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A fluid model is developed for the description of microturbulence and transport in magnetized,
long mean-free-path plasmas. The model incorporates both electrostatic and magnetic fluctuations,
as well as finite Larmor radius and kinetic effects. Multi-species Landau fluid equations are derived
from moments of the electromagnetic gyrokinetic equation, using fluid closures which model kinetic
effects. A reduced description of electron dynamics, appropriate for the study of microturbulence
on characteristic ion drift and Alfvén scales, is derived via an expansion in the electron to ion
mass ratio. The reduced electron equations incorporate curvature, ∇B, and linear and nonlinear
E × B drift effects, needed to model the electron contribution to the drive and damping of ion
gyroradius scale instabilities in tokamaks. The Landau fluid model is linearly benchmarked against
gyrokinetic codes, and found to reproduce the toroidal finite beta ion temperature gradient and
kinetic ballooning instabilities.

PACS numbers: 52.65.Tt, 52.35.Qz, 52.35.Py, 52.65.Kj

I. INTRODUCTION

The development of an accurate and numerically efficient model of plasma microturbulence and transport in the
kinetic, long mean-free-path regime characteristic of the core of magnetic fusion devices is a long standing challenge.
Progress has been made via the development of the nonlinear gyrokinetic equation1–4, and its numerical solution
using direct5,6, particle in cell2,7–9, and “gyrofluid”10–14 methods. Gyrofluid models take velocity space moments of
the five dimensional gyrokinetic equation to produce a reduced three dimensional fluid description. Kinetic effects
are modeled via appropriately chosen fluid closures. Here we use the term “Landau fluid,” which emphasizes the use
of fluid closures which model Landau damping, interchangeably with “gyrofluid,” which emphasizes that the fluid
equations are moments of the gyrokinetic equation in gyrocenter space.

The importance of incorporating magnetic fluctuations (also called finite β effects, where β is the ratio of plasma
pressure to magnetic pressure) in descriptions of ion gyroradius scale dynamics, has been identified by numerous
authors. Magnetic fluctuations impact the growth rates of predominantly electrostatic linear instabilities, for example
the finite β stabilization the collisionless toroidal ion temperature gradient (ITG) mode15,16, and introduce electromag-
netic instabilities, such as the kinetic ballooning mode (KBM)17–22. In addition, magnetic fluctuations are expected
to significantly impact nonlinear dynamics and zonal flow generation23. Linear and nonlinear electromagnetic effects
are well documented in the extensive literature on collisional plasmas. The strong impact of magnetic fluctuations in
collisional Braginskii24 simulations (see Refs.25–29 and references therein for details on recent work in electromagnetic
edge turbulence) motivates the development of models for the dynamics of kinetic, long mean-free-path plasmas which
include magnetic fluctuations and non-adiabatic electrons. It should be noted that the collisionless ITG mode and
the ion drift resonance driven KBM instability, considered in Sec. VI, both require kinetic effects not present in the
standard Braginskii model for an accurate description.

Here we develop an extension of earlier electrostatic gyrofluid models30,31 to incorporate magnetic fluctuations
and non-adiabatic passing electron dynamics.1 A set of general multi-species electromagnetic gyrofluid equations

1This model can alternately be viewed as an extension of Waltz et al14 to include more ion moments, the mirror force, different
models of toroidal kinetic effects, and a numerically efficient reduced electron model.
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are derived from velocity space moments of the nonlinear gyrokinetic equation in Sec. III. The moment hierarchy is
truncated using a set of closures derived to model kinetic effects, including collisionless phase mixing due to parallel
streaming and toroidal drifts, as well as linear and nonlinear finite-Larmor-radius (FLR) effects. The general set of
gyrofluid equations can be used to describe electron as well as ion dynamics. However, for many problems a more
numerically efficient reduced model is appropriate for the electrons. In Sec. IV a reduced electron model appropriate
for the study of fluctuations on ion drift wave and shear Alfvén scales is developed. These reduced electron equations
include the effects of electron temperature and density gradients, electron E×B motion, Landau damping, electron-ion
collisions and the parallel electron currents which, along with parallel ion currents, give rise to the parallel magnetic
potential. The system of equations is completed with the gyrokinetic Poisson equation and parallel Ampere’s Law
in Sec. V. The Landau fluid system of equations is then benchmarked with linear gyrokinetic theory in Sec. VI.
Linear growth rates and frequencies are compared for both the toroidal finite β collisionless ITG mode and the
kinetic ballooning mode. Additional benchmarks and results from nonlinear toroidal turbulence simulations using the
electromagnetic Landau fluid model developed here are presented in Ref.32.

II. THE GYROKINETIC EQUATION

The starting point for the derivation of the fluid equations is the nonlinear electromagnetic gyrokinetic equation of
Brizard33, based upon earlier gyrokinetic work by many authors1–4,34,35.

The standard gyrokinetic ordering is invoked as follows:

ω

Ωi
∼ k‖vti

Ωi
∼ eφ

T
∼ δB

B
∼ F1

F0
∼ ρi

L
∼ ε� 1, k⊥ρi ∼ 1, (1)

where ω is a characteristic frequency of the fluctuations, and k‖ and k⊥ are typical fluctuation wavenumbers parallel

and perpendicular to the equilibrium magnetic field. Ωi is the ion cyclotron frequency, vti =
√

Ti/mi is the ion
thermal speed, and ρi = vti/Ωi is the thermal ion gyroradius. L is a typical equilibrium scale length, such as the
density scale length Ln = −∇(lnn0)

−1, the temperature scale length LT = −∇(ln T0)
−1, or the plasma minor radius

(a) or major radius (R). T and B are typical equilibrium temperatures and magnetic fields, and F0 is the equilibrium
distribution. F1 is the fluctuating distribution function, φ is the electrostatic potential (which is assumed to have no
equilibrium component), and δB is the fluctuating component of the magnetic field.

Gyrokinetics averages over the fast gyromotion of the particles around a strong magnetic field, reducing the kinetic
equation from three to two velocity space dimensions, and leaving the magnetic moment µ as a rigorously conserved
quantity. The gyrokinetic ordering takes advantage of the spatial anisotropy created by the strong magnetic field.
Parallel to the field, particles can stream freely, and fluctuating wavelengths are long, k‖L ∼ 1. Perpendicular to the
field, particle motion is strongly restricted, and wavelengths scale with the gyroradius k⊥ρi ∼ 1.

The fluctuating distribution function is ordered small compared to the equilibrium distribution, which here is taken
as a Maxwellian. Nonetheless, perpendicular gradients of fluctuating quantities are the same order as perpendicular
gradients of the equilibrium (k⊥F1 ∼ F0/L), and hence the perpendicular nonlinearities due to the E×B drift and
field line bending are kept, while parallel nonlinearities are small, and are ordered out here.

Brizard’s electromagnetic gyrokinetic equation can be written in the form:

∂F

∂t
+ Ẋ · ∇F + v̇‖

∂F

∂v‖
= C(F ), (2)

where F is the gyrocenter distribution function in the gyrocenter phase space coordinates (X, v‖, µ, ζ). Within the
gyrokinetic ordering (ω � Ωi), the gyrophase angle ζ is effectively averaged over, and does not appear explicitly
(∂F/∂ζ = 0). The gyrocenter magnetic moment µ = v2

⊥/2B + O(ε) is exactly conserved and enters the equations
only as a parameter. An as yet undefined collision operator C(F ) has been added to the right hand side.

Eq. 2 is solved through O(ε2) in the gyrokinetic ordering defined above. When ordering terms in the gyrokinetic
equation, all frequencies are compared to Ωi, and all lengths to ρi. Hence, for example, ∂F

∂t ∼ ωF1 is O(ε2), because
∂F0

∂t = 0, F1/F0 ∼ ε, and ω/Ωi ∼ ε. Any gradient operator acting on F0 or B is O(ε) because ρi/L ∼ ε. A parallel

gradient on F1 is O(ε2) because k‖ρi ∼ ε. However, a perpendicular gradient acting on F1 is O(ε) because k⊥ρi ∼ 1.

Because ∇F is O(ε), Ẋ is needed only to O(ε), while v̇‖ must include terms through O(ε2).
The fluctuating magnetic field δB is described to lowest order in terms of a magnetic potential along the equilibrium
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field, δB = ∇× A‖b̂, where b̂ is a unit vector along the equilibrium field.2 The perturbation along the equilibrium
field (δB‖) is small for β � 1, as can be seen from perpendicular force balance, and δB‖ is neglected here.

The gyrocenter velocity is then given by

Ẋ = v‖(b̂ +
〈δB⊥〉

B
) + vE + vd, (3)

where the angular brackets denote gyroangle averages. The first term on the right represents free streaming along the
total magnetic field. The second term is the gyroaveraged E×B drift velocity, vE = c

B b̂×∇〈φ〉. vd is the combined
curvature and ∇B drift velocity. In general, vd can be written

vd =
v2
‖

Ω
b̂× (b̂·∇b̂) +

µ

Ω
b̂×∇B (4)

=
v2
‖ + µB

ΩB2
B×∇B +

v2
‖

ΩB2
b̂× (∇×B×B).

Using the equilibrium relations ∇p = 1
cJ×B and ∇×B = 4π

c J, this can be written

vd =
v2
‖ + µB

ΩB2
B×∇B +

v2
‖

ΩB2
b̂×∇p. (5)

The second term on the right is small for β � 1,3 and is neglected here for simplicity and to maintain consistency
with neglecting δB‖.

4 The definition

vd
.
=

v2
‖

+ µB

ΩB2
B×∇B (6)

is used henceforth.
The gyrocenter parallel acceleration can be written:

v̇‖ = − e

mc

∂ 〈A‖〉
∂t

− e

m
(b̂ +

〈δB⊥〉
B

) · ∇ 〈φ〉 − µ(b̂ +
〈δB⊥〉

B
) · ∇B + v‖(b̂·∇b̂) · vE . (7)

The first two terms on the right hand side represent the total parallel electric field, which includes both a magnetic

induction term − 1
c

∂〈A‖〉
∂t , and an electrostatic term evaluated along the total magnetic field. The next term is the

total mirror force, and the final term is important for phase space conservation37,30.
Using the definition δB = ∇× A‖b̂, the term δB⊥ can be written as follows:

δB⊥ = b̂× (δB × b̂) = −b̂×∇A‖ + b̂× b̂·∇b̂A‖, (8)

or upon gyroaveraging,

〈δB⊥〉 = −b̂×∇〈A‖〉 + b̂× b̂·∇b̂ 〈A‖〉 . (9)

The second term on the right hand side is O(ε2) and does not enter Eq. 2 to the required order.
The gyroangle averages are expressed in terms of a gyroaveraging operator J0 as follows:

〈φ〉 = J0(α)φ, 〈A‖〉 = J0(α) A‖,

2Note that A‖ and A⊥ are fluctuating quantities. The equilibrium magnetic field is denoted by B or Bb̂, never as a magnetic
potential.

3The use of this β � 1 approximation may seem inconsistent with the goal of including finite β effects. However, it allows
treatment of β values up to the MHD critical βc for all except very low aspect ratio cases, where βc ∼ 1. The critical point is
that while the electrostatic approximation requires β � βc, the above approximations require only that β � 1. That is, our
equations are valid for β ∼ βc � 1, and can be extended to β ∼ 1 by adding δB‖ and separately treating the curvature and
∇B drifts.

4A cancellation occurs between the ∇p term in vd and a finite δB‖ term17,36. Hence it does not improve accuracy to keep the
∇p term until δB‖ has been fully included.
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where α is the operator defined by

α
.
= −i

√
2µB

Ωi
∇⊥,

or, in Fourier space,

α =

√
2µB

vti
k⊥ρi.

The operator J0,

J0(α) =
1

2π

∫ 2π

0

dζ exp(iα cos ζ) =

∞
∑

n=0

1

(n!)2

(

iα

2

)2n

(10)

=
∞
∑

n=0

1

(n!)2

(√
2µB

2Ω

)2n

∇2n
⊥

,

is a simple Bessel function in Fourier space. In real space, J0 does not in general commute with other operators, and
must be manipulated with care. J0 operates only on the electrostatic potential φ and the parallel magnetic potential
A‖.

Defining the unit vector along the total magnetic field b̃ = b̂ +
〈δB⊥〉

B and the total parallel electric field Ẽ‖ =

−1
c

∂
∂t

J0A‖ − b̃ · ∇J0φ, the gyrokinetic equation can be written:

∂F

∂t
+ (v‖b̃ + vE + vd) · ∇F (11)

+
[ e

m
Ẽ‖ − µb̃ · ∇B + v‖(b̂·∇b̂) · vE

] ∂F

∂v‖
= C(F ).

III. ELECTROMAGNETIC GYROFLUID EQUATIONS

Gyrofluid equations are derived by taking velocity space moments of Eq. 11, and implementing closures to model
kinetic effects. For simplicity of notation, the derivation for a single ion species is presented here. The subscript i is
omitted in this section, and all quantities (vt, Ω, T etc.) are taken to refer to the single ion species unless otherwise
noted. The full, normalized equations for the multi-species case are given in Sec. III E.

Because k⊥ρi ∼ 1, finite-Larmor-radius (FLR) effects must be accounted for, both in the moment equations and in
the closures.

In order to simplify the process of taking velocity space moments, all functions of velocity space (F, J0, µ, v‖ etc.)
are moved to the same side of the spatial and temporal operators.

The first two terms in Eq. 11, B ∂F
∂t

= ∂
∂t

FB and Bv‖b̂ ·∇F = B ·∇(FBv‖/B) are easily put in a form suitable for
taking moments. The next three terms require modification.

Noting that spatial derivatives are taken with µ and v‖ fixed, we can write for any field A:

∇J0A = J0∇A + A∇J0, (12)

where

∇J0(α) =
∂J0

∂α
∇α = J1(α)

α

2B
∇B. (13)

The term representing free streaming along the fluctuating magnetic field, − v‖
B

b̂×∇J0A‖, can be combined with
the E×B drift by introducing the operator notation:

φ′ = φ− v‖
c

A‖, v
′
E =

c

B
b̂×∇J0φ

′, v
′
φ =

c

B
b̂×∇φ′. (14)

Using Eqs. 12 and 13:
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Bv
′
E · ∇F = B

c

B
b̂× (J0∇φ′ + J1

α

2B
φ′∇B) · ∇F. (15)

The J1 term above can be neglected as it is O(ε3) due to the presence of φ′, ∇B, and ∇F , each of which are O(ε).
Noting that J0∇F = ∇J0F − (α/2B)FJ1∇B, and introducing the operator notation

iωd
.
=

v2
t

ΩB2
B×∇B · ∇, (16)

allows us to write

B
c

B
b̂× J0∇φ′ · ∇F = B

c

B
b̂×∇φ′ · ∇(J0F )− F

cα

2B
J1b̂×∇φ′ · ∇B (17)

= v
′
φ · ∇(J0FB) +

e

T
FB(J0 + J1

α

2
)iωdφ′.

Invoking the approximation outlined in Eqs. 4-6, and noting that iωdB = 0, the ∇B and curvature drift term can
be written:

Bvd · ∇F = iωd[FB(v2
‖ + µB)]. (18)

Turning now to the v̇‖
∂F
∂v‖

terms, we note first that all components of v̇‖ except the lowest order mirror force

−µb̂ · ∇B are O(ε2) and therefore involve only the equilibrium distribution, which is taken to be:

F0 =
n0

(2πv2
t )3/2

e−v2

‖/2v2

t
−µB/v2

t . (19)

The electric field terms can be written as follows to O(ε2):

−B
e

m
b̂·∇(J0φ)

∂F

∂v‖
= − e

m

∂F0

∂v‖
Bb̂·∇(J0φ) (20)

= − e

m
b̂·∇(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)b̂·∇ ln B

∂F

∂v‖

e

m
(b̂×∇J0A‖) · ∇J0φ =

e

m

∂F0

∂v‖
(b̂× J0∇A‖) · J0∇φ (21)

=
e

m

∂F0

∂v‖
J0A‖J0φ(b̂×∇A‖) · ∇φ,

where the notation J0A‖ and J0φ is used to indicate the field on which the Bessel function operator acts. All J1 terms

above have been dropped as they are O(ε3).
The mirror force terms can be written:

∂F

∂v‖
B(−µb̂·∇B) = −µB2 ∂F

∂v‖
b̂·∇ ln B (22)

∂F

∂v‖
µ(b̂×∇J0A‖) · ∇B =

∂F0

∂v‖

µ

B
J0(∇B ×B) · ∇A‖ (23)

= −∂F0

∂v‖
BJ0

eµB

cT
iωdA‖,

where the J1∇B term has cancelled exactly.
Finally, the phase space conservation term can be rewritten, omitting the finite β component for consistency with

the treatment of the curvature drift:

∂F

∂v‖
Bv‖(b̂·∇b̂) · vE = −∂F0

∂v‖
v‖

c

B2
B×∇B · ∇J0φ (24)

= − e

T

[

∂

∂v‖
(F0BJ0v‖) − F0BJ0

]

iωdφ (25)
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Combining all the above terms, and defining ∇‖ = b̂·∇, the electromagnetic gyrokinetic equation can be written
in the following cumbersome but useful form:

∂

∂t
FB + B∇‖Fv‖ + v

′
φ · ∇(FBJ0) + 2FBJ0iωd

eφ′

T
(26)

+ FBJ1
α

2
iωd

eφ′

T
+

e

cT
v‖FBJ0iωdA‖

+
1

v2
t

iωd[FB(v2
‖ + µB)] − e

mc

∂

∂v‖
(F0BJ0

∂A‖

∂t
)

− e

m
∇‖(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)∇‖ ln B

+
e

m

∂F0

∂v‖
J0A‖J0φ(b̂×∇A‖) · ∇φ− µB2 ∂F

∂v‖
∇‖ ln B

− ∂F0

∂v‖
BJ0

eµB

cT
iωdA‖ −

∂

∂v‖
(FBJ0v‖)

e

T
iωdφ = 0.

Nearly all terms with velocity space dependence are now grouped on the same side of spatial and temporal operators
so that moments may easily be taken. The exception is the v‖ term which appears in φ′ = φ− v‖

c A‖ and v
′
φ = c

B b̂×∇φ′.
However, v‖ commutes with J0, J1 and all spatial operators, and may be easily moved to the appropriate place inside
velocity space integrals. The collision operator C(F ) has been omitted here. Collisions are considered in Sec. III D.

Eq. 26 contains terms through O(ε2) in the gyrokinetic ordering. Assuming a time independent equilibrium distri-
bution F0 with gradients that scale as 1/L, only two first order terms remain. These terms represent free streaming
along the equilibrium field, and the lowest order mirror force. To first order, the equation can be written:

B∇‖F0v‖ − µB2 ∂F0

∂v‖
∇‖ lnB = 0, (27)

a condition which is satisfied exactly by the equilibrium Maxwellian

F0 = FM =
n0

(2πv2
t )3/2

e−v2

‖/2v2

t
−µB/v2

t .

This leaves only second order terms in the equation.
We furthermore divide the first order distribution F1 into two parts, F1

.
= f̃ + F1nc. Here F1nc is defined to be an

equilibrium part of the distribution with no time dependence and gradients which scale as 1/L. It is further defined
to be an exact solution of the equation:

B∇‖F1ncv‖ +
1

v2
t

iωd[F0B(v2
‖

+ µB)] − µB2 ∂F1nc

∂v‖
∇‖ ln B = 0. (28)

Note that the F1nc contribution to all other terms is O(ε3) or higher and can be neglected. This removes all terms

with no time dependence, and leaves us with an evolution equation for the fluctuating first order distribution f̃ ,
containing only second order terms which are either linear or quadratic in the fluctuating quantities f̃ , φ, and A‖:

∂

∂t
f̃B + B∇‖f̃ v‖ + vφ · ∇[(F0 + f̃)BJ0]− vA‖ · ∇[(F0 + f̃ )B

v‖
c

J0] (29)

+ 2F0BJ0iωd
eφ

T
− F0B

v‖
c

J0iωd
eA‖

T
+ F0BJ1

α

2
iωd

eφ

T

− F0B
v‖
c

J1
α

2
iωd

eA‖

T
+

iωd

v2
t

[f̃B(v2
‖ + µB)]− e

mc

∂F0

∂v‖
BJ0

∂A‖

∂t

− e

m
∇‖(

∂F0

∂v‖
BJ0φ) +

e

m
J0φ

∂F0

∂v‖
B(1 − µB

v2
t

)∇‖ lnB

+
e

m

∂F0

∂v‖
J0A‖J0φ(b̂×∇A‖) · ∇φ− µB2 ∂f̃

∂v‖
∇‖ lnB

− ∂F0

∂v‖
BJ0

µB

c
iωd

eA‖

T
− ∂

∂v‖
(F0BJ0v‖)iωd

eφ

T
= 0.
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Terms containing φ and A‖ have been separated by defining vφ = c
B

b̂×∇φ and vA‖ = c
B
b̂×∇A‖. Nonlinear terms

enter through vφ · ∇[f̃BJ0], vA‖ · ∇[f̃B
v‖
c J0], and e

m
∂F0

∂v‖
J0A‖J0φ(b̂×∇A‖) · ∇φ.

It is also possible to derive Eq. 29 starting with the conservative form of the gyrokinetic equation. Making sure to
include the second order part of 〈δB⊥〉 from Eq. 9, it is possible to prove Liouville’s theorem to the required order,

∂B∗

∂t
+∇ · [B∗

Ẋ] +
∂

∂v‖
[B∗v̇‖] = 0, (30)

where B∗ = B + (mc/e)v‖b̂ · ∇ × b̂ contains the parallel velocity correction. The gyrokinetic equation can then be
written:

∂

∂t
FB∗ +∇ · [FB∗

Ẋ] +
∂

∂v‖
[FB∗v̇‖] = 0. (31)

Again working within the context of the low β approximation b̂× (b̂·∇b̂) = (1/B2)B×∇B, and rearranging terms,
one finds Eq. 29 to second order as expected.

A further check on Eq. 29 is to calculate the linear non-adiabatic response in the local limit. Dividing the distribution
into adiabatic and non-adiabatic pieces, f̃ = g − F0J0eφ/T0, linearizing, transforming, and taking the ∇‖ lnB = 0
limit, we find the expected non-adiabatic distribution:

g = F0
ω − ωT

∗

ω − k‖v‖ − ωdv

e

T
J0(φ−

v‖
c

A‖), (32)

where ωT
∗ = ω∗[1 + η(v2

‖/2v2
t + µB/v2

t − 3/2)], ωdv = ωd(v
2
‖ + µB)/v2

t , and we have introduced the diamagnetic

frequency iω∗
.
= −(cT0/eBn0)∇n0 · b̂×∇, and the ratio of scale lengths η = Ln/LT .

A. The Moment Equations

Fluid moment equations can now be derived by taking velocity space moments of Eq. 29. In this section a careful
distinction is made between equilibrium and fluctuating components, and equilibrium quantities are written with a
subscript 0. Both vt =

√

T0/m and ρi = vt/Ω are defined in terms of equilibrium quantities. It should also be noted
that because all terms in Eq. 29 are O(ε2), only their lowest order components need be kept, eg. T → T0.

Velocity space moments are often defined in terms of the total distribution function F . Here we again separate F
into equilibrium and fluctuating components F = F0 + f̃ noting that F1nc and its moments do not enter the equations
to the required order and can be neglected. Velocity space moments of

F0 = FM =
n0

(2πv2
t )3/2

e−v2

‖/2v2

t
−µB/v2

t

are all well defined. We define the following moments of the fluctuating distribution:

ñ =
∫

f̃ d3v n0ũ‖ =
∫

f̃ v‖ d3v

p̃‖ = m
∫

f̃ v2
‖
d3v p̃⊥ = m

∫

f̃Bµ d3v

q̃‖ = −3mv2
t n0ũ‖ + m

∫

f̃v3
‖ d3v q̃⊥ = −mv2

t n0ũ‖ + m
∫

f̃Bµ v‖ d3v

r̃‖,‖ = m
∫

f̃v4
‖ d3v r̃‖,⊥ = m

∫

f̃Bµ v2
‖ d3v

r̃⊥,⊥ = m
∫

f̃B2µ2 d3v s̃⊥,⊥ = −2mv4
t n0ũ‖ + m

∫

f̃B2µ2v‖ d3v

s̃‖,‖ = −15mv4
t n0ũ‖ + m

∫

f̃ v5
‖ d3v s̃‖,⊥ = −3mv4

t n0ũ‖ + m
∫

f̃Bµ v3
‖ d3v,

where d3v = 2πdv‖ B dµ. The definitions of the q and s moments above have been chosen for consistency of notation
with Beer30. Each moment is coupled to higher moments through the terms in Eq. 29 which contain factors of v‖
or µ, including terms due to parallel free streaming, toroidal drift, FLR effects, and the mirror force. This moment
hierarchy is truncated using closures described in the following sections in order to generate a useful set of equations.

Taking integrals of Eq. 29 of the form 2π
∫

dv‖ dµ vj
‖µ

k, and defining the shorthand 〈A〉 .
= 2π

∫

Adv‖ Bdµ yields the
following set of moment equations:

∂ñ

∂t
+ B∇‖

n0ũ‖
B

+ vφ · ∇ 〈FJ0〉 −
1

c
vA‖ · ∇ 〈Fv‖J0〉 (33)

+
〈

F0(2J0 + J1
α

2
)
〉

iωd
eφ

T0
+

1

T0
iωd(p̃‖ + p̃⊥) = 0,
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n0
∂ũ‖
∂t

+ B∇‖

p̃‖
mB

+ vφ · ∇ 〈Fv‖J0〉 −
1

c
vA‖ · ∇

〈

Fv2
‖J0

〉

(34)

−
〈

F0v
2
‖
(J0 + J1

α

2
)
〉

iωd
eA‖

cT0
+

1

T0
iωd(q̃‖ + q̃⊥ + 4p0ũ‖)

+ 〈F0J0〉
e

mc

∂A‖

∂t
+

e

m
∇‖ 〈F0J0〉φ−

e

m
φ

〈

F0J0(1 −
µB

v2
t

)

〉

∇‖ lnB

− e

mB

〈

F0J0A‖J0φ

〉

b̂×∇A‖ · ∇φ +
p̃⊥
m
∇‖ lnB + 〈F0µBJ0〉 iωd

eA‖

cT0
= 0,

∂p̃‖
∂t

+ B∇‖

q̃‖ + 3p0ũ‖
B

+ mvφ · ∇
〈

Fv2
‖J0

〉

(35)

− m

c
vA‖ · ∇

〈

Fv3
‖J0

〉

+ m
〈

F0v
2
‖ (2J0 + J1

α

2
)
〉

iωd
eφ

T0

+
1

v2
t

iωd(r̃‖,‖ + r̃‖,⊥) + 2(q̃⊥ + p0ũ‖)∇‖ lnB + 2m
〈

F0v
2
‖
J0

〉

iωd
eφ

T0
= 0,

∂p̃⊥
∂t

+ B2∇‖

[

1

B2
(q̃⊥ + p0ũ‖)

]

+ mBvφ · ∇ 〈FµJ0〉 (36)

− mB

c
vA‖ · ∇ 〈Fµv‖J0〉 + mB

〈

F0µ(2J0 + J1
α

2
)
〉

iωd
eφ

T0

+
1

v2
t

iωd(r̃‖,⊥ + r̃⊥,⊥) = 0,

∂

∂t
(q̃‖ + 3p0ũ‖) + B∇‖

r̃‖,‖
B

+ mvφ · ∇
〈

Fv3
‖
J0

〉

(37)

− m

c
vA‖ · ∇

〈

Fv4
‖J0

〉

−m
〈

F0v
4
‖ (J0 + J1

α

2
)
〉

iωd
eA‖

cT0

+
1

v2
t

iωd(s̃‖,‖ + s̃‖,⊥ + 18mv4
t n0ũ‖) +

3e

c

〈

F0v
2
‖J0

〉 ∂A‖

∂t

+ 3e∇‖

〈

F0v
2
‖J0

〉

φ− 3e

〈

F0v
2
‖ (1−

µB

v2
t

)J0

〉

φ∇‖ ln B

− 3e

B

〈

F0v
2
‖
J0A‖J0φ

〉

b̂×∇A‖ · ∇φ + 3r̃‖,⊥∇‖ lnB

+ 3mB
〈

F0µv2
‖J0

〉

iωd
eA‖

cT
= 0,

∂

∂t
(q̃⊥ + p0ũ‖) + B2∇‖

r̃‖,⊥
B2

+ mBvφ · ∇ 〈Fv‖µJ0〉 (38)

− mB

c
vA‖ · ∇

〈

Fv2
‖µJ0

〉

−mB
〈

F0v
2
‖µ(J0 + J1

α

2
)
〉

iωd
eA‖

ct0

+
1

v2
t

iωd(s̃‖,⊥ + s̃⊥,⊥ + 5mv4
t n0ũ‖) +

eB

c
〈F0µJ0〉

∂A‖

∂t

+ eB∇‖ 〈F0µJ0〉φ− eB

〈

F0µ(1− µB

v2
t

)J0

〉

φ∇‖ ln B

− e
〈

F0µJ0A‖J0φ

〉

b̂×∇A‖ · ∇φ + r̃⊥,⊥∇‖ ln B

+ mB2
〈

F0µ
2J0

〉

iωd
eA‖

cT0
= 0.
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B. Finite Larmor Radius Terms

Closures are developed for the finite Larmor radius terms appearing in Eqs. 33-38, using the techniques of Dorland38

as adapted to the toroidal case by Beer30. We choose to evolve ion moments in guiding center space rather than real
space in order to better describe both linear and nonlinear FLR effects, including the Bakshi-Linsker effect39,40.
Nonetheless, our FLR terms, when expanded, contain higher velocity space moments and these must be carefully
closed to properly model kinetic behavior.

Turning first to the Maxwellian FLR terms, we must close terms of the forms
〈

F0v
2i
‖

µjJ0

〉

and
〈

F0v
2i
‖

µjJ1α
〉

, where
i = 0, 1, 2 and j = 0, 1, 2. Note that purely Maxwellian FLR terms with odd powers of v‖ vanish identically, as FM is
even in v‖, while J0 and J1α are independent of v‖.

The FLR closures are chosen in careful consideration of the entire system of equations. It is the combination of J0

terms from the E×B and vA‖ terms with the J0 terms in Poisson’s equation and Ampere’s Law which motivates the

basic approximation 〈J0〉 ≈
〈

J2
0

〉1/2 ≈ Γ0(b)
1/2, where b = k2

⊥
ρ2

i . Following and extending Ref.38, we choose:

〈F0J0〉 = n0Γ
1/2
0 , (39)

〈

F0J0v
2
‖

〉

= n0v
2
t Γ

1/2
0 , (40)

〈F0J0µ〉 =
n0v

2
t

B

∂

∂b
(bΓ

1/2
0 ) =

v2
t

2B
(2Γ

1/2
0 + ∇̂2

⊥
) (41)

〈

F0J0v
4
‖

〉

= 3n0v
4
t Γ

1/2
0 , (42)

〈

F0J0v
2
‖µ
〉

=
n0v

4
t

B

∂

∂b
(bΓ

1/2
0 ) =

v4
t

2B
(2Γ

1/2
0 + ∇̂2

⊥), (43)

〈

F0J0µ
2
〉

≈ v4
t

B2

[

b
∂2

∂b2
(bΓ

1/2
0 ) + 2b

∂

∂b
(bΓ

1/2
0 )

]

=
v4

t

B2

(

2Γ
1/2
0 + ∇̂2

⊥ +
ˆ̂∇

2

⊥

)

. (44)

The modified Laplacian operators ∇̂2
⊥

and
ˆ̂∇

2

⊥
are defined as follows:

1

2
∇̂2
⊥Φ = b

∂Γ
1/2
0

∂b
φ, (45)

ˆ̂∇
2

⊥Φ = b
∂2

∂b2
(bΓ

1/2
0 )φ, (46)

where the notation Φ = Γ
1/2
0 φ has been introduced for the gyroaveraged electrostatic potential. The analogous

notation A‖ = Γ
1/2
0 A‖ is used for the gyroaveraged magnetic potential.

The J1 terms are evaluated following Ref.30, using the following trick:

〈FJ1α〉 ≈ −
∂

∂ζ

∣

∣

∣

∣

ζ=1

〈FJ0(ζα)〉 . (47)

Again using 〈FJ0〉 ≈ Γ
1/2
0 yields:

〈F0J1α〉 ≈ −
∂

∂ζ

∣

∣

∣

∣

ζ=1

Γ
1/2
0 (ζ2b) = −2b

∂Γ
1/2
0

∂b
= −∇̂2

⊥, (48)

〈

F0J1v
2
‖α
〉

≈ −2v2
t b

∂Γ
1/2
0

∂b
= −v2

t ∇̂2
⊥, (49)
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〈F0J1µα〉 ≈ − ∂

∂ζ

∣

∣

∣

∣

ζ=1

v2
t

B

∂

∂T⊥
(T⊥ 〈F0J0(ζα)〉) = −2

v2
t

B

∂

∂b

(

b2 ∂Γ
1/2
0

∂b

)

= −2
v2

t

B
ˆ̂∇

2

⊥, (50)

〈

F0J1v
4
‖
α
〉

≈ −6v4
t b

∂Γ
1/2
0

∂b
= −3v4

t ∇̂2
⊥
, (51)

〈

F0J1v
2
‖µα

〉

≈= −2
v4

t

B
ˆ̂∇

2

⊥, (52)

The Maxwellian terms which contain more than one factor of J0 are closed analogously:

〈

F0J0A‖J0φ

〉

= n0Γ
1/2
0A‖

Γ
1/2
0φ , (53)

〈

F0v
2
‖J0A‖J0φ

〉

= n0v
2
t Γ

1/2
0A‖

Γ
1/2
0φ , (54)

〈

F0µJ0A‖J0φ

〉

=
v2

t

2B
[(2Γ

1/2
0 + ∇̂2

⊥
)A‖ + (2Γ

1/2
0 + ∇̂2

⊥
)φ], (55)

where the subscript φ or A‖ again designates the field on which the operator acts. These closures can be thought of
in terms of separate expansions of the two Bessel function operators, through first order in b, so that no cross term
enters.

The vφ ·∇ 〈FJ0 . . .〉 and vA‖ ·∇ 〈FJ0 . . .〉 terms introduce two additional complications. These terms contain both
the Maxwellian and the perturbed distribution, and the gyroaveraging terms are acted on by a perpendicular gradient
operator, requiring that gradients of both fluctuating and equilibrium quantities be kept. In considering these terms,

we redefine b
.
= 1

Ω

√

T⊥
m

, in terms of the total perpendicular temperature T⊥, which contains both an equilibrium part

(T0, as the equilibrium is assumed isotropic) and a fluctuating part, T̃⊥ = (p̃⊥ − T0ñ)/n0. The gradient of b is then
calculated as follows:

∇b =
b

T0
(∇T0 +∇T̃⊥) − 2b

B
∇B. (56)

Closing these FLR terms analogously to Eqs. 39-44 leads to, for example:

vφ · ∇ 〈J0F 〉 = vφ · ∇(nΓ
1/2
0 (b)), (57)

where n is the total density, n0 + ñ. Introducing the diamagnetic frequency iω∗
.
= −(cT0/eBn0)∇n0 · b̂×∇, and ratio

ηi = Ln/LT , where LT is the scale length of the equilibrium temperature, this leads to three linear terms:

vφ · ∇ 〈J0F 〉 = −n0iω∗Γ
1/2
0

eφ

T0
− n0

2
ηi∇̂2

⊥iω∗
eΦ

T0
+ n0∇̂2

⊥iωd
eφ

T0
+ NL. (58)

Nonlinear terms arise both from ñ and b, and can be written:

NL = vΦ · ∇ñ +
n0

2T0
[∇̂2

⊥vΦ] · ∇T̃⊥. (59)

To account for the vA‖ ·∇ and vφ ·∇ terms with higher powers of v‖ and µ, we note that the linear terms from Eq. 58
can be generalized as follows:

vφ · ∇n0g(b) = −n0g(b)iω∗
eφ

T0
− n0ηib

∂g

∂b
iω∗

eφ

T0
+ 2n0b

∂g

∂b
iωd

eφ

T0
. (60)

The treatment of the nonlinear terms is somewhat more subtle, as these can involve higher moments which are not
evolved. Following Ref.38, and introducing the notation NL(x) for the nonlinear terms generated by vφ · ∇ 〈FJ0x〉:

NL(v‖) = n0vΦ · ∇ũ‖ +
1

2T0
[∇̂2

⊥
vΦ] · ∇q̃⊥, (61)
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NL(mv2
‖ ) = vΦ · ∇p̃‖ +

n0

2
[∇̂2

⊥vΦ] · ∇T̃⊥, (62)

NL(mBµ) = vΦ · ∇p̃⊥ +
1

2
[∇̂2

⊥vΦ] · ∇q̃⊥, (63)

NL(mv3
‖ ) = vΦ · ∇q̃‖ + 3p0vΦ · ∇ũ‖ +

3

2
[∇̂2

⊥vΦ] · ∇q̃⊥, (64)

NL(mBv‖µ) = vΦ · ∇q̃⊥ + p0vΦ · ∇ũ‖ +
p0

2
[∇̂2

⊥vΦ] · ∇ũ‖ (65)

+
1

2
[∇̂2

⊥vΦ] · ∇q̃⊥ + [
ˆ̂∇

2

⊥vΦ] · ∇q̃⊥.

The vA · ∇ . . . nonlinear terms are closed identically to the above with the substitution Φ → A‖. However, the
vA · ∇ . . . terms in the q̃‖ and q̃⊥ equations contain higher moments which are closed using results from the next
section.

To simplify the equations, we introduce the following normalization. Time, parallel lengths, and perpendicular
lengths are normalized to vt/Ln, Ln and ρi respectively:

(t̂, k̂‖, k̂⊥) = (
tvt

Ln
, k‖Ln, k⊥ρi), (66)

and the fluctuating quantities are normalized as follows:

(φ̂, Â‖, n̂, û, p̂, q̂, r̂, ŝ) =
Ln

ρi
(
eφ

T0
,

A‖

ρiB
,

ñ

n0
,

ũ

vt
,

p̃

n0mv2
t

,
q̃

n0mv3
t

,
r̃

n0mv4
t

,
s̃

n0mv5
t

). (67)

Normalized quantities appear on the left. The caret designating a normalized quantity is dropped for simplicity of
notation. Note that these normalizations mesh with the gyrokinetic ordering such that all characteristic drift scales
are O(1). Because β is formally taken to be O(1), all shear Alfvén scales are O(1) as well.

C. Closures

Closures must be introduced for the highest moments, r and s, in order to have a complete and useful set of
gyrofluid equations. The terms requiring closure divide naturally into three categories, the parallel terms ∇‖r‖,‖ and
∇‖r‖,⊥, the toroidal terms ωd(r‖,‖+r‖,⊥), ωd(r‖,⊥+r⊥,⊥), ωd(s‖,‖+s‖,⊥), and ωd(s‖,⊥+s⊥,⊥), and the mirroring terms
r‖,‖∇‖ ln B, r‖,⊥∇‖ lnB, and r⊥,⊥∇‖ lnB. Following the work of Beer30, we separately treat each group of terms,
making closure approximations that accurately model the physical processes that each set of terms represents.

1. Parallel Landau Closures

Closures which provide an accurate model of linear Landau damping are chosen for the parallel terms, ∇̃‖r‖,‖ and

∇̃‖r‖,⊥, where we have introduced the notation ∇̃‖ = ∇‖ − vA‖ · ∇ = ∇‖ − b̂ × ∇A‖ · ∇. Landau damping along
the magnetic field occurs due to the velocity dependence of the k‖v‖ term in the kinetic equation. Different particles
stream along the field at different velocities, causing moments of F to phase mix away.

As an illustration, consider the one dimensional kinetic equation

∂f

∂t
+ v‖

∂f

∂z
= δ(t)f0(z, v), (68)

where f0 provides the initial condition. The solution to this simple equation f(z, v, t) = f0(z − vt, v)H(t), provides
Green’s functions which can be used to solve more general problems with additional source terms, such as the electric
field −(e/m)E‖

∂FM

∂v
. Consider an initial condition with a small single harmonic perturbation f0 = (n0+n1e

ikz)FM (v).

The general solution is just (n0 + n1e
ik(z−vt))FM (v), which simply oscillates in time at ω = kv and does not damp.

However, upon taking velocity space moments, the velocity integration introduces mixing of the phases as follows:
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n(z, t) =

∫

f dv = n0 + n1
eikz

√

2πv2
t

∫

dv e−ikvte−v2/(2v2

t
). (69)

The perturbed density n1 = n1(t=0)e
−k2v2

t
t2/2 decays with a Gaussian time dependence. This decay due to linear

Landau damping is not captured by a simple fluid model with a finite number of moments, and hence it must be
accounted for in the fluid closure if it is to be included in a fluid model.

A number of different “Landau closures” which model linear Landau damping in fluid models have been
developed41–46. Here the four moment model of Refs.44,13,30 is employed. This closure accurately models linear
kinetic response functions, conserves energy, and takes a simple, frequency independent form in Fourier space, al-
lowing for easy implementation in nonlinear initial value simulations. The introduction of electromagnetic effects
does not significantly alter the process of deriving linear Landau closures. Response functions are simply written
in terms of the total E‖ rather than φ. In Ref.47, Landau closures are derived for the general electromagnetic case
with both parallel and perpendicular magnetic fluctuations. Here we consider only perpendicular fluctuations, hence
the magnitude of the fluctuating field B̃ is zero to first order in the perturbation. The general response functions
and closures are given in Sec.IV of Ref.47. Here we take the B1 = 0 limit of that result, for the case in which the
equilibrium distribution is isotropic. In this limit the result is identical to the earlier result of Ref.12:

r‖,‖ = 3(2p‖ − n) + c‖T‖ −
√

2D‖

i|k‖|q‖
k‖

(70)

r‖,⊥ = p‖ + p⊥ − n −
√

2D⊥

i|k‖|q⊥
k‖

(71)

where c‖ = (32 − 9π)/(3π − 8), D‖ = 2
√

π/(3π − 8), and D⊥ =
√

π/2. Note that here and elsewhere the dissipative
terms in the closure (∼ |k‖|/k‖) are written in their Fourier space form for conciseness. In configuration space these
terms are convolution integrals.

Because the dissipative part of the closure above (the |k‖|/k‖ terms) is written in terms of moments with no
equilibrium component, the fluctuating field makes no contribution to the linear Landau closures. Hence the linear
Landau closure is equally accurate in the electrostatic and electromagnetic cases. However there is an additional
nonlinear Landau damping term due to A‖ which is discussed in Sec.VII of Ref.47. This and other nonlinear Landau
damping mechanisms are not accounted for in the fluid closures given here, though extensions to include some nonlinear
kinetic effects are of interest for future work.

2. Toroidal Closures

The velocity dependence of the ∇B and curvature drifts also introduces phase mixing. This process is modeled
using toroidal closures of Beer30, which include dissipative pieces proportional to |ωd|/ωd.

Beer’s closures include both Maxwellian parts and dissipative pieces derived by careful fitting with all parts of the
kinetic toroidal response function, and can be written in the following form:

r‖,‖ + r‖,⊥ = 7p‖ + p⊥ − 4n− 2i
|ωd|
ωd

(ν1T‖ + ν2T⊥) (72)

r‖,⊥ + r⊥,⊥ = p‖ + 5p⊥ − 3n− 2i
|ωd|
ωd

(ν3T‖ + ν4T⊥) (73)

s‖,‖ + s‖,⊥ = −i
|ωd|
ωd

(ν5u‖ + ν6q‖ + ν7q⊥) (74)

s‖,⊥ + s⊥,⊥ = −i
|ωd|
ωd

(ν8u‖ + ν9q‖ + ν10q⊥) (75)

where the complex coefficients take the form ν = νr + iνi|ωd|/ωd. The coefficients chosen are, in the form (νr, νi),
ν1 = (2.019,−1.620), ν2 = (0.433, 1.018), ν3 = (−0.256, 1.487), ν4 = (−0.070,−1.382), ν5 = (−8.927, 12.649),
ν6 = (8.094, 12.638), ν7 = (13.720, 5.139), ν8 = (3.368,−8.110), ν9 = (1.974,−1.984), ν10 = (8.269, 2.06). As shown
in Figs. 2.1 and 2.2 of Ref.30, these closures provide a good fit to the linear toroidal response functions, including a
reasonable model of the toroidal branch cut at ω/ωd = −k2

‖v
2
t /4ω2

d.

As noted in Ref.30, this set of toroidal closures accurately models the fast linear collisionless damping of zonal flows
for t < qR/vti

√
ε, but does not account for the residual undamped component of the zonal flow noted by Rosenbluth

and Hinton48. Efforts to incorporate this residual flow and other neoclassical effects into a new toroidal closure closure
are ongoing49.
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3. Mirroring closures

The mirroring terms r‖,‖∇‖ ln B, r‖,⊥∇‖ ln B, and r⊥,⊥∇‖ ln B incorporate trapped ion effects and magnetic pump-
ing. However, they do not introduce new dissipative processes and hence they are closed with simple Maxwellian
closures, again following Ref.30:

r‖,‖ = 6p‖ − 3n, (76)

r‖,⊥ = p‖ + p⊥ − n, (77)

r⊥,⊥ = 4p⊥ − 2n. (78)

Taken together, the closure approximations provide models of linear and nonlinear FLR effects, as well as parallel
phase mixing, drift resonance, and trapped particle effects. The accuracy of these closures is tested extensively through
linear benchmarks with kinetic theory given in Sec. VI and Ref.32.

D. Ion Collisions

Ion-ion collisions are modeled with a simple particle, momentum and energy conserving BGK operator50:

C(Fj) = −
∑

k

νjk(Fj − FMjk), (79)

where j and k are species indices, and νjk is the collision rate of species j with species k. Collisions cause the
distribution to relax to a shifted Maxwellian with the appropriate total (equilibrium+fluctuating) momentum and
energy. Upon linearizing, the single species operator can be written:

C(F ) = −νii

{

F1 −
[

n + u‖
v‖
vt

+ T

(

v2

2v2
t

− 3

2

)]

F0

}

, (80)

where n, u‖, and T = (T‖ + 2T⊥)/3 are normalized fluctuating moments, and v2 = v2
‖

+ 4B2µ2.
Ion-electron collisions are negligible due to the smallness of the electron-ion mass ratio. Electron-ion collisions are

considered in Sec. IV C.

E. Final Gyrofluid Equations

Incorporating the parallel, toroidal, and mirror term closures defined above, and including moments of the ion-ion
collision operator, yields the final set of single species electromagnetic gyrofluid equations.

The derivation in the previous sections has focused on a single ion species for simplicity. In general, tokamak
plasmas contain multiple ion species, as well as electrons. In some cases, such as the deuterium-tritium plasmas used
in fusion experiments, the bulk plasma may contain more than one dominant ion species. In addition, impurity ions
are expected to play an important role, especially near the plasma edge.

The extension to multiple species is reasonably straightforward. A separate set of gyrofluid equations is solved for
each species j, noting that charge e, mass m, and the equilibrium moments (n0, T0) and scale lengths are functions
of the species j.

Here each species is normalized to its own n0, vt etc., but one ion species is chosen as a reference. The reference
species is designated with the subscript i, and the following dimensionless constants are introduced, τj = T0j/T0i,
vj = vtj/vti, and ρ̂j = ρj/ρi (note that for electrons ρ̂j = ρ̂e < 0). Z is the ratio of the species charge to the unit
charge, Z = ej/|e|, and the reference species i is assumed to have Z = 1. ηj is the usual ratio of scale lengths
ηj = Lnj/LTj . The basic macroscopic length is taken to be the electron density scale length Lne, and the following

normalized scale length is defined for each ion species, L̂nj = Lnj/Lne. Time is normalized to Lne/vti, and the

normalized reference drift frequency is iωd ≡ (Lneρi/B2) ~B ×∇B · ∇.
The multi-species equations are then written as follows:

dn

dt
+ vjB∇̃‖

u‖
B

+ [
1

2
∇̂2
⊥
vΦ] · ∇T⊥ − vj [

1

2
∇̂2
⊥
vA] · ∇q⊥ (81)

−
(

1 +
ηj

2
∇̂2
⊥

) iω∗

L̂nj

Φ +

(

2 +
1

2
∇̂2
⊥

)

iωdΦ + iωdρ̂jvj(p‖ + p⊥) = 0,
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du‖
dt

+ vjB∇̃‖

p‖
B

+ [
1

2
∇̂2
⊥vΦ] · ∇q⊥ − vj [

1

2
∇̂2
⊥vA] · ∇T⊥ +

vjZ

τj
∇̃‖Φ (82)

+
vjZ

τj

∂A‖

∂t
+

(

1 + ηj(1 +
∇̂2
⊥

2
)

)

iω∗

L̂nj

vjA‖

+

(

p⊥ +
Z

τj

∇̂2
⊥Φ

2

)

vj∇‖ ln B + iωdρ̂jvj(q‖ + q⊥ + 4u‖) = 0,

dp‖
dt

+ vjB∇̃‖

q‖ + 3u‖
B

+ [
1

2
∇̂2
⊥vΦ] · ∇T⊥ + 2vj(q⊥ + u‖)∇‖ ln B (83)

−
(

1 + ηj(1 +
∇̂2
⊥

2
)

)

iω∗

L̂nj

Φ +

(

4 +
∇̂2
⊥

2

)

iωdΦ

+ iωdρ̂jvj(7p‖ + p⊥ − 4n) + 2|ωdρ̂jvj|(ν1T‖ + ν2T⊥) = −2

3
νs(p‖ − p⊥),

dp⊥
dt

+ vjB
2∇̃‖

q⊥ + u‖
B2

+ [
1

2
∇̂2
⊥vΦ] · ∇p⊥ + [

ˆ̂∇
2

⊥vΦ] · ∇T⊥ (84)

− vj[
1

2
∇̂2
⊥vA] · ∇(q⊥ + u‖)−

[

1 +
∇̂2
⊥

2
+ ηj

(

1 +
∇̂2
⊥

2
+

ˆ̂∇
2

⊥

)]

iω∗

L̂nj

Φ

+

(

3 +
3

2
∇̂2
⊥

+
ˆ̂∇

2

⊥

)

iωdΦ + iωdρ̂jvj(5p⊥ + p‖ − 3n)

+ 2|ωdρ̂jvj |(ν3T‖ + ν4T⊥) =
1

3
νs(p‖ − p⊥),

dq‖
dt

+ (3 + c‖)vj∇̃‖T‖ +
√

2D‖vj |k‖|q‖ + iωdρ̂jvj(−3q‖ − 3q⊥ + 6u‖) (85)

+ (3 + c‖)ηj
iω∗

L̂nj

vjA‖ + |ωdρ̂jvj|(ν5u‖ + ν6q‖ + ν7q⊥) = −νsq‖,

dq⊥
dt

+ vj∇̃‖T⊥ +
√

2D⊥vj|k‖|q⊥ + [
1

2
∇̂2
⊥vΦ] · ∇u‖ + [

ˆ̂∇
2

⊥vΦ] · ∇q⊥ (86)

− vj

[

ˆ̂∇
2

⊥ −
1

2
∇̂2
⊥

]

vA · ∇T⊥ +

[

ηj(1 +
ˆ̂∇

2

⊥) + (1 + ηj)
∇̂2
⊥

2

]

iω∗

L̂nj

vjA‖

+
Zvj

τj

∇̂2
⊥

2

(

dA‖

dt
+ ∇̃‖Φ− iωdρ̂jvjA‖

)

+ iωdρ̂jvj(−q‖ − q⊥ + u‖)

+

(

p⊥ − p‖ +
Z

τj
(
ˆ̂∇

2

⊥Φ − ∇̂2
⊥Φ

2
)

)

vj∇‖ lnB

+ |ωdρ̂jvj |(ν8u‖ + ν9q‖ + ν10q⊥) = −νsq⊥,

where d
dt = ∂

∂t + vΦ · ∇.
We emphasize that in the above equations, the fluid quantities (n, u‖, p‖, p⊥, . . .) are all for species j, and an implied

j subscript has been dropped. For clarity, we explicitly write here their relation to the physical quantities,

[n, u‖, p‖, p⊥, T‖, T⊥, q‖, q⊥] =
Lne

ρi

[

n1j

n0j
,
u1j

vtj
,

p‖1j

n0jmjv2
tj

,
p⊥1j

n0jmjv2
tj

,
T‖1j

T0j
,
T⊥1j

T0j
,

q‖1j

n0jmjv3
tj

,
q⊥1j

n0jmjv3
tj

]

, (87)

where 0 subscripts refer to equilibrium values and 1 subscripts refer to unnormalized fluctuating values. The gyroav-

eraging operators Γ
1/2
0 , ∇̂2

⊥, and
ˆ̂∇

2

⊥, which act only on the fields φ and A‖, are also species dependent through their

14



implied argument bj , which in Fourier space is k2
⊥
ρ2

j . Since Φ and A are gyroaveraged quantities, they also implicitly
depend on species j, via

[Φ,A‖] =
Lne

ρi

e

T0i

[

Γ
1/2
0 φ,

vt

c
Γ

1/2
0 A‖

]

. (88)

IV. THE ELECTRON LANDAU FLUID EQUATIONS

Electron dynamics can be described by the full set of gyrofluid equations in the previous section. However, the
full set of ion and electron equations will then contain widely separated spatial and temporal scales which make fully
resolved explicit numerical simulation challenging.

For many problems, a reduced set of equations, describing fluctuations on a smaller range of scales is appropriate.
Here we will develop a reduced electron model appropriate for the description of fluctuations on the ion drift and
shear Alfvén scales often associated with tokamak plasma microturbulence. An analytic expansion in the electron to
ion mass ratio is constructed, allowing electron dynamics on the characteristic ion and Alfvén scales to be treated
explicitly, while the fast electron transit time scale and the small spatial scales associated with the electron gyroradius
and the electron skin depth are removed from the set of fluid equations to be solved numerically.5

The resulting electromagnetic electron Landau fluid equations include the effects of electron temperature and density
gradients, electron E ×B motion, Landau damping, electron-ion collisions, and the parallel electron currents which,
along with parallel ion currents, give rise to the parallel magnetic potential. The equations given here focus on the
dynamics of the passing electrons. Developing an electromagnetic model of trapped electron dynamics analogous to
the electrostatic model of Beer30 is left as an important piece of future work.

A. Analytic Expansion in the Electron Mass Ratio

We invoke an analytic expansion in the electron/ion mass ratio, similar to the technique employed by Kadomtsev
and Pogutse51. This expansion removes the small electron gyroradius scale and the fast electron transit time scale
from the equations, leaving an efficient model appropriate for the study of turbulence on ion and shear Alfvén scales.

A lowest order model, containing no finite electron mass terms, will be derived first. This simple model will then
be extended to include higher order dissipative terms in Sec. IV C.

1. Electron FLR and Transit

To efficiently study fluctuation scales on the order of the ion gyroradius, we employ a subsidiary formal ordering in
the smallness of the electron/ion mass ratio in order to remove electron finite Larmor radius terms. The gyroaveraging
operator J0 can be expanded 1 + k2

⊥
ρ2

e + .... In the gyrokinetic ordering employed here, k⊥ρi ∼ 1 the first electron

FLR term is O(me/mi). We introduce the subsidiary ordering parameter δ ∼
√

me/mi and note that electron FLR
effects first enter at O(δ2).

The small electron mass also implies a fast electron thermal speed (vte � vti), and rapid electron streaming along
the magnetic field. The speed of this streaming motion along the field introduces a Courant constraint on the size of
the time step which can be used in an explicit numerical simulation. Adding electron parallel dynamics to a simulation
which previously modeled only ions reduces this time step constraint by a factor of

√

Temi/Time ∼ 60 for a deuterium
fusion plasma. This is a severe numerical burden, though perhaps one that it may be possible to contemplate bearing
in the near future, as computational power continues to increase. Imposing the mass ratio ordering

√

me/mi ∼ δ � 1,
allows the fast electron transit motion to be analytically removed.

5This is not to suggest that microturbulence on ρe and c/ωpe scales does not exist or is not important in some phenomena.
When these scales are important, the full electron gyrofluid equations, or another appropriate physics model should be used.
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2. General Ordering

The use of the electron/ion mass ratio as an ordering parameter has a long history in plasma physics. It has
been invoked in many forms of the magnetohydrodynamic equations as well as in the more detailed equations of
Kadomtsev and Pogutse51, and in many other fluid and simplified kinetic formulations. In the context of gyrokinetics,
the mass ratio expansion has generally been used to justify the neglect of electron FLR terms, and treatment of
electron dynamics with the drift kinetic equation. Here we wish to consistently apply the ordering me/mi ∼ O(δ2)
to all terms in the drift fluid equations.

The fundamental assumption is that the fluctuating scales of interest are those typical of ion thermal, drift and gyro-
motion, and those of shear Alfvén waves. Length and time scales associated with electron thermal and gyromotion
are taken to be small.

For a typical perpendicular wavenumber k⊥, we impose the following ordering:

k−1
⊥
∼ ρi ∼ c/ωpi � ρe, c/ωpe, (89)

where ωp is the plasma frequency. The lengths on the left are independent of the electron mass, while the two lengths

on the right are proportional to
√

me. Note that the skin depth c/ωpj can be written as ρj

√

2/βj for the single species
case, where the species βj = 8πn0jT0j/B2. Formally taking β ∼ O(1), the above ordering of lengths follows directly

from
√

me/mi ∼ O(δ).
For a typical fluctuation frequency ω we choose the ordering:

ω ∼ k‖vti ∼ ω∗ ∼ ωDi ∼ ωDe ∼ k‖cs ∼ k‖vA � k‖vte ∼ ωETG, (90)

where ωD is the curvature and ∇B drift frequency, cs =
√

T0e/mi is the cold ion sound speed, and vA = B/
√

4πn0mi

is the Alfvén speed. We define ωETG to be a frequency characteristic of the electron temperature gradient (ETG)

mode. These short wavelength modes typically have kθ ∼ 1/ρe, and hence ωETG ∼
√

mi/me ω∗, where ω∗ is the
diamagnetic frequency taken with kθρi ∼ 1. The quantities on the left are independent of me while those on the right

are proportional to m
−1/2
e .

The desired time and length scale orderings above follow directly from me/mi ∼ O(δ2) and βj ∼ O(1). The
constraints on the validity of this expansion are found through inspection of Eqs. 89 and 90. The separation of scales
between the shear Alfvén frequency and the electron transit frequency (and equivalently between ρi and the electron
skin depth) requires βe � 2me/mi. In fusion relevant plasmas, this condition is generally satisfied everywhere except
very near the plasma edge. Another constraint is provided by the condition ω∗ � k‖vte. Using a typical ballooning

k‖ ≈ 1/qR, and w∗ ≈ kθρivti/Ln, this requires kθρi

√

me/mi � Ln/qR. For large kθρi ≈ 1, this condition can break
down in the edge region where q is often large, while Ln can become rather short.

B. Derivation of the Electron Equations

The formal expansion in mass ratio can now be used to derive a set of equations which describe electron dynamics
consistent with the time and space scale orderings described above.

All fluctuations, including those in the electron moments ñe, ũ‖e, p̃e etc., are taken to occur on the ion/Alfvén
scales. It is thus convenient to normalize fluctuating electron moments to the ion quantities, vti and mi, so that a
consistent ordering is easily maintained.6 The fluctuating electron moments are normalized as follows:

(n̂e, ûe, p̂e, q̂e, r̂e, ŝe) =
Ln

ρi
(
ñe

n0
,
ũe

vti
,

p̃e

n0miv2
ti

,
q̃e

n0miv3
ti

,
r̃e

n0miv4
ti

,
s̃e

n0miv5
ti

), (91)

where the normalized quantities on the left are all O(1). In the general multiple ion species case, the quantities mi

and vti above refer to the reference ion species, as in Sec. III E.
This normalization differs from that employed in Sec. III E, where each species’ moments are normalized to its own

mass and thermal velocity. Lengths, times, and the fields φ and A‖ are normalized as in the ion equations. The

6Normalization to the Alfvén scales vA and mi, or the sound wave scales cs and mi is equivalent. We also note that the
reduced electron equations can be derived directly from a mass ratio expansion of Eqs.81-86, provided that the presence of the
electron mass in the normalization (Eq.67) is properly taken into account.
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unsubscripted normalized operators are again defined in terms of the Z = 1 ion charge (e), the reference ion species
mass (mi) and temperature (T0i), and the equilibrium electron density (n0) and density scale length (Ln):

iω̂∗ = −Ln

vti

cT0i

eBn0
∇n0 · b̂×∇, (92)

iω̂d =
Ln

vti

cT0i

eB3
B×∇B · ∇. (93)

The normalized electron density equation is:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + iωd(2φ− 2ne/τ − T‖e − T⊥e) = 0, (94)

where the carets on normalized quantities have been dropped for conciseness of notation. The notation ∇̃‖ = ∇‖ −
b̂× ∇A‖ · ∇ has been employed. Note that no factors of me appear in the above equation, and all terms are of the
same order.

The momentum equation can be written:

me

mi

∂u‖e

∂t
+

me

mi
vE · ∇u‖e + B∇̃‖

p‖e

B
+ (1 + ηe)iω∗

A‖

τ
(95)

+
me

mi
iωd(q‖e + q⊥e + 4u‖e/τ )− ∂A‖

∂t
− ∇̃‖φ + p⊥e∇‖ lnB = 0.

The electron inertia term, which is associated with the electron skin depth, and the curvature and ∇B drift terms
are both small by a factor of me/mi ∼ δ2. Neglecting these higher order terms, and expanding the pressure, noting
that p‖e = T‖e + ne/τ because of the normalization to ion temperature, the momentum equation can be recast as a
time evolution equation for the magnetic potential:

∂A‖

∂t
+ ∇̃‖φ−

1

τ
∇̃‖ne − ∇̃‖T‖e − (1 + ηe)iω∗

A‖

τ
+ (T‖e − T⊥e)∇‖ ln B = 0. (96)

The equations for T‖e and T⊥e needed to complete the above set come from the q‖e and q⊥e moment equations.
The p‖e and p⊥e moment equations provide information on the next order evolution of the temperature fluctuations.

The q‖e and q⊥e equations contain the higher moments re and se which are closed as in Sec. III C. However, the
electron closure terms are not in general O(1). Consider for example the Maxwellian closure for the moment r‖,‖e. This

closure is derived by taking the first order fluctuating part of the generalized Maxwellian result r‖,‖e = 3p‖
2
e/mene.

The factor of 1/me insures that this term is O(δ−2). In the normalized units:

r‖,‖e → 6
mi

τme
T‖e + 3

mi

τ2me
ne, (97)

and similarly for r‖,⊥e and r⊥,⊥e. The Landau damping portion of the closure is smaller than the Maxwellian part by
√

me/mi, and is neglected here, though it is reconsidered in Sec. IV C.
Before normalizing or substituting in the closures, the q‖e equation can be written to lowest order:

B∇̃‖

r̃‖‖
e

B
− 3T0eB∇̃‖

p̃‖
e

meB
+ 3ηe

n0T
2
0e

me
iω∗

eA‖

cT0i
+ 3(r̃‖⊥e

− T0i

me
p̃⊥e

)∇‖ lnB = 0, (98)

where the d/dt and ωd terms again drop out, as they are higher order in me/mi.
Substituting the Maxwellian closures, normalizing and simplifying gives:

∇̃‖T‖e
+ ηeiω∗A‖/τ = 0. (99)

The second term on the left is the gradient of the equilibrium temperature T0e along the perturbed field, b̂×∇A‖ ·∇Toe,

or equivalently the gradient along the total field ∇̃‖T0e, as T0e is constant along the equilibrium field. Eq. 99 can thus
be written in the more physically intuitive form:

∇̃‖(T‖e
+ T0e) =

1

B
(B0 + B1) · ∇(T‖e

+ T0e) = 0. (100)
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Quite simply, the total temperature is constant along the total magnetic field including fluctuations. This result is
expected from our ordering of the velocities vti, vA � vte. The speeds of the microturbulence being evolved are all
slow compared to vte, and furthermore the Alfvén speed at which the magnetic field fluctuates is also much less than
the electron thermal speed. Hence as the field fluctuates across the equilibrium temperature gradient, the electrons
are able to almost instantaneously re-thermalize, leaving no electron temperature gradient along the total field. Note
that this condition is quite different from the occasionally employed closures ∇‖T̃e = 0, or T̃e = 0, both of which
fail to properly account for the magnetic fluctuations across the equilibrium temperature gradient, and lead to errors
when ηe is finite.

Turning now to the q⊥e moment equation, and again inserting Maxwellian closures, normalizing, and keeping only
the dominant terms, the equation becomes:

∇̃‖T⊥e
+ ηeiω∗A‖/τ + (T⊥e

− T‖
e
)∇‖ ln B = 0. (101)

Again the second term is simply the derivative along the perturbed field of the equilibrium temperature (T0e). A
mirror force term enters as well.

Eqs. 99 and 101 can be recast by defining Te = (T‖
e

+ T⊥e
)/2 and δTe = (T⊥e

− T‖
e
). Note that once Eq. 99 has

been substituted into the momentum equation, the temperature enters the momentum equation only as a mirroring
term δTe∇‖ ln B, and enters the density equation only as −iωdTe. The equations for Te and δTe are:

∇̃‖Te + ηeiω∗A‖/τ +
δTe

2
∇‖ lnB = 0, (102)

(∇̃‖ +∇‖ ln B) δTe = 0. (103)

In either the small mirror force limit (∇‖ lnB → 0) or the high collisionality limit (δTe → 0), the above equations

reduce to ∇̃‖Te = −ηeiω∗A‖/τ . Because the model only describes passing electrons, we employ this simple limit.
The full set of normalized electron equations is then:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + 2iωd(φ−

ne

τ
− Te) = 0, (104)

∂A‖

∂t
+ ∇̃‖φ−

1

τ
∇̃‖ne −

1

τ
iω∗A‖ = 0, (105)

∇̃‖Te = −ηe

τ
iω∗A‖, (106)

where the ωdTe term in Eq. 104 is evaluated by numerically inverting Eq. 106. It is assumed that any fluctuating
component of Te which is constant on a field line does not contribute significantly to the ωdTe term.

The above equations provide a simple description of electromagnetic electron dynamics on shear Alfvén and ion
scales. While only two moment equations need be solved, the physics content of a full six moment model has been
incorporated to lowest order in me/mi.

Though the model is simple, it represents a substantial improvement over the adiabatic electron models (ne/τ =
φ − 〈φ〉surface) that have been used to describe the passing electrons in many previous gyrofluid and gyrokinetic
particle simulations. In addition to finite-β effects and Alfvén wave dynamics, the above model also incorporates
electron E × B, curvature, and ∇B drift motion, as well as the E × B nonlinearity and nonlinear terms due to
magnetic flutter. The accuracy of this model in describing both finite-β ion drift waves and shear Alfvén waves is
gauged in Sec. VI with a series of linear benchmarks.

Furthermore, the numerical challenge of resolving short electron space and time scales has been entirely removed.
The electron mass appears nowhere in Eqs. 104-106 or in the normalizations (Eq. 91), and it is apparent that the
electron scales, (ρe, c/ωpe, k‖vte, ωETG), all of which contain the electron mass, have been successfully removed from
the equations which are numerically evolved.

It can be shown, in a proof analogous to that of Cowley52, that this electron model preserves magnetic flux surfaces.
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C. Electron Collisions and Landau Damping

One consequence of keeping only the lowest order terms in the mass ratio expansion is the absence of any damping
mechanism in the electron channel. It is well known that damping terms, even when linearly small, can significantly
impact the nonlinear dynamics of an otherwise dissipationless system. While the gyrofluid system has dissipation
through ion collisions and ion Landau damping, it is expected that damping in the electron channel may play an
important role as well.

The dominant electron damping mechanisms are expected to be Landau damping and pitch angle scattering colli-
sions with ions. These effects are introduced by extending the mass ratio expansion to include terms of O(

√

me/mi).
Eqs. 94 and 96 remain unchanged, but additional terms are introduced into the closures for T⊥e and T‖e. The lowest

order T‖
(0)
e = T⊥

(0)
e = T

(0)
e is given by Eq. 106. The full expressions for the first order corrections T⊥

(1)
e and T‖

(1)
e can

be derived from Eqs. 81-86. Here the w∗, wd → 0 limit is taken, leaving only the correction due to Landau damping
along the field:

∇‖T‖
(1)
e =

√

π

2τ

me

mi
|k‖|u‖e, (107)

and T⊥
(1)
e = 0, where the operator |k‖| is again written in its Fourier space form for conciseness. A more precise

description of finite electron mass effects is possible either by using the full expressions for T‖
(1)
e and T⊥

(1)
e , or by

employing the full six moment equation set (Eqs.81-86) to describe the electrons.
Electron-ion collisions are modeled with a Lorentz pitch angle scattering operator. Adding this operator to the

right hand side of the drift kinetic equation and taking moments leads to the following collision term in the normalized
electron momentum equation:

−νei
me

mi
(u‖e − u‖i), (108)

where νei is the effective scattering rate, normalized to vti/Ln. Because νei ∼ m
−1/2
e , this term is ordered νei ∼ δ−1

so that the collision term enters at O(δ). This caveat allows a formally consistent ordering in the mass ratio. It is
recognized that the collision term may be smaller than other neglected terms. The collision term is kept to assess the
impact of this damping mechanism in the electron channel.

Including the pitch angle scattering model and the first order temperature correction (Eq. 107) in Eqs. 94 and 96,
in the limit of small mirror force, yields the following set of electron equations:

∂ne

∂t
+ vE · ∇ne + B∇̃‖

u‖e

B
− iω∗φ + 2iωd(φ−

ne

τ
− Te) = 0, (109)

∂A‖

∂t
+ ∇̃‖φ−

1

τ
∇̃‖ne −

1

τ
iω∗A‖ −

√

π

2τ

me

mi
|k‖|u‖e = νei

me

mi
(u‖e − u‖i), (110)

∇̃‖Te = −ηe

τ
iω∗A‖. (111)

The wdT‖
(1)
e term has been neglected, and the ∇‖T‖

(1)
e introduces a two moment Landau damping model44. Note that

the Landau damping operator (|k‖|) acts on an odd moment (u‖), which has no equilibrium component, so that there
is no linear magnetic flutter contribution to the Landau closure, avoiding a concern expressed by Finn and Gerwin53.
However, magnetic flutter does introduce an additional nonlinear Landau damping term, as discussed in Ref.47. The
size of this term has been calculated in simulations and found to be small.

This electron model can be viewed as an extension of the equations of Kadomtsev and Pogutse51 to include toroidal
drifts, parallel ion flow, and an improved Landau damping model which properly phase-mixes E×B driven pertur-
bations.

The model can be reduced to the familiar adiabatic response in the appropriate limits. Taking the limits β → 0,
which implies A‖ → 0 from Eq. 114, and me/mi → 0, Eq. 110 reduces to the adiabatic electron response ∇‖(φ−ne/τ ) =
0; or, with the appropriate choice of constants, ne = τ (φ − 〈φ〉). The adiabatic response can also be derived in the
formal limit k‖ →∞.

Upon neglect of the “small scale” effects associated with the ∇p term in the momentum equation (here these are

the ∇̃‖ne and iω∗A‖ terms), and in the limit me/mi → 0, Eq. 110 reduces to the parallel ideal MHD Ohm’s Law

E‖ = −∂A‖
∂t − ∇̃‖φ = 0. Including the collisional term gives the parallel Resistive MHD Ohm’s Law. Adding the

−1/τ (∇̃‖ne − iω∗A‖) terms gives a version of the extended MHD Ohm’s Law appropriate for ω � k‖vte.
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V. POISSON’S EQUATION AND AMPERE’S LAW

The system of equations is completed using the gyrokinetic Poisson’s Equation and Ampere’s Law. In the limit of
small Debye length, kλD � 1, the gyrokinetic Poisson’s equation becomes a quasineutrality constraint2:

ne = n̄i − (1− Γ0)φ, (112)

where n̄i is the gyrophase independent part of the real space ion density. The (1 − Γ0)φ term, often called the
polarization density, arises from the gyrophase dependent part of the distribution function, and accounts for the
difference between guiding center density and ion particle density.

Following Beer30, the transformation from gyrocenter to real space is accomplished with the simple Padé approxi-
mation:

n̄i =
1

1 + b/2
ni −

2b

(2 + b)2
T⊥i

, (113)

where b = k2
⊥
ρ2

i . This approximation is first order accurate in b for both ni and T⊥i
, and it behaves properly (n̄i → 0)

for large b.
Within the gyrokinetic ordering, the parallel Ampere’s Law is33:

∇2
⊥
A‖ = −τβe

2
(ū‖

i
− u‖e), (114)

where βe = 8πn0T0e/B2.
The transformation to real space is again accomplished with a Padé approximation:

ū‖i
=

1

1 + b/2
u‖i −

2b

(2 + b)2
q⊥i

. (115)

Poisson’s Equation (Eq. 112) and Ampere’s Law (Eq. 114), together with six ion moment equations (Eqs. 81-86),
the two electron moment equations (Eqs. 109-110), and the Te condition (Eq. 111), provide a complete description
of the ten unknowns (ni, u‖i, p‖i, p⊥i, q‖i, q⊥i, ne, u‖e, Te, φ, and A‖). The system is solved by evolving the eight
partial differential equations in time, while using Eq. 112 to solve for φ, Eq. 114 to solve for u‖e, and Eq. 111 to solve
for Te.

It is shown in Sec. 2.3 of Ref.54 that this system of equations exactly reproduces the kinetic dispersion relation in
the local fluid limit (k2

‖v
2
ti � ω2 � k2

‖v
2
te, |ωd| � |ω|, k2

⊥ρ2
i � 1). The ability of the equations to model nonlocal

kinetic toroidal drift instabilities is tested in the following section with a series of linear benchmarks.

VI. LINEAR BENCHMARKS WITH KINETIC THEORY

Benchmarking the model against linear kinetic theory is an important step in verifying the accuracy and reliability
of both the electromagnetic gyrofluid physics model and the simulation code used to implement the model.

An extensive series of linear benchmarks in the electrostatic case is given in Ref.30, so we focus here on the impact
of finite plasma β. Finite-β effects on the collisionless ion temperature gradient (ITG) instability are benchmarked in
toroidal flux tube geometry. In addition, the growth rates and real frequencies of the kinetic ballooning mode (KBM)
are benchmarked in toroidal geometry. Both the case with no temperature gradient and the more interesting case
with finite ion temperature gradient are investigated. It is shown that the gyrofluid model is able to reproduce the
finite growth rates of the KBM below the ideal MHD β-limit in this case.

It is important to note that this set of benchmarks provides a test of the electron physics model, as well as the ion
physics model. While a simple adiabatic electron model can produce the correct ITG growth rate in the electrostatic
limit, this is not the case for the finite-β ITG and KBM modes considered here, as discussed for example in Sec. 2.3 of
Ref.54. A description of electron ∇B and curvature drift motion and proper consideration of magnetic flutter across
equilibrium electron temperature gradients are required to accurately calculate growth rates of both the finite-β ITG
and KBM instabilities.
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A. The Finite-β ITG Instability

The toroidal ion temperature gradient (ITG) instability is widely thought to play an important role in core trans-
port. Capturing the finite-β effects on this mode has been a principal motivation for developing an electromagnetic
turbulence model.

Linear kinetic theory for the electromagnetic case in nonlocal toroidal geometry is quite involved, and a fairly limited
set of codes is available. A code developed by Kim, Horton and Dong16, solves a simplified set of integral equations
in ballooning coordinates, using an s − α equilibrium model. Fig. 1 shows a benchmark using parameters selected
from Fig. 6a in Ref.16. The plot shows linear growth rate vs. the safety factor q, at two values of β. Quantitative
agreement in the finite-β case is found to be as good as in the electrostatic case. The trend emphasized in Ref.16,
that finite-β effects become more important at higher q, is reproduced by the gyrofluid model.

The structure of the eigenfunctions of φ and A‖ in ballooning space has also been analyzed. For the parameter
set β = 0.8%, ηi = 2.5, ηe = 2, kθρi = 0.5, εn = 0.2, s = 0.6, q = 1.5, and τ = 1, the gyrofluid eigenfunctions have
been compared to Fig. 5 of Ref.16. Good agreement is found in both the shape and parity of the real and imaginary
eigenfunctions of φ and A‖ as well as in the ratio A‖/φ� 1. We note that the real part of φ has even parity, while the
real part of A‖ is odd, and in the normalized units, the ratio φmax/A‖max ' 15. The eigenfunctions extend roughly 2π
in ballooning angle before becoming negligible. The shape and parity of these eigenfunctions and the ratio A‖/φ� 1
are all typical of the finite-β ITG mode.

A second set of toroidal benchmarks employing the widely used GS2 linear gyrokinetic code developed by M.
Kotschenreuther55 is given in Ref.32. Good agreement is found in the growth rate and frequency spectra of the
finite-β ITG mode.

B. The Kinetic Ballooning Mode

The electromagnetic gyrofluid model also introduces instabilities in the shear Alfvén branch of the dispersion relation
not found in the electrostatic case. An example is the kinetic ballooning mode (KBM)17–22, here defined to be an
instability in the shear Alfvén branch of the disperion relation, analogous to the ideal MHD ballooning mode, with the
addition of kinetic effects such as FLR, drift resonance, and Landau damping. The KBM is driven unstable largely
by bad curvature effects in the presence of density and/or temperature gradients, though kinetic effects impact the
instability threshold and growth rate. [Because the plasma equilibrium is taken to be Maxwellian, there is no fast
particle drive, and hence no unstable toroidal Alfvén eigenmode (TAE).] The KBM is expected to play an important
role in transport in cases where it is driven unstable below the ideal MHD threshold by the toroidal ion drift resonance.
Benchmarks are performed both in the flat temperature gradient case, where the KBM goes unstable exactly at the
ideal MHD βc, and the finite ion temperature gradient case, where the KBM is unstable below βc.

1. Benchmarks with Zero Ion Temperature Gradient

A set of benchmarks is performed against the kinetic code developed by Hong, Horton and Choi21. It should be
noted that this code does not solve the complete kinetic equations, but rather focuses on the coupling between drift
and shear Alfvén waves, and neglects ion transit and bounce frequency resonant effects.

Fig. 2 shows a comparison with Fig. 17 in Ref.21. Growth rate and frequency spectra are compared in a simple
circular geometry at β = 6.25%. Good agreement is found for the frequency, which is nearly dispersionless with a
phase velocity of roughly −.6csρs/Ln in the ion diamagnetic direction. Agreement for the growth rate is also good,
though some variance is seen at short wavelengths. A comparison of the growth rate and frequency of the KBM as a
function of β is given in Ref.32, and good agreement is found.

7The figure captions on Figs. 1 and 2 on p.1593 of this article have been reversed. The figure in the upper right is Fig. 1,
while the figure in the lower left is Fig. 2.
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2. Benchmarks with Finite Ion Temperature Gradient

The KBM becomes particularly interesting in the presence of finite ion temperature gradient because, as shown by
Andersson and Weiland56, finite ηi is a necessary and sufficient condition for instability of the shear Alfvén branch
below the ideal MHD β limit. Hence this mode may play a significant and direct role in driving transport in plasmas
which are ideal MHD stable.

A set of benchmarks is again performed, using parameters and results from Ref.21. Fig. 3 shows frequency and
growth rate spectra for the toroidal KBM at two values of β = 3.125%, 6.25%. Other parameters are identical to
Fig. 2, except that ηi = 2. Agreement between the two models is fairly good, with the gyrofluid model correctly
accounting for the dramatic increase in growth rates at finite ηi. A comparison of the growth rate of the finite-ηi

toroidal KBM is given in Ref.32, and good agreement is found, with the gyrofluid model accurately reproducing the
finite growth rate of the mode both below and above the ideal ballooning β limit.

A final benchmark, Fig. 4, shows the growth rate dependence on the magnetic shear, for two different values of
εn. Again quantitative agreement is reasonably good, with the gyrofluid model successfully reproducing the trends
emphasized in Ref.21.

VII. SUMMARY AND CONCLUSION

A model has been developed to describe electromagnetic microturbulence and transport in long mean-free-path
plasmas. The model consists of a set of electromagnetic multi-species gyrofluid and electron Landau fluid equa-
tions derived by taking moments of the nonlinear toroidal electromagnetic gyrokinetic equation33,4, along with the
gyrokinetic Poisson Equation and Ampere’s Law.

A hierarchy of six ion moment equations is truncated with kinetic closures, based on Refs.44,12,30, incorporating
both parallel and toroidal kinetic effects. The full set of electromagnetic ion gyrofluid equations include models of
parallel Landau damping, ion drift resonance, ion-ion collisions, and linear and nonlinear finite-Larmor-radius (FLR)
effects. Magnetic fluctuations enter the ion equations through the inductive electric field, as well as through several
linear and nonlinear magnetic flutter terms.

In general, the multi-species electromagnetic gyrofluid equations may be used to describe electrons as well as ions.
However, for many types of problems, numerically efficient reduced electron equations containing a smaller range of
space and time scales are appropriate. Here a reduced set of electron equations is derived via an analytic expansion
in temporal (ω ∼ ω∗, ωd, k‖vti, k‖vA � k‖vte) and spatial (k−1

⊥ ∼ ρi � ρe, c/ωpe) scales. This expansion results in a
simple set of electron fluid equations which describe electromagnetic electron dynamics on the typical ion drift and
shear Alfvén length and time scales, while analytically removing the numerically challenging electron transit time
scale as well as the small electron gyroradius and skin depth length scales. While the resulting electron model is
simple and relatively straightforward to implement numerically, it describes substantial physics not incorporated in
the adiabatic electron models that have been used to describe the passing electrons in many previous gyrofluid and
gyrokinetic particle simulations. In addition to finite-β effects and Alfvén wave dynamics, the model also incorporates
electron E×B, curvature, and ∇B drift motion, as well as the E×B nonlinearity and nonlinear terms due to magnetic
flutter. The use of an electron temperature closure appropriate for ω ∼ ωA � k‖vte allows for the proper inclusion of
the ∇Te as well as the ∇ne drive of the kinetic ballooning mode. Models of parallel electron Landau damping as well
as electron-ion collisions are also derived.

The model has been benchmarked with linear gyrokinetic calculations, and good agreement has been found for the
growth rates and real frequencies of both the finite-β toroidal ion temperature gradient (ITG) and kinetic Alfvén bal-
looning (KBM) instabilities. In particular, the model has been found to accurately reproduce the finite-β stabilization
of the toroidal ITG mode. The model is also able to reproduce the behavior described by Refs.56,21,22, in which the
kinetic ballooning mode is driven unstable below the ideal MHD ballooning limit (βc) by ion drift resonance. Results
of nonlinear toroidal microturbulence simulations using the model are given in Refs.54,32.
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FIG. 1. Linear growth rates of the toroidal ITG mode as a function of the safety factor q, for β = 0 and β = .8% , with
ηi = 2.5, ηe = 2, kθρi = 0.5, εn = 0.2, s = 0.6, and τ = 1. The gyrofluid model is compared to linear kinetic theory in ŝ − α
geometry, with α = q2βe/εn[1 + ηe + τ(1 + ηi)] chosen to be consistent with β and q.
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FIG. 2. Linear growth rate (positive) and frequency (negative) spectra of the toroidal kinetic ballooning mode. The gyrofluid
model is compared to the kinetic code of Ref.21, in a simple circular equilibrium at β = 6.25%. Other parameters are s = 1,
q = 2, τ = 1, εn = 0.25, ηi = ηe = 0.
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FIG. 3. Frequency (negative) and linear growth rate (positive) spectra for the toroidal kinetic ballooning mode in the presence
of a finite ion temperature gradient. Parameters chosen are ηi = 2, ηe = 0, εn = 0.25, s = 1, q = 2, and τ = 1. The gyrofluid
model is compared to a linear kinetic calculation at two values of β = 3.125%, 6.25%.
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FIG. 4. Linear growth rate of the kinetic ballooning mode vs. magnetic shear, at two values of εn = 0.1, 0.25, for β = 9.375%,
kθρi = 0.3, q = 2, τ = 1, ηi = 2, and ηe = 0. The gyrofluid model is compared to linear kinetic theory21.
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