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Advanced Algorithms / DG May Help With 
Challenge of Edge Plasma Turbulence

Significant success in fusion research in 5D gyrokinetic 
simulations of turbulence in the core region of tokamaks using 
continuum/Eulerian algorithms (such as GENE (Jenko et al.) 
GYRO (Candy & Waltz)).  Different than PIC/Lagrangian 
algorithms, these are “Vlasov codes” with grids in velocity 
space, spectral & other advanced algorithms.  (Always useful to 
have independent algorithms to cross-check.  Different 
algorithms may be best for different problems.)

These continuum codes are highly optimized for core region of 
tokamaks (nested magnetic surfaces, simple b.c., small 
amplitude fluctuations).  Major extensions or new code needed 
to handle the edge region.  Advanced algorithms (variations of 
discontinuous Galerkin, sub-grid models in phase space) could 
help with additional challenges of edge region. Continuum 
algorithms strengths for edge turbulence include their low noise 
and demonstrated capability of handling fully electro-magnetic 
fluctuations.

GYRO simulation, Candy & Waltz 2006
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Fusion Motivation: Need comprehensive simulations of edge 
turbulence, because predicted fusion performance is a strong 

function of edge temperature

3

Nucl. Fusion 51 (2011) 083001 J.E. Kinsey et al
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Figure 7. Predicted fusion power for a conventional H-mode ITER
scenario with Paux = 30 MW and a prescribed density profile with
ne0/nped = 1.1 (n̄e/nGW = 0.8) using the TGLF and GLF23 models.

and GLF23 models. The results presented in this paper are
not intended to be taken as an optimization study. The TGLF
predicted fusion power is more pessimistic than the GLF23
results primarily due to finite aspect ratio effects included
only in TGLF. Figure 7 shows the predicted fusion power
Pfus versus pedestal temperature (Tρ=0.95) at fixed pedestal
density using the TGLF and GLF23 models for an ITER
conventional H-mode scenario with a somewhat flat prescribed
density profile (ne0/nped = 1.1) and an auxiliary heating
power of Paux = 30 MW (20 MW of ICRH and 10 MW
of neutral beam injection (NBI)). The vertical dashed lines
denote the pedestal temperatures yielding a target fusion gain
of Q = Pfus/Paux = 10. Using TGLF-09, the required value
for Q = 10 is Tped = 5.1 keV corresponding to βped,N = 0.92.
The EPED model [20, 21] predicts a pedestal height under
the boundary condition specified (two half widths in from the
center of the edge barrier) in the range βped,N = 0.74–0.92,
depending on the input value of pedestal density and global β.
By optimizing over these quantities, the value of βped,N = 0.92
appears to be achievable. The ITER baseline parameters we
used are R = 6.2 m, a = 2.0 m, Ip = 15 MA, BT = 5.3 T,
κ = 1.75, Zeff = 1.7, Mi = 2.5, vφ = 0 for the toroidal
rotation, and nped = 9 × 1019 m−3 for the pedestal density.

Using infinite aspect ratio shifted circle geometry (s −α),
TGLF gives the same results as GLF23. When finite aspect
ratio Miller geometry is used in TGLF, the ITG/TEM transport
increases (mainly χe) causing the predicted Pfus to decrease
(see the TGLF-APS07 results). Changes in the TGLF collision
model also have an impact. Using the new collision model in
TGLF (TGLF-09) results in an increase in Pfus relative to the
TGLF-APS07 results but still below the GLF23 results. Above
Tped = 2 keV, the TGLF-09 results scale like T 2

ped (or β2
ped)

which is characteristic of a stiff transport model.
Stiff turbulent transport has important consequences on

the fusion performance in ITER. Due to the stiff nature of
TGLF, the temperature profiles are insensitive to changes in
the amount of Paux so that fusion Q scales like 1/P 0.8

aux for a
fixed βped as shown in figure 8. GLF23 was found to have
a slightly stronger scaling of 1/P 0.9

aux in [10]. Increasing Paux

while holding the βped fixed only slightly raises Pfus while
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Figure 8. TGLF predicted fusion Q versus auxiliary heating power
at fixed βped,N = 0.9 for the reduced physics ITER case shown in
figure 7. The dashed line denotes Q = 10.

reducing the fusion Q. Increasing the fusion power beyond the
baseline prediction with additional Paux is difficult. A positive
consequence of stiff transport is that Paux can be reduced with
little decrease in Pfus. Hence, increasing the fusion Q can be
achieved by reducing Paux while maintaining enough heating
to remain above the H-mode power threshold.

Another consequence of stiff transport is that the profiles
are relatively insensitive to changes in the auxiliary heating.
We find the TGLF results are insensitive to varying mixtures
of ICRH and NB heating while holding the total Paux constant.
For our ITER base case, we also find that the fusion projections
are insensitive to reductions in the beam energy. Above Tped =
2 keV, changing the beam energy from 1 MeV to 250 keV in
TRANSP results in only a 10% drop in the fusion power
predicted by TGLF in XPTOR. Very little change (<5%) in the
predicted density profile peaking is also observed. Hence, from
a transport perspective, this suggests that 1 MeV beams may
only be needed to achieve enough seed fusion power. Beyond
that, neutral beams with lower energy may be sufficient but
more studies are needed.

In our ITER modelling the Ti and Te profiles are predicted
taking the equilibrium, energy and particle sources and sinks
from the output of a TRANSP simulation [22]. The density,
fast ion and Zeff profiles are held fixed and the toroidal
rotation is assumed to be zero. The boundary conditions
are enforced at a normalized toroidal flux of ρ̂ = 0.95 with
Te,BC = Ti,BC. When we reference Tped we are referring to the
ρ̂ = 0.95 location. The predicted temperatures are evolved to
a steady-state solution of the transport equations using a fully
implicit Newton solver in the XPTOR transport code. The
fusion power, ohmic heating, bremsstrahlung and synchrotron
radiative losses are computed self-consistently assuming an
effective main ion mass of A = 2.5 (50–50 DT ion mixture)
and a single carbon impurity species. The effect of helium ash
accumulation was not considered.

4.1. Sensitivity to ETG modes

Recent TGLF modelling studies have shown that ETG
transport can dominate the electron energy transport in DIII-D
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Kinsey et al. Nucl. Fus. 2011 http://stacks.iop.org/NF/51/083001

Need to understand and predict 
power threshold for H-mode transport 
barrier formation, height of the 
pedestal, spontaneous rotation 
mechanisms, ways to suppress 
ELMs, improvements with lithium 
walls.

Hard problem, but tractable: 
continuum gyrokinetic codes very 
successful in understanding tokamak 
core, but need extension to handle 
additional complexities of edge 
turbulence: large amplitude 
fluctuations, separatrix and open/
closed field lines, ...



Edge pedestal temperature  profile near the edge of an H-mode 
discharge in the DIII-D tokamak. [Porter2000]. Pedestal is 
shaded region.

Edge region very important
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•Need sufficiently high pedestal temperature for core to get to fusion temperatures

• Periodic instabilities in edge region can dump outer ~5-10% of plasma onto divertor plates.  
Might be manageable, or divertor erodes, melts?

•Is there a way to use breaking of up-down symmetry in tokamaks (or “stellarator symmetry” in 
quasi-symmetric stellarators) and enhance spontaneous flows (to reduce turbulence)?



Edge pedestal temperature  profile near the edge of an H-mode 
discharge in the DIII-D tokamak. [Porter2000]. Pedestal is 
shaded region.

Edge region very difficult
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Major extensions to gyrokinetic codes needed to handle additional complications of edge 
region of tokamaks (& stellarators):

open & closed field lines, steep gradients near beta limit, electric & magnetic fluctuations, strong shear-flow layers, 
steep-gradients and large amplitude fluctuations, positivity constraints, wide range of collisionality, non-axisymmetric 
RMP coils, plasma-wall interactions, strong sources and sinks in atomic physics.

A new code with these capabilities will also be more robust for a wider range of astrophysics 
applications.
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Will explore several advanced algorithms, including some of our own ideas:

•   extension of DG to preserve separability of GK Poisson solver and conservation 
properties

• DG-FV hybrids and other advances in limiters to minimize numerical diffusion

•  subgrid models for higher-dimensional phase-space, guided by other subgrid 
models and Landau-fluid experience, to make code more robust on coarse grid.

•Maxwellian-weighted basis functions for v-space (while preserving conservation 
properties) to improve robustness on course grids.

Certain types of DG have excellent conservation properties even at coarse velocity 
resolution. Numerical diffusion only along contours of constant energy, thus preserving 
energy conservation!

Goal:  a robust code capable of running very quickly at coarse velocity space 
resolution while preserving all conservation laws of gyro-fluid/fluid equations and 
giving fairly good results.  Can occasionally turn up velocity resolution for rigorous 
convergence tests.

Exploring Several Advanced Algorithms
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Comparison of linear dispersion relation !/k for passive advection with exact !/k=1, for FV3 (Finite Volume method with parabolic 
reconstructions) and DG3 (Discontinuous Galerkin with piecewise parabolic basis functions).  Grid spacing for DG3 3 times coarser 
than for FV3, "xDG = 3 "xFV, so they have roughly comparable amounts of memory, CPU work, and maximum Nyquist limit on the 
wavenumber.

DG3 can do quite well in linear wave propagation tests, with very low phase errors.  (Here the flux at the boundaries was tuned, adding 
some additional dissipation and lowering the phase error.)
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DG has low phase error and low damping 



Recent advances in limiters avoid clipping

• Simple 1D advection test:    !f/!t + v !f/!x = 0
solution (points) should overlay initial condition (line)

• Recent advances in limiters for Finite-Volume 
interpolations (Colella-Sekora 08, Suresh-Hyunh 97) 
eliminates clipping at smooth extrema (being used in 
Edge Simulation Laboratory code).  

• A version of DG can combine excellent energy 
conservation properties of Arakawa with improved 
limiters that minimize numerical diffusion

• Important in edge plasma to avoid negative density 
overshoots. Peterson Hammett (2012)

Arakawa Algorithm (std algorithm for conserving 
quadratic invariants of Poisson Bracket)

Standard PPM4

New XPPM



∂ρ

∂t
= −∇ · (�vρ)

= −ẑ ×∇φ ·∇ρ

= −[φ, ρ] (+viscosity term)

∇2
⊥φ = −ρ

Initial 2D Tests for Poisson Bracket Problems 

Ammar Hakim wrote initial DG code and implemented a range of 1D and 2D tests.
Many physics problems can be written in terms of Poisson bracket because of Hamiltonian 
structure (ExB flow, gyrokinetics, full Vlasov Eq.).  Useful paradigm test problem:  
Incompressible 2-D Euler equations (similar to ExB advection and Hasegawa-Mima Eq. for 
drift waves):
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More complicated: extension to 1x+1v Vlasov equation (parallel gyrokinetics) with 
quasineutrality (with adiabatic electrons: #= ni).  Invented 2 algorithms that preserve 
energy conservation.  Method (1) projects onto continuous basis functions but couples 
different toroidal planes.  Method (2) allows discontinuous potential and keeps gyrokinetic 
Poisson solver local at each toroidal angle.

Verified DG discretization for $ and continuous Galerkin for # exactly preserves both 
quadratic invariants of Poisson bracket (energy and enstrophy/entropy) for central fluxes, like 
Arakawa method.  Even with upwind fluxes, still have energy conservation (proved in 2000, 
2006).  Neat trick, implies numerical diffusion is effectively only along contours of constant 
energy.



Successful 2D passive advection tests  
• Passive advection in specified sheared-flow field (32x32 cells, piecewise cubic DG), 

reproduces initial condition with very little distortion

12Ammar Hakim



XPPM  (t=100) N = 128
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Successful benchmark on 2D Vortex Merger Problem  

• Ammar Hakim: successfully benchmarked his new 2D DG code with finite-volume code
• Standard finite-volume / finite-difference interpolate p uniform points to get p order accuracy. 

But DG with p non-uniform points per cell has higher 2p-1 order accuracy.
• Comparison between 

– DG with 128 cells/direction & 3 points/(cell/direction) (Ndof = 384, 5th order accurate, !=0)
–  4th-order accurate XPPM finite-volume code, N=1024 cells/direction, Re=105

13

DG, Ndof=384
             (~20 times faster)



Progress To Date (Since January)
• Initial code written, carrying out various 1D and 2D tests

• 2D tests of properties of algorithm for both perpendicular and parallel dynamics in 
gyrokinetics:
– 2D incompressible hydrodynamics like ExB nonlinearity in gyrokinetics
– 1x-1v Vlasov equation: ion acoustic wave with adiabatic electrons (becomes ITG 

instability in higher dimensions) like parallel dynamics in gyrokinetics

• 2D vortex merger and other 2D problems cross-checked with other codes

• Linear and nonlinear Landau damping tested.

• Conservation and high-order convergence properties of DG algorithms confirmed:  
Excellent conservation even on a coarse velocity grid:
– Particle and Energy conservation exact (except for small time step errors)
– Momentum conservation not exact, but converges with finer spatial grid and !t, 

independent of velocity grid

• implemented simplified Lenard-Bernstein diffusion-drag collision operator.  Conserves 
particles, momentum, and energy. (can upgrade to more complete operator later.)  Plan to  
use as kernel of a hyper-collision operator for a subgrid model.
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hammett
Text Box
Missing factor of 1/(Delta x) in this expression:
(GWH/Mandell 2018.02.01)






