
Landau fluid models of collisionless magnetohydrodynamics
P. B. Snyder and G. W. Hammett
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

W. Dorland
Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060

~Received 30 June 1997; accepted 15 August 1997!

A closed set of fluid moment equations including models of kinetic Landau damping is developed
which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter
regime. The model is fully electromagnetic and describes the dynamics of both compressional and
shear Alfvén waves, as well as ion acoustic waves. The model allows for separate parallel and
perpendicular pressurespi and p' , and, unlike previous models such as the Chew–Goldberger–
Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3
11 moment model and a more accurate 412 moment model are developed, and both could be
useful for numerical simulations of astrophysical and fusion plasmas. ©1997 American Institute
of Physics.@S1070-664X~97!03311-9#
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I. INTRODUCTION

The dynamics of collisionless plasmas are of great in
est both in astrophysics and in laboratory fusion resea
However, such plasmas are often studied using mo
which implicitly assume high collisionality and which ignor
important kinetic effects such as parallel Landau damping
particular, models based on Ideal magnetohydrodynam
~MHD! assume collisional equilibration on a fast time sc
and are not in general applicable to collisionless plasm
The Chew–Goldberger–Low~CGL! theory1 relaxes the high
collisionality assumption, but assumes an adiabaticity con
tion which is rarely met, and neglects parallel Landau dam
ing, which can be important in the collisionless regim
Hence results from CGL theory are not always reliable,
evidenced by the well known factor of six error in the CG
prediction of the stability threshold for the mirro
instability.2,3 Simplified models such as Ideal MHD an
CGL are often employed despite their limitations because
the qualitative insights they provide and the difficulty
working directly with a kinetic formulation. There are som
particle simulations of collisionless MHD phenomena,4–7 but
there are also many fluid MHD simulations which could be
efit from being extended into lower collisionality regimes

In this paper we will develop a relatively simple descri
tion of collisionless plasma dynamics which includes para
Landau damping. We wish to construct a model which
valid over a wide parameter regime and can later be n
rowed and simplified for particular cases. As a starting po
we will employ Kulsrud’s formulation of collisionless
MHD.3,8,9 Kulsrud’s formulation requires solving a kineti
equation for the perturbed pressurespi andp' , or introduc-
ing further assumptions such as adiabaticity to evaluate
pressures. We shall take moments of Kulsrud’s kinetic eq
tion, and close the moment hierarchy with Landau closu
analogous to those derived by Hammett, Perkins,
Dorland,10–12 generalized to allow anisotropic pressures a
magnetic perturbations. This yields a fairly simple set of m
ment equations with desirable nonlinear conservation pr
erties, and a linear response function very similar to the
3974 Phys. Plasmas 4 (11), November 1997 1070-664X/97
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netic response of a collisionless bi-Maxwellian plasma.
We shall refer to the model as Landau MHD, becau

the model incorporates the effects of parallel Landau dam
ing, and it is valid within the collisionless MHD regime. It i
useful to consider the Landau MHD model as an extens
of CGL theory which incorporates Landau damping, and c
incorporate collisional effects as well.

One of the limitations of the Landau MHD model w
present is that it is derived only in the standard ordering
ideal MHD, e;v/Vc;kr, where the plasma varies on fre
quency scalesv small compared to the gyrofrequencyVc ,
and varies on spatial scales 1/k long compared to the gyro
radius r. Thus it covers phenomenon related to compr
sional and shear Alfve´n waves and instabilities, ion acoust
waves, and ion and electron kinetic effects such as Lan
damping. However, it does not include drift-waves or oth
micro-instabilities ~which have been the focus of othe
Landau-fluid work! because they result from finite-Larmo
gyro radius~FLR! effects which vanish in the usual MHD
ordering. Also, though collisional effects on the ion and ele
tron heat fluxes and on the pressure tensor can be kept in
model, there is no resistive component to the ideal Ohm
law. This is because the parallel current(snsesuis

50 to

lowest order in the 1/e expansion of Kulsrud’s collisionles
MHD, and collisions would alter the Ohm’s law only a
higher order in thee;v/V;kr expansions. Thus the
plasma is still an ideal electrical conductor in our model a
the magnetic field lines are frozen into the plasma.

Alternative orderings are possible to bring in FLR
resistive effects. One approach would be to take fluid m
ments of the electromagnetic gyrokinetic equation,13,14which
allows k'r;1, and work out the appropriate closures. A
other approach, taken by Chang and Callen,15,16 in effect
carries Kulsrud’s expansion to higher order in FLR, by usi
k'r;ki /k';D with D2;e;v/Vc . This ‘‘extended-
MHD’’ ordering orders the compressional Alfve´n wave out
of the equations, but retains the slower Shear Alfve´n and ion
acoustic waves, and includes resistive effects in the Oh
law as well as drift-wave instabilities with moderatek'r
/4(11)/3974/12/$10.00 © 1997 American Institute of Physics
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;e1/2. Chang and Callen use an alternative derivation
Landau-fluid closures which is actually linearly exact~em-
ploying the fullZ functions!. It reduces to our formulation in
the appropriate limits.11 Their approach advances 3 momen
~density, parallel flow, and temperature! for each species
with linear closures for the heat flux and stress tensor, w
here we advance up to 6 moments~4 parallel and 2 perpen
dicular moments! for each species. These six moment eq
tions retain additional nonlinear effects, and simplify som
of the manipulations of the stress tensor by keeping sepa
p' andpi ~which is also essential to study the mirror inst
bility that Kulsrud used to point out problems with the CG
theory!. They can be reduced to simpler systems with few
moments in various limits. Future work could try to exte
our methods to the electromagnetic gyrokinetic equation
merge with the methods of Chang and Callen for
extended-MHD ordering.

There are previous authors who have tried some fo
of Landau closures in MHD equations. Bondeson a
Ward17 used viscous and pressure-damped models of Lan
damping in studying wall stabilization of external MH
modes in advanced tokamak designs. An important featur
this work was the use of Lagrangian variables so that theukiu
operator involved in Landau-fluid closures would~at least
linearly! effectively operate along perturbed magnetic fie
lines, which Finn and Gerwin18 showed was important to do
However, the Bondeson and Ward model was a relativ
low-order Landau-fluid model and was not entirely cons
tent, assuming high collisionality in the derivation of th
initial 1-fluid equations and low collisionality elsewhere.
recent paper by Medvedev and Diamond19 has incorporated
Hammett–Perkins type closures into a set of two fluid eq
tions, used to describe large amplitude shear Alfve´n and
magnetosonic waves in interplanetary plasmas. T
Medvedev and Diamond equations assume isotropic p
sure, and are valid only in a limited parameter regimeb
'1). The Landau MHD model presented here should p
vide an extension of this previous work, useful for the stu
of resistive wall stabilization, as well as for general proble
of MHD mode growth and saturation in both laboratory a
astrophysical plasmas.

The organization of this paper is as follows. In Section
we summarize Kulsrud’s collisionless MHD formulation.
Section III, a moment hierarchy based on Kulsrud’s kine
equation is derived and discussed. In Sections IV and V
sures for ‘‘412’’ and ‘‘3 11’’ models are derived, follow-
ing Hammett and Perkins,10 and Dorland.12 In Section VI we
investigate collisional effects, including the reduction of t
model to an appropriate limit of the Braginskii equations.
Section VII we discuss practical nonlinear implementation
the closure terms. In Section VIII, the Landau MHD form
lation is applied to analyze the mirror instability, and in Se
tion IX we offer concluding remarks.

II. COLLISIONLESS MHD

As a starting point, we employ the collisionless MH
model described by Kulsrud,3 based on earlier work by
Kruskal and Oberman8 and by Rosenbluth and Rostoker9

This formulation begins with the Vlasov–Maxwell system
Phys. Plasmas, Vol. 4, No. 11, November 1997
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equations, and asymptotically expands inrc /L, the small-
ness of the gyroradius relative to macroscopic scale leng
This is accomplished by the formal expansion of the dis
bution functionf , the magnetic fieldB, and the electric field
E in the inverse charge 1/e. This is equivalent to taking al
relevant frequencies in the problem to be very small co
pared to the cyclotron frequency,Vc , and the plasma fre-
quency,vp .

In this ordering, the Vlasov equation reduces to a con
tion on the zeroth-order parallel~relative to the magnetic
field! electric fieldEi0

50, and the following kinetic equation
for the zeroth-order distribution function of each spec
f 0s

(v i ,m,r ,t):

] f 0s

]t
1~v ib̂1vE!•“ f 0s

1S 2b̂•

DvE

Dt
2mb̂•“B1

es

ms
Ei D

3
] f 0s

]v i
50, ~1!

wherees is the charge on speciess, b̂ is a unit vector in the
magnetic field direction b̂5B/B, vE8c(E3B)/B2,
m8v'

2 /2B, andD/Dt 8 ]/]t1(v ib̂1vE)•“.
Combining moments of this kinetic equation with Ma

well’s equations and taking the usual low Alfve´n speed limit
vA

2!c2 yields Kulsrud’s set of collisionless MHD equation

]r

]t
1“•~rU!50, ~2!

rS ]U

]t
1U•“UD5

~“3B!3B

4p
2“•P, ~3!

]B

]t
5“3~U3B!, ~4!

P5p'I1~p'2pi!b̂b̂, ~5!

p'5(
s

ms

2 E f 0s
v'

2 d3v, ~6!

pi5(
s

msE f 0s
~v i2U•b̂!2d3v, ~7!

(
s

esE f 0s
d3v50, ~8!

wherer is the total mass density,U5vE1uib̂ is the fluid
velocity, andP is the pressure tensor.

The above set of equations is exact to zeroth order in
expansion parameter, but the kinetic equation itself, Eq.~1!,
must be used to evaluatepi and p' to close the system
Because Eq.~1! is difficult to solve directly, this system is
rarely employed without further simplification.

One such simplification is the introduction of the doub
adiabatic law~also known as CGL theory3,1!. In the CGL
model, Eq.~1! is replaced by two equations of state whic
determinep' andpi :

d

dt S p'

rBD50, ~9!
3975Snyder, Hammett, and Dorland
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dt S piB2

r3 D50, ~10!

where the total derivative is defined byd/dt 8 ]/]t1(uib̂
1vE)•“.

These equations of state are equivalent to setting the
flow tensorQ to zero. This assumption that both electron a
ion heat flow are negligible is strictly valid only when th
mode phase velocity (v/ki) is much greater than the electro
and ion thermal speeds, a criterion rarely satisfied for Alfv´n
waves and never satisfied for sound waves. Furthermore
simple truncation of the moment hierarchy implied by th
assumption eliminates Landau damping from the proble
leaving the system with no damping at all, which can lead
unphysical behavior. However, CGL theory is often e
ployed, even when it is invalid, because of its simple, L
grangian form. Of course this can lead to incorrect results
in the well known case of the mirror instability.

III. THE MOMENT HIERARCHY

We wish to develop a formulation which maintain
much of the simplicity of the CGL model, while increasin
its range of applicability and including models of kinet
Landau damping. This will be accomplished by first taki
moments of Eq.~1! and, in the next section, closing th
hierarchy using Landau closures analogous to those de
oped for the electrostatic case by Hammett and Perkins.10

Multiplying Eq. ~1! by B and adding Eq.~4! multiplied
by f s , leads to a kinetic equation in the phase space cons
ing form:

]

]t
f sB1“•@ f sB~v ib̂1vE!#1

]

]v i
F f sBS 2b̂•

DvE

Dt

2mb̂•“B1
es

ms
Ei D G5BC~ f s!. ~11!

The subscript zero onf s has been suppressed. All calcul
tions involve only the zeroth-order distribution function
the original expansion in 1/e, though a subsidiary orderin
will be introduced to derive the Landau closures.

Note the addition of a collision operator to the right ha
side of the kinetic equation to allow for generalization
regimes where collisions play an important role. Here
simple BGK collision operator20 is employed:

C~ f j !52(
k

n jk~ f j2FM jk!, ~12!

where n jk is the effective collision rate of speciesj with
speciesk. These collisions causef j to relax to a shifted
Maxwellian with the effective temperature of speciesj and
the mass velocity of speciesk,

FM jk5
nj

~2pTj /mj !
3/2expF2

mj~v i2uik!
2

2Tj
2

mjmB

Tj
G ,
~13!

where Tj5(Ti j12T' j )/3. The BGK collision operator in
this form conserves mass, momentum, and energy.

Defining the velocity space moments as follows:
3976 Phys. Plasmas, Vol. 4, No. 11, November 1997
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ns5E f sd
3v, nsuis

5E f sv id3v

pis
5mE f s~v i2ui!

2d3v, p's
5mE f smBd3v

qis
5mE f s~v i2ui!

3d3v, q's
5mE f smB~v i2ui!d3v

r i ,is
5mE f s~v i2ui!

4d3v, r i ,'s
5mE f smB~v i2ui!

2d3v

r','s
5mE f sm

2B2d3v,

Poisson’s equation and Ampere’s law reduce, to lowest or
in 1/e, to the conditions(snses50 and(snsesuis

50. Spe-
cializing to the case of one species ofZ51 ions impliesn
5ne5ni and ui5ui i

5uie
. The usual definitions for tota

higher momentspi5(spis
, p'5(sp's

, qi5(sqis
, etc. are

employed. Note that, becauseui i
5uie

, the collision term
serves primarily to isotropize the distribution. Taking int
grals of the form*dv i dm v i

jmk... of Eq.~11! then leads to
the following set of exact moment equations:

]n

]t
1“•~nU!50, ~14!

]ui

]t
1U•“ui1b̂•S ]vE

]t
1U•“vED1

1

nms
“•~ b̂pis

!

2
p's

nms
“•b̂2

es

ms
Ei50, ~15!

]pis

]t
1“•~Upis

!1“•~ b̂qis
!12pis

b̂•“U•b̂22q's
“•b̂

52 2
3 ns~pis

2p's
!, ~16!

]p's

]t
1“•~Up's

!1“•~ b̂q's
!1p's

“•U2p's
b̂•“U•b̂

1q's
“•b̂52 1

3 ns~p's
2pis

!, ~17!

]qis

]t
1“•~Uqis

!1“•~ b̂r i ,is
!13qis

b̂•“U•b̂2
3pis

nms
b̂

•“pis
13S p's

pis

nms
2

pi
s
2

nms
2r i ,'s

D“•b̂52nsqis
, ~18!

]q's

]t
1“•~Uq's

!1“•~ b̂r i ,'s
!1q's

“•~uib̂!2
p's

nms
b̂•“pis

1S p'
s
2

nms
2

p's
pis

nms
2r','s

1r i ,'s
D“•b̂52nsq's

, ~19!

where r5n(me1mi), U5vE1uib̂, and n i5n i i 1n ie and
ne5nee1nei .

Using the conditionui i
5uie

to solve forEi @as given in
Kulsrud’s Eq. ~49!#, it is straightforward to show that the
Snyder, Hammett, and Dorland



qu
y
in

p
ts

ch

th

n
er
rg

e
de
g
le
es
r

he

b
io

l

ld
g a
rom

ize
u-

ling
in a
bi-

el

ax-
on.
ich
ar
of

ia-
icu-

ent

th-
r

te
oth

to
n

first two moment equations, Eqs.~14! and~15! are equivalent
to Eq. ~2!, and the parallel component of Eq.~3!, that is,

]ui

]t
1U•“ui1b̂•S ]vE

]t
1U•“vED

1
1

r
@ b̂•“pi1~pi2p'!“•b̂#50. ~20!

A. Conservation properties

Just as in the electrostatic case,10 the moment hierarchy
has favorable conservation properties. Each moment e
tion acts as a conservation relation, provided the hierarch
closed by approximating the highest moments, without
serting additional terms such as viscosity.

Momentum is conserved by any closure which kee
Eqs.~2! and ~3! and closes for pressure or higher momen
Combining Eqs.~2! and ~3! yields

]~rU!

]t
52“•FrUU1S B2

8p
I2

BB

4p D1PG . ~21!

Similarly, energy is conserved by any closure whi
uses approximations only for the heat flow momentsqis

and
q's

, or higher moments. To demonstrate this, define
kinetic1thermal1magnetic energy density E5rU2/2
1B2/8p1p'1pi/2. Combining Eqs.~2!, ~3!, ~4!, ~16!, and
~17! yields:

]E

]t
52“•F S 1

2
rU21p'1

1

2
pi DUG2“•FB3~U3B!

4p G
2“•~U•P!2“•q, ~22!

where q[(q'1qi/2)b̂. Integrating over volume, we ca
take the left hand side as the rate of change of the en
inside a volume, and the right hand side as the flow of ene
across the surface. We note that Kulsrud’s equations~66! and
~67!3 ~not employed elsewhere in the paper! appear to be in
error.

IV. THE 412 MODEL

A closure for the moment hierarchy must now be d
rived to produce a complete model. In general, a mo
which evolves more moments will be more accurate, thou
more complex and more computationally intensive to imp
ment. A 412 moment model, that is a model which evolv
four parallel moments (n,ui ,pis

,qis
) and two perpendicula

moments (p's
,q's

), will be developed first. The 412
model will truncate the moment hierarchy with Eqs.~18! and
~19!, and will require closures forr i ,is

and r i ,'s
. Simpler

models, such as a 311 moment model, can be derived as t
low frequency limit of the 412 model, following a proce-
dure developed by Dorland.12

A closure for the 412 model will be derived following
the procedure laid out by Hammett and Dorland.10,12 This
procedure, derived for electrostatic perturbations, must
extended for use with general electromagnetic perturbat
in two dimensions~parallel and perpendicular!. The colli-
sionless case (n!v) will be considered first, and collisiona
Phys. Plasmas, Vol. 4, No. 11, November 1997
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effects will be investigated in Sec. VI. The closure shou
conserve mass, momentum, and energy, while providin
linear response which closely matches that expected f
kinetic theory.

A. Linear response from kinetic theory

We first use the guiding center kinetic equation, Eq.~1!,
to derive the kinetic linear response. We wish to linear
around a zeroth-order distribution which allows the deco
pling of electron and ion pressures as well as the decoup
of parallel and perpendicular pressures that one expects
collisionless plasma. To accomplish this we choose a
Maxwellian distribution with separate equilibrium parall
and perpendicular temperaturesTi0s

and T'0s
. Since the

plasma is collisionless, it is not expected to be exactly M
wellian, even for a particular species in a particular directi
However, we wish only to calculate a linear response wh
we can approximate with our Landau closure. The line
response thus needs to provide the correct general form
the linear Landau damping, allowing for independent var
tion of species pressures, and of the parallel and perpend
lar pressures. Hence the bi-Maxwellian is a conveni
choice.

We introduce a subsidiary ordering in which the zero
order distribution is bi-Maxwellian with no zeroth-orde
flows or gradients,f s5FMs1 f 1s , where

FMs5
n0

~2p/ms!
3/2T'0s

Ti0s

1/2
expF2

msB0m

T'0s

2
msv i

2

2Ti0s
G .

~23!

The moments~n5n01n1 , U5U1 , etc.!, the magnetic field
(B5B01B1), and the parallel electric field (Ei5Ei1

) are
similarly linearized, with the zeroth-order part uniform. No
again that this is a subsidiary ordering. All terms are zer
order with respect to the initial ordering in 1/e.

Equation~1! is then linearized and Fourier analyzed
find f 1s . Definingẑ as the unit vector in the parallel directio
B05B0ẑ, and defining the wave vectork5kzẑ1kxx̂,

f 1s5S 2
v'

2

2

ikzB1

B0
1

es

ms
Ei D msv i

Ti0s
~2 iv1 ikzv i!

f 0s .

~24!

Taking moments, keeping in mind that*d3v52p*(B0

1B1)dmdv i , yields

n1s52
in0

kzTi0s

esEiR~zs!1
B1n0

B0
F12

T'0s

Ti0s

R~zs!G ,

~25!

pi1s
52

ip i0s

kzTi0s

esEi@112zs
2
R~zs!#

1
B1pi0s

B0
F12

T'0s

Ti0s

~112zs
2
R~zs!!G , ~26!
3977Snyder, Hammett, and Dorland
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p'1s
52

ip'0s

kzTi0s

esEiR~zs!

1
2B1p'0s

B0
F12

T'0s

Ti0s

R~zs!G , ~27!

where zs5v/&ukzuv t is
is the normalized frequency, an

R(zs)511zsZ(zs) is the electrostatic response functio
The usual plasma dispersion function is defined@for Im(z)
.0# by Z(z)5(1/Ap)*dt exp(2t2)/(t2z), and the thermal
velocities are defined to bev t is

5ATi0s
/ms and v t's

5AT'0s
/ms.

Note that it is possible to solve forEi using quasineu-
trality, and to solve forB1 using Eq.~4!. However, we find it
most convenient and physically enlightening to leave the
sponse functions in the above form for matching to the m
ment model.

B. The 4 12 Landau closure

We now choose a closure for our 412 hierarchy which
will closely match the linear response calculated in the p
vious section. As noted we require closures for bothr i ,is

and
r i ,'s

. Additional terms such as viscosity would violate e
ergy conservation10,11 and so will not be employed in the 4
12 equations.

The linearized moment equations in the collisionlessn
50) limit are, omitting the subscript on perturbed mome
and defining“ i8b̂0•“,

]n

]t
1n0“•U50, ~28!

]ui

]t
1

1

n0ms
“ ipis

1
~p'0s

2pi0s
!

n0ms

“ iB1

B0
2

es

ms
Ei50, ~29!

]pis

]t
1pi0s

“•vE1“ iqis
13pi0s

“ iui50, ~30!

]p's

]t
12p'0s

“•vE1“ iq's
1p'0s

“ iui50, ~31!

]qis

]t
1“ ir i ,is

2
3pi0s

n0ms
“ ipis

1S 2r i ,i0s
13r i ,'0s

1
3pi0s

2

n0ms

2
3pi0s

p'0s

n0ms
D “ iB1

B0
50, ~32!

]q's

]t
1“ ir i ,'s

2
p'0s

n0ms
“ ipis

1S r','0s
22r i ,'0s

2
p'0s

2

n0ms

1
p'0s

pi0s

n0ms
D “ iB1

B0
50. ~33!

The bi-Maxwellian valuesr i ,i0s
53pi0s

/n0ms , r i ,'0s

5pi0s
p'0s

/n0ms , andr','0s
52p'0s

/n0ms are easily calcu-
lated. Fourier transforming into (k,t) space, and using th
3978 Phys. Plasmas, Vol. 4, No. 11, November 1997
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s

linearized Equation~4!, k•vE5vB1 /B0 , yields a simple set
of equations for each moment in terms of the other mome
and the perturbed magnetic field.

The system is closed by writing the highest mome
~r i ,is

and r i ,'s
! as a linear sum of the lower moments, wi

coefficients that are in general functions ofk and the equi-
librium quantities. Generalized linear response functions
then be derived. The closure coefficients are determined
comparison with linear kinetic theory in the high and lo
frequency limits.

Guided by previous work,10,12we choose closures with
bi-Maxwellian part and an additional term which mode
phase mixing. We first try a simple generalization of the
12 closure derived by Dorland12 for the electrostatic case
modified for the case of a bi-Maxwellian equilibrium distr
bution:

r i ,is
53v tis

2 ~2pis
2Ti0s

n!1b in0v tis

2 Tis

2&D iv tis

ik iqis

ukiu
, ~34!

r i ,'s
5v t's

2 pis
1v tis

2 p's
2v tis

2 T'0s
n2&D'v t is

ik iq's

ukiu
.

~35!

The coefficientsb i , D i , and D' are determined by
matching the perturbed density and perpendicular pressu
the kinetic results in the adiabatic (uzu!1) and fluid
(uzu@1) limits. It is possible to match the density respon
through orderz2 for small uzu and through order 1/z5 for
large uzu. The p' response can be matched through ordez
for small uzu and through order 1/z2 for large uzu. This yields
b i5(3229p)/(3p28), D i52Ap/(3p28), and D'

5Ap/2 ~the same result as in the earlier electrosta
derivation12!.

The density response is then

n1s52
in0

kzTi0s

esEiR4~zs!1
B1n0

B0
F12

T'0s

Ti0s

R4~zs!G ,

~36!

where R4(zs) is a four-pole model of the electrostatic re
sponse functionR(zs):

R4~zs!

5
422iApzs1~823p!zs

2

426iApzs1~1629p!zs
214iApzs

31~6p216!zs
4

.

~37!

The linear kinetic response functions for the 4 parallel m
ments n,ui ,pis

,qis
are all modeled equally well, with

R4(zs) replacingR(zs) in the expressions for each. The
12 density response is compared to linear kinetic respo
in Figs. 1 and 2. Note that in the figures, the quasineutra
relation n1i5n1e has been used to eliminateEi from the
expressions for the response functions.
Snyder, Hammett, and Dorland
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In the p's
response,R(zs) is modeled partially by the

four-pole function R4(zs) and partially by the two-pole
function R2(zs)51/(12 iApzs22zs

2), yielding

p's
52

ip'0s

kzTi0s

esEiR4~zs!1
2B1p'0s

B0

3F12
T'0s

Ti0s

S R4~zs!

2
1

R2~zs!

2 D G . ~38!

As shown in Figs. 3 and 4, thep's
response is not matche

as closely as the parallel moment response for largezs , but
the fit is still quite good.

Note that we could have chosen a more general form
the r i ,is

andr i ,'s
closures, involving all lower moments an

the perturbed magnetic field. However, upon matching
linear kinetic response in theuzu!1 anduzu@1 limits, these
general closures will reduce to the closure given here.

The complete 412 system of equations is Eqs.~2!
through~5!, plus Eqs.~16! through~19! closed by the inverse
Fourier transform of Eqs.~34! and ~35!. The system can be
solved numerically ink-space where the closure function
are more easily evaluated.

V. THE 311 MODEL

For many applications, a simpler, less computationa
intensive model will prove adequate. The simplest mo
which evolvespi and p' involves truncating the hierarch
with Eqs.~16! and~17!, using closure approximations forqi

andq' . We refer to such a model as a ‘‘311 model’’ be-
cause it evolves 3 parallel moments~n, ui , pi! and 1 per-
pendicular moment (p'). Note that the CGL model is a 3
11 model which invokes the simple closureqi5q'50.

The 311 closures can be derived following the proc
dure laid out in the previous section, by writingqi andq' as
a sum of the lower moments andB1 , and solving for coef-

FIG. 1. The real part of the normalized linear density respo
(n1 / ikxjxn0), versus real normalized frequency (z i5v/&ukiuvTi i

). The 3

11 and 412 moment Landau MHD models are compared with linear
netic theory. Predictions of CGL theory and ideal MHD theory are a
shown. Parameters chosen areZ51, T'0

/Ti0
51, T'0i

5T'0e
, Ti0i

5Ti0e
,

andAmi /me540.
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ficients by matching with the linear kinetic density and pe
pendicular pressure response. However, the 311 closures
for both qis

and q's
can be more simply derived as th

zs→0 limit of the 412 model, following the moment reduc
tion scheme outlined by Dorland.12 Parker and Carati21

showed how to extend this scheme to an arbitrary numbe
moments, and used it to show some similarities to renorm
ization methods.

Substituting the 412 closures into Eqs.~32! and~33!, in
(k,t) space, and taking the limituzsu!1 yields

qis
52n0A8

p
v t is

ik iTis

ukiu
, ~39!

q's
52n0A2

p
v t is

ik iT's

ukiu
1n0A2

p
v t is

T'0s

3S 12
T'0s

Ti0s

D ik iB1

ukiuB0
. ~40!

Note the term proportional toB1 in theq' closure. This term
is not found in the electrostatic case, whereB150, and it
also vanishes for isotropic equilibrium pressures. This te
is needed to properly conservem linearly in the presence o
magnetic field compression and anisotropic pressure.

Substituting the closures, Eqs.~39!–~40!, into the 311
equations yields the density response:

n1s52
in0

kzTi0s

esEiR3~zs!1
B1n0

B0
F12

T'0s

Ti0s

R3~zs!G ,

~41!

and the perpendicular pressure response:

e

FIG. 2. The imaginary part of the normalized linear density respo
(n1 / ikxjxn0), versus real normalized frequency (z i5v/&ukiuvTi i

). The 3

11 and 412 moment Landau MHD models are compared with linear
netic theory. Both CGL theory and Ideal MHD theory predict no imagina
density response. Parameters are identical to those in Fig. 1.
3979Snyder, Hammett, and Dorland
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p's
52

ip'0s

kzTi0s

esEiR3~zs!1
2B1p'0s

B0

3F12
T'0s

Ti0s

S R3~zs!

2
1

R1~zs!

2 D G , ~42!

whereR3(zs) is a three-pole model of the electrostatic r
sponse function:

R3~zs!5
22 iApzs

223iApzs24zs
212iApzs

3
, ~43!

and R1(zs) is a one-pole model ofR(zs), R1(zs)51/(1
2 iApzs). The 311 density andp' responses are plotted i
Figs. 1 through 4. Of course the response functions, part
larly for p' , do not fit the kinetic results as well as for th
412 model. However, the qualitative behavior is corre
and the behavior in both limits (zs!1) and (zs@1) is accu-
rate.

The complete 311 system of equations is Eqs.~2!
through ~5!, plus Eqs.~16! and ~17! closed by the inverse
Fourier transform of Eqs.~39! and ~40!. This set is signifi-
cantly simpler than the 412 equations, while still conserv
ing particles, momentum, and energy, and providing a r
sonable model of the linear kinetic response.

Further moment reduction to 310, 211, 210, and even
110 models is possible. These simpler models can be us
in certain cases where conservation of thermal energy is
important. However, the 311 and 412 models allow a
separate evolution ofpi andp' , which is often important in
describing collisionless modes.

VI. COLLISIONAL EFFECTS

The 311 and 412 Landau fluid collisionless MHD
models have been derived for the completely collisionl

FIG. 3. The real part of the normalized linear total perpendicular pres
response (p'1

/ ikxjxp'0
), versus real normalized frequency (z i

5v/&ukiuvTi i
). The 311 and 412 moment Landau MHD models ar

compared with kinetic theory. Predictions of CGL theory and ideal MH
theory are also shown. Note the significant variation in the realp' response
between the 311 model and the kinetic model, even for largez. Parameters
are identical to those in Fig. 1.
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case, where the collision rate is very small compared t
typical mode frequency (n!v). However, it is possible to
introduce some collisional effects into the models using
collision operator such as the BGK operator introduced
Sec. III. It is then possible to examine regimes with a wi
range of collisionality, provided thatn!Vc , as required by
the initial ordering. The accuracy with which collisional e
fects are modeled will of course be limited by the accura
of the initial collision operator employed. Furthermore, t
modeling of certain collisional effects, such as moment
transfer and resistive tearing of magnetic field lines, is ha
pered by the use of only the lowest-order collisionless MH
expansion in inverse charge.

The moment hierarchy previously derived@Eqs. ~14!
through ~19!# already includes the collision terms arisin
from a simple BGK collision operator. However, the form
the equations is quite different from the forms normally us
in MHD. We will attack this discrepancy by rewriting Eqs
~16! through ~19!, and showing that they reduce approx
mately to Braginskii’s transport equations22 in the limit
v,ukuv ts

!ns!Vc ~v is a typical mode frequency, andk is a
typical wave number!.

First define an average pressure,ps5(pis
12p's

)/3, a
differential pressuredps5pis

2p's
, and a heat flowqs

5qis
/21q's

. We can then divide the pressure tensor,Ps,
into an isotropic part and an anisotropic part labeledPs. That
is Ps5psI1Ps5psI1(2dpsI12dpsb̂b̂)/3. Combining
Eqs.~16! through~19! then yields

dps

dt
1

5

3
ps“•U52

2

3
“•~ b̂qs!2

2

3
Ps:“U, ~44!

ddps

dt
1

5

3
dps“•U1Ps:“U13psb̂•“U•b̂2ps“•U

23q's
“•U1“•@ b̂~qis

2q's
!#52nsdps , ~45!

reFIG. 4. The imaginary part of the normalized linear total perpendicu
pressure response (p'1

/ ikxjxp'0
), versus real normalized frequency (z i

5v/&ukiuvTi i
). The 311 and 412 moment Landau MHD models are

compared with kinetic theory. Both CGL theory and ideal MHD theo
predict no imaginary pressure response. Parameters are identical to tho
Fig. 1.
Snyder, Hammett, and Dorland
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1“•F b̂S r i ,is

2
1r i ,'s

D G1
3

2
qis

b̂•“U•b̂

2

3
2 pis

1p's

nms
b̂•“p's

1q's
“•~uib̂!1S p's

2

nms
1

p's
pis

2nms

2
3p's

2

2nms
2

r i ,'s

2
2r','s

D“•b̂52nsqs . ~46!

A. The high collisionality limit

In the limit of high collisionality (n@v), the above
three equations yield an approximation to the Bragins
transport equations,22 with the conditionn!Vc , as required
by the initial ordering.

Formally expanding all moments in the collision tim
(1/n), it is apparent from Eqs.~16!–~19! that qi0s

5q'0s

5dp0s50. Equation~45! then reduces, to lowest order, to

dp1s52
p0s

ns
~3b̂•“U•b̂2“•U!.

If ns from the original BGK collision operator is taken to b
the reciprocal of Braginskii’s collision time (ns51/tsBrag

),

the resulting expression forPs5(2dpsI12dpsb̂b̂)/3
matches Braginskii’s result to within an order unity consta
~0.96 forZ51 ions, and 0.73 for electrons!.

Similarly, a heat flux nearly matching Braginskii’s ca
be derived in the same limit. To lowest order, Eq.~46! be-
comes

“•F b̂S r i ,i0s

2
1r i ,'0s

D G2
5

2

p0s

n0ms
b̂•“p0s

1S 2
r i ,'0s

2
2r','0s

D“•b̂52nsq1s . ~47!

In this collisional limit, ther 0 moments will take on their
Maxwellian values (r i ,i0s

53p0
2/msn0 ,r i ,'0s

5p0
2/msn0 ,

r','0s
52p0

2/msn0). Substituting yields

q1s52
5

2

p0

nsms
“ iT0s ,

which matches the Braginskii heat fluxes to within factors
order unity.

To match Braginskii’s results more precisely, one cou
replace the simple BGK collision operator used here wit
more precise Landau or Fokker–Planck operator. T
should allow reproduction of the collisional energy flow b
tween species (Qs) as well as the above heat flow and a
isotropic pressure terms. However, modeling momentum
change terms is problematic because the initial form
expansion in 1/e used to derive the collisionless MHD equ
tions impliesui i

5uie
. The effects of resistive momentum

exchange thus require going to higher order in the id
MHD ordering, or using an alternative ordering procedur
Phys. Plasmas, Vol. 4, No. 11, November 1997
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B. Collisionally modified 3 11 closure

Collisional effects have not been considered in the d
vation of the Landau closures themselves. In principle, i
possible to rederive the linear kinetic response functions w
collision terms, and choose Landau closures which ma
this collisional linear response. However, a simpler pro
dure appears to be adequate.

This alternate approach,23,24 is to derive a collisionless
closure for a many moment model~here the 412 model!,
and then reduce the number of moments by taking the
frequency limit of the highest moment equations, with t
collisional terms included. This will incorporate some col
sional effects into the lower moment closure~here it will
include the collisional effects described by theqi and q'

equations into the 311 model!. The modified 311 closures
resulting from this procedure are

qis
528n0v tis

2
ik iTis

~A8pukiuv t is
1~3p28!ns!

, ~48!

q's
52

n0v t is

2 ik iT's

SAp

2
ukiuv t is

1nsD
1S 12

T'0s

Ti0s

D n0v tis

2 T'0s
ik iB1

B0SAp

2
ukiuv t is

1nsD . ~49!

These closures allow a smooth transition from the co
sionless regime where Landau damping is important, to
collisional regime where Landau damping vanishes.

Hence some collisional effects can be included with
the Landau collisionless MHD model, and the model can
extended for use in the marginally collisional regimen
;v) as well as the collisionless regime (n!v). However,
the accurate modeling of some collisional effects, parti
larly those associated with momentum exchange, is m
difficult by the use of the collisionless MHD ordering. A
model based on Braginskii or resistive MHD is more app
priate for use in the highly collisional regime (n@v).

VII. NONLINEAR IMPLEMENTATION OF THE
CLOSURE TERMS

The closures for both the 412 and 311 models employ
terms containingukiu/ki . Numerical evaluation of these
terms ink-space is straightforward for electrostatic problem
~such as ion temperature gradient/drift-wave turbulenc!,
since only a simple Fourier transform along the equilibriu
magnetic field direction is required. But as pointed out
Finn and Gerwin,18 Landau damping must be evaluate
along perturbed field lines, i.e. Landau damping involv
particles mixing due to their free-streaming along the to
(equilibrium1fluctuating) magnetic field, and soki involves
Fourier transforms along these perturbed magnetic fi
lines. Conceptually, a parallel heat flux is driven by a para
temperature gradient:qi}“ iTi5b̂•“Ti . Linearizing this
3981Snyder, Hammett, and Dorland
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yields qi1
}b̂0•“Ti1

1b̂1•“Ti0
. We see that considerin

only the Fourier transform of“Ti1
in the b̂0 direction would

not be sufficient even linearly. In fact, in the ideal MH
limit where the magnetic field is frozen into the fluid, if th
temperature is initially uniform along a magnetic field line
will always remain uniform along a field line if the plasm
motion is incompressible, so that the perpendicular grad
term will exactly cancel the parallel gradient term:qi1

}b̂0

•“Ti1
1b̂1•“Ti0

50. To account for this, Bondeson an

Ward17 employed Lagrangian variables and applied a L
dau damping model only to the component of the tempe
ture fluctuations driven by compression. Alternatively, o
could use the higher-order 412 moment equations which
involve ukiu operating on a higher moment likeqi . Upon
linearizing“ iqi5b̂0•“qi1

1b̂1•“qi0 , we often have only to

consider the first term sinceqi0
is zero for many types o

equilibria.
However, the situation is more complicated for nonline

electromagnetic calculations. Then the nonlinear termb̂1

•“Ti1
can not formally be neglected compared tob̂0

•“Ti1
. To be rigorous, the transformation between t

k-space closure and its real space equivalent must be m
along the perturbed field lines. One way to do this would
with a Lagrangian coordinate system which moved with
magnetic field and had one coordinate aligned with the m
netic field. Then the standard fast Fourier transform~FFT!
algorithm along this coordinate could be used to evaluate
ukiu closures. Alternatively, if the simulation uses a fix
Eulerian grid, then at every time step whereukiuTi is to be
evaluated, one would need to mapTi from the simulation
grid to a field-line-following coordinate system, carry out t
FFT, and then map the result back to the simulation grid

One can avoid FFT’s by working directly with the rea
space form of the the closures. This is somewhat more
pensive computationally, since it involves convolutions
one direction@O (N4) operations, whereN is the number of
grid points in each direction# rather than the faster FFT a
gorithm @O (N3 log N) operations#. But because the convolu
tions are done in only one direction instead of a thr
dimensional~3-D! convolution@O (N6) operations#, this may
be acceptable.

For example, the real-space form of the collisionle
311 moment closure forqi , Eq. ~39!, is the convolution10
th
m

ux
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qis
~z!52n0S 2

p D 3/2

v t is
E

0

`

dz8
Tis

~z1z8!2Tis
~z2z8!

z8
,

~50!

where the integration is performed along the perturbed fi
line. Evaluation of this integral~or its discrete analogue! in
principle requires evaluation of the parallel temperature fl
tuation at an infinite number of points along the field.
practice the integral can be cut off at a reasonable para
correlation length.23 Truncating the integral atz85L means
that the Landau damping is applied primarily to modes w
ki.1/L, while modes withki!1/L will experience rela-
tively little damping due to the Landau resonances. This
proximation is probably adequate in cases where the Land
damping is only important for the high-ki component of the
fluctuation spectrum, and convergence can be tested by v
ing L.

When collisions are important, the collisional form o
theqi closure, Eq.~48!, should be used. The real space for
of this closure is then

qis
52n0S 2

p D 3/2

v t is
E

0

`

dẑ8g~ ẑ8!@Tis
~ ẑ1 ẑ8!

2Tis
~ ẑ2 ẑ8!#, ~51!

g~ ẑ!5E
0

`

dk̂
k̂

k̂11
sin~ k̂ẑ!,

wherek̂8kLi and ẑ8z/L i have been normalized to the pa
allel collisional mean free path,

L i8
A8p

3p28

v t is

ns
.

For smallẑ Eq. ~51! behaves just as Eq.~50!, but for largeẑ,
g( ẑ) falls off rapidly, as 1/ẑ3, and the closure integral ma
be quite accurately truncated after a few mean free path

Equation~50! includes nonlinear magnetic effects if th
integral is evaluated along perturbed magnetic field lines,
it still assumes that density and temperature vary wea
along a field line so that constant equilibrium values ofn0

andv t can be used. There are various possible extension
this closure which could be proposed to model cases w
stronger parallel nonlinearities~for example, see Sec. 3.4 o
Smith’s thesis25!. The relative advantages or accuracy
various possibilities has not yet been studied, but one rea
able nonlinear model is
qis
~z!52S 2

p D 3/2E
0

`

dz8
n~z1z8!~Tis

3/2~z1z8!2Tis0
3/2!2n~z2z8!~Tis

3/2~z2z8!2Tis0
3/2!

ms
1/2z8

. ~52!
a-
This has the physically reasonable property of weighting
convolution integral by the density, so that particles strea
ing from low density regions contribute less to the heat fl
This model ~or some variant thereof! might be useful to
e
-
.

model the heat flux on field lines which intersect solid m
terials~where the plasma density goes to zero!, such as in the
edge of fusion devices. A possible choice forTi0

is
*dz n(z)Ti(z)/*dz n(z).
Snyder, Hammett, and Dorland
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VIII. AN EXAMPLE: THE MIRROR INSTABILITY

To demonstrate the usefulness of our model, and
fundamental importance of kinetic effects in simple co
sionless MHD problems, we will investigate the magne
mirror instability. Kulsrud3 cites this example to demonstra
the use of his guiding-center kinetic theory and to expose
limitations of simple fluid theories such as CGL.1 We will
show here that our Landau-fluid models recover the ex
instability threshold for the mirror mode, and provide a go
model of the mode’s linear growth rate above the thresh

Consider a strongly-magnetized, homogeneous pla
consisting of electrons and singly charged ions. Take
magnetic field to be uniform in theẑ direction,B05B0ẑ. The
equilibrium distribution is taken to be an anisotropic b
Maxwellian with unequal parallel and perpendicular te
peratures. For simplicity, take the electron and ion tempe
tures to be equal in each direction,Ti0i

5Ti0e
5Ti0

andT'0i

5T'0e
5T'0

. Define thex̂ direction by writing the wave
vector k5kxx̂1kzẑ, and define a ‘‘plasma displacement
vectorj by U52 ivj.

Linearizing and Fourier transforming Eqs.~2! through
~5! then yields the following equations of motion:

2r0v2jx52 ikxp'1kz
2~pi0

2p'0
!jx2~kx

21kz
2!

3~B0
2/4p!jx , ~53!

2r0v2jz52 ikzpi1kxkz~pi0
2p'0

!jx , ~54!

where the subscript on the perturbed pressures is again
pressed. Expressions for the perturbed pressurespi and p'

are needed to close this system and solve for the instab
growth rate. We will close the system in four different way
first with linear kinetic theory, then using CGL theory, the
with the 311 Landau MHD model, and finally with the 4
12 Landau MHD model, in order to compare the instabil
thresholds and linear growth rates determined by each.

To calculate a kinetic result, we proceed exactly as
Eqs.~24! through~27!. Using quasineutrality to solve forEi ,
and using Eq.~4! for B152 ikxjxB0 , yields

eEi5kxkzjxT'0

R~z i !2R~ze!

R~z i !1R~ze!
. ~55!

This leads to the following expressions for the perturb
pressures:

p'52ikxjxp'0FT'0

Ti0

S R~z i !1R~ze!

4

1
R~z i !R~ze!

R~z i !1R~ze!
D21G , ~56!

pi5 ikxjxpi0FT'0

Ti0

S 11
2R~z i !R~ze!~z i

21ze
2!

R~z i !1R~ze!
D 21G .

~57!

Substituting forp' in Eq. ~53! leads to the dispersion rela
tion
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e
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ty
:

n

d

z i
21ze

252
kx

2

kz
2 S 2

T'0
2

Ti0
2 Ak~z!1

T'0

Ti0

1
B0

2

8ppi0

D
1S T'0

Ti0

211
B0

2

4ppi0

D , ~58!

where the functionAk(z) is defined byAk(z)5$R(z i)
2

16R(z i)R(ze)1R(ze)
2%/$4(R(z i)1R(ze))%. For par-

allel propagation (ukzu@ukxu), the above reduces to the dis
persion relation for the ‘‘firehose’’ instability, and the kinet
effects drop out within our ordering~note that a different
ordering can be used to analyze these much smaller kin
effects for limited parameter regimes—see Medvedev
Diamond19!. All of the models considered will reproduce th
firehose linear growth rate exactly. In the opposite lim
(ukxu@ukzu), the dispersion relation becomes

z i
21ze

252
kx

2

kz
2 S 2

T'0
2

Ti0
2 Ak~z!1

T'0

Ti0

1
B0

2

8ppi0

D . ~59!

This relation has an infinite number of roots, due to the pr
ence of plasmaZ-functions. The magnetic mirror instability
is the root for which the real part of the frequency goes
zero. Taking the limitz→0 leads to the instability criterion
for the mirror mode,p'0

2/pi0
.p'0

1 B0
2/8p. The linear mir-

ror growth rate versus the degree of anisotropyT'0
/Ti0

is
plotted in Fig. 5 for a fixed mass ratio at fixed total plasm
beta,b5((2/3)p'0

1(1/3)pi0
)/(B0

2/8p).
The Chew–Goldberger–Low1 theory can also be used t

investigate the mirror instability. CGL’s simple truncation
the moment hierarchy withqi5q'50 leads to the following
linearized expressions for the two perturbed pressures:

pi52 ip i0
~kxjx13kzjz!, ~60!

FIG. 5. The linear growth rate of the mirror instability (k'
2 @ki

2) as pre-
dicted by kinetic theory, 311 and 412 Landau MHD models, and CGL
theory ~ideal MHD cannot predict the mirror growth rate as it posits
isotropic pressure!. The normalized growth rate@z i5Im(v)/&ukiuvTii

# is

plotted versus the temperature anisotropy (T'0
/Ti0

) at constant b

5$(2/3)p'0
1(1/3)pi0

%/(B0
2/8p). The parameters chosen areZ51, T'0i

5T'0e
, Ti0i

5Ti0e
, b51, andAmi /me540.
3983Snyder, Hammett, and Dorland
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p'52 ip'0
~2kxjx1kzjz!. ~61!

Plugging these into the equations of motion leads to the
lowing dispersion relation:

z i
21ze

252
kx

2

kz
2 S 2

T'0
2

Ti0
2

1

622~z i
21ze

2!
1

T'0

Ti0

1
B0

2

8ppi0

D
1S T'0

Ti0

211
B0

2

4ppi0

D . ~62!

In the ukzu@ukxu limit, CGL theory correctly predicts the in
stability threshold for the firehose instability. However,
the opposite limitukxu@ukzu, CGL’s description of the mirror
mode is drastically in error. CGL predicts the mirror mo
goes unstable forp'0

2/6pi0
.p'0

1 B0
2/8p, a factor of 6 error

from kinetic theory, as noted by Kulsrud.3 The linear growth
rate is plotted in Fig. 5.

The 311 Landau MHD model does markedly better
modeling the mirror mode. The 311 dispersion relation is
derived using quasineutrality and Eq.~41! to solve forEi ,
and usingB152 ikxjxB0 to find

eEi5kxkzjxT'0

R3~z i !2R3~ze!

R3~z i !1R3~ze!
. ~63!

Plugging this into the 311 model expressions for the pe
turbed pressures worked out in Sec. IV B, and summing
2 species pressures yields

p'52ikxjxp'0FT'0

Ti0

S R1~z i !1R1~ze!

4

1
R3~z i !R3~ze!

R3~z i !1R3~ze!
D21G , ~64!

pi5 ikxjxpi0FT'0

Ti0

S 11
2R3~z i !R3~ze!~z i

21ze
2!

R3~z i !1R3~ze!
D 21G .

~65!

Substituting these results into the equations of motion le
to the following dispersion relation:

z i
21ze

252
kx

2

kz
2 S 2

T'0
2

Ti0
2 A3~z!1

T'0

Ti0

1
B0

2

8ppi0

D
1S T'0

Ti0

211
B0

2

4ppi0

D , ~66!

where A3(z)[(R1(z i)1R1(ze))/41R3(z i)R3(ze)/
(R3(z i)1R3(ze)). As expected, the 311 results are iden-
tical to the kinetic results, except that the electrostatic
sponse functionR(zs) is replaced everywhere by either
three-pole or a one-pole model~R3(zs) or R1(zs)!. In the
limit ukzu@ukxu, the 311 model recovers the linear kineti
firehose dispersion relation. Taking the opposite limitukxu
@ukzu, leads to the mirror mode dispersion relation. Aga
the small frequency limit (z→0) is taken to investigate th
3984 Phys. Plasmas, Vol. 4, No. 11, November 1997
l-

e

s

-

mirror mode. Unlike CGL, the 311 model recovers the cor
rect stability threshold for the mirror instability (p'0

2/pi0

.p'0
1 B0

2/8p). The mirror mode linear growth rate pre
dicted by the 311 model is compared to the other models
Fig. 5.

The 412 model provides a yet more accurate model
the linear mirror mode growth rate. The calculation of t
dispersion relation is completely analogous to that for the
11 model, and all of the results are identical to those giv
in the previous paragraph, with the simple substitutio
R3(zs)→R4(zs) andR1(zs)→R2(zs). Again the instabil-
ity threshold for the mirror mode matches the kinetic res
exactly, and the linear growth rates are compared in Fig

IX. DISCUSSION

A fluid description of plasma dynamics in the collision
less MHD regime, including models of kinetic effects su
as phase mixing and Landau damping, has been develo
This ‘‘Landau MHD’’ model is based on Kulsrud’s formu
lation of collisionless MHD,3,8,9 and it is enhanced throug
the use of Landau closures analogous to those develope
Hammett and Perkins.10 The model is a significant improve
ment over previous models, such as CGL theory,1 because it
includes accurate models of linear kinetic effects, wh
maintaining desirable nonlinear conservation properties
a fairly simple form in k-space. The model describes a
waves which appear within the collisionless MHD orderin
including shear and compressional Alfve´n waves, as well as
ion acoustic waves. The effects of collisions have also b
considered, through the use of a simple BGK collision o
erator. It has been shown that, in the high collisionality lim
(v!n!Vc), the model reproduces Braginskii’s stress te
sor and thermal conductivities approximately.

Both a 311 moment Landau MHD model and a mo
accurate but more cumbersome 412 moment model have
been developed. Both have been derived for fairly gene
conditions, making no assumptions about adiabaticity
plasma beta, and including models of both ion and elect
Landau damping. Collisional effects have been included
the moment equations through the use of a BGK collis
operator, and a collisionally modified version of the 311
closure has been derived. One species ofZ51 ions is as-
sumed, but the generalization to multiple ion species is p
sible. The model can be easily reduced to account for furt
restrictions on adiabaticity, e.g., by replacing the full ele
tron moment hierarchy with a simple adiabatic electron
sponse when appropriate. Additional simplifications are e
ily made for isotropic pressures (Ti0

5T'0
), or electrostatic

perturbations (B150), etc. For nearly incompressibl
modes, a different ordering which eliminates the compr
sional Alfvén time scale is possible, as outlined b
Medvedev and Diamond.19

Some of the limitations of our model are imposed by t
use of a general collisionless MHD ordering together with
gyroaveraged kinetic equation. This ordering eliminates
finite Larmor radius~FLR! effects (k'r→0), including the
curvature and“B drifts. To bring FLR effects into the prob
Snyder, Hammett, and Dorland
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lem, it is necessary to introduce an additional ordering wh
removes the compressional Alfve´n time scale.

Another complication is the evaluation of theukiu/ki

terms found in the Landau closures. As pointed out by F
and Gerwin,18 the Landau damping must be evaluated alo
perturbed field lines. Hence, for nonlinear calculations, tra
forming the closure to real space requires an integral al
the perturbed field line. The numerical evaluation of the
nonlinear closures may be burdensome in some case
discussed in Sec. VII.

It is anticipated that the model will be useful for nonlin
ear numerical simulations. Some of the caveats involved
using Landau closures in nonlinear simulations have b
extensively discussed in the gyrofluid literature,11,12,23,24,26–30

but these caveats are an area of ongoing research. Ther
some regimes where certain nonlinear kinetic effects are
well modeled by Landau-fluid closures.30 But we generally
believe12,24,27,28these closures will be adequate for strong
turbulence regimes where rapid decorrelation is occurr
and the velocity space details of the distribution function
not critically important.

It is hoped that the model will prove useful for simula
ing both laboratory and astrophysical plasmas in the co
sionless MHD regime. The model should be able to pred
the onset and structure of instabilities, as well as the heat
particle transport caused by the instabilities.
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