2’s k⊥:

|k⊥GS2|2 = (akx/ŝ)2g3 = (akx/ŝ)2q′(ρ)2a2N(dΨN/dρ)
2gρρ (D.8)

So akx = kxGKVX ŝ(dρ/dΨN)/q
′(ρ).

Since ŝ = (ρ/q)q′(ρ), and dρ/dΨN = q/
√
s,
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Figure D.1: Variation of ϕ with time, for various attempts to match GS2’s results with GENE’s.

akx = kxGKVX(ρ/q)(q/
√
s) ≈ 0.15(0.6/1.98)(1.98/

√
0.5) ≈ 0.14 (D.9)

Notice that in the next section, 0.11 is the closest we found to match GENE, and 0.14 would
be too high.

D.2.3 Guess-and-check
The GS2 value akx = 0.11 appears to have a residual that matches GENE’s kxGENE = 0.15.

D.3 Conclusion
There must be something else, more subtle, involved in the differences between GS2’s kx and that
of GENE and GKV-X. As stated in Chapter 4, it will only affect zonal flow tests–it will not affect
linear growth rate comparisons or nonlinear runs.
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