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Abstract

Markovian models of turbulence are often derived by
starting from the renormalized statistical closure equations
of the direct-interaction approximation (DIA). Various sim-
plifications are introduced, including an assumption that the
two-time correlation function is proportional to the infinites-
imal propagator (the Green’s function), i.e. that the decor-
relation rate is equal to the decay rate for small perturba-
tions. In particular, in the context of a Langevin equation
which underlies the realizable class of Markovian models, the
assumption that the decorrelation rate and the Green’s func-
tion decay rate are equal is only strictly valid if the nonlinear
driving terms are treated as white noise. Here we show a way
to build on previous work on realizable Markovian closures
to allow for non-white noise in a more self-consistent way,
allowing the decorrelation rate to differ from the decay rate
while retaining the computational advantages of a Marko-
vian approximation. While some Markovian approximations
differ only in the initial transient phase, the non-white-noise
Markovian model presented here will give different steady
state spectra as well. The present derivation is restricted to
the 1-field 2-dimensional limit but could be generalized. The
DIA and related turbulence theories are generic to a class
of quadraticly nonlinear equations, and so are relevant to
both Navier-Stokes fluid turbulence and plasma turbulence.
Markovian models can be used by themselves in studying
turbulence issues such as zonal flows, or they may be a use-
ful starting point for deriving sub-grid turbulence models for
computer simulations.
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I. INTRODUCTION

Our derivation builds on and closely follows the work by Bowman,

Krommes, and Ottaviani1, Phys. Fluids B5, 3558 (1993) (we will

frequently refer to this paper as BKO), on systematic methods of

deriving realizable Markovian closures from Kraichnan’s DIA.

Motivation:

• Study zonal flows: strong turbulence theory needed to investi-

gate finiteness of Dimits shift

(however Dorland and Rogers approach of analyzing secondary

and tertiary instabilities may provide a more tractable approach)

• General turbulence interest

• Markovian closures might be a good starting point for deriving

sub-grid turbulence models.

In thermodynamic equilibrium, the Fluctuation-Dissipation the-

orem in fact says that the 2-time correlation function C(t, t′) =

〈ψ(t)ψ∗(t′)〉 is proportional to the infinitesimal response function

R(t, t′). Standard Markovian theories use this to assume that the

decorrelation rate and the infinitesimal response decay rate are equal.

However, the Kolmogorov spectrum Ek ∼ 1/k5/3 differs from the

thermodynamic equilibrium spectrum. In the context of a Langevin

equation, the assumption of C(t, t′) ∝ R(t, t′) restricts the noise to

be white.
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II. SIMPLE EXAMPLES BASED ON THE LANGEVIN EQUATION

Since realizable Markovian closure approximations to the DIA

can be shown to correspond exactly to an underlying set of coupled

Langevin equations, the analogy is quite relevant.

Consider the simple Langevin equation
(

∂

∂t
+ η

)

ψ = f∗(t) (1)

where η is a damping rate and f∗ is a random forcing or stirring term

(a.k.a. “noise”). [We use the complex conjugate of f for consistency

with the form of the equations used later for the Navier-Stokes/DIA.]

If f is white noise, then the decorrelation rate ηc for ψ is ηc = η.

C(t, t′) = 〈ψ(t)ψ(t′)〉 = C0 exp(−ηc|t − t′|)

But if f (t) varies slowly compared to η (the “red noise” limit),

then

ψ(t) ≈
f∗(t)

η

and the decorrelation rate for ψ is the same as the decorrelation rate

for f∗, ηc = η∗f � η.

Summary of 3 Important Rates:

• η = infinitesimal response function decay rate

R(t, t′) = exp(−η(t − t′))

• ηf = Noise (or forcing) decorrelation rate

〈f (t)f∗(t′)〉 = Cf0 exp(−ηf(t − t′))

• ηc = two-time decorrelation rate ψ

C(t, t′) = 〈ψ(t)ψ∗(t′)〉 = C0 exp(−ηc(t − t′))
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One might guess that a simple Padé-type formula to roughly inter-

polate between the white-noise limit ηf � η and the opposite “red-

noise” limit ηf � η, would be something like 1/ηc ≈ 1/η + 1/η∗f ,

or

ηc =
η η∗f
η + η∗f

(2)

We will find that the formulas are more complicated in the presence

of wave behavior with complex η and ηf .

We note that in many cases of interest, the noise decorrelation rate

ηf turns out to be of comparable magnitude to η (for example, if the

dominant interactions occur between modes of comparable scale).

In this case, while the white-noise approximation is not rigorously

valid, the corrections to the decorrelation rate considered in this

paper might turn out to be quantitatively modest.
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III. DETAILED DEMONSTRATION OF THE NON-WHITE NOISE

MARKOVIAN METHOD WITH THE LANGEVIN EQUATION

In this section, we present a more complete demonstration of our

approach of a Markovian approximation including the effects of non-

white noise, while still starting with a simple Langevin equation.

The steps in the derivation are quite similar to the steps that will be

taken in the next section for the case of the more complete DIA for

more complicated nonlinear problems, and so helps build insight and

familiarity. In this section, we will be introducing various approxima-

tions that may seem unnecessary for the simple Langevin problem,

which can be solved exactly in many cases (for simple forms for the

noise correlation function). But these are the same approximations

that will be used later in deriving Markovian approximations to the

DIA, and so it is useful to be able to test their accuracy in the

Langevin case.

The response function (or Green’s function or propagator) for the

Langevin equation satisfies
(

∂

∂t
+ η

)

R(t, t′) = δ(t− t′) (3)

The solution is

R(t, t′) = exp(−

∫ t

t′
dt̄ η(t))H(t − t′) (4)

The solution to the Langevin equation is

ψ(t) = R(t, 0)ψ(0) +

∫ t

0

dt̄R(t, t̄)f (t̄) (5)

In principle it is possible to directly calculate two-time statistics like

C(t, t′) = 〈ψ(t)ψ∗(t′)〉 from this, but in practice it is often conve-

nient to consider instead the differential equation for ∂C(t, t′)/∂t,

which from Eq. (1) and the above is
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(

∂

∂t
+ η

)

C(t, t′) = 〈f∗(t)ψ∗(t′)〉

=

∫ t′

0

dt̄ R∗(t′, t̄)C∗f (t, t̄), (6)

where the noise correlation function is defined as Cf (t, t
′) =

〈(f (t)f∗(t′)〉, and we have assumed the initial condition ψ(0) has

a random phase. This equation is the analog of the DIA equations

(Eqs. (24) and Eqs. (25a)) for the 2-time correlation function, though

with an integral only over noise and no nonlinear modification of the

damping term.

We define the equal-time correlation function C(t) in terms of

the two-time correlation function C(t, t′) as C(t) = C(t, t) =

〈ψ(t)ψ∗(t′)〉 (note that the two different functions are distinguished

only by the number of arguments). Then

∂C(t)

∂t
+ 2 Re ηC(t) = 2 Re

∫ t

0

dt̄R∗(t, t̄)C∗f (t, t̄) (7)

This is the analog of the DIA equal-time covariance equation.

A. Langevin statistics in the steady-state limit

Consider the steady state limit, t, t′ →∞ (but finite time separa-

tion t− t′), and assume the noise correlation function has the simple

form Cf (t, t
′) = Cf0 exp[−ηf(t − t′)] for t > t′. η and ηf are time-

independent constants in this section. The response function reduces

back to its steady state form R(t, t′) = exp[−η(t − t′)]H(t − t′).

Then Eq. (7) in steady state gives C0
.
= limt→∞C(t) = Cf0 Re(η +

ηf)/[Re(η)(η+ηf)(η
∗+η∗f )]. Writing η = ν+ iω and ηf = νf + iωf

in terms of their real and imaginary components, and denoting the

frequency mismatch ∆ω = ω+ωf (remember, because the complex
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conjugate f∗ is used as the forcing term, resonance occurs when

Im(η) = Im(η∗f )) this can be written as

C0 =
Cf0

ν

(ν + νf)

(ν + νf )2 + (∆ω)2
(8)

This has a familiar form characteristic of resonances.

To find the two-time correlation function, the time integral in

Eq. (6) can be evaluated for t > t′ to give
(

∂

∂t
+ η

)

C(t, t′) =
Cf0

η∗ + η∗f
exp[−η∗f (t − t′)] (9)

With the boundary condition C(t = t′, t′) = C0, this can be solved

to give

C(t, t′) = C0

[

1−
Re(η)(η + ηf)

Re(η + ηf)(η − η∗f )

]

exp[−η(t− t′)]

+ C0
Re(η)(η + ηf)

Re(η + ηf)(η − η∗f )
exp[−η∗f (t − t′)] (10)

In the white-noise limit, |ηf | � |η|, this reduces to the standard

simple result C(t, t′) = C0 exp[−η(t− t′)]. But in the more general

case of non-white noise, the two-time correlation function is more

complicated. [Despite the apparent singularity in the denominator,

it is cancelled by the exponentials so that C(t, t′) is well-behaved in

the limit η → ηf .] Even if the noise correlation function has a simple

exponential dependence Cf (t, t
′) ∝ exp[−ηf(t− t

′)], we see that the

resulting correlation function for ψ is more complicated.

Consider the task of fitting this C(t, t′) with a simpler model of

the form Cmod(t, t
′) = C0 exp[−ηc(t − t′)] (for t > t′). One way to

determine the effective decorrelation rate ηc might be from the area

under the time integral,
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C0

ηc
=

∫ t

−∞′
dt′ C(t, t′) (11)

This can be evaluated either by directly plugging in Eq. (10), or by

taking a time average of Eq. (9); the same answer results either way.

It turns out that in the later versions of this calculation it is easier

to determine ηc by operating on the governing differential equation

with a time integral. Operating on Eq. (9) with
∫ t

−∞
dt′, and using

∫ t

−∞

dt′
∂C(t, t′)

∂t
=
∂

∂t

∫ t

−∞

dt′C(t, t′) − C(t, t) (12)

we can solve to find

1

ηc
=

1

η
+

Re(η)(η + ηf)

Re(η + ηf) η η∗f
(13)

This recovers the white-noise limit ηf � η and the red-noise limit

ηf � η discussed in the introduction in Sec II. In the limit of

real η and real ηf it simplifies to the Padé approximation ηc =

ηηf/(η + ηf) also suggested in the introduction. However, there is

a problem with Eq. (13) related to Galilean invariance. Suppose we

make the substitutions ψ = ψ̂ exp[iω2t] and f∗ = f̂∗ exp[iω2t] into

the Langevin equation, Eq. (1). Then it can be written as
(

∂

∂t
+ η̂

)

ψ̂ = f̂∗(t) (14)

where η̂ = η + iω2, and so all results should be the same if writ-

ten in terms of the transformed variables. In particular, the corre-

lation function should transform as 〈ψ̂(t)ψ̂∗(t′)〉 = exp[−iω2(t −

t′)]〈ψ(t)ψ∗(t′)〉 = exp[−iω2(t − t′)]C(t, t′). Thus the decorrelation

rate η̂c for ψ̂ should be related to the decorrelation rate ηc for ψ

by η̂c = ηC + iω2. The decorrelation rate for the transformed noise
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term f̂∗ also transforms as η̂∗f = η∗f + iω2. In the case of fluid or

plasma turbulence where ψ represents the amplitude of a Fourier

mode ∝ exp[ikx] and f∗ represents the amplitude of two modes

beating together with k2 + k3 = k, these transformations corre-

spond to a Galilean transformation to a moving frame x = x̂ + vt,

with ω2 = k · v.

So all results should be independent of ω2 under the transforma-

tion η = η̂− iω2, η
∗
f = η̂∗f − iω2, (thus ηf = η̂f + iω2), ηc = η̂c− iω2.

Eq. (8) satisfies this, but Eq. (13) fails this test. This problem and its

solution is described in the review paper by Krommes2, who shows

it is related to other differences in various previous Markovian clo-

sures. The problem can be traced to the definition of Eq. (11) which

doesn’t satisfy the invariance for general forms of C(t, t′). For exam-

ple, we could have multiplied by an arbitrary weight function (such

as exp[−ω2(t − t′)) before taking the time average and the results

would have changed. The way to fix this problem is to do the time-

average in a natural frame of reference for ψ that accounts for the

frequency dependence. This leads us to the definition:

C2
0

ηc + η∗c

.
=

∫ t

−∞

dt′ C∗mod(t, t
′)C(t, t′) (15)

This corresponds to fitting Cmod(t, t
′) to C(t, t′) by requiring

that both effectively have the same projection onto the function

Cmod(t, t
′). [As Krommes2 points out, using the invariant defini-

tion Eq. (15) instead of Eq. (11) is a non-trivial point needed to

insure realizability and avoid spurious nonphysical solutions in some

cases.]

Operating on Eq. (9) with
∫ t

−∞
dt′ C∗mod(t, t

′), using a generaliza-

tion of Eq. (12), and doing a little rearranging yields
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ηc = η −
Cf0(ηc + η∗c )

C0(η∗ + η∗f )(η∗c + η∗f )
(16)

This is properly invariant to the transformation described in the

previous paragraph. Solving for ηc while leaving η∗c on the other

side of the equation, eventually leads to

ηc =
ηη∗f Re(η + ηf) + η∗c Im(ηηf)

(η + η∗c ) Re(η + ηf) + (η∗f + η∗) Re(ηf )
(17)

Some of the intermediate algebra in deriving this can be quite labo-

rious, so we made significant use of the computer-aided mathematics

package Maple3. Maple worksheets which prove this and other main

results in this paper are available online4. If we consider the limit

where η, ηf and thus ηc are all real, this simplifies to the form

ηc =
ηηf

η + ηf + ηc
(18)

This is similar to (but more accurate than) the rough interpolation

formula Eq. (2) suggested in the introduction. This kind of recur-

sive definition, with ηc appearing on both sides, is a common feature

of the steady-state limit of theories based on the renormalized DIA

equations, and can be solved in practice by iteration, or by consid-

ering the time-dependent versions of the theories. In Eq. (18) with

real coefficients, one can easily solve this equation for ηc, but the

solution is much more difficult in the case of complex coefficients.

With the help of Maple, looking at the real and imaginary parts

of Eq. (17) separately eventually leads to a quadratic equation and

a linear equation to determine the real and imaginary parts of ηc.

Unfortunately it takes 16 lines of code to write down the resulting

closed-form solution. This is tedious for humans but easy to evaluate

in Fortran, C, or other computer language. But this is only help-

ful for the simple Langevin problem anyway, since direct solution is
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not really practical for the full nonlinear problem considered by the

DIA, where the noise term of the Langevin equation is replaced by

a sum over many other modes. In many cases of interest, the noise

decorrelation rate ηf turns out to be of comparable magnitude to

η, so Eq. (17) usually converges well in a few iterations. The other

option is to consider the time-dependent problem, the topic of the

next section, which effectively iterates for you as it approach steady

state.

B. Comparison of non-white model with exact Langevin result

In this section we compare results from the exact Langevin solu-

tion for C(t, t′)/C0 given by Eq. (10), with the non-white model

Cmod(t, t
′)/C0 = exp(−ηc|t − t′|), where ηc is given by solving

Eq. (17), and with a simple white-noise assumption C(t, t′)/C0 =

exp(−η|t− t′|). In general this shows that this formula for ηc does

fairly well.

Discuss the normalizations, C(t, t′)/C0 is plotted, and the frame

of reference is chosen so that Im η = 0, and the frequency mismatch

between the oscillator and the driving term is absorbed into Im ηc.

Re η = 1 is chosen as a normalization.

All formulas of course agree well in the white noise limit of

Re ηc � Re η. The non-white model does better, particularly for

Re ηc < Re η, and moderate frequency mismatch Im(η + ηc). As

seen in Fig. 5, the non-white model does have some difficulties with

regimes with large frequency mismatch and Re η ∼ Re ηc. However,

Eq. (8) shows that this non-resonant region corresponds to a very

small amplitude C0, and so perhaps doesn’t matter too much. The

white-noise model has no imaginary part in all of the figures, and so

misses any frequency shifts due to frequency differences between ν

and the driving noise term νf .
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FIG. 1. Re C(t, t′)/C0 vs t−t′, for the exact Langevin result of Eq. (10), for the non-white-noise

model with decorrelation rate ηc given by Eq. (17), and for a simple white-noise assumption

C(t, t′) = C0 exp(−η|t− t′|). η = 1. ηf is noted in each figure.
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FIG. 2. Re and Im parts of C(t, t′)/C0 vs t − t′, for the same 3 functions as in Fig. 1, but for

ηf = 0.25− 4i. Note that Im C = 0 for the white noise case in this and later figures.
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FIG. 3. Re and Im parts of C(t, t′)/C0 vs t − t′, for the same 3 functions as in Fig. 1, but for

ηf = 1− i.
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FIG. 4. Re and Im parts of C(t, t′)/C0 vs t − t′, for the same 3 functions as in Fig. 1, but for

ηf = 1− 4i.
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FIG. 5. Re and Im parts of C(t, t′)/C0 vs t − t′, for the same 3 functions as in Fig. 1, but for

ηf = 1− 16i.
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FIG. 6. Re and Im parts of C(t, t′)/C0 vs t − t′, for the same 3 functions as in Fig. 1, but for

ηf = 4− 16i.
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IV. FORMULATION OF THE FULL NONLINEAR PROBLEM AND

STATISTICAL CLOSURES

In this section we provide background on the general form of the

nonlinear problem we are considering and on the general theory of

statistical closures. In particular we will write down the Kraichnan’s

direct-interaction approximation, which are the starting point of our

calculation. This section borrow’s heavily from the BKO paper1, but

is provided for completeness to define our starting point.

A. The fundamental nonlinear stochastic process

Consider a quadratically nonlinear equation, written in Fourier

space, for some stochastic variable ψk that has zero mean:
(

∂

∂t
+ νk

)

ψk(t) = 1
2

∑

k+p+q=0

Mkpqψ
∗
p (t)ψ∗q (t). (19)

Here the time-independent coefficients of linear “damping” νk and

mode-coupling Mkpq are complex.

For each k in Eq. (19), the summation on the right-hand-side

involves a sum over all possible p and q that satisfy the three-wave

interaction k+p+q = 0 (this is sometimes expressed as k = k2+k3,

but the reality conditions ψ−k = ψ∗k has been used to rearrange it).

Without any loss of generality one may assume the symmetry

Mkpq = Mkqp. (20)

Another important symmetry possessed by many such systems is

σkMkpq + σpMpqk + σqMqkp = 0 (21)

for some time-independent nonrandom real quantity σk. Equa-

tion (21) is easily shown to imply that the nonlinear terms of Eq. (19)

conserve the total generalized “energy,” defined as
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E
.
= 1

2

∑

k

σk|ψk(t)|2. (22)

For some problems (e.g., two-dimensional turbulence), Eq. (21) may

be satisfied by more than one choice of σk; this implies the existence

of more than one nonlinear invariant.

We define the two-time correlation function Ck(t, t′)
.
=

〈

ψk(t)ψ∗k (t′)
〉

and the equal-time correlation function Ck(t)
.
=

Ck(t, t) (note that the two different functions are distinguished only

by the number of arguments), so thatE = 1
2

∑

k σkCk(t). In station-

ary turbulence, the two-time correlation function depends on only the

difference of its time arguments: Ck(t, t′)
.
= Ck(t − t′) The renor-

malized infinitesimal response function (nonlinear Green’s func-

tion) Rk(t, t′) is the ensemble-averaged infinitesimal response to a

source function η̄k(t) = δη̄kδ(t − t′) added to the right-hand side

of Eq. (19) for mode k (and no source added to other modes with

p 6= k). As a functional derivative,

Rk(t, t′)
.
=

〈

δψk(t)

δη̄k(t′)

〉

|η̄k=0. (23)

We adopt the convention that the equal-time response function

Rk(t, t) evaluates to 1/2 [although limt′→t−Rk(t, t′) = 1].

B. Statistical closures; the direct-interaction approximation

The starting point of our derivation will be the equations of

Kraichnan’s direct-interaction approximation (DIA), as given in

Eqs.(6-7) of BKO1, and reproduced below as Eq. (24a), Eq. (24b),

Eq. (25a), Eq. (25b).

The general form of a statistical closure in the absence of mean

fields is
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(

∂

∂t
+ νk

)

Ck(t, t′) +

∫ t

0

dt̄Σk(t, t̄)Ck(t̄, t′)

=

∫ t′

0

dt̄Fk(t, t̄)R∗k (t′, t̄), (24a)

(

∂

∂t
+ νk

)

Rk(t, t′) +

∫ t

t′
dt̄Σk(t, t̄)Rk(t̄, t′)

= δ(t − t′). (24b)

These equations specify an initial-value problem for which t = 0 is

the initial time.

The original nonlinearity in Eq. (19) is split in Eqs. (24) into two

separate effects: one describing nonlinear damping (Σk) and one

modeling nonlinear noise (Fk). This structure is reminiscent of a

Langevin equation. However, the nonlinear damping and noise in

Eqs. (24) are determined on the basis of fully nonlinear statistics.

Given appropriate forms for Σk and Fk, Eqs. (24) would yield an

exact description of the second-order statistics. Unfortunately, this

merely shifts the difficulty to the determination of these new func-

tions.

The direct-interaction approximation provides specific approxi-

mate forms for Σk and Fk:

Σk(t, t̄) = −
∑

k+p+q=0

MkpqM
∗
pqkR

∗
p (t, t̄)C∗q (t, t̄), (25a)

Fk(t, t̄) = 1
2

∑

k+p+q=0

|Mkpq|
2C∗p (t, t̄)C∗q (t, t̄). (25b)

These renormalized forms can be obtained from the formal perturba-

tion series by retaining only selected terms. While there are infinitely

many ways of obtaining a renormalized expression, Kraichnan5 has
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shown that most of the resulting closed systems of equations lead to

physically unacceptable solutions. For example, they might predict

the physically impossible situation of a negative value for Ck(t, t)

(i.e., a negative energy)! Such behavior cannot occur in the DIA or

other realizable closures.
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V. SUMMARY OF A NON-WHITE MARKOVIAN CLOSURE

Applying these techniques (demonstrated earlier for a Langevin

equation) in a straightforward way to the time-dependent DIA equa-

tions leads to a Markovian Closure model to include the effects of

non-white noise on the decorrelation rate. The resulting Non-White

Markovian Closure equations are

∂

∂t
Ck(t) + 2 Re η̄k(t)Ck(t) = 2 ReFk(t), (26a)

η̄k(t)
.
= νk −

∑

k+p+q=0

MkpqM
∗
pqkΘ∗pqk(t)C1/2

q (t)C
−1/2
k (t), (26b)

Fk(t)
.
= 1

2
Re

∑

k+p+q=0

|Mkpq|
2Θ∗kpq(t)C

1/2
p (t)C1/2

q (t), (26c)

∂

∂t
Θkpq + (ηk + ηcp + ηcq)Θkpq = C1/2

p (t)C1/2
q (t), (26d)

Θkpq(0) = 0. (26e)

This is very similar to the Bowman-Krommes-Ottaviani Realizable

Markovian Closure (RMC) (as given by Eqs. (66a-e) of BKO1),

but with the replacement of the single decay/decorrelation rate of

RMC with 3 different rates in these equations. [Other Markovian

models, such as Orszag’s EDQNM also use a single decorrelation

rate parameter.] If in Eq. (26d) we replace ηk = η̄k, ηcp = P(η̄p),

and ηcq = P(η̄q), then these equations become identical to the RMC.

To summarize the 3 rates used here:

η̄k is the nonlinear energy damping rate for the wave energy equa-

tion for the equal time covariance Ck(t) in Eq. (26a), and is defined

in Eq. (26b),

22



ηk is the infinitesimal response function decay rate for Rk(t, t
′),

and ηck is the decorrelation rate for Ck(t, t
′).

In general there are time-dependent equations involving additional

functions similar in form to Θkpq that are used to define these addi-

tional rates. But in the steady-state limit, these equations simplify

to ηk = η̄k and

ηck
.
= η̄k − (ηck + η∗ck)

∑

k+p+q=0

MkpqM
∗
pqkCq

(η∗ck + η∗p + η∗cq)
2

−
(ηck + η∗ck)

2Ck

∑

k+p+q=0

|Mkpq|
2CpCq

(η∗ck + η∗cp + η∗cq)(η
∗
k + η∗cp + η∗cq)

(27)

Thus the decorrelation rate ηck equals the infinitesimal decay rate

η̄k plus two correction terms. For the simple fluid case with real and

positive η’s, the first correction term is usually positive, while the

second term is usually negative.
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VI. CONCLUSIONS

The NWMC extension of the RMC includes the effects of non-

white noise at the expense of introducing a few new parameters,

but the computational scaling of this system is still O(Nt), a vast

improvement over the O(N 3
t ) scaling of the DIA.

An alternate name for this Non-White Markovian Closure might

be the Colored-Noise Markovian Closure, since instead of white-noise

we are able keep the effects of a noise spectrum of width δω ∼ Re ηf
centered around the frequency ω ∼ Im ηf (i.e., this models a range

of possible colored spectra).

To clarify, the Bowman-Krommes-Ottaviani Realizable Marko-

vian Closure does include some of the effects of non-white noise

and, for example, properly includes these effects when calculating

the triad interaction time θkpq ≈ 1/(ηk + ηp + ηq). However, the

assumption that the decorrelation rate is identical to the infinitesi-

mal response decay rate, i.e., that Ck(t, t
′) ∝ Rk(t, t

′) (for t > t′), is

rigorously correct only in the white noise limit, though it may not be

too bad of an approximation in many regimes. Ck(t, t
′) ∝ Rk(t, t

′)

is also a rigorous result of the Fluctuation-Dissipation Theorem in

thermodynamic equilibrium. [Its interesting to note that the F-D

theorem holds even if Rk(t, t
′) is not a simple exponential function

exp(−ηk(t−t
′))]. However, the Non-White Markovian Closure might

still reproduce the Fluctuation-Dissipation result, because in ther-

modynamic equilibrium the spectrum Ek ∼ 1/k falls off slower than

the usual Kolmogorov turbulence spectrum Ek ∼ 1/k5/3, and thus

might cause the noise terms such as Eq. (26c) to be dominated by

high q modes (beating with modes with high p = −(q + k)) which

look like white noise on the time scale of modes with small k.
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