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Improving Confinement Can Significantly 
Lower Cost of a Fusion Reactor

Well known that improving confinement factor H & beta 
limit can significantly lower cost of electricity at fixed 
power output.

H has even stronger impact on construction cost at fixed 
fusion gain Q, because higher H allows a smaller 
machine to achieve same Q.

Even with a conservative estimate: cost ∝ R2, 
get cost ∝ 1/H4.76   (if n ∝ nGreenwald ∝ 1/R).  

If H can be improved just 25%, can reduce cost by x3.  
(Lower bounds on device size set by blanket & coil thickness,〈σv〉~T2 

assumption, but can go smaller than present.)

ITER conservatively designed with H=1.  Experiments 
have achieved better confinement via various 
mechanisms that are understood qualitatively.  Working to 
develop better computer simulations, particularly near 
plasma edge, to predict extrapolation to reactors. n ∝ nGreenwald

n ~ const.



Many Interesting Ideas To Improve Fusion
* Liquid metal (lithium, tin) coatings on walls:  (1) protects solid wall (2) absorbs incident 
hydrogen ions, reduces recycling of cold neutrals back to plasma, raises edge temperature & 
improves global performance.  TFTR found: ~2 keV edge temperature.  NSTX, LTX: more 
lithium is better, where is the limit?

* Spherical Tokamaks (STs) appear to be able to suppress much of the ion turbulence:  PPPL & 
Culham upgrading 1 --> 2 MA to test scaling

* Advanced tokamaks, alternative operating regimes (reverse magnetic shear or “hybrid”), 
methods to control Edge Localized Modes, higher plasma shaping.  Will beam-driven rotation be 
more important than previously thought?

* Tokamaks spontaneously spin:  can reduce turbulence and improve MHD stability.  Can we 
enhance this with up-down-asymmetric tokamaks or non-stellarator-symmetric stellarators with 
quasi-toroidal symmetry?

* Many possible stellarator designs, room for further optimization:  Quasi-symmetry / quasi-
omnigenity improvements discovered relatively recently, after 40 years of fusion research.   
Stellarators fix disruptions, steady-state, density limit.

* Robotic manufacturing advances: reduce cost of complex, precision, specialty items
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Project  Mo>va>on
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Continuum gyrokinetic codes (like GENE, GYRO, and GS2) have been very 
successful in the core region of tokamaks.  Here we are trying to develop a new 
continuum gyrokinetic code that can handle the additional complications of the edge 
region:  large amplitude fluctuations, steep variations of profiles, separatrix, open and 
closed field lines, interactions with wall, strong fuelling.

Code needs to be full F, non-local, with good algorithms for avoiding negative 
overshoots that occur in vicinity of steep gradients with standard centered, Arakawa, 
or spectral algorithms.  Try recent development in advanced algorithms, including a 
version of the Discontinuous Galerkin algorithm, to help with these challenges, and to 
try to help with overall efficiency on this challenging kinetic problem.

MPPC goal to also apply to basic laboratory experiments (LAPD, Vineta in Greiswald) 
studying drift-wave turbulence & nonlinear Alfvén dynamics for astro applications.  
Benchmark with GENE when ready.  Eventually could also benchmark with SOLPS.  
compare with ASDEX-U edge measurements.

Code being developed with a general framework, could eventually be applied to a 
wide range of non-fusion gyrokinetic/kinetic problems, in astrophysics, ...  Possible 
non-plasma applications (rarified gas dynamics: hypersonic vehicles, MEMS (Micro-
Electromechanical Systems, semiconductor modelling when electron mean free path 
is larger than feature size.)



DG Algorithm Motivation
• Discon>nuous  Galerkin  (DG)  algorithms:    hot  topic  in  CFD  &  Applied  Math  in  recent  years.    

(Cockburn  &  Shu  JCP  &  SIAM  1998,    >1000  cita>ons)

• DG  combines  key  advantages  of  Finite  Element  (low-­‐phase  error,  high  accuracy,  flexible  
geometry)  with  Finite  Volume  algorithms  (limiters  to  preserve  posi>vity/monotonicity  -­‐-­‐>  
avoid  unphysical  overshoots,  locality  -­‐-­‐>  parallelizes  well).    

• Gaussian  integra>on  methods  (like  core  gyrokine>c  codes  in  velocity  space):  use  op>mal  
loca>on  of  points  to  interpolate  p  points  to  get  2p-­‐1  order  accuracy,  ~  twice  the  accuracy  
of  standard  finite  volume  interpola>on  (p  order  accurcy)  with  non-­‐op>mal  point  loca>ons.

• Also  using:  

– certain  forms  of  discon>nuous  Galerkin  have  excellent  conserva>on  proper>es,  
conserve  the  energy  invariant  of  the  Poisson  bracket  of  the  Vlasov  equa>on,  

– op>mized  basis  func>ons  (Maxwellian-­‐weighted)  could  improve  efficiency

– sub-­‐grid  turbulence  models,  efficient  use  of  massively  parallel  computers,  ...

• Edge/pedestal  gyrokine>c  turbulence  very  challenging,  5D  problem,  not  yet  solved.    
Benefits  from  all  tricks  we  can  find:      Factor  of  2  reduc>on  in  resolu>on  -­‐-­‐>  64x  speedup.
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Consider a general time-dependent problem

f �(x, t) = G[f ]

where G[f ] is some operator. To approximate it expand f(x) with a

finite set of basis functions wk(x),

f(x, t) ≈ fh(x, t) =
N�

k=1

fk(t)wk(x)

This gives discrete system

N�

k=1

f �
kwk(x) = G[fh]

Question
How to determine f �

k in an optimum manner?

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj



Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Answer: Do an L2 minimization of the error, i.e. find f �
k such that

EN =

� �
N�

k=1

f �
kwk(x)−G[fh]

�2

dx

is minimum. For minimum error ∂EN/∂f �
m = 0 for all k = 1, . . . , N .

This leads to the linear system that determines the coefficients f �
k

�
wm(x)

�
N�

k=1

f �
kwk(x)−G[fh]

�
dx = 0

for all m = 1, . . . , N .

Key Idea
Projection of residual on the basis set chosen for expansion leads to
minimum errors in the L2 sense. For this reason DG/CG schemes are
constructed by projecting residuals of PDEs on basis sets.

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj
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Key  feature  of  Discon>nuous  Galerkin:  basis  func>ons  are  non-­‐zero  only  in  non-­‐
overlapping  cells,  con>nuity  at  boundaries  is  not  required  (&  thus  is  local  like  finite  
volume  methods,  unlike  standard  Finite  Element  (Con>nuous  Galerkin)  method).



What does a typical L2 fit look like for discontinuous
Galerkin scheme?

Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and quadratic
(right) basis functions.

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj

Discontinuous Galerkin (DG) Combines Attractive 
Features of Finite-Volume & Finite Element Methods 

Standard finite-volume methods evolve just the average value in each cell (piecewise 
constant), combined with interpolations.
DG evolves higher-order basis functions like finite-element methods, but, like finite-
volume methods, doesn’t force continuity at cell boundaries.  --> (1)  can use flux 
limiters like shock-capturing finite-volume methods (2) keeps the calculations local so 
one doesn’t have to invert a global mass matrix, easier to parallelize.
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Can Efficient Maxwellian-
Weighted Basis Functions Be 

Implemented While Conserving 
Energy?

One of the reasons for the success of continuum gyrokinetic codes (GS2, GENE, 
GYRO) designed for the core region is their usage of efficient Gaussian integration 
techniques (high-order integration techniques that provide n = 2p-1 order accuracy 
with just p points).  Perhaps more importantly, integrates a Maxwellian times 
polynomials vn exactly even on a coarse velocity mesh.

Maxwellian-weighted basis functions in a standard DG algorithm would lose energy 
conservation (and even particle conservation)....
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En =

�
W(v)

�
N�

k=1

f �
kwk(v)−G[fh]

�2

dv

�
W(v)wm(v)

�
N�

k=1

f �
kwk(v)−G[fh]

�
dv = 0

If wm(v) = exp(−v2)vm, then by choosing W(v) ∼ 1/ exp(−v2), this corre-
sponds to ensuring that the standard conservation laws are satisfied for v0, v1,
v2, ... (i.e., conservation of density, momentum, and energy, ...). (Conservation
properties also depend on how the field equations are discretized.)
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To  allow  Maxwellian-­‐weighted  basis  func>ons,  while  s>ll  preserving  important  form  of  
conserva>on  laws,  generalize  inner-­‐product  norm  to  include  a  weigh>ng  func>on:

Then  the  best  fit  leads  to:

The  above  is  a  Galerkin  method  with  a  modified  inner-­‐product  weight.    Alterna>vely,  can  
think  of  this  as  a  “Petrov-­‐Galerkin  method”,  where  the  error  is  projected  onto  a  different  
subspace  than  the  basis  func>ons.



Passive advection is a good prototype to study DG schemes

Consider the 1D passive advection equation on I ∈ [L,R]

∂f

∂t
+ λ

∂f

∂x
= 0

with λ the constant advection speed. f(x, t) = f0(x− λt) is the
exact solution, where f0(x) is the initial condition. Designing a
good scheme is much harder than it looks.

� Discretize the domain into elements Ij ∈ [xj−1/2, xj+1/2]

� Pick a finite-dimensional function space to represent the
solution. For DG we usually pick polynomials in each cell but
allow discontinuities across cell boundaries

� Expand f(x, t) ≈ fh(x, t) =
�

k fk(t)wk(x).

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj
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Discrete problem can be stated as finding the coefficients
that minimize the L2 norm of the residual

The discrete problem in DG is stated as: find fh in the function

space such that for each basis function ϕ we have

�

Ij

ϕ

�
∂fh
∂t

+ λ
∂fh
∂x

�
dx = 0.

Integrating by parts leads to the discrete weak-form
�

Ij

ϕ
∂fh
∂t

dx+ λϕj+1/2f̂hj+1/2 − λϕj−1/2f̂hj−1/2 −
�

Ij

dϕ

dx
λfh dx = 0.

Here f̂h = f̂(f+
h , f−

h ) is the consistent numerical flux on the cell

boundary. Integrals are performed using high-order quadrature

schemes.

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj
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Unlike fluid equations which directly express conservation laws for particles,

momentum, and energy, and so are preserved by finite-volume methods (modulo

field equation issues), the conservation laws for Vlasov problems are indirect.

For problems of the form ∂f/∂t = {H, f}, like the Vlasov / Gyrokinetic

equations, can multiply by H or by f integrate over all space to get conservation

laws for energy or for an entropy/enstrophy-like quantity.

Liu and Shu (2000) showed that a discrete energy is conserved if the basis

functions for H are a continuous subset of the basic functions for f , even if

an upwind flux is used. (Not widely appreciated, next paper was Bernsen et

al. JCP 2006. Actually, these two papers were only for 2D incompressible

hydro and don’t point out the generalization to Hamiltonian systems.) We later

discovered an extension to allow discontinuous potential φ (this could be useful

for gyrokinetics to preserve the nature of the gyrokinetic Poisson equation, as a

set of uncoupled 2-D elliptic equations).

Entropy is conserved with DG if central fluxes are used (and thus is like a

high-order generalization of the well-known Arakawa scheme). However, want

to use upwind / flux-limiters to avoid negative / unphysical overshoots in the

solution, models collisions at unresolved scales that cause entropy to increase,

while conserving energy.

Conditions for Hamiltonian Conservation 
Discovered Relatively Recently.
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Momentum conservation subtleties

Conservation properties also depends on how the field equations are solved.  We 
have found ways for the discretized equations to exactly conserve energy or 
momentum, but have not found way to conserve both simultaneously.
Plan to use the energy conserving algorithm (at least for now).  Although momentum 
conservation is not exact, it does converge as the spatial grid is refined, even if the 
velocity grid is coarse.
Might eventually solve a separate momentum conservation law (similar to Parra and 
Catto’s suggestion), and could apply small corrections (of order the truncation errors) 
to the kinetic solution each time step to remove components of the error that are in 
momentum.

Separate issue:  Parra and Catto are correct that accurate calculation of momentum 
transport in a low-flow gyro-Bohm regime requires extreme accuracy, H3 ~ (ρ/L)3 T.  
Discussed more in a recent technical report J.A. Krommes and G.W. Hammett (2013), 
PPPL-4945.

Our code here will focus first on edge / pedestal regimes that might break this 
ordering, where H2 may be sufficient.
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Ini>al  Results:    Full-­‐F  Gyrokine>c  Con>nuum  Code  
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PPPL work initiated by LDRD funds (January 2012), built on by MPPC funds this year.

Good progress:

Carried out a range of well-documented 2D tests:
     http://www.ammar-hakim.org/sj/ (starting w/ JE12)

Code now able to handle 1x+2v, i.e. (z, v||, v⊥), Lenard-Bernstein model collision 
operator, electrostatic kinetic electrons and ions, 1D sheath boundary conditions.   (a 
little more work to integrate it all together.)

Focussing on demonstrating full 5D capability of gyrokinetics (x, y, z, v||, v⊥) quickly (by 
end of 2014), with some simplifications at first (atomic physics, magnetic geometry).
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Prototype code named Gkeyll is being developed

� Gkeyll is written in C++ and is inspired by framework efforts like

Facets, VORPAL (Tech-X Corporation) and WarpX (U.

Washington). Uses structured grids with arbitrary dimension/order

nodal basis functions.

� Package management and builds are automated via scimake and

bilder, both developed at Tech-X Corporation.

� Linear solvers from Petsc1 are used for inverting stiffness matrices.

� Programming language Lua2, used in widely played games like

World of Warcraft, is used as an embedded scripting language to

drive simulations.

� MPI is used for parallelization via the txbase library developed at

Tech-X Corporation.

1http://www.mcs.anl.gov/petsc/
2http://www.lua.org

A. H. Hakim, G. W. Hammett, Eric Shi: Schemes for (Gyro) Kinetic Simulations http://www.ammar-hakim.org/sj



Good Progress To Date:
• 2012, 1st half (LDRD began Jan. 9, 2012):

– successful benchmark on 2-D vortex problems, verified excellent conservation 
properties of DG algorithm for Poisson-bracket Hamiltonian problems. 

– Invented extensions to allow discontinuous potentials and preserve separability 
of independent 2D gyrokinetic Poisson solvers (will lead to paper).

• 2012, 2cd half:
– extended tests to 1x/1v Vlasov Eq., linear and nonlinear Landau damping.
– implemented Lenard-Bernstein collision operator, good model because it has 

essential features of full collision operator: conservation properties and 
preferential diffusive smoothing of small scales.

– implemented Hasewaga-Wakatani 2D 2-field drift-wave eqs., collaboration with 
IFS (F. Waelbroeck et al.)

• 2013, 1st half:
– discovered and fixed surprising problem with widely-used DG algorithm for 

diffusion.  will lead to nice algorithm paper (draft written).
– extended collision operator to 2D in velocity: (v||, v⊥) 
– now have 3D capability (z, v||, v⊥).
– Good documentation of progress: http://www.ammar-hakim.org/sj/ (starting w/ JE12)
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Plans: Continue Main Code Development
• rest of FY13:

– Add options for sheath boundary conditions & sources for model of scrape-off 
layer.  Simulations of ELM propagation along SOL, compare:

• “Comparison of fluid and kinetic models of target energy fluxes during edge 
localized modes”, Havlickova, Fundamenski, et al, PPCF (2012)

• (done, with grad student Eric Shi)
• extending to include magnetic fluctuations

– Exploring best approach to implement Maxwellian-weighted basis functions 
(already in GENE & other core δf codes, not in any edge full-F codes)

• Winter 2013-14:
– Upgrade to 4-D (2-space + 2-v), in simple axisymmetric geometry on open or 

closed field lines.
• 2014:

– complete prototype 5D gyrokinetic code, with simple magnetic geometries 
(axisymmetric, open or closed field lines) for now, to demonstrate feasibility.

– initial comparisons with LAPD / VINETA
• Then:

– extend to more complicated geometries, better atomic physics models, ...
19



EXTRA
SLIDES
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A  good  strategic  fit  for  the  MPPC
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Interactions Between Fusion, Basic Plasma Physics, and Astrophysics:  

•  Early application (by end of 2014) to basic laboratory experiments LAPD 
(UCLA) & Vineta (Greiswald): for fundamental studies of drift-wave turbulence & of 
nonlinear Alfven dynamics, astrophysics applications

•  Continuum gyrokinetic codes very successful in the core region of tokamaks, 
can these algorithms be useful in tokamak edge and on non-fusion problems?

Max-Planck / Princeton Interactions:

•  Close benchmarking & expertise sharing w/ core fusion gyrokinetic code GENE 
(developed at Garching)

•  Compare with data from Vineta and later Asdex (Garching).  Asdex group has 
extensive experience on fundamental edge measurements and modelling.

Dream: a robust code applicable for a wider range of fusion and non-fusion problems, 
capable of relatively fast simulations at low velocity resolution but with qualitatively-
good results, or fully converged high velocity resolution w/ massive computing.



Consider calculating

g(x) = fxx(x),

given a known f(x). The “local DG” algorithm replaces this with two first order

equations

g(x) = dw/dx

w(x) = df/dx

and solving each equation with a DG method using upwind fluxes based on

analogies with first-order advection equations.

However, there are problems with this approach, and we find it is better to

reconstruct a smooth function that interpolates the DG moments in adjacent

cells, an extension of how diffusion is treated in finite volume methods, where

one only knows the cell average in each cell.

How To Apply DG to Diffusion Problems.
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Discovered surprising problem in widely used DG 
algorithm for diffusion, and a fix.

We discovered this problem and a fix to it (similar to recent work by van Leer).
Have a draft of a very nice applied math paper on this.  
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This error was not noticed in most previous work in part because it it less severe at higher order or for elliptic problems where 
the Laplacian is inverted.  More noticeable in transient diffusion problems.

Example: Local DG scheme for piece-wise linear basis
functions

Figure: Derivatives of sin(x) computed using LDG scheme with 16 cells (left) and 32
cells (right). Notice slopes are completely mispredicted, showing scheme is
inconsistent.

A. H. Hakim, G. W. Hammett, Eric Shi: Fluid and Kinetic Simulations of Plasmas http://www.ammar-hakim.org/sj

d2 sin(x) / dx2 
computed with Local DG (LDG) 
algorithm (black curve) compared 
with exact answer (magenta).

The cell averages are correct, but 
slope within each cell is wrong & 
diverges as grid is refined.


