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A closed set of fluid moment equations including models of kinetic Landau damping is developed
which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter
regime. The model is fully electromagnetic and describes the dynamics of both compressional and
shear Alfvan waves, as well as ion acoustic waves. The model allows for separate parallel and
perpendicular pressurgs andp, , and, unlike previous models such as the Chew—-Goldberger—
Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3
+1 moment model and a more accurat¢ 2 moment model are developed, and both could be
useful for numerical simulations of astrophysical and fusion plasmas19€y American Institute

of Physics[S1070-664X97)03311-9

I. INTRODUCTION netic response of a collisionless bi-Maxwellian plasma.
We shall refer to the model as Landau MHD, because

The dynamics of collisionless plasmas are of great interthe model incorporates the effects of parallel Landau damp-
est both in astrophysics and in laboratory fusion researchng, and it is valid within the collisionless MHD regime. It is
However, such plasmas are often studied using modelgseful to consider the Landau MHD model as an extension
which implicitly assume high collisionality and which ignore of CGL theory which incorporates Landau damping, and can
important kinetic effects such as parallel Landau damping. Ifincorporate collisional effects as well.
particular, models based on Ideal magnetohydrodynamics Qne of the limitations of the Landau MHD model we
(MHD) assume collisional equilibration on a fast time scalepresent is that it is derived only in the standard ordering of
and are not in general applicable to collisionless plasmasgeal MHD, e~ w/Q.~kp, where the plasma varies on fre-
The Chew—Goldberger—Lo¢CGL) theory relaxes the high quency scales small compared to the gyrofrequen€y, ,
collisionality assumption, but assumes an adiabaticity condizng varies on spatial scalesk1bng compared to the gyro-
tion which is rarely met, and neglects parallel Landau dampgaqiys p, Thus it covers phenomenon related to compres-
ing, which can be important in the collisionless regime.gjona| and shear Alfiewaves and instabilities, ion acoustic
Hence results from CGL theory are not always reliable, agy5yes, and ion and electron kinetic effects such as Landau
evidenced by the well known factor of six error in the CGL y4mning. However, it does not include drift-waves or other
_pred|c_t|_on2 3°f_ the stability threshold for the mirror oo instabilities (which have been the focus of other
instability.™ Simplified models such as Ideal MHD and | 5nqa fluid work because they result from finite-Larmor/
CGL are often employed despite their limitations because O&yro radius(FLR) effects which vanish in the usual MHD
the qualitative insights they provide and the difficulty of ordering. Also, though collisional effects on the ion and elec-
working directly with a kinetic formulation. There are some tron heat fluxe;s and on the pressure tensor can be kept in our
particle simulations of collisionless MHD phenoméhaput model, there is no resistive component to the ideal Ohm'’s
there are also many fluid MHD simulations which could ben-law T’his is because the parallel currébtn.e; =0 to
efit from being extended into lower collisionality regimes. ) . , s=s”lls

lowest order in the ¥ expansion of Kulsrud’s collisionless

In this paper we will develop a relatively simple descrip- - ,
tion of collisionless plasma dynamics which includes paralle™MHD, and collisions would alter the Ohm'’s law only at

Landau damping. We wish to construct a model which ishigher order in thee~w/Q~kp expansions. Thus the
valid over a wide parameter regime and can later be naRlasma is still an ideal electrical conductor in our model and
rowed and simplified for particular cases. As a starting pointhe magnetic field lines are frozen into the plasma.

we will employ Kulsrud’s formulation of collisionless Alternative orderings are possible to bring in FLR or
MHD.382° Kulsrud’s formulation requires solving a kinetic resistive effects. One approach would be to take fluid mo-
equation for the perturbed pressugsandp, , or introduc-  Ments of the electromagnetic gyrokinetic equativtf,which

ing further assumptions such as adiabaticity to evaluate thallows k, p~1, and work out the appropriate closures. An-
pressures. We shall take moments of Kulsrud’s kinetic equaether approach, taken by Chang and Calfelf,in effect
tion, and close the moment hierarchy with Landau closuresarries Kulsrud’s expansion to higher order in FLR, by using
analogous to those derived by Hammett, Perkins, an#f,p~Kk;/k,~A with A’~e~w/Q.. This “extended-
Dorland!®-*?generalized to allow anisotropic pressures andMHD” ordering orders the compressional Alfaevave out
magnetic perturbations. This yields a fairly simple set of mo-of the equations, but retains the slower Shear Alfaed ion
ment equations with desirable nonlinear conservation propacoustic waves, and includes resistive effects in the Ohm’s
erties, and a linear response function very similar to the kilaw as well as drift-wave instabilities with moderake p
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~€e'?2. Chang and Callen use an alternative derivation ofequations, and asymptotically expandspig/L, the small-
Landau-fluid closures which is actually linearly ex#aetm-  ness of the gyroradius relative to macroscopic scale lengths.
ploying the fullZ functions. It reduces to our formulation in This is accomplished by the formal expansion of the distri-
the appropriate limitd! Their approach advances 3 momentsbution functionf, the magnetic fiel, and the electric field
(density, parallel flow, and temperaturéor each species E in the inverse charge &/ This is equivalent to taking all
with linear closures for the heat flux and stress tensor, whileelevant frequencies in the problem to be very small com-
here we advance up to 6 momeiisparallel and 2 perpen- pared to the cyclotron frequenc§)., and the plasma fre-
dicular momentgfor each species. These six moment equaquency,w,, .
tions retain additional nonlinear effects, and simplify some In this ordering, the Vlasov equation reduces to a condi-
of the manipulations of the stress tensor by keeping separatmn on the zeroth-order parallételative to the magnetic
p, andp, (which is also essential to study the mirror insta- field) electric fieIdEH0=0, and the following kinetic equation
bility that Kulsrud used to point out problems with the CGL for the zeroth-order distribution function of each species
theory. They can be reduced to simpler systems with fewer (v, .1, 1)
moments in various limits. Future work could try to extend °
our methods to the electromagnetic gyrokinetic equation offo, - ~ Dvg €s
merge with the methods of Chang and Callen for the 5 +(viP+Ve)- Vo +| —b- = —pub-VB+ EEH
extended-MHD ordering.

There are previous authors who have tried some forms afo,
of Landau closures in MHD equations. Bondeson and Xﬁzo’ @
Ward"" used viscous and pressure-damped models of Landau : N
damping in studying wall stabilization of external MHD Wherees is the charge on speciss b is a unit vector in the
modes in advanced tokamak designs. An important feature ¢hagnetic  field direction b=B/B, vg=c(EXB)/B?,
this work was the use of Lagrangian variables so thatkfje MiUE/ZB, andD/Dt = g/ dt+ (v b+vg)- V.
operator involved in Landau-fluid closures woulat least Combining moments of this kinetic equation with Max-
linearly) effectively operate along perturbed magnetic fieldwell’'s equations and taking the usual low Alfvepeed limit
lines, which Finn and Gerwifi showed was important to do. vi<02 yields Kulsrud's set of collisionless MHD equations:
However, the Bondeson and Ward model was a relatively
low-order Landau-fluid model and was not entirely consis- _p+v.(pu):0, 2
tent, assuming high collisionality in the derivation of the at

initial 1-fluid equations and low collisionality elsewhere. A 9U (VXB)XB

recent paper by Medvedev and Diambhtas incorporated pl —+ U~VU> =——-V.P, 3
Hammett—Perkins type closures into a set of two fluid equa- at 4m

tions, used to describe large amplitude shear Afand 9

magnetosonic waves in interplanetary plasmas. The E:VX(UX B), (4)
Medvedev and Diamond equations assume isotropic pres-

sure, and are valid only in a limited parameter reginge ( P=p, 1+ (p, —p,)bb, (5)

~1). The Landau MHD model presented here should pro-

vide an extension of this previous work, useful for the study -3 Ms 23 6
of resistive wall stabilization, as well as for general problems P.= s 2 oVLY U ©)
of MHD mode growth and saturation in both laboratory and
astrophysical plasmas. _ 1 E203

The organization of this paper is as follows. In Section I~ PI~ z ms | fo(vy=U-b)"d", @

we summarize Kulsrud’s collisionless MHD formulation. In

Section lll, a moment hierarchy based on Kulsrud’s kinetic Se f f dP=0 )
equation is derived and discussed. In Sections IV and V clo- 5’ ° Os '

sures for “4+2"” and “3 +1"” models are derived, follow-
ing Hammett and Perkin€,and Dorland-? In Section VI we : _
investigate collisional effects, including the reduction of theV€loCity, andP is the pressure tensor. _
model to an appropriate limit of the Braginskii equations. In  11€ above set of equations is exact to zeroth order in the
Section VIl we discuss practical nonlinear implementation ofeXPansion parameter, but the kinetic equation itself, (Eg.

the closure terms. In Section VIII, the Landau MHD formu- Must be used to evaluagg and p, to close the system.
lation is applied to analyze the mirror instability, and in Sec-Because Eq(l) is difficult to solve directly, this system is
tion IX we offer concluding remarks. rarely employed without further simplification.

One such simplification is the introduction of the double

Il COLLISIONLESS MHD adiabatic law(also known as CGL theoty). In the CGL

) ) o model, Eq.(1) is replaced by two equations of state which
As a starting point, we employ the collisionless MHD geterminep, andp;:

model described by Kulsrutlbased on earlier work by
Kruskal and Obermdhand by Rosenbluth and RostoKer. d(pu)_ ©
This formulation begins with the Vlasov—Maxwell system of dt \ pB ’

wherep is the total mass density)=vg+ uHB is the fluid
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where the total derivative is defined loydt= d/dt+ (u,b B 13 B 3
+vg)- V. PHS—mJ fs(vy—u)“d, DLS—mJ fsuBdv

These equations of state are equivalent to setting the heat
flow tensorQ to zero. This assumption that both electron and , _ . \343 _ _ 3
ion heat flow are negligible is strictly valid only when the s~ f (=) d%, QLS_mf #Bv—u)d'y
mode phase velocityef/k;) is much greater than the electron
and ion thermal speeds, a criterion rarely satisfied for Aifve = f fo(vy—up*d, 1, _mf fouB(v,—u;)2d%
waves and never satisfied for sound waves. Furthermore, the
simple truncation of the moment hierarchy implied by this
assumption eliminates Landau damping from the problem, M,lssz fu?B%d3y,
leaving the system with no damping at all, which can lead to
unphysical behavior. However, CGL theory is often em-Poisson’s equation and Ampere’s law reduce, to lowest order
ployed, even when it is invalid, because of its simple, La-in 1/e, to the condition&n.e,=0 andESnSeSu”S= 0. Spe-
grangian form. Of course this can lead to incorrect results, agializing to the case of one species % 1 ions impliesn

in the well known case of the mirror instability. =n.=n; and uy=u; =u,_. The usual definitions for total
higher momentp; =Py, PL=2sP, , 4= 240, etc. are
IIl. THE MOMENT HIERARCHY employed. Note that, becausg =u,_, the collision term

serves primarily to |sotr0p|ze the distribution. Taking inte-

We wish to develop a formulation which maintains grals of the formfdv, du vluX... of Eq.(1) then leads to
much of the Slmp|ICIty of the CGL mOdel while IncreaSIng the fo||OW|ng set of exact moment equat|0ns

its range of applicability and including models of kinetic
Landau damping. This will be accomplished by first taklng
moments of Eq.(1) and, in the next section, closing the dt
hierarchy using Landau closures analogous to those devel-

+V-(nU)=0, (14)

oped for the electrostatic case by Hammett and Peffins. au, U Vu +b. (0 +LU-Vv V~(l3p )
Multiplying Eq. (1) by B and adding Eq(4) multiplied ~ dt ! E s
by fs, leads to a kinetic equation in the phase space conserv-
ing form: PL, s
' - -b——F=0, (15)
nm m

fB V. [fB b i fsB —b- Dve
TV [fBlobtve)l+ 5= Dt ap, . -

& +V-(Up,)+V-(bay) +2p, b-VU-b—2q, V-b

~ e
—pb-VB+ ﬁE) =BC(f,). (12)
S

=—3vp)— P, (16)
The subscript zero offiy has been suppressed. All calcula-
tions involve only the zeroth-order distribution function in
the original expansion in &/ though a subsidiary ordering dt
will be introduced to derive the Landau closures.

— 4 V.(Up, )+V-(bg, )+p, V-U=p, b-VU-b

Note the addition of a collision operator to the right hand +QLSV b=~ %VS(IOLS— I0||s), 17
side of the kinetic equation to allow for generalization toﬁ 3
regimes where collisions play an important role. Here a”Yis Piig ~
g rd P —+V. (Ugy)+V- (br” \\)+3q”

simple BGK collision operatdf is employed:

PL P, Pi2

C(fj)=—§v,k<f Fuijk); (12) B
nmg nmg

Vp r,LS)V'BZ_VquS: (18)

where v, is the effective collision rate of specigswith
speciesk. These collisions causg to relax to a shifted 99,
Maxwellian with the effective temperature of specjeand ot
the mass velocity of specids

P2 py Py
E N ox _m(v—u)® muB +(n—— -
MIKT (27T, Im;) P 2T, T M nm
(13)  where p=n(mg+m;), U=vg+ub, and v;=»; + v, and
where T;=(T;+2T,;)/3. The BGK collision operator in Ve= Vee™ Vei-

this form conserves mass, momentum, and energy. Using the conditioru; =u;_to solve forE, [as given in
Defining the velocity space moments as follows: Kulsrud’'s Eq.(49)], it is straightforward to show that the

- A~ P
+V-(Uq, )+V-(bry, )+q, V-(ub)- ﬁb'Vpns

V-b:_VSquy (19)

ELEIN S
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first two moment equations, Eq4.4) and(15) are equivalent effects will be investigated in Sec. VI. The closure should

to Eq. (2), and the parallel component of E@), that is, conserve mass, momentum, and energy, while providing a
au linear response which closely matches that expected from
a_”+u Vu,+b- +U VVE) kinetic theory.

A. Linear response from kinetic theory

+ 1[tA)- Vp+(py—pL)V- 6]=0. (20 We first use the guiding center kinetic equation, g,

P to derive the kinetic linear response. We wish to linearize
around a zeroth-order distribution which allows the decou-
pling of electron and ion pressures as well as the decoupling

Just as in the electrostatic cdSehe moment hierarchy of parallel and perpendicular pressures that one expects in a
has favorable conservation properties. Each moment equgollisionless plasma. To accomplish this we choose a bi-
tion acts as a conservation relation, provided the hierarchy idaxwellian distribution with separate equilibrium parallel
closed by approximating the highest moments, without inand perpendicular temperaturdg and Tl Since the
serting additional terms such as viscosity. plasma is collisionless, it is hot expected to be exactly Max-

Momentum is conserved by any closure which keepswellian, even for a particular species in a particular direction.
Egs.(2) and(3) and closes for pressure or higher moments However, we wish only to calculate a linear response which
Combining Eqgs(2) and(3) yields we can approximate with our Landau closure. The linear

A. Conservation properties

2 response thus needs to provide the correct general form of
d(pU) B . . . . .
— = —V-|pUU+ %| ~ +P|. (21)  the linear Landau damping, allowing for independent varia-

tion of species pressures, and of the parallel and perpendicu-
Similarly, energy is conserved by any closure whichlar pressures. Hence the bi-Maxwellian is a convenient
uses approximations only for the heat flow momemjtsand choice.
q.,, or higher moments. To demonstrate this, defme the We introduce a subsidiary ordering in which the zeroth-
klnet|c+thermaHmagnet|c energy  density #=pU2/2 order distribution is bi-Maxwellian with no zeroth-order
+B2/8m+p, +p,/2. Combining Eqs(2), (3), (4), (16), and  1OWs or gradientsfs=Fys+ Ty, where
(17) yields:
2 v 1 U2 1 U

BX(UXB)
. 47

Fums=

No extl — msBou _ msvf
(2mImg)3T, T2 Tioe 2T

Los llgs

(23)
-V-(U-P)—V-q, (22
where q=(q, +q,/2)b. Integrating over volume, we can Thi momentsn=no+n,, U=U,, etc), the magnetic field
take the left hand side as the rate of change of the energy? ~Bo™B1), and the parallel electric field&=E, ) are
inside a volume, and the right hand side as the flow of energ§|mllarly linearized, with the zeroth-order part uniform. Note
across the surface. We note that Kulsrud's equati6@sand again that this is a subsidiary ordering. All terms are zeroth
(67)° (not employed elsewhere in the papeppear to be in order with respect to the initial ordering inel/

error. Equation(1) is then linearized and Fourier analyzed to
find f 5. Definingz as the unit vector in the parallel direction
IV. THE 442 MODEL By=Byz, and defining the wave vectdr=k,z+ kX,
. g\tclosurg for the morr|1etnt hie;arlchly must nclxw be d((ja-l f Uf ik, Bl+ e, - ) M,
rived to produce a complete model. In general, a mode = — —— .
P P 9 1s 2 BO mg I T”Os(_lw—’—lkzvll) Os

which evolves more moments will be more accurate, though
more complex and more computationally intensive to imple-
ment. A 4+2 moment model, that is a model which evolves
four parallel momentst,u; ,p”S,qHS) and two perpendicular
moments pis,qis), will be developed first. The 42

model will truncate the moment hierarchy with E¢E8) and

(29)

Taking moments, keeping in mind thatdv =2=[(B,
+Bj)dudy, yields

(19), and will require closures for,;, andr , . §|mpler N kI:_o e.E, A Lo) I;no 1— TJ_os aall
models, such as a31 moment model, can be derived as the zllgs 0 llos
low frequency limit of the 42 model, following a proce- (25)
dure developed by Dorland.

A closure for the 4-2 model will be derived following Pi,
the procedure laid out by Hammett and Dorldfd? This Pi= " i T B [ 1+ 2572(49)]
procedure, derived for electrostatic perturbations, must be los
extended for use with general electromagnetic perturbations B.p,
in two dimensions(parallel and perpendicularThe colli- % /)(gs))] (26)
sionless caseu< w) will be considered first, and collisional Bo Tl los
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Py, linearized Equatiorni4), k- ve=wB; /By, yields a simple set
P, = T, ———eE (L) of equations for each moment in terms of the other moments
los and the perturbed magnetic field.

2B T The system is closed by writing the highest moments

lpLOS Los s . .

+ By 1 T, TALY |, (27) (r",Hs andr; , ) as a linear sum of the lower moments, with
Os

coefficients that are in general functionslofand the equi-
where /.= w/‘/i|kz|vt” is the normalized frequency, and librium quantities. Generalized linear response functions can

s then be derived. The closure coefficients are determined by
comparison with linear kinetic theory in the high and low
frequency limits.

Guided by previous work®*?we choose closures with a
bi-Maxwellian part and an additional term which models
= \/TJ_OS/ms- phase mixing. We first try a simple generalization of the 4

Note that it is possible to solve fdf, using quasineu- +2 closure derived by Dorlaf@for the electrostatic case,
trality, and to solve foB; using Eq.(4). However, we find it modified for the case of a bi-Maxwellian equilibrium distri-
most convenient and physically enlightening to leave the rebution:
sponse functions in the above form for matching to the mo-

(L) =1+ {Z(Ls) is the electrostatic response function.
The usual plasma dispersion function is defiifat Im({)
>0] by Z(¢) = (1//7) [dt expt)/(t—{), and the thermal
velocities are defined to be)tusz VT /Ms and Ve,

ment model. Fig=3v{ (2P, = Tjo M+ Binov Ty,
ikyq,
V2Dvy o (34)

B. The 4 +2 Landau closure I

We now choose a closure for our-2 hierarchy which ik,q,
will closely match the linear response calculated in the pre-  r, | =v? p, +v3 p, —v3 T, N-v2D, v, —_
vious section. As noted we require closures for hqm and ° ° s 0 s I+ [kl (35
r.,- Additional terms such as viscosity would violate en-
ergy conservatioff"'* and so will not be employed in the 4 The coefficientsg,, D;, and D, are determined by
+2 equations. matching the perturbed density and perpendicular pressure to

The linearized moment equations in the collisionless ( the kinetic results in the adiabatic|{(<1) and fluid
=0) limit are, omitting the subscript on perturbed moments(||>1) limits. It is possible to match the density response

and definingV ;=b,- V, through order? for small |¢| and through order %7 for
an large |{|. The p, response can be matched through order

— +nyV-U=0, (28)  for small|Z and through order 17 for large||. This yields
at B,=(32—-97)/(3m—8), D,=2{#/(37—8), and D,
au” 1 (Pi,— pHOS) VB, e ;e\r/ifgiogg)e same result as in the earlier electrostatic
ot upu B m. =0, (29 - .

NoMs o Ms The density response is then
J
i +puo V-vet Vg +3p VU= (30) no— ino e, a2+ BiNo 1— T, Za(20)
1s kZT”OS s|-7“4 S BO T||OS ‘4 S )
P, (36)
—r t2p VovetViaL +p Viu=0, 31 ]
where.72,({s) is a four-pole model of the electrostatic re-
o, o 3puc2)s sponse function2({):
—t TV, VPt gt 3o o -
NoMs NoMg Ta(Ls)
3PigPLes| VBy o - 4—2iJm{+(8—3m) 2
~ nem By (32) = : 2. 4 3 4
ofMs 0 4—6i\ml+ (16— 9m) 2+ 4i V7 i+ (67— 16) 2

aqis pJ‘OS pl_g (37)
—r tVihL mvupu.ﬁ I (e Vmss

The linear kinetic response functions for the 4 parallel mo-
PLoePigs| VB, ments n,u;,p; .0, are all modeled equally well, with
B, - (33 Fa(Ls) replacing.7({s) in the expressions for each. The 4
) _ +2 density response is compared to linear kinetic response
The bi-Maxwellian valuesr ;  =3py, /NoMs, Ty in Figs. 1 and 2. Note that in the figures, the quasineutrality
=Pl PL/NoMs, andr, | =2p, /noms are easily calcu- relation ny;=n,, has been used to eliminatg, from the
lated. Fourier transforming intok(t) space, and using the expressions for the response functions.

NoMg
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In the PL, response,’2({s) is modeled partially by the ficients by matching with the linear kinetic density and per-
four-pole function.72,({s) and partially by the two-pole pendicular pressure response. However, thel3closures
function_%gz(gs)zl/(l_i\/;évs_zgg), yielding for both T and q., can be more simply derived as the
{s— 0 limit of the 4+ 2 model, following the moment reduc-
tion scheme outlined by Dorlarld. Parker and Cardti
Bo showed how to extend this scheme to an arbitrary number of

moments, and used it to show some similarities to renormal-
%')4( gs) n 722( gs))

Py, 2B1p,

p..= esE 7a(Ls) +

s szHOS

TL Os
Tioe

X

1 ization methods.
2 2

Substituting the 42 closures into Eqg32) and(33), in
(k,t) space, and taking the limjt <1 yields

(39

As shown in Figs. 3 and 4, the, _response is not matched

as closely as the parallel moment response for lgtgebut T

the fit is still quite good. q = ”o\ﬁ ; I (39
Note that we could have chosen a more general form for 's s k|

ther,,_andr, , _closures, involving all lower moments and

the perfturb.ed magnetig field. However, upon matching the 5 kT, >

linear kinetic response in tHé|<1 and|{|>1 limits, these dL=—Nno\/ = vy, >+ng\/— v, Toy,

general closures will reduce to the closure given here. o ™

il

The complete 42 system of equations is Eq$2) T, ik.B
through(5), plus Eqs(16) through(19) closed by the inverse X ( 1— 05) =1 (40)
Fourier transform of Eqg.34) and (35). The system can be T kBo

solved numerically ink-space where the closure functions

are more easily evaluated. Note the term proportional tB, in theq, closure. This term

is not found in the electrostatic case, wh&@e=0, and it

V. THE 3+1 MODEL also vanishes for isotropic equilibrium pressures. This term
For many applications, a simpler, less computationally’S needed to properly conseryelinearly in the presence of

intensive model will prove adequate. The simplest modeMagnetic field compression and anisotropic pressure.
which evolvesp, and p, involves truncating the hierarchy Substituting the closures, Eq®9)—(40), into the 3+ 1
with Eqgs.(16) and(17), using closure approximations fqf ~ €quations yields the density response:
andq, . We refer to such a model as a “31 model” be-
cause it evolves 3 parallel momers, u;, p;) and 1 per-

in BN Ty
pendicular mqmentm). Note t_hat the CGL model is a 3 Nys=— ﬁesEH.%g(gs)Jr =211 _I_—OS F3(L) |,
+1 model which invokes the simple closuye=q, =0. z lgs 0 llos
The 3+ 1 closures can be derived following the proce- (41

dure laid out in the previous section, by writiggandq, as
a sum of the lower moments ag}, and solving for coef- and the perpendicular pressure response:

- ',/ ] 2 T T T T
~ I ‘ ineti 1 -~ T " 1
E r / kinetic 1 E L i .
o F S s T 3+1 ] o i ]
= r _- &£ . 4+2 4 IS FE — Kkinetic 4
o O .- - & : 4
=5 e N S A AR b J £ -
@ o ] 4 T
@ 3 -1 4
S ] g ]
a. b ]
7] F -
2 b ] ]
[ —1 A E— 4
» F L T st 3 9 b
s ' ’ ] ]
-} £ | ] A, ]
a r VNT b = g
3 o v s 4 ‘@ 4
& b N h g
5 CRr .'/ ] a 4
[ ; ] ., L ]
g / . gt ]
Z ! ] E
! ] L ]
r . ] 5 s 4
-8 L ! | NPT [ J z ]
o 1 2 3 4 5 B | I I t 1 L ]
¢ 0 1 2 3 4 5

FIG. 1. The real part of the normalized linear density response

(n1 /ikxéno), versus real normalized frequency € w/v2|kj|vr ). The 3 FIG. 2. The imaginary part of the normalized linear density response
+1 and 4+2 moment Landau MHD models are compared with linear ki- (nq/ik,&ng), versus real normalized frequencg/i%w/\/i|ku|vm)_ The 3
netic theory. Predictions of CGL theory and ideal MHD theory are also 1 gnd 4+2 moment Landau MHD models are compared With linear Ki-

shown. Parameters chosen &el1, T, /T, =1, T, =T, , T, =T, netic theory. Both CGL theory and Ideal MHD theory predict no imaginary
and \m; /my=40. density response. Parameters are identical to those in Fig. 1.
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FIG. 3. The real part of the normalized linear total perpendicular pressur&!G. 4. The imaginary part of the normalized linear total perpendicular
response ff, /ik.p, ), versus real normalized frequency{;(  pressure response ( /ikyéxp, ), versus real normalized frequency; (
Zw/‘/ﬂk”'UTu)' The 3+1 and 4+2 moment Landau MHD models are =w/\/§|kH|vTHI). The 3+1 and 4+2 moment Landau MHD models are
compared with kinetic theory. Predictions of CGL theory and ideal MHD compared with kinetic theory. Both CGL theory and ideal MHD theory
theory are also shown. Note the significant variation in the pealesponse  predict no imaginary pressure response. Parameters are identical to those in
between the 3-1 model and the kinetic model, even for largeParameters ~ Fig. 1.

are identical to those in Fig. 1.

case, where the collision rate is very small compared to a

i 2B : g )
_ 'Pos 1PLos typical mode frequencyy<w). However, it is possible to
Py esE 23(Ls) + . . ; .
s KTy, Bo introduce some collisional effects into the models using a
collision operator such as the BGK operator introduced in
Tig Sec. lll. It is then possible to examine regimes with a wide

X| 1

: (42

Pa(L9) 1%31(53))
2 2

- Ty, range of collisionality, provided that<()., as required by
/7 ) ° ) the initial ordering. The accuracy with which collisional ef-
where.723(5) is a three-pole model of the electrostatic re- facts are modeled will of course be limited by the accuracy

sponse function: of the initial collision operator employed. Furthermore, the

. modeling of certain collisional effects, such as momentum

] 2—iVwls . . o . .
Tg(Le)= _ P , (43)  transfer and resistive tearing of magnetic field lines, is ham-
2=3iVmls— AL+ 2T pered by the use of only the lowest-order collisionless MHD

and .72,(¢J) is a one-pole model af2({s), 71({)=1/(1  €xpansion in inverse charge. _

—i/7{y). The 3+1 density and, responses are plotted i The moment hierarchy previously derivgégs. (14)
Figs. 1 through 4. Of course the response functions, particdlrough (19)] already includes the collision terms arising
larly for p, , do not fit the kinetic results as well as for the ffom & simple BGK collision operator. However, the form of
4+2 model. However, the qualitative behavior is correct,f‘he equations is quite different from the forms normally used

and the behavior in both limit/(<1) and ¢>1) is accu- N MHD. We will attack this discrepancy by rewriting Egs.
rate. (16) through (19), and showing that they reduce approxi-

The complete 31 system of equations is Eq€2) mately to Braginskii's transport equatidAsin the limit
through (5), plus Egs.(16) and (17) closed by the inverse “”|.k|vts< vs<{l; (i a typical mode frequency, adis a
Fourier transform of Eqs(39) and (40). This set is signifi- typical wave number

cantly simpler than the 42 equations, while still conserv- First define an average pressupg=(p; .+2p,)/3, a
ing particles, momentum, and energy, and providing a readifferential pressuresps= P~ P, and a heat flowqgg
sonable model of the linear kinetic response. :q”s/2+ q.,. We can then divide the pressure tensey,

Further moment reduction o130, 2+1, 2+0, and even  intq an isotropic part and an anisotropic part labdlkd That
1+ 0 models is possible. These simpler models can be usef%l‘ P.=pql + .= pql + (= Spl +25p BB)/S Combining
S S S S S S .

in certain cases where conservation of thermal energy is n%qs (16) through(19) then yields
important. However, the 81 and 4+2 models allow a '

separate evolution gf, andp, , which is often importantin  dps 5 _ 2 a2
describing collisionless modes. at T 3p3V'U_ 3V'(bq5) 3HS'VU' (44)
déps 5 ~ N
VI. COLLISIONAL EFFECTS gt T 30psV-UFIIsVU+3pb-VU-b—pV-U
The 3+1 and 4+2 Landau fluid collisionless MHD - _
models have been derived for the completely collisionless =30, V-U+V-[b(q—a, )]=—vsops, (45)
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B. Collisionally modified 3 +1 closure

3 . -
+ Eq”sb'vu' b Collisional effects have not been considered in the deri-

vation of the Landau closures themselves. In principle, it is

aq A Tiig
a_ts—i_v[b(T—’_rl'ls

%p”s+ P~ . plﬁ PL Py possible to rederive the linear kinetic response functions with
—Tb'VDLJ%SV'(UHbH nm T Znm collision terms, and choose Landau closures which match
this collisional linear response. However, a simpler proce-
3P¢§ FiLg - dure appears to be adequate.
Tonm 2 e V-b=—ws. (46) This alternate approadi?*is to derive a collisionless
closure for a many moment modéiere the 4-2 mode),
A. The high collisionality limit and then reduce the number of moments by taking the low

frequency limit of the highest moment equations, with the
.collisional terms included. This will incorporate some colli-
sional effects into the lower moment closufteere it will
include the collisional effects described by tge and g,
equations into the 3 1 mode). The modified 3+ 1 closures

resulting from this procedure are

In the limit of high collisionality (> w), the above
three equations yield an approximation to the Braginski
transport equation, with the conditionv<()., as required
by the initial ordering.

Formally expanding all moments in the collision time
(1/v), it is apparent from Eqs(16)—(19) that i, = A o
= 8pys=0. Equation(45) then reduces, to lowest order, to ik Ty

2
0y, = —8ngvy , (48)
0 s s (\/87T|kH|th +(37—8)ws)
0s A0 ~ s
Op1s=— —(3b-VU-b—V.U). .
plS Vg nol)t2H5|k||TJ_S
- . . W=
If vs from the original BGK collision operator is taken to be \/;
the reciprocal of Braginskii's collision timey{= 1/75%9, 2 |ku|th;L Vs
the resulting expression forllg=(— épgl +26psbb)/3 5 .
matches Braginskii's result to within an order unity constant L Novyy T1,JKiB1
(0.96 forZ=1 ions, and 0.73 for electrops +| 1- (49)
Similarly, a heat flux nearly matching Braginskii's can los B \/E ko, +v
be derived in the same limit. To lowest order, E46) be- 0 o 1Rilly T Vs
comes
These closures allow a smooth transition from the colli-
il 5 Pos ~ sionless regime where Landau damping is important, to the
V. o L 2 1m b-Vpos collisional regime where Landau damping vanishes.
o Hence some collisional effects can be included within
ML o the Landau collisionless MHD model, and the model can be

J’_

_T_rL,LOS)V'b:_VSqls- (47)  extended for use in the marginally collisional regime (
~w) as well as the collisionless regime<€ w). However,

the accurate modeling of some collisional effects, particu-
larly those associated with momentum exchange, is made
difficult by the use of the collisionless MHD ordering. A
model based on Braginskii or resistive MHD is more appro-
priate for use in the highly collisional regime®$ ).

In this collisional limit, ther, moments will take on their
Maxwellian  values ;. =3p§/Mso,ry,. = P§/MsNo,

r1 1, =2P5/Myng). Substituting yields

5 Po
Qis=~ 5 —VSmSVnT0sv VIl. NONLINEAR IMPLEMENTATION OF THE
CLOSURE TERMS
which matches the Braginskii heat fluxes to within factors of ~ The closures for both the42 and 3+ 1 models employ
order unity. terms containing|k,|/k,. Numerical evaluation of these

To match Braginskii's results more precisely, one couldterms ink-space is straightforward for electrostatic problems
replace the simple BGK collision operator used here with gsuch as ion temperature gradient/drift-wave turbul@nce
more precise Landau or Fokker—Planck operator. Thisince only a simple Fourier transform along the equilibrium
should allow reproduction of the collisional energy flow be- magnetic field direction is required. But as pointed out by
tween species@;) as well as the above heat flow and an- Finn and Gerwint® Landau damping must be evaluated
isotropic pressure terms. However, modeling momentum exalong perturbed field lines, i.e. Landau damping involves
change terms is problematic because the initial formaparticles mixing due to their free-streaming along the total
expansion in ¥ used to derive the collisionless MHD equa- (equilibrium+fluctuating) magnetic field, and 3$q involves
tions impliesu; =u,_. The effects of resistive momentum Fourier transforms along these perturbed magnetic field
exchange thus require going to higher order in the idealines. Conceptually, a parallel heat flux is driven by a parallel
MHD ordering, or using an alternative ordering procedure. temperature gradiento =<V, T,=b-VT,. Linearizing this
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yields gy bo- VT, +b;- VT, . We see that considering 2\% (= T (z+2)-T(z=2)
only the Fourier transform o T in theb, direction would W, (2)= no( ) U‘HJO dz z' ’
not be sufficient even linearly. In fact, in the ideal MHD (50)
limit where the magnetic field is frozen into the fluid, if the where the integration is performed along the perturbed field
temperature is initially uniform along a magnetic field line it line. Evaluation of this integralor its discrete analogyién
will always remain uniform along a field line if the plasma principle requires evaluation of the parallel temperature fluc-
motion is incompressible, so that the perpendicular gradientuation at an infinite number of points along the field. In
term will exactly cancel the parallel gradient term; by practice the integral can be cut off at a reasonable parallel
VT, +61~VT” =0. To account for this, Bondeson and correlation lengtt? Tru_nca_tmg th_e mtegral f'ﬂ’=L means

e 0 . . ) that the Landau damping is applied primarily to modes with
Ward"” employed Lagrangian variables and applied a Lany >1/L, while modes withk,<1/L will experience rela-
dau damping model only to the component of the temperagyely Jittle damping due to the Landau resonances. This ap-
ture fluctuations driven by compression. Alternatively, On€proximation is probably adequate in cases where the Landau-
could use the higher-order+42 moment equations which damping is only important for the higk- component of the
involve |k,| operating on a higher moment likg . Upon  fiyctuation spectrum, and convergence can be tested by vary-
linearizingV g =bo- Vq; +b;-Vq,  we often have only to ing L.
consider the first term since, is zero for many types of When collisions are important, the collisional form of
equilibria. the g, closure, Eq(48), should be used. The real space form

However, the situation is more complicated for nonlinear©f this closure is then
electromagnetic calculations. Then the nonlinear té}{n 232 2 o, A,
VT, can not formally be neglected compared bg qsz—no(;) UtuJO dz'g(z")[ T, (2+2')
-VT,,. To be rigorous, the transformation between the

k-space closure and its real space equivalent must be made
along the perturbed field lines. One way to do this would be = .k R
with a Lagrangian coordinate system which moved with the g(2)=f dk = sin(kz),

magnetic field and had one coordinate aligned with the mag- A 0 k+1

netic field. Then the standard fast Fourier transfdffRT)  wherek=kL; andz=z/L; have been normalized to the par-
algorithm along this coordinate could be used to evaluate thallel collisional mean free path,

|k,| closures. Alternatively, if the simulation uses a fixed v

Eulerian grid, then at every time step whékg T, is to be - L
evaluated, one would need to map from the simulation 378 v

grid to a field-line-following coordinate system, carry out the gor smallz Eq. (51) behaves just as E¢50), but for largez,
FFT, and then map the result back to the simulation grid. (%) falls off rapidly, as 12°, and the closure integral may
One can avoid FFT’s by working directly with the real- pe quite accurately truncated after a few mean free paths.
space form of the the closures. This is somewhat more ex- Equation(50) includes nonlinear magnetic effects if the
pensive computationally, since it involves convolutions inintegral is evaluated along perturbed magnetic field lines, but
one direction<?(N*) operations, wher&l is the number of it still assumes that density and temperature vary weakly
grid points in each directigrather than the faster FFT al- along a field line so that constant equilibrium valuesngf
gorithm [7(N? log N) operationg But because the convolu- andv, can be used. There are various possible extensions of
tions are done in only one direction instead of a threethis closure which could be proposed to model cases with
dimensional3-D) convolution[?(N°®) operationg this may  stronger parallel nonlinearitigéor example, see Sec. 3.4 of
be acceptable. Smith’s thesi&’). The relative advantages or accuracy of
For example, the real-space form of the collisionlessvarious possibilities has not yet been studied, but one reason-
3+1 moment closure fog,, Eq.(39), is the convolutiof able nonlinear model is

_Tus(i_i’)]. (51

2 Slzfde’ n(z+z' ) (T3 z+2") - T3 —n(z-2 /(T 24Az-2) -T2

ai(2)=— (;) . mi%’ : (52)

This has the physically reasonable property of weighting thenodel the heat flux on field lines which intersect solid ma-
convolution integral by the density, so that particles streamterials(where the plasma density goes to 2esuch as in the
ing from low density regions contribute less to the heat flux.edge of fusion devices. A possible choice f()’mo is
This model (or some variant therepfmight be useful to [dz n(2)T;(2)/fdz N(z).
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VIIl. AN EXAMPLE: THE MIRROR INSTABILITY s

To demonstrate the usefulness of our model, and the
fundamental importance of kinetic effects in simple colli-
sionless MHD problems, we will investigate the magnetic
mirror instability. Kulsrud cites this example to demonstrate
the use of his guiding-center kinetic theory and to expose the
limitations of simple fluid theories such as CGlwe will
show here that our Landau-fluid models recover the exac
instability threshold for the mirror mode, and provide a good 2
model of the mode’s linear growth rate above the threshold. f

Consider a strongly-magnetized, homogeneous plasm

sabaiiiiien

e Kinetic

Mirror Growth Rate (¢{)

\
1 1
et

E e
consisting of electrons and singly charged ions. Take the & _._ /_ . . . ____.__J !
magnetic field to be uniform in thedirection,By=Byz. The 0 Y s 20
equilibrium distribution is taken to be an anisotropic bi- Temperature Anisotropy (Tu/Te)

Maxwellian with unequal parallel and perpendicular tem- _ o o
peratures. For simplicity, take the electron and ion temperaE'G- 5. The linear growth rate of the mirror instabilitk{>kj) as pre-

. . . _ _ dicted by kinetic theory, 31 and 4+2 Landau MHD models, and CGL
tures to be equal in each directiofy,, =T, =T,, andT,, theory (ideal MHD cannot predict the mirror growth rate as it posits an

:TlOe:TLO' Define theX direction by writing the wave isotropic pressuje The normalized growth rategizlm(w)lmlgl\vm] is

vector k=kx)A(+ kzi, and define a “plasma displacement” plotted versus the temperature anisotropy, (/T,) at constantg

vectoré by U= —iwé. ={(2/3)pL0+(1/3)pH0}/(B§/877). The parameters chosen are=1, T,
Linearizing and Fourier transforming Eq&) through  =T.q,» Tig=Ti,,» 8=1, andym;/m.=40.

(5) then yields the following equations of maotion:

- powzgx: —ikyp, + kg( pHO_ pLO)fx_ (k>2<+ k;)

K[ T.2 T, B3
2 24 2220 - 22 () + = —
X(Bgl4m) &y, (53) fitie=2. ( T2 k(&) T, 8w,
_p0w2§Z: _iksz+kxkz(pII0_ pJ_O)gw (54) TLO BS
_ ] _ +|=——-1+ , (58
where the subscript on the perturbed pressures is again sup- Ti, Ampy,

pressed. Expressions for the perturbed presspyesdp, ) ) ) ) 2
are needed to close this system and solve for the instabilit}nere the,f“”Ct'onf/’/k(Q is defined by.%(£)=1{.72(¢;)
growth rate. We will close the system in four different ways: T 8-7(£i)-2({e) +72(£e) H{4((£) + (L))} For par-
first with linear kinetic theory, then using CGL theory, then allél propagation |f;|>[k,]), the above reduces to the dis-
with the 3+1 Landau MHD model, and finally with the 4 persion relation for th “firehose” |_nstab|I|ty, and th_e kinetic
+2 Landau MHD model, in order to compare the instability &ffécts drop out within our orderingnote that a different
thresholds and linear growth rates determined by each.  °rdering can be used to analyze these much smaller kinetic
To calculate a kinetic result, we proceed exactly as ireffects for limited parameter regimes—see Medvedev and

Egs.(24) through(27). Using quasineutrality to solve fd;, Diamond?®). All of the models considered will reproduce the

and using Eq(4) for By=—ik,£,B,, yields firehose linear g.rowth.rate exgctly. In the opposite limit
(|ky|>1k,]), the dispersion relation becomes
HUAL) — 7 Le)
eE =Ky Ty — o (55) K[ T T, B2
HebTLo )+ a0 (=20 |~ A T o] (59
0
This leads to the following expressions for the perturbed ‘ H ° °
pressures: This relation has an infinite number of roots, due to the pres-
ence of plasm&-functions. The magnetic mirror instability
ik Ty (L) +.7(Le) is the root for which the real part of the frequency goes to
PL=2iKkxExp. TIO 4 zero. Taking the limitz— 0 leads to the instability criterion

for the mirror modep, §/p; > p. ,+ BG/8. The linear mir-

(&) F(Le) ) 1 ror growth rate versus the degree of anisotrd'g)élTHo is
T(L)+.72(Le) Bk (56) plotted in Fig. 5 for a fixed mass ratio at fixed total plasma
beta, 8= ((2/3)p. ,+ (1/3)p; )/ (BF/8).
_ L 2IE) L)+ L2 The Chew—Goldberger—Ldwiheory can also be used to
pnzlkxfxpuo T ( L)+ 7L - investigate the mirror instability. CGL’s simple truncation of
lo i e . T .
the moment hierarchy withj;=q, =0 leads to the following
(57) linearized expressions for the two perturbed pressures:
ituting forp, in Eq. I he dispersion rela-
tSicl)Jr?St tuting forp, g. (53) leads to the dispersion rela o= —ip||o(kx§x+3kz§z), (60)
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pL=—ip. (2Keéxt+Kz&7). (61)  mirror mode. Unlike CGL, the 3 1 model recovers the cor-
_ o . _ rect stability threshold for the mirror instabilityp( 3/p;,
Plugging these into the equations of motion leads to the fol->ploJr B2/8+). The mirror mode linear growth rate pre-

lowing dispersion relation: dicted by the 3-1 model is compared to the other models in
2

K[ T2 1 T, B2 Fig. 5.

2, 42__ X 10 0 0 .
G+Ee= el e W+ T—+ 8 The 4+ 2 model provides a yet more accurate model of
z o (&) lo  ©7PIg the linear mirror mode growth rate. The calculation of the
T 2 dispersion relation is completely analogous to that for the 3

o Bo +1 model, and all of th It identical to th i

I ) (62) model, and all of the results are identical to those given
Ty, Ampy, in the previous paragraph, with the simple substitutions

Ia(Ls)— . 724(Ls) and.Z2,(Ls)— . 725(Ls). Again the instabil-
ity threshold for the mirror mode matches the kinetic result
exactly, and the linear growth rates are compared in Fig. 5.

In the |k,|>|k,| limit, CGL theory correctly predicts the in-
stability threshold for the firehose instability. However, in
the opposite limitk,|>|k,|, CGL’s description of the mirror
mode is drastically in error. CGL predicts the mirror mode
goes unstable fop, §/6p, >p, + B§/8, afactor of 6 error
from kinetic theory, as noted by KulsrddChe linear growth

rate is plotted in Fig. 5. . A fluid description of plasma dynamics in the collision-
The 3+1 Landau MHD model does markedly better in |ess MHD regime, including models of kinetic effects such
modeling the mirror mode. The-81 dispersion relation is a5 phase mixing and Landau damping, has been developed.

IX. DISCUSSION

derived using quasineutrality and E@1) to solve forE;,  This “Landau MHD" model is based on Kulsrud's formu-
and usingB; = —ik,&xB, to find lation of collisionless MHD*®° and it is enhanced through
Bl &N — T2 the use of Landau closures analogous to those developed by
. '3(§|) . ’3(ge) . . L e .
eE =Kk, é, (63 Hammett and Perkin®. The model is a significant improve-

TJ_ #.

° a4+ HalLe) ment over previous models, such as CGL thedpgcause it
Plugging this into the 31 model expressions for the per- includes accurate models of linear kinetic effects, while
turbed pressures worked out in Sec. IV B, and summing théhaintaining desirable nonlinear conservation properties and

2 species pressures yields a fairly simple form ink-space. The model describes all
) ) waves which appear within the collisionless MHD ordering,
Tio [ Z4(8)+ 2(Le) including shear and compressional Alfveiaves, as well as

p,=2i kxgxpLO

4 ion acoustic waves. The effects of collisions have also been
considered, through the use of a simple BGK collision op-
erator. It has been shown that, in the high collisionality limit

, (64) (0<<v<<Q.), the model reproduces Braginskii's stress ten-

sor and thermal conductivities approximately.
Both a 3+1 moment Landau MHD model and a more
accurate but more cumbersome&-2 moment model have

—11. been developed. Both have been derived for fairly general

conditions, making no assumptions about adiabaticity or
(65) plasma beta, and including models of both ion and electron
Substituting these results into the equations of motion leadsandau damping. Collisional effects have been included in
to the following dispersion relation: the moment equations through the use of a BGK collision
operator, and a collisionally modified version of the- 3
closure has been derived. One specieZefl ions is as-
TLS ) LR BS sumed, but the generalization to multiple ion species is pos-
N T‘g A+ 7+ sible. The model can be easily reduced to account for further
restrictions on adiabaticity, e.g., by replacing the full elec-
(Tio B2 ) tron moment hierarchy with a simple adiabatic electron re-
+ '

Ti,

Ee L LN
/23( gl) +'%7)3( ge)

Iﬂ( 2.725(£)- 4L+ £2)
Ti, F23( &)+ 723(Le)

Pi= ikx‘fxpllo

2
X

K

g+ ie=

T Y im (66)  sponse when appropriate. Additional simplifications are eas-
o ily made for isotropic pressure§( =T, ), or electrostatic

where A3 0)=(221(8;) + 781(Le) 1A+ T25( L) F25( L) perturbations B,;=0), etc. For nearly incompressible
(F5(L;) +.723(Le)) . As expected, the 81 results are iden- modes, a different ordering which eliminates the compres-
tical to the kinetic results, except that the electrostatic resional Alfven time scale is possible, as outlined by
sponse function’(¢s) is replaced everywhere by either a Medvedev and Diamont.
three-pole or a one-pole model?;(Zs) or .%241(Zs)). In the Some of the limitations of our model are imposed by the
limit |k,|>1|k,|, the 3+1 model recovers the linear kinetic use of a general collisionless MHD ordering together with a
firehose dispersion relation. Taking the opposite lifkit| gyroaveraged kinetic equation. This ordering eliminates all
>|k,|, leads to the mirror mode dispersion relation. Againfinite Larmor radius(FLR) effects k, p—0), including the
the small frequency limit {—0) is taken to investigate the curvature andv B drifts. To bring FLR effects into the prob-
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lem, it is necessary to introduce an additional ordering whictby the Numerical Tokamak Turbulence Project, part of the

removes the compressional Alivéime scale. DoE High Performance Computing and Communications
Another complication is the evaluation of th&|/k, Initiative.

terms found in the Landau closures. As pointed out by Finn

and Gerwint® the Landau damping must be evaluated along,

perturbed field lines. Hence, for nonlinear calculations, trans- ﬁ'ziﬁcgle;"(’l'\gég'. Goldberger, and F. E. Low, Proc. R. Soc. London, Ser.

forming the closure to real space requires an integral alongr. M. Kulsrud, in Proceedings of the International School of Physics

the perturbed field line. The numerical evaluation of these Enrico Fermi, Course XXV, Advanced Plasma Theewjited by M. N.

nonlinear closures may be burdensome in some cases, g§osenbluthiNorth Holland, Varenna, Italy, 1962
R. M. Kulsrud, inHandbook of Plasma Physicsedited by M. N. Rosen-

discussed in Sec. VII. _ ~ bluth and R. Z. SagdeetNorth Holland, New York, 1988
It is anticipated that the model will be useful for nonlin- 43. N. Leboeuf, T. Tajima, and J. M. Dawson, J. Comput. PBys.379

ear numerical simulations. Some of the caveats involved in5(1979- o
using Landau closures in nonlinear simulations have beenR:D- Sydoraand J. Raeder,@ometary and Solar Plasma Physiesiited

. . . S 2,23.24,26-30 by B. Buti (World Scientific, Teaneck, NJ, 1988p. 310-364.
extensively discussed in the gyrofluid literatdte: 6G. Y. Fu and W. Park, Phys. Rev. LeRd, 1594(1995.

but these caveats are an area of ongoing research. There ai@ Naitou, K. Tsuda, W. W. Lee, and R. D. Sydora, Phys. Plastndg57
some regimes where certain nonlinear kinetic effects are not(1995.

. 8 .
well modeled by Landau-fluid closuréBut we generally gm 3' g:)“:ek:‘t')lﬁt”hd;ﬁ\'l Oé’;ggsgr' F,;%i 'T:':Ju%ség‘rz%%‘g&

believéz'z“*”'zﬁhese closures will be adequate for strongerog. Hammett and F. Perkins, Phys. Rev. Lé#, 3019(1990.

turbulence regimes where rapid decorrelation is occurring'G. Hammett, W. Dorland, and F. Perkins, Phys. Fluid4, 2052(1992.

and the velocity space details of the distribution function areizTW-SDOFfi'ar?dv C\f/‘-svtfies'sv P(;'f;feéo_” Ug'vgf;'ty: F1|919£5- 1940(1988
s : . 9. fHanm, . . Lee, an . brizard, yS. Flu .

not critically important. , _ 1A Brizard, Phys. Fluids Bl, 1213(1992.

. It is hoped that the model will prove useful fc_:r S|mulat-_1szl Chang and J. D. Callen, Phys. Fluids5B1167(1992.

ing both laboratory and astrophysical plasmas in the colli+°z. Chang and J. D. Callen, Phys. Fluids4B1182(1992.

sionless MHD regime. The model should be able to predict A- gondes;r;{ agd D. Ward, Phys. S;VS-Z ig;z(lgg?(lg%
. . . nn an . rwin . .
the onset and structure of instabilities, as well as the heat an I\I/Ied\E/ledev anﬁ ‘,’DV' biamyjnd ?fhys Plasr8a863 (1995

particle transport caused by the instabilities. 2F . Gross and M. Krook, Phys. Re%02, 593 (1956.
215, E. Parker and D. Carati, Phys. Rev. L&8, 441 (1995.
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