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Advanced Algorithms / DG May Help With
Challenge of Edge Plasma Turbulence

GYRO simulation, Candy & Waltz 2006

Significant success in fusion research in 5D gyrokinetic
simulations of turbulence in the core region of tokamaks using
continuum/Eulerian algorithms (such as GENE (Jenko et al.)
GYRO (Candy & Waltz)). Different than PIC/Lagrangian
algorithms, these are “Vlasov codes” with grids in velocity
space, spectral & other advanced algorithms. (Always useful to
have independent algorithms to cross-check. Different
algorithms may be best for different problems.)

- These continuum codes are highly optimized for core region of
| tokamaks (nested magnetic surfaces, simple b.c., small
- amplitude fluctuations). Major extensions or new code needed

to handle the edge region. Advanced algorithms (variations of
discontinuous Galerkin, sub-grid models in phase space) could
help with additional challenges of edge region. Continuum
algorithms strengths for edge turbulence include their low noise
and demonstrated capability of handling fully electro-magnetic
fluctuations.



Fusion Motivation: Need comprehensive simulations of edge
turbulence, because predicted fusion performance is a strong
function of edge temperature
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Need to understand and predict
power threshold for H-mode transport
barrier formation, height of the
pedestal, spontaneous rotation
mechanisms, ways to suppress
ELMs, improvements with lithium
walls.

Hard problem, but tractable:
continuum gyrokinetic codes very
successful in understanding tokamak
core, but need extension to handle
additional complexities of edge
turbulence: large amplitude
fluctuations, separatrix and open/
closed field lines, ...



Edge region very important

Tokamak magnetic fusion device Simulated edge-plasma region
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*Need sufficiently high pedestal temperature for core to get to fusion temperatures

* Periodic instabilities in edge region can dump outer ~5-10% of plasma onto divertor plates.
Might be manageable, or divertor erodes, melts?

*Is there a way to use breaking of up-down symmetry in tokamaks (or “stellarator symmetry” in
quasi-symmetric stellarators) and enhance spontaneous flows (to reduce turbulence)?
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Edge region very difficult
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Major extensions to gyrokinetic codes needed to handle additional complications of edge
region of tokamaks (& stellarators):

open & closed field lines, steep gradients near beta limit, electric & magnetic fluctuations, strong shear-flow layers,
steep-gradients and large amplitude fluctuations, positivity constraints, wide range of collisionality, non-axisymmetric
RMP coils, plasma-wall interactions, strong sources and sinks in atomic physics.

A new code with these capabilities will also be more robust for a wider range of astrophysics
applications.
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Exploring Several Advanced Algorithms

Will explore several advanced algorithms, including some of our own ideas:

e extension of DG to preserve separability of GK Poisson solver and conservation
properties

* DG-FV hybrids and other advances in limiters to minimize numerical diffusion

* subgrid models for higher-dimensional phase-space, guided by other subgrid
models and Landau-fluid experience, to make code more robust on coarse grid.

*Maxwellian-weighted basis functions for v-space (while preserving conservation
properties) to improve robustness on course grids.

Certain types of DG have excellent conservation properties even at coarse velocity
resolution. Numerical diffusion only along contours of constant energy, thus preserving
energy conservation!

Goal: a robust code capable of running very quickly at coarse velocity space
resolution while preserving all conservation laws of gyro-fluid/fluid equations and
giving fairly good results. Can occasionally turn up velocity resolution for rigorous
convergence tests.



DG Algorithm Motivation

« Discontinuous Galerkin (DG) algorithms: hot topic in CFD & Applied Math in recent years.
(Cockburn & Shu JCP 1998, ~500 citations)

« Recent plasma studies using DG include: Heath, Gamba, Morrison, Michler (JCP 2012), Ayuso,
Carrillo, and C.-W. Shu (2012), Cheng, Gamba, Morrison; Rossmanith, Johnson, and Seal.

« DG combines key advantages of Finite Element (low-phase error, high accuracy, flexible geometry)
with Finite Volume algorithms (limiters to preserve positivity/monotonicity --> avoid unphysical
overshoots, locality --> parallelizes well).

« Positivity-preserving limiters important for plasma edge with large amplitude fluctuations.
« DG has excellent conservation properties for Hamiltonian systems, low noise, low dissipation.
« DG Computational efficiency:

— Finite Volume algorithms: interpolate p points to get p’th order accuracy

— DG algorithms: interpolate p points to get 2p-1 order accuracy

— tradeoffs: high-order methods reduce memory-access/FLOP ratio, but need upwinding at cell
boundaries for limiters to avoid artificial oscillations and dissipate small scales. Optimum around
3rd-5th order?

« Edge/pedestal gyrokinetic turbulence very challenging, 5D, problem, not yet solved. Benefits from
all tricks we can find: Factor of 2 reduction in resolution --> 64x speedup.



DG Algorithm Motivation(part 2):

DG key idea: generalize Finite Volume methods to keep track not only of the cell average,
but also the weights of higher order polynomials in each cell.

DG Basis functions localized within each cell, no overlap with adjacent cells. Relaxing
continuity avoids implicit solve of standard Finite Elements. (Continuity can be restored
during interpolations from adjacent cells to cell face, with limiters if desired)

Variant of DG (Liu and Shu 2000, Bernsen 2006) can conserve both quadratic invariants
(energy and enstrophy/entropy) of Poisson bracket for Hamiltonian systems if centered
fluxes are used. Upwind fluxes still preserves energy conservation. (Energy errors only from
time step algorithm: converges quickly for small At, or could use symplectic algorithm in the
future.)

Momentum conservation not exact, but independent of velocity resolution and converges
rapidly with spatial and time resolution.

Implication: can run quickly on a coarse velocity grid and still satisfy key conservation laws.

New ldea: A key to success of Finite-Volume Piecewise Parabolic Method is that it reverts to
centered, undamped, 4th order accuracy in smooth regions, adding numerical dissipation
only near the grid scale. Similarly, could relax original upwind DG to be centered in smooth
regions. Similar to hybrid DG/FV method found independently: Dumbser, Balsara, Toro JCP
2008.



DG has low phase error and low damping

Re(omega)/k

-Im(omega)/k

1.8
1.6
1.4
- [ ]
1.2 DG3
] omega/k
1.0 =
08— FV3 °
_ omega/k
0.6
0.4
[ ]
7 damping
0.2 . A~
1 FV3 DG3 damping ~ k"6
DG3 = 5th order accuratel
0-0||||'l|l|||l|l|l|l|l|l||
00 08 16 24 32 40 48 56 64 72 80 838
kdx

DG3 err Re(omega)~k"7

DG quite efficient:

Finite Volume: p point interpolation -->
p order accuracy
(PPM: 4 points -> 4th order)

DG: p points per cell with optimal non-
uniform spacing for Gaussian
integration --> 2p-1 accuracy

(For our problems p~2-3 probably
optimal...)

Comparison of linear dispersion relation w/k for passive advection with exact w/k=1, for FV3 (Finite Volume method with parabolic
reconstructions) and DG3 (Discontinuous Galerkin with piecewise parabolic basis functions). Grid spacing for DG3 3 times coarser
than for FV3, Axpe = 3 Axrv, so they have roughly comparable amounts of memory, CPU work, and maximum Nyquist limit on the
wavenumber.

DG3 can do quite well in linear wave propagation tests, with very low phase errors. (Here the flux at the boundaries was tuned, adding
some additional dissipation and lowering the phase error.)



Recent advances in limiters avoid clipping

Arakawa Algorithm (std algorithm for conserving
quadratic invariants of Poisson Bracket)

12} ‘e

1F

0.8

0.6F

o(y)

0.4f

0.2F

0.. )

-0.2F
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solution (points) should overlay initial condition (line)

Recent advances in limiters for Finite-Volume
interpolations (Colella-Sekora 08, Suresh-Hyunh 97)
eliminates clipping at smooth extrema (being used in
Edge Simulation Laboratory code).

A version of DG can combine excellent energy
conservation properties of Arakawa with improved
limiters that minimize numerical diffusion

Important in edge plasma to avoid negative density
overshoots.
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Initial 2D Tests for Poisson Bracket Problems

Ammar Hakim wrote initial DG code and implemented a range of 1D and 2D tests.

Many physics problems can be written in terms of Poisson bracket because of Hamiltonian
structure (ExB flow, gyrokinetics, full Vlasov Eq.). Useful paradigm test problem:

Incompressible 2-D Euler equations (similar to ExB advection and Hasegawa-Mima Eq. for
drift waves):

dp S
o —V - (Up)

=—ZXV¢-Vp Vie=—p
= —|[¢, p| (+viscosity term)

Verified DG discretization for p and continuous Galerkin for ¢ exactly preserves both
quadratic invariants of Poisson bracket (energy and enstrophy/entropy) for central fluxes, like
Arakawa method. Even with upwind fluxes, still have energy conservation (proved in 2000,

2006). Neat trick, implies numerical diffusion is effectively only along contours of constant
energy.

More complicated: extension to 1x+1v Vlasov equation (parallel gyrokinetics) with
quasineutrality (with adiabatic electrons: ¢= n;). Invented 2 algorithms that preserve
energy conservation. Method (1) projects onto continuous basis functions but couples
different toroidal planes. Method (2) allows discontinuous potential and keeps gyrokinetic
Poisson solver local at each toroidal angle.
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Successful 2D passive advection tests

« Passive advection in specified sheared-flow field (32x32 cells, piecewise cubic DG),
reproduces initial condition with very little distortion

T=0.0
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Ammar Hakim
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Successful benchmark on 2D Vortex Merger Problem

« Ammar Hakim: successfully benchmarked his new 2D DG code with finite-volume code

» Standard finite-volume / finite-difference interpolate p uniform points to get p order accuracy.
But DG with p non-uniform points per cell has higher 2p-1 order accuracy.

» Comparison between
— DG with 128 cells/direction & 3 points/(cell/direction) (Ndof = 384, 5th order accurate, v=0)
— 4th-order accurate XPPM finite-volume code, N=1024 cells/direction, Re=10°

DG, Noo=384 XPPM — o(t=100) N = 1024




Progress To Date (Since January)

Initial code written, carrying out various 1D and 2D tests

2D tests of properties of algorithm for both perpendicular and parallel dynamics in
gyrokinetics:

— 2D incompressible hydrodynamics like ExB nonlinearity in gyrokinetics

— 1x-1v Vlasov equation: ion acoustic wave with adiabatic electrons (becomes ITG
instability in higher dimensions) like parallel dynamics in gyrokinetics

2D vortex merger and other 2D problems cross-checked with other codes
Linear and nonlinear Landau damping tested.

Conservation and high-order convergence properties of DG algorithms confirmed:
Excellent conservation even on a coarse velocity grid:

— Particle and Energy conservation exact (except for small time step errors)

— Momentum conservation not exact, but converges with finer spatial grid and At,
independent of velocity grid

implemented simplified Lenard-Bernstein diffusion-drag collision operator. Conserves
particles, momentum, and energy. (can upgrade to more complete operator later.) Plan to

use as kernel of a hyper-collision operator for a subgrid model. o
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Missing factor of 1/(Delta x) in this expression:
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