The Ion Temperature Gradient (ITG) Instability

Greg Hammett, Princeton Plasma Physics Lab (PPPL) http://w3.pppl.gov/~hammett

CMPD/CMSO Winter School, UCLA, 1/09/2007

- Intuitive picture of the ITG instability

 based on analogy with
 Inverted pendulum / Rayleigh-Taylor
 instability
- 2. Rigorous derivation of ITG growth rate & threshold (in a simple limit) starting from the Gyrokinetic Eq.

(with sign errors in original lecture fixed.)

Candy, Waltz (General Atomics)

Acknowledgments:

Center for Multiscale Plasma Dynamics

& Plasma Microturbulence Project

(General Atomics, U. Maryland, LLNL, PPPL, U. Colorado, UCLA, U. Texas)

DOE Scientific Discovery Through Advanced Computing

http://fusion.gat.com/theory/pmp

- J. Candy, R. Waltz (General Atomics)
- W. Dorland (Maryland) W. Nevins (LLNL)
- R. Nazikian, D. Meade, E. Synakowski (PPPL)
- J. Ongena (JET)

The Plasma Microturbulence Project

- A DOE, Office of Fusion Energy Sciences, SciDAC (Scientific Discovery Through Advanced Computing) project (~2001-2004)
- devoted to studying plasma microturbulence through direct numerical sumulation
- National Team (& four codes):
 - GA (Waltz, Candy)
 - U. MD (Dorland)
 - U. CO (Parker, Chen)
 - UCLA (Lebeouf, Decyk)
 - LLNL (Nevins P.I., Cohen, Dimits)
 - PPPL (Lee, Lewandowski, Ethier, Rewoldt, Hammett, ...)
 - UCI (Lin)
- They've done all the hard work ...

Part 1: Intuitive picture of the ITG instability -- based on analogy with Inverted pendulum / Rayleigh-Taylor instability

"Bad Curvature" instability in plasmas≈ Inverted Pendulum / Rayleigh-Taylor Instability

Growth rate:

Top view of toroidal plasma:

The Secret for Stabilizing Bad-Curvature Instabilities

Twist in **B** carries plasma from bad curvature region to good curvature region:

Similar to how twirling a honey dipper can prevent honey from dripping.

$$\begin{array}{rcl} & growth rate & propagation from bad-curvative \\ & region & bad-curvative \\ & region & to good curvative regions \\ \hline MHD works well to lowest order in plasmas, so RHS \Rightarrow
$$\begin{array}{rcl} & \frac{Vt}{VRL} & > & h_{ij} VA \sim \frac{VA}{qR} \\ \hline & \frac{Vt}{VRL} & > & h_{ij} VA \sim \frac{VA}{qR} \\ \hline & \frac{V_{e}}{V_{A}^{2} RL} & > & l \\ \hline & \frac{V_{e}^{2} q^{2} R^{2}}{V_{A}^{2} RL} & > & l \\ \hline & LHS = & \frac{\beta}{2} \frac{q^{2} R}{L} = \frac{1}{2} \frac{q^{2} R}{\partial r} \left[\frac{\partial \beta}{\partial r} \right] = \frac{1}{2} \propto MHD \end{array}$$$$

While MHD works well to lowest order in plasmas,
there are next-order FLR corrections that defrust
the magnetic field
$$\neq$$
 allow $E_{11} \neq 0 \Rightarrow$ allow
the plasma to more separately from $\frac{D}{2}$.
Still have some waves that can connect good \neq
bad convaries region. Unstable if:
 $\delta \gg connection rate$

Higher energy porticles VB drift faster, creates charge separation à trus E field, causes EXB flow that further accentuates perturbation. Positive feedback => instability.

Similar bad convertere drive for trapped electron modes...

Spherical Torus has improved confinement and pressure limits (but less room in center for coils)

Understanding Turbulence That Affects the Performance of Fusion Device

(Candy & Waltz, GA 2003)

Central temp ~ $10 \text{ keV} \sim 10^8 \text{ K}$

Large temperature gradient
→ turbulent eddies
→ cools plasmas
→ determines plasma size
needed for fusion ignition

Major progress in last decade: detailed nonlinear simulations (first 3-D fluid approximations, now 5-D f($\vec{x}, v_{\parallel}, v_{\perp}, t$)) & detailed understanding

Comprehensive 5-D computer simulations of core plasma turbulence being developed by Plasma Microturbulence Project. Candy & Waltz (GA) movies shown: d3d.n16.2x_0.6_fly.mpg & supercyclone.mpg, from <u>http://fusion.gat.com/comp/parallel/gyro_gallery.html</u> (also at <u>http://w3.pppl.gov/~hammett/refs/2004</u>).

Microinstabilities are small-amplitude
but still nonlinear

$$n(r)$$

 $n(r)$
 $n = n_0(r) + \tilde{n}(x,t)$
 $n_0 >> \tilde{n}$
but $\nabla n_0 \sim \nabla \tilde{n}$
 $\int C_{on} locally flatten
or reverse total gradient
that was driving instability.
* Turbulence causes loss of plasma to the wall,
but confinement still x10S better than without B.
If no B, loss time $\sim \frac{a}{V_{\rm E}} \sim 1$ psec
with B, expts. measure ~ 0.1 -10 sec.$

Simple picture of reducing turbulence by negative magnetic shear

- Particles that produce an eddy tend to follow field lines.
- Reversed magnetic shear twists eddy in a short distance to point in the ``good curvature direction".
- Locally reversed magnetic shear naturally produced by squeezing magnetic fields at high plasma pressure: ``Second stability'' Advanced Tokamak or Spherical Torus.
- Shaping the plasma (elongation and triangularity) can also change local shear

Sheared flows can suppress or reduce turbulence

Sheared ExB Flows can regulate or completely suppress turbulence (analogous to twisting honey on a fork)

Dominant nonlinear interaction between turbulent eddies and $\pm \theta$ -directed zonal flows.

Additional large scale sheared zonal flow (driven by beams, neoclassical) can completely suppress turbulence

Fascinating Diversity of Regimes in Fusion Plasmas. What Triggers Change? What Regulates Confinement?

R. Nazikian et al.

All major tokamaks show turbulence can be suppressed w/ sheared flows & negative magnetic shear / Shafranov shift

Internal transport barrier forms when the flow shearing rate $dv_{\theta}/dr > \sim$ the max linear growth rate γ_{lin}^{max} of the instabilities that usually drive the turbulence.

Shafranov shift Δ ' effects (self-induced negative magnetic shear at high plasma pressure) also help reduce the linear growth rate.

Advanced Tokamak goal: Plasma pressure ~ x 2, $P_{fusion} \propto pressure^2 ~ x 4$

Transition to Enhanced Confinement Regime is Correlated with Suppression of Core Fluctuations in TFTR

 Similar suppression observed on JET (X-mode reflectometer) and DIII-D (FIR Scattering)

Hahm, Burrell, Phys. Plas. 1995, E. Mazzucato et al., PRL 1996.

R. Nazikian et al.

Improved Stellarators Being Built

- Magnetic field twist and shear provided by external coils, not plasma currents. More stable?
- Computer optimized designs much better than 1950-60 slide rules?
- Quasi-toroidal symmetry allows plasma to spin toroidally: shear flow stabilization?

Part 2: Rigorous derivation of ITG growth rate & threshold (in a simple limit) starting from the Gyrokinetic Eq.

Our starting point will be the electrostatic Gyrotemetic
Eq. written in a Drift-Kinetic-like form for the
full, gyro-averaged, guiding center density
$$f(R, v_n, \mu, t)$$
:

$$\frac{\partial \widetilde{f}}{\partial t} + (v_{\parallel} \mathbf{\hat{b}} + \mathbf{v}_E + \mathbf{v}_d) \cdot \nabla \widetilde{f} + \left(\frac{q}{m} E_{\parallel} - \mu \nabla_{\parallel} B + v_{\parallel} (\mathbf{\hat{b}} \cdot \nabla \mathbf{\hat{b}}) \cdot \mathbf{v}_E\right) \frac{\partial \widetilde{f}}{\partial v_{\parallel}} = 0$$

-

$$\frac{details:}{K} = \frac{details:}{W} = \frac{details}{W} = \frac{d$$

even though
$$\frac{V_E}{V_t} \sim \frac{P_R}{R} \sim \mathcal{E}$$
, $\frac{V_E \cdot V_l}{V_{ll} \cdot \delta \cdot \nabla} \sim \frac{V_t \frac{P_R}{R} h_{ll}}{V_t \cdot h_{ll}} \sim \frac{h_l P}{h_{ll} \cdot R}$
~ 1

$$\frac{\partial \overline{f}}{\partial t} + (v_{\parallel}\hat{\mathbf{b}} + \mathbf{v}_{E} + \mathbf{v}_{d}) \cdot \nabla \overline{f} + \left(\frac{q}{m}E_{\parallel} - \mu\nabla_{\parallel}B + v_{\parallel}(\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}}) \cdot \mathbf{v}_{E}\right)\frac{\partial \overline{f}}{\partial v_{\parallel}} = 0$$
Linearize: $\overline{f} = F_{o} + \widetilde{f}$, where F_{o} satisfies Equilibrium Eq.
 $\frac{\partial}{\partial t} = \partial \quad \underline{E} = 0$
 $\left(V_{\parallel}\stackrel{h}{\mathbf{b}} + \underline{V}_{d}\right) \cdot \nabla F_{o} - \mu \nabla_{\parallel} \beta \frac{\partial F_{o}}{\partial V_{\parallel}} = 0$
General Equilibrium solution could be an arbitrary function of the constants banana orbits or passing of the motion (E, μ, P_{ϕ}) where $E = \frac{1}{2}mv_{\parallel}^{2} + \mu \beta$.
 $E = \frac{1}{2}mv_{\parallel}^{2} + \mu \beta$
 $d \quad P_{\phi} = \text{ canonical angular momentum}$
 $\beta_{v}t$ if we neglect $\frac{|V_{h}|}{V_{h}} \sim \frac{f}{R}$ get simpler Eq.:

$$V_{II} \hat{b} \cdot \nabla F_{0} - \mu (\hat{b} \cdot \nabla B) \frac{\partial F_{0}}{\partial V_{II}} = 0$$

Will consider Equilibrium of the form:

$$F_{0} (R, V_{II}, \mu) \propto \frac{n_{0}(Y)}{T_{0}^{3/2}(Y)} e^{-\frac{m(\frac{1}{2}V_{II}^{2} + \mu B(X))}{T(Y)}} \propto e^{-\frac{E}{T}}$$

Exercise: Plug this in to the previous Eq. + show it is
a solution.

$$\begin{split} \frac{\partial \tilde{f}}{\partial t} + (v_{\parallel}\hat{\mathbf{b}} + \mathbf{v}_{E} + \mathbf{v}_{d}) \cdot \nabla \tilde{f} + \left(\frac{q}{m}E_{\parallel} - \mu \nabla_{\parallel}B + v_{\parallel}(\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}}) \cdot \mathbf{v}_{E}\right) \frac{\partial \tilde{f}}{\partial v_{\parallel}} &= 0 \\ \\ \text{Lmearize:} \quad \tilde{f} = F_{o} + \tilde{f}, \text{ where } F_{o} \text{ satisfies Equilibrium Eq.} \\ \text{Next order Eq:} \\ \frac{\partial \tilde{f}}{\partial t} + \left(v_{\parallel}\hat{\mathbf{b}} + v_{d}\right) \cdot \nabla \tilde{f} - \mu \nabla_{\mu}\beta \frac{\partial \tilde{f}}{\partial v_{\parallel}} &= - \bigvee_{E} \cdot \nabla F_{o} \\ - \left(\frac{q}{m}E_{\mu} + v_{\parallel}(\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}}) \cdot v_{E}\right) \frac{\partial F}{\partial v_{\parallel}} \end{split}$$

$$\left(-\lambda \omega + \lambda v_{\mu} h_{\mu} + \lambda v_{\theta} \cdot h_{\mu} \right) \widetilde{f} = - v_{E} \cdot \nabla F_{o} - \left(\frac{q}{m} E_{\mu} + v_{\mu} \left(b \cdot \nabla b \right) \cdot v_{E} \right) \frac{\partial F_{o}}{\partial v_{\mu}}$$

$$\frac{\operatorname{Important Subtlety}: F(\underline{R}, \underline{V}_{u}, \underline{P}, \underline{t}) \quad so}{-\underline{V}_{\underline{C}} \cdot \nabla F_{o} = -\underline{V}_{\underline{C}} \cdot \nabla \Big| F_{o} \quad V_{u, \underline{P}, \underline{t}} \\ \quad using \quad F_{o} \propto \frac{n_{o}(r)}{T_{o}^{3/2}} e^{-\frac{(\underline{t} - m_{u} + m_{\underline{P}} \cdot \underline{B}(\underline{x}))}{T_{o}(r)}} \\ \quad w_{ull give terms proportional to } \nabla n_{o}, \nabla T_{o}, \underline{t} = \underline{P} \cdot \nabla B \\ \nabla n_{o} terms: -\underline{V}_{\underline{C}} \cdot \nabla F_{o} \Rightarrow t \frac{c}{B} \left(\nabla \underline{\Psi} \times \widehat{b} \cdot \underline{\nabla} \underline{n}_{o} \right) F_{o} \\ p_{o}^{10udal} = -\frac{c}{B} \quad \nabla \underline{F} \times \widehat{b} \cdot \widehat{r} \cdot \underline{L}_{u} \quad F_{o} \qquad \frac{\nabla n_{o}}{n_{o}} = -\frac{\widehat{r}}{L_{u}} \\ \theta = -\frac{c}{B} \cdot A_{\theta} \cdot \underline{E} \cdot \underline{L}_{u} \quad F_{o} \qquad \frac{\nabla n_{o}}{n_{o}} = -\frac{\widehat{r}}{L_{u}} \\ \theta = -\frac{c}{B} \cdot A_{\theta} \cdot \underline{E} \cdot \underline{F}_{o} \qquad \frac{\omega_{x,\overline{x}}}{T_{o}} = -\frac{c}{R} \cdot A_{\theta} \cdot \underline{L}_{u} \\ \theta = -\frac{c}{R} \cdot A_{\theta} \cdot \underline{F}_{v} \quad F_{o} \qquad \frac{\omega_{x,\overline{x}}}{T_{o}} = -\frac{c}{R} \cdot A_{\theta} \cdot \underline{L}_{u} \\ \theta = -h_{\theta} \rho_{s} \cdot \frac{c_{s}}{L_{u}} \\ \theta = -h_{\theta} \cdot \frac{c_{s}$$

With B field out of the page,
the VB drift for ions is
downward

$$V_{\partial} \approx - \frac{\partial}{\partial V_{\pm}} f_{R} \quad (at \theta = 0)$$

 $V_{\partial} \approx - \frac{\partial}{\partial V_{\pm}} f_{R} \quad (at \theta = 0)$
defining $W_{dv} = h \cdot V_{d}$
gives convention used in Beer's
thesis:

$$\omega_{dv} = \omega_d (v_{\parallel}^2 + \mu B) / v_t^2$$
$$\omega_d = -k_{\theta} \rho v_t / R$$

More on Sign Convertions

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$$

$$= - \frac{h}{eB} \frac{h}{L_{r}}$$

(Back to RHS of Incarized GK Eq., 4 slides back) $-\underbrace{v}_{E}\cdot\nabla F_{o}-(\underbrace{\mathbf{q}}_{m}E_{n}+v_{n}(b\cdot\nabla b)\cdot v_{E})\frac{\partial F_{o}}{\partial v_{n}}$ RHS = $\propto + V_{\parallel} \begin{pmatrix} \wedge & & \\ b & \nabla & b \end{pmatrix} \cdot \begin{pmatrix} \wedge & & \\ b & \times \nabla & \overline{\phi} \end{pmatrix}$ part of this ~- c VExb. pVB $\sim -\nabla \Psi \cdot \left[p \hat{b} \times \nabla B + v_{ij} \hat{b} \times (\hat{b} \cdot \nabla \hat{b}) \right]$ + curvature drift 7B $RHS = +i\left(\omega_{xv}^{T} - \omega_{dv} - h_{u}v_{u}\right) \frac{eF}{T} F_{o}$ $\omega_{dv} = \omega_d (v_{\scriptscriptstyle \parallel}^2 + \mu B) / v_t^2$ $\omega_*^T = \omega_* [1 + \eta (v_{\parallel}^2 / 2v_t^2 + \mu B / v_t^2 - 3/2)]$ $\omega_{a} \equiv -\frac{v_{t}}{p} p \left(h_{\theta} \cos \theta + h_{r} \sin \theta \right)$ $\omega_{\star} = h_{\theta} \rho \frac{V_{t}}{I}$ $\eta = \frac{L_{n}}{L_{\tau}}$

$$\int_{a}^{2} \int_{a}^{b} \int_{a$$

$$\left(-\kappa \omega + i v_{\parallel} h_{\parallel} + i v_{\vartheta} \cdot h_{\perp} \right) \widetilde{f} = - v_{\varepsilon} \cdot \nabla F_{o} - \left(\frac{q}{m} E_{\parallel} + v_{\parallel} \left(b \cdot \nabla b \right) \cdot v_{\varepsilon} \right) \frac{2F_{o}}{2v_{\parallel}}$$

subst. for RHS

$$(-\omega + i v_{11}h_{11} + i \omega_{dv}) \tilde{f} = -i (-\omega_{xv}^{T} + \omega_{dv} + h_{11}v_{11}) \frac{e\bar{\Phi}}{T_{o}} F_{o}$$

$$(\bar{f} = -\omega_{xv}^{T} + (h_{11}v_{11} + \omega_{dv})) \frac{e\bar{\Phi}}{T_{o}} F_{o}$$

$$N_{o} + e^{i} recover Boltzmann response when h_{11}v_{11} + or \omega_{dv} large$$

$$\widetilde{f} = \frac{-\omega_{xv}^{T} + (h_{1v}v_{1v} + \omega_{dv})}{\omega - (h_{1v}v_{1v} + \omega_{dv})} \frac{e \Phi}{T_{o}} F_{v}$$

(slab "n;" version at ITG requires finite hill ti, but not toroidal version),

$$n_{eo} \frac{e\overline{P}}{T_e} = \int d^3 v \frac{-\omega_{\star v}^T + \omega_{av}}{\omega - \omega_{dv}} F_o \frac{e\overline{P}}{T_{vo}}$$

electrons (additional polarization

$$N_{o} \stackrel{e \neq}{=} = N_{o} \stackrel{e \neq}{=} \int d^{3}v \stackrel{F_{o}}{=} \frac{\omega_{dv} - \omega_{yT}}{\omega - \omega_{dv}}$$

$$"Cold plasma" or "fast wave" approx. $\omega >> \omega_{dv}$

$$\frac{T_{no}}{T_{eo}} = \int d^{3}v \stackrel{F_{o}}{=} \frac{\omega_{dv} - \omega_{xT}}{\omega} \left(1 + \frac{\omega_{dv}}{\omega} + \cdots\right)$$$$

$$\frac{T_{no}}{T_{eo}} = \int d^{3}_{V} \frac{F_{o}}{h_{o}} \frac{\omega_{\partial v} - \omega_{*T}}{\omega} \left(1 + \frac{\omega_{\partial v}}{\omega} + \cdots \right)$$

$$\omega_{dv} = \omega_{d} (v_{\parallel}^{2} + \mu B) / v_{t}^{2} \qquad \omega_{*}^{T} = \omega_{*} [1 + \eta (v_{\parallel}^{2} / 2v_{t}^{2} + \mu B / v_{t}^{2} - 3 / 2)]$$

$$\frac{\omega_{d}}{\omega_{d}} = -k_{\theta} \rho v_{t} / R \qquad \omega_{*} = -k_{\theta} \rho v_{t} / L_{n}$$

$$\int d^{3}_{V} \frac{F_{o}}{h_{o}} \omega_{\partial v} = \int d^{3}_{V} \frac{F_{o}}{h_{o}} \omega_{d} \left(v_{n}^{2} + \frac{1}{2} v_{\perp}^{2} \right) / v_{t}^{2}$$

$$= 2 \omega_{d}$$

$$\frac{T_{Ao}}{T_{eo}} = \int d^{3}_{V} \frac{F_{o}}{h_{o}} \frac{\omega_{dv} - \omega_{XT}}{\omega} \left(1 + \frac{\omega_{dv}}{\omega} + \cdots \right) \\
\omega_{dv} = \omega_{d} (v_{\parallel}^{2} + \mu B) / v_{t}^{2} \qquad \omega_{*}^{T} = \omega_{*} [1 + \eta (v_{\parallel}^{2} / 2v_{t}^{2} + \mu B / v_{t}^{2} - 3/2)] \\
\omega_{d} = -k_{\theta} \rho v_{t} / R \qquad \omega_{*} = -k_{\theta} \rho v_{t} / L_{n} \qquad = \frac{1}{2} v_{\perp}^{2} = \frac{1}{2} \left(v_{X}^{2} + v_{Y}^{2} \right) \\
\int d^{3}_{V} \frac{F_{o}}{h_{o}} \omega_{X}^{T} = \omega_{*} \left(1 + \eta \left(\frac{1}{2} + 1 - \frac{3}{2} \right) \right) = \omega_{X} \\
\int d^{3}_{V} \frac{F_{o}}{h_{o}} \omega_{dv}^{T} = \int d^{3}_{v} \frac{F_{o}}{h_{o}} \omega_{d}^{2} \left[v_{u}^{H} + 2 v_{u}^{2} \frac{1}{2} v_{\perp}^{2} + \frac{1}{4} \left(v_{X}^{2} + v_{Y}^{2} \right)^{2} \right] \frac{1}{v_{t}^{4}} \\
= \omega_{d}^{2} \left[3 + 2 \cdot \frac{1}{2} \left(1 + 1 \right) + \frac{1}{4} \left(\left(v_{X}^{4} + 2v_{X}^{2} + v_{Y}^{4} - v_{Y}^{4} \right) \right) \right] \\
= \omega_{d}^{2} \left[5 + \frac{1}{4} \left(8 \right) \right] = 7 w_{d}^{2}$$

$$\frac{T_{no}}{T_{eo}} = \int d^3 v \frac{F_o}{h_o} \frac{\omega_{dv} - \omega_{xT}}{\omega} \left(1 + \frac{\omega_{dv}}{\omega} + \cdots \right)$$

$$\int d^{3}v \frac{F_{o}}{n_{o}} \omega_{dv} \omega_{\star}^{T} = \omega_{d} \omega_{\star} \begin{cases} 2 \\ + \eta \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{N_{o}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \\ + \eta \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \\ + \eta \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \int d^{3}v \frac{F_{o}}{N_{o}} \left(\frac{V_{11}^{2} + \frac{1}{2}V_{1}^{2}}{V_{t}^{2}} \right) \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{t}^{2} - \frac{3}{2}V_{t}^{2} \right) \int d^{3}v \frac{F_{o}}{V_{t}^{2}} \left(\frac{1}{2}V_{11}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \frac{V_{t}^{2}}{V_{t}^{2}} \right) \frac{V_{t}^{2}}{V_{t}^{2}} \int d^{3}v \frac{F_{o}}{V_{t}^{2}} \left(\frac{1}{2}V_{1}^{2} + \frac{1}{2}V_{1}^{2} - \frac{3}{2}V_{t}^{2} \right) \frac{V_{t}^{2}}{V_{t}^{2}} \right) \frac{V_{t}^{2}}{V_{t}^{2}} \frac{V_{t}^{2}}{V_{t}^{2}} \frac{V_{t}^{2}}{V_{t}^{2}} + \frac{1}{2}V_{t}^{2} + \frac{1}{2}V_{t}^$$

$$= \omega_{d}\omega_{*} \left\{ 2 + \eta \left[\frac{1}{2} 3 + \frac{1}{2} 2 - \frac{3}{2} + \frac{1}{2} \cdot 2 \cdot \frac{1}{2} + \frac{1}{4} 8 - \frac{1}{2} \cdot 2 \cdot \frac{3}{2} \right] \right\}$$

$$\int d^{3}v \frac{F_{o}}{n_{o}} \omega_{dv} \omega_{\star}$$

$$= \omega_{d} \omega_{\star} \left\{ 2 + \eta \left[\frac{1}{2} 3 + \frac{1}{2} 2 - \frac{3}{2} + \frac{1}{2} \cdot 2 \cdot \frac{1}{4} + \frac{1}{4} 8 - \frac{1}{2} \cdot 2 \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4$$

This defines a dispersion relation w us. h

$$\begin{bmatrix} \frac{T_{vo}}{T_{eo}} = 2 \frac{\omega J}{\omega} - \frac{\omega \star}{\omega} + 7 \frac{\omega J}{\omega^2} - 2 \frac{\omega J \omega_{\star}}{\omega^2} (1+\eta) \end{bmatrix}$$

Consider the flat density limit:
$$\nabla n \rightarrow 0$$
, but $\nabla T \neq 0$
 $\omega_* = -h_{\theta} \rho \frac{V_t}{L_n} \rightarrow 0$
 $\eta = \frac{1}{T} \nabla T = \frac{L_n}{L_T} \rightarrow \infty$

$$\omega_{*}\eta = -h_{\theta}\rho \frac{V_{t}}{L_{n}} \frac{L_{n}}{L_{\tau}} \equiv \overline{\omega}_{*\tau}$$

$$\omega^{2} \frac{T_{iv}}{T_{e_{o}}} = 2 \omega_{d} \omega + 2 \omega_{d} \overline{\omega_{x_{T}}} - 7 \omega_{d}^{2} = 0$$

$$\omega = 2 \omega_{d} \pm \sqrt{4 \omega_{a}^{2}} - 4 \frac{T_{iv}}{T_{e_{o}}} \left(2 \omega_{d} \overline{\omega_{x_{T}}} - 7 \omega_{d}^{2}\right)$$

$$2 \left(T_{iv}/T_{e_{o}}\right)$$

From last page:

$$W = 2W_{d} \pm \sqrt{4W_{a}^{2} - 4\frac{T_{iv}}{T_{e_{o}}}(2W_{d}W_{*T} - 7W_{d}^{2})}$$

$$2(T_{iv}/T_{e_{o}})$$

Consider large temperature gradient limit: $\omega_{*T} \propto \nabla T$ f Growth rate:

$$Y = \frac{\sqrt{2} \omega_{d} \overline{\omega_{xT}}}{\sqrt{T_{x0}/T_{e0}}} = \frac{\sqrt{2} h_{\theta} \rho_{i}}{\sqrt{T_{x0}/T_{e0}}} \frac{V_{t,i}}{\sqrt{RL_{T}}}$$

Fundamental scaling of bad-curvature driven instabilities.

Go back to general D.R.:

$$\begin{aligned}
\omega &= \frac{2 \omega_{\theta} \pm \sqrt{4 \omega_{a}^{2} - 4 \frac{T_{iv}}{T_{e_{0}}} \left(2 \omega_{a} \overline{\omega}_{*\tau} - 7 \omega_{a}^{2}\right)}{2 \left(T_{iv} / T_{e_{0}}\right)} \\
&= 2 \omega_{a} \pm \sqrt{\left(4 + 28 \frac{T_{av}}{T_{e_{0}}}\right) \omega_{a}^{2} - 8 \frac{T_{ao}}{T_{e_{0}}} \omega_{a} \overline{\omega}_{*\tau}}}{2 \left(T_{ao} / T_{e_{0}}\right)} \\
\text{Instability exists if} \\
8 \frac{T_{ao}}{T_{e_{0}}} \omega_{\theta} \overline{\omega}_{*\tau} > \omega_{a}^{2} \left(4 + 28 \frac{T_{av}}{T_{e_{0}}}\right) \\
&= \frac{1}{R} \frac{1}{L_{T}} > \frac{1}{R^{2}} \left(\frac{1}{2} \frac{T_{e_{0}}}{T_{e_{0}}} + \frac{1}{2} 7\right) \\
&= \frac{1}{R} \frac{1}{L_{T}} > \frac{1}{2} \left(7 + \frac{T_{e_{0}}}{T_{e_{0}}}\right)
\end{aligned}$$

Compare w/ Romanelli 1990 (Eq. 12):

$$\eta_{i} = (\frac{5}{3} + \tau/4)2\epsilon_{n}$$
or
$$\frac{L_{n}}{L_{\tau}} = (\frac{5}{3} + \frac{1}{4} + \frac{T_{e}}{T_{i}})^{2} \frac{L_{n}}{R}$$

$$\frac{R}{L_{\tau crit}} = \frac{10}{3} + \frac{1}{2} + \frac{T_{eo}}{T_{io}}$$

$$= 3.33 + 0.5 + \frac{T_{eo}}{T_{io}}$$
vs. my
$$\frac{R}{L_{\tau crit}} = 3.5 + 0.5 + \frac{T_{eo}}{T_{io}}$$

Why does this get the
$$\frac{T_{io}}{T_{eo}}$$
 dependence of
 $\frac{R}{L_{torit}}$ wrong? More accurate: $\frac{R}{L_{t}} \cdot \frac{R}{L_{torit}} = \frac{4}{3}(1+\frac{T_{io}}{T_{eo}})$
Because near marginal studielity, the expansion
of the resumpt denomination
 $\frac{1}{W-W_{dV}} \approx \frac{1}{W}(1+\frac{W_{dV}}{W}+...)$

breaks down, since waw a neur Morginal stability...

More general result for threshold for metability:

$$\frac{R_{o}}{L_{torit}} = M_{ax} \left[\left(1 + \frac{T_{i}}{T_{e}} \right) \left(1.33 + 1.91 \frac{s}{q} \right) \left(1 - 1.5 \frac{r}{R} \right) \left(1 + 0.3 \frac{rdk}{dr} \right) \right]$$

$$0.8 \frac{R_{o}}{L_{h}} \right]$$

ITG References

- Mike Beer's Thesis 1995 http://w3.pppl.gov/~hammett/collaborators/mbeer/afs/thesis.html
- Romanelli & Briguglio, Phys. Fluids B 1990
- Biglari, Diamond, Rosenbluth, Phys. Fluids B 1989
- Jenko, Dorland, Hammett, PoP 2001
- Candy & Waltz, PRL ...
- Kotschenreuther et al.
- Dorland et al, PRL ...
- Dimits et al....
- ...
- Earlier history:
 - slab eta_i mode: Rudakov and Sagdeev, 1961
 - Sheared-slab eta_i mode: Coppi, Rosenbluth, and Sagdeev, Phys. Fluids 1967
 - Toroidal ITG mode: Coppi and Pegoraro 1977, Horton, Choi, Tang 1981, Terry et al. 1982, Guzdar et al. 1983... (See Beer's thesis)