INTRODUCTION TO GYROKINETIC AND FLUID SIMULATIONS OF PLASMA TURBULENCE AND OPPORTUNITES FOR ADVANCED FUSION SIMULATIONS

G.W. Hammett, Princeton Plasma Physics Lab w3.pppl.gov/~hammett Fusion Simulation Project Workshop San Diego, Sept. 17, 2002

Thanks to Bill Nevins & the Plasma Microturbulence Project for many vugraphs. In particular see:

http://www.isofs.info/nevins.pdf http://fusion.gat.com/theory/pmp

and others working on Braginskii 2-fluid simulations of edge turbulence. (Collabs. at Univ. Alberta, UCLA, UCI, Univ. Colorado, Dartmouth, Garching, General Atomics, LLNL, Univ. Maryland, MIT, Princeton PPPL, Univ. Texas)

Fundamental Particle Motion in Magnetic & Electric Fields

$$m \frac{dV}{dt} = 9 \frac{V \times B}{c}$$

$$\int E$$

$$\int \frac{1}{2} e^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}}$$

$$\int \frac{1}{2} e^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}}$$

$$Gyrofrequency \Omega = \frac{9B}{mc}$$

$$\Omega e^{-10''He}, \Omega_{i} \sim 10^{8}He$$

$$Gyroradi us \rho = \frac{V_{i}}{\Omega}$$

Fundamental Particle Motion in Magnetic & Electric Fields

$$m \frac{dV}{dt} = g \frac{V \times B}{c}$$

$$g \frac{V}{dt} = \frac{V \times B}{c}$$

$$V = \frac{V^2}{2R} \quad b \times R = B$$

$$V = \frac{V^2}{2R} \quad b \times R = B$$

$$V = \frac{V^2}{2R} \quad b \times R = B$$

Qualitative Physical Picture of "Bad Curvature" Instabilities (ITG, TEM, ETG, Drift waves, MHD ballooning...)

is given by the particle distribution function $F_s(\vec{x}, \vec{v}, t)$, the density of particles at (near) position \vec{x} with velocity \vec{v} and time t, for species s (with charge q_s and mass m_s).

The charge density and current needed for Maxwell's equations to determine the electric and magnetic fields is then:

 $\sigma(\vec{x},t) = \sum_{s} q_s \int d^3 v F_s(\vec{x},\vec{v},t) \qquad \qquad \vec{j}(\vec{x},t) = \sum_{s} q_s \int d^3 v \vec{v} F_s(\vec{x},\vec{v},t)$

 F_s is determined by the Vlasov-Boltzmann equation

$$\frac{\partial F}{\partial t} + \vec{v} \cdot \frac{\partial F}{\partial \vec{x}} + \frac{q_s}{m_s} \left(\vec{E} + \frac{\vec{v} \times \vec{B}}{c} \right) \cdot \frac{\partial F}{\partial v} = \text{Collisions} + \text{sources} + \text{sinks} \approx 0$$

where sources + sinks includes radiation cooling of electrons, ionization and recombination changes of ion charge state, etc.

Discrete particle density representation (combined with smoothing and "particle-in-cell" techniques):

$$F_s = \sum_{i=1,N} w_i(t) \delta(\vec{x} - \vec{x}_i(t) \delta(\vec{v} - \vec{v}_i(t)$$

$$\frac{d\vec{x}_i}{dt} = \vec{v}_i \qquad \qquad \frac{d\vec{v}_i}{dt} = \frac{q_i}{m_i} \left(\vec{E}(\vec{x}_i, t) + \frac{\vec{v}_i \times \vec{B}(\vec{x}_i, t)}{c} \right)$$

plus Monte Carlo treatment of collisions, sources and sinks.

Both "continuum" F and particle descriptions are equivalent (in the limit of a large number of particles, typical fusion particle density $\sim 10^{14}/\text{cm}^3$) and are"Exact", but both include an excessive range of time and space scales.

Most plasma phenomena of interest are slow compared to the electron and ion gyrofrequencies ($\sim 10^{11}$ Hz and $\sim 10^{8}$ Hz).

Vlasov, Boltzmann, Liouville Eq:
Particle Distribution

$$\frac{\partial f(x, y, t)}{\partial t} + \frac{y}{y} \cdot \frac{\partial f}{\partial x} + \frac{q}{m} \left(\frac{z}{z} + \frac{y \times B}{c} \right) \cdot \frac{\partial f}{\partial y} = C(f)$$

Nonlinear, E+B depend on f
through Maxwell's Eqs.
Nonlinear Gyrokinetic Eq. 1982-88
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & Chen, W.W.Lee, Dubin, Krommes, Hahm, Brizard...) linear gyrokinetics
(Frieman & C

Guiding center distribution function $F_s(\vec{x}, \vec{v}, t) = F_{0s}(\psi, W) + F_{0s}(\psi, W)q_s\tilde{\phi}/T_s + \tilde{h}_s(\vec{x}, W, \mu, t) =$ equilibrium + fluctuating components, where the energy $W = mv_{\parallel}^2 + \mu B$, the first adiabatic invariant $\mu = mv_{\perp}^2/B$, and

$$\frac{\partial \tilde{h}_s}{\partial t} + \left(\tilde{\vec{v}}_{\chi} + v_{\parallel}\hat{b} + \vec{v}_d\right) \cdot \nabla \tilde{h}_s = -\tilde{\vec{v}}_{\chi} \cdot \nabla F_{0s} - q_s \frac{\partial F_{0s}}{\partial W} \frac{\partial \tilde{\chi}}{\partial t} + \mathbf{Collisions} + \mathbf{Sources} + \mathbf{Sink}$$

where \hat{b} points in the direction of the equilibrium magnetic field, \vec{v}_d is the curvature and grad B drift, Ω_s is the gyrofrequency, and the ExB drift is combined with transport along perturbed magnetic fields lines and the perturbed ∇B drift as:

$$\tilde{\vec{v}}_{\chi} = \frac{c}{B}\hat{b} \times \nabla \tilde{\chi} \qquad \tilde{\chi} = J_0(\gamma)\left(\tilde{\phi} - \frac{v_{\parallel}}{c}\tilde{A}_{\parallel}\right) + \frac{J_1(\gamma)}{\gamma}\frac{mv_{\perp}^2}{e}\frac{\tilde{B}_{\parallel}}{B}$$

 J_0 & J_1 are Bessel functions with $\gamma = k_\perp v_\perp / \Omega_s$, and the fields are from

$$\begin{split} 0 &\approx 4\pi \sum_{s} q_{s} \int d^{3}v \left[q_{s} \tilde{\phi} \frac{\partial F_{0s}}{\partial W} + J_{0}(\gamma) \tilde{h}_{s} \right] \\ \nabla^{2} \tilde{A}_{\parallel} &= -\frac{4\pi}{c} \sum_{s} q_{s} \int d^{3}v v_{\parallel} J_{0}(\gamma) \tilde{h}_{s} \\ \frac{\tilde{B}_{\parallel}}{B} &= -\frac{4\pi}{B^{2}} \sum_{s} \int d^{3}v m v_{\perp}^{2} \frac{J_{1}(\gamma)}{\gamma} \tilde{h}_{s} \end{split}$$

$$\tilde{\vec{E}} = -\nabla \tilde{\phi} - \frac{1}{c} \frac{\partial \tilde{A}_{\parallel}}{\partial t} \hat{b}$$

$$\vec{B} = \vec{B}_0 + \nabla \tilde{A}_{\parallel} \times \hat{b} + \tilde{B}_{\parallel} \hat{b}$$

In a full-torus simulation where plasma variations must be kept

$$J_0(k_\perp v_\perp / \Omega_s)\phi \to \langle \phi \rangle(\vec{x}) = \frac{1}{2\pi} \int d\vec{\rho} \phi(\vec{x} + \vec{\rho})$$

.

Candy/Waltz movies available at:

http://web.gat.com/comp/parallel/gyro_gallery.html

and other movies can be found from various links starting at:

http://fusion.gat.com/theory/pmp

The Plasma Microturbulence Project supports a 2x2 matrix of codes (geometry x algorithm), each type of code is tuned to optimize in various regimes and so are optimized to study certain types of problems.

Codes using flux-tube geometry (shown here) take advantage of short decorrelation lengths of the turbulence perpendicular to magnetic field lines. Multiple copies of a flux-tube pasted together represent a toroidal annulus.

We Support a 2x2 Matrix of Plasma Turbulence Simulation Codes

	Continuum	PIC
Flux Tube	GS2	SUMMIT
Global	GYRO	GTC

- Why both Continuum and Particle-in-Cell (PIC)?
 - Cross-check on algorithms
 - Continuum currently most developed (already has kinetic *e*'s, δB_{\perp})
 - PIC may ultimately be more efficient
- If we can do Global simulations, why bother with Flux Tubes?
 - Electron-scale (ρ_e , $\delta_e = c/\omega_{pe}$) physics (ETG modes, etc.)
 - Turbulence on multiple space scales (ITG+TEM, TEM+ETG, ITG+TEM+ETG, ...)
 - Efficient parameter scans

Plasma Microturbulence Project

Current 'state-of-the-art' (similar performance achieved in Continuum codes)

Spatial Resolution

- Plasma turbulence is quasi-2-D
 - Resolution requirement along B–field determined by equilibrium structure
 - Resolution across B–field determined by microstructure of the turbulence.
 - $\Rightarrow ~ 64 \times (a/\rho_i)^2 ~ 2 \times 10^8 \text{ grid points to}$ simulate ion-scale turbulence at burning-plasma scale in a global code
 - Require ~ 8 particles / spatial grid point
 - $\Rightarrow \sim 1.6 \times 10^9 \text{ particles for global ion-}$ turbulence simulation at ignition scale
 - ~ 600 bytes/particle
 - \Rightarrow 1 terabyte of RAM

Temporal Resolution

- Studies of turbulent fluctuations
 - Characteristic turbulence time-scale $\Rightarrow c_s/a \sim 1 \ \mu s \ (10 \ time \ steps)$
 - Correlation time >> oscillation period $\Rightarrow \tau_c \sim 100 \times c_s/a \sim 100 \ \mu s$ (10³ time steps)
 - Many τ_c 's required
 - $\Rightarrow T_{\text{simulation}} \sim \text{ few ms}$ (5×10⁴ time steps)
 - 4×10⁻⁹ sec/particle-timestep (this has been achieved)
 - \Rightarrow ~90 hours of IBM-SP time/run
- $\Rightarrow \text{ This resolution is achievable} \qquad \blacktriangleright \text{ Heroic (but within our time allocation)} \\ (Such simulations have been performed, see T.S. Hahm, Z. Lin, APS/DPP 2001)$
- Simulations including electrons and δB (short space & time scales) are not yet practical at the burning-plasma scale with a global code

5/23/02

W.M. Nevins, "Turbulence & Transport"

Major Computational and Applied Mathematical Challenges

- **Continuum kernels** solve an advection/diffusion equation on a 5-D grid
 - Linear algebra and sparse matrix solves (LAPAC, UMFPAC, BLAS)
 - Distributed array redistribution algorithms (we have developed or own)
- **Particle-in-Cell kernels** advance particles in a 5-D phase space
 - Efficient "gather/scatter" algorithms which avoid cache conflicts and provide random access to field quantities on 3-D grid
- **Continuum** and **Particle-in-Cell kernels** perform elliptic solves on 3-D grids (often mixing Fourier techniques with direct numerical solves)
- Other Issues:
 - Portability between computational platforms
 - Characterizing and improving computational efficiency
 - Distributed code development
 - Expanding our user base

Continuum / Eulerian Codes		Particle-in-Cell/Lagrangian Codes		
Flux-tube / thin- annulus	Full-torus or thin annulus	Flux-tube	Full-torus	
All now use field-line following coordinate systems, $\Delta x_{\perp} / \Delta x_{\parallel} \sim \rho_i / L \sim 10^{-1}$ -10 ⁻³				
GS2 (Dorland, U. Md., Kotschenreuther)	Gyro (Candy-Waltz GA)	Summit (LLNL, U. Co, UCLA)	GTC (Z. Lin et.al. PPPL, UCI)	
⊥ Pseudo-spectral linear & nonlinear. 2 ^{cd} order finite-diff. (slight upwind)	Toroidal pseudo-spectral $5^{th}-6^{th}$ order upwind τ grid to avoid $1/v_{\parallel}$ collisions w/ direct sparse solver (UMFPACK)	Delta-f algorithm reduces particle noise. Recent hybrid electron algorithm: fluid with kinetic electron closure.		
Linear: fully implicit (elegant algorithm) Nonlinear: 2 ^{cd} order Adams-Bashforth	High accuracy explicit 4 th order Runge-Kutta	Leap-frog / Predictor-corrector		
Elliptic solvers easy in Fourier space	Elliptic solvers with non-uniform coefficients solved by combination of Fourier, iterative, and direct matrix solution			

Fast time scales hiding in E & B fields: is there a partially-implicit iterative algorithm that can help?

Recommendations (I)

Strengthening PMP Support to Integrated Modeling

- (1) Improve the fidelity and performance of Plasma Microturbulence Project codes
- (2) Validate these codes against experiment
- (3) Expand the user base of the PMP codes
- (4) Initiate the development of a kinetic edge turbulence simulation code.

CORE TURBULENT TRANSPORT STILL IMPORTANT

- Provides most of temperature gradient: 20 keV center \rightarrow 1-4 keV near-edge. Effects of shaping, density peakedness, rotation, impurities, T_i/T_e ?
- Detailed experimental comparisons possible, fluctuation diagnostics.
- Are internal transport barriers possible at reactor scales? $P_{threshold}$? Torque? Controllable?
- Electron-scale transport controls advanced reactor performance?

BUT EDGE TURBULENCE CRITICAL

- H-mode pedestal (edge transport barrier) greatest source of uncertainty for reactor predictions.
- Will divertor melt/erode? Need ELM simulation.
- Edge very complicated: Separatrix & divertor geometry matters. Bootstrap current important, second stability regime. Half of power radiated, intense neutral recycling.
- High and low collisionality regimes. Present edge codes are collisional fluids, need kinetic extensions.

3-D Fluid Simulations of Plasma Edge Turbulence BOUT (X.Q. Xu, 🔄)

- Braginskii collisional, two fluid electromagnetic equations
- Realistic ×-point geometry (open and closed flux surfaces)
- BOUT is being applied to DIII-D, C-Mod, NSTX, ...
- There is LOTS of edge fluctuation data!
- ⇒ An Excellent opportunity for code validation

W.M. Nevins, "Turbulence & Transport"

More info:

Plasma Microturbulence Project (PMP): http://fusion.gat.com/theory/pmp

Nevins presentation on PMP to ISOFS May 2002: http://www.isofs.info/nevins.pdf

GS2 (Dorland Univ. Md.): http://gk.umd.edu/GS2/info.html

Useful 2-page gyrokinetic summary: http://gk.umd.edu/GS2/gs2_back.ps

GTC (Lin PPPL UCI): http://w3.pppl.gov/~zlin/visualization/

Gyro (Candy/Waltz GA): http://web.gat.com/comp/parallel/gyro.html

Summit (LLNL/UCLA/U. Co.): http://www.nersc.gov/scidac/summit