# Turbulence & Transport in Burning Plasmas

#### Greg Hammett, Princeton Plasma Physics Lab (PPPL) http://w3.pppl.gov/~hammett AAAS Meeting, Seattle, Feb. 2003

http://fire.pppl.gov

#### Acknowledgments:

Plasma Microturbulence Project

(LLNL, General Atomics, U. Maryland, PPPL, U. Colorado, UCLA, U. Texas)

DOE Scientific Discovery Through Advanced Computing

http://fusion.gat.com/theory/pmp

J. Candy, R. Waltz (General Atomics) W. Dorland (Maryland) W. Nevins (LLNL) R. Nazikian, D. Meade, E. Synakowski (PPPL) J. Ongena (JET)



Candy, Waltz (General Atomics)

## The Plasma Microturbulence Project

- A DOE, Office of Fusion Energy Sciences, SciDAC (Scientific Discovery Through Advanced Computing) Project
- devoted to studying plasma microturbulence through direct numerical sumulation
- National Team (& four codes):
  - GA (Waltz, Candy)
  - U. MD (Dorland)
  - U. CO (Parker, Chen)
  - UCLA (Lebeouf, Decyk)
  - LLNL (Nevins P.I., Cohen, Dimits)
  - PPPL (Lee, Lewandowski, Ethier, Rewoldt, Hammett, ...)
  - UCI (Lin)
- They've done all the hard work ...















# Summary: Turbulence & Transport in Burning Plasmas

- Simple physical pictures of tokamak plasma turbulence & how to reduce it (reversed magnetic shear, sheared flows, plasma shaping...)
- Several good ideas for improvements in fusion reactor designs
- Impressive progress with comprehensive 5-dimensional computer simulations being developed to understand plasma turbulence & optimize performance

## Cut-away view of aTokamak



## Helical orbit of particle following magnetic field



### Helical orbit of particle following magnetic field



(Size of particle gyro-orbit enlarged for viewing) (This is just a hand sketch: real orbits have very smooth helical trajectory.)



#### Fascinating Diversity of Regimes in Fusion Plasmas. What Triggers Change? What Regulates Confinement?



R. Nazikian et al.

#### Fusion performance depends sensitively on confinement



Caveats: best if MHD pressure limits also improve with improved confinement. Other limits also: power load on divertor & wall, ...



#### "Bad Curvature" instability in plasmas ≈ Inverted Pendulum / Rayleigh-Taylor Instability

Top view of toroidal plasma:



Growth rate:

$$\gamma = \sqrt{\frac{g_{eff}}{L}} = \sqrt{\frac{\mathbf{v}_t^2}{RL}} = \frac{\mathbf{v}_t}{\sqrt{RL}}$$

Similar instability mechanism in MHD & drift/microinstabilities

> $\propto$  combination of  $\nabla$ n &  $\nabla$ T in microinstabilities.

The Secret for Stabilizing Bad-Curvature Instabilities

# Twist in **B** carries plasma from bad curvature region to good curvature region:



Similar to how twirling a honey dipper can prevent honey from dripping.

# Spherical Torus has improved confinement and pressure limits (but less room in center for coils)





Comprehensive 5-D computer simulations of core plasma turbulence being developed by Plasma Microturbulence Project. Candy & Waltz (GA) movies shown: d3d.n16.2x\_0.6\_fly.mpg & supercyclone.mpg, from <u>http://fusion.gat.com/comp/parallel/gyro\_gallery.html</u> (also at <u>http://w3.pppl.gov/~hammett/refs/2004</u>).

# Simple picture of reducing turbulence by negative magnetic shear

Particles that produce an eddy tend to follow field lines.

Reversed magnetic shear twists eddy in a short distance to point in the ``good curvature direction''.

- Locally reversed magnetic shear naturally produced by squeezing magnetic fields at high plasma pressure: ``Second stability'' Advanced Tokamak or Spherical Torus.
- Shaping the plasma (elongation and triangularity) can also change local shear



Antonsen, Drake, Guzdar et al. Phys. Plasmas 96 Kessel, Manickam, Rewoldt, Tang Phys. Rev. Lett. 94

### Sheared flows can suppress or reduce turbulence



# Sheared ExB Flows can regulate or completely suppress turbulence (analogous to twisting honey on a fork)



Dominant nonlinear interaction between turbulent eddies and  $\theta$ -directed zonal flows.

Additional large scale sheared zonal flow (driven by beams, neoclassical) can completely suppress turbulence

#### Fascinating Diversity of Regimes in Fusion Plasmas. What Triggers Change? What Regulates Confinement?



R. Nazikian et al.

#### All major tokamaks show turbulence can be suppressed w/ sheared flows & negative magnetic shear / Shafranov shift



Internal transport barrier forms when the flow shearing rate  $dv_{\theta}/dr > \sim$  the max linear growth rate  $\gamma_{lin}^{max}$  of the instabilities that usually drive the turbulence.

Shafranov shift  $\Delta$ ' effects (self-induced negative magnetic shear at high plasma pressure) also help reduce the linear growth rate.

Advanced Tokamak goal: Plasma pressure ~ x 2,  $P_{fusion} \propto pressure^2 ~ x 4$ 

# Transition to Enhanced Confinement Regime is Correlated with Suppression of Core Fluctuations in TFTR



 Similar suppression observed on JET (X-mode reflectometer) and DIII-D (FIR Scattering)

Hahm, Burrell, Phys. Plas. 1995, E. Mazzucato et al., PRL 1996.



R. Nazikian et al.

## Stronger plasma shaping improves performance



Confinement degrades if density too large relative to empirical Greenwald density limit  $n_{Gr} = I_p / (\pi a^2)$ , but improves with higher triangularity.

Compared to original 1996 ITER design, new ITER-FEAT 2001 and FIRE designs can operate at significantly lower density relative to Greenwald limit, in part because of higher triangularity and elongation.

## Improved new fusion designs $\downarrow$ uncertainties

Density and pressure limits improve with elongation  $\kappa$  & triangularity  $\delta$ :

Empirical Greenwald density limit 
$$n_{Gr} = \frac{I_p}{\pi a^2} \propto \frac{B_T}{Rq_{95}} \left[1 + \kappa^2 \left(1 + 2\delta^2\right)\right]$$
Pressure limit 
$$\beta = \frac{p}{B^2 / 8\pi} \propto \frac{I_p}{aB_T} \propto \frac{a}{Rq_{95}} \left[1 + \kappa^2 \left(1 + 2\delta^2\right)\right]$$

New ITER-FEAT design uses segmented central solenoid to increase shaping.

FIRE pushes to even stronger shaping (feedback coils closer) & reduced size with high field cryogenic CuBe (achievable someday with high-Tc superconductors?)

|                | R<br>(m) | a<br>(m) | B<br>(T) | l <sub>p</sub><br>(MA) | n <sub>Gr</sub><br>10 <sup>20</sup> /m <sup>3</sup> | <n<sub>e&gt;<br/>/n<sub>Gr</sub></n<sub> | κ <sub>x</sub> | δ <sub>x</sub> | P <sub>fusion</sub><br>MW | Ρ <sub>α</sub><br>/2πR |
|----------------|----------|----------|----------|------------------------|-----------------------------------------------------|------------------------------------------|----------------|----------------|---------------------------|------------------------|
| ITER-96        | 8.14     | 2.80     | 5.68     | 21.0                   | 0.85                                                | 1.50                                     | 1.75           | 0.35           | 1500                      | 5.9                    |
| ITER-FEAT      | 6.20     | 2.00     | 5.30     | 15.1                   | 1.19                                                | 0.85                                     | 1.85           | 0.48           | 400                       | 2.0                    |
| FIRE           | 2.14     | 0.60     | 10.0     | 7.7                    | 6.92                                                | 0.66                                     | 2.00           | 0.70           | 150                       | 2.2                    |
| Aries-AT ~goal | 5.20     | 1.30     | 5.86     | 12.8                   | 2.41                                                | 1.00                                     | 2.18           | 0.84           | 1760                      | 9.0                    |

Caveats: remaining uncertainties regarding confinement, edge pedestal scaling, ELMs, disruptions & heat loads, tritium retention, neoclassical beta limits, but also good ideas for fixing potential problems or further improving performance.

# Complex 5-dimensional Computer Simulations being developed

- Solving gyro-averaged kinetic equation to find timeevolution of particle distribution function  $f(\vec{x}, E, v_{\parallel}/v, t)$
- Gyro-averaged Maxwell's Eqs. (Integral equations) determine Electric and Magnetic fields
- "typical" grid 96x32x32 spatial, 10x20 velocity, x 3 species for 10<sup>4</sup> time steps.
- Various advanced numerical methods: implicit, semiimplicit, pseudo-spectral, high-order finite-differencing and integration, efficient field-aligned coordinates, Eulerian (continuum) & Lagrangian (particle-in-cell).

# Gyrokinetic Eq. Summary

Gyro-averaged, non-adiabatic part of 5-D particle distribution function:  $f_s = f_s(\mathbf{x}, \mathcal{E}, \mu, t)$  determined by gyrokinetic Eq. (in deceptively compact form):

$$\frac{\partial f}{\partial t} + \left( v_{\parallel} \hat{\mathbf{b}} + \mathbf{v}_{d} \right) \cdot \nabla f + \underbrace{\hat{\mathbf{b}} \times \nabla \chi \cdot \nabla (f + F_{0})}_{\mathbf{v}} + q \frac{\partial F_{0}}{\partial \varepsilon} \frac{\partial \Phi}{\partial t} = C(f)$$

Generalized Nonlinear ExB Drift Incl. Magnetic fluctuations

 $\chi(\mathbf{x},t)$  is gyro-averaged, generalized potential. Electric and magnetic fields from gyro-averaged Maxwell's Eqs.

$$\chi = J_0 \left( \frac{k_{\perp} v_{\perp}}{\Omega} \right) \left( \phi - \frac{v_{\parallel}}{c} A_{\parallel} \right) + \frac{J_1 \left( \frac{k_{\perp} v_{\perp}}{\Omega} \right)}{\frac{k_{\perp} v_{\perp}}{\Omega}} \frac{m v_{\perp}^2}{q} \frac{\delta B_{\parallel}}{B}$$

# Bessel Functions represent averaging around particle gyro-orbit

Gyroaveraging eliminates fast time scales of particle gyration (10 MHz- 10 GHz)

Easy to evaluate in pseudo-spectral codes. Fast multipoint Padé approx. in other codes.

 $\chi = J_0(k_\perp \rho) \Phi$  $\chi(\vec{\mathbf{x}}) = \oint d\theta \ \Phi(\vec{\mathbf{x}} + \vec{\rho}(\theta))$ 



# Comparison of GYRO Code & Experiment



Gyrokinetic turbulence codes now including enough physics (realistic geometry, sheared flows, magnetic fluctuations, trapped electrons, fully electromagnetic fluctuations) to explain observed trends in thermal conductivity, in many regimes.

- Big improvement over 15 years ago, when there were x10 x100 disagreements between various analytic estimates of turbulence & expts.
- Now within experimental error on temperature gradient. Importance of critical gradient effects emphasized in 1995 gyrofluid-based IFS-PPPL transport model.
- Caveats: Remaining challenges: quantitative predictions of internal transport barriers, test wider range of parameters, & more complicated edge turbulence.

## Turbulence & Transport Issues Particularly Important in Burning plasmas

- Performance of burning plasma & fusion power plant very sensitive to confinement: potential significant improvements
- Uncertainties: Maintain good H-mode pedestal in larger machine at high density? ELM bursts not too big to avoid melting wall? Can internal transport barriers be achieved in large machine, for long times self-consistently with beta limits on pressure profiles and desired bootstrap current?
- In present experiments, pressure profile can be controlled by external heating, currents primarily generated inductively. In a reactor, pressure and current profiles determined self-consistently from fusion heating and bootstrap currents. (Fortuitously, bootrap currents give naturally hollow profiles, which gives favorable reversed magnetic shear.)
- Proposed Burning Plasma devices will pin down uncertainties in extrapolations: help design final power plant.
- Comprehensive computer simulations being developed to understand & optimize performance

# Summary: Turbulence & Transport in Burning Plasmas

- Simple physical pictures of tokamak plasma turbulence & how to reduce it (reversed magnetic shear, sheared flows, plasma shaping...)
- Several good ideas for improvements in fusion reactor designs
- Impressive progress with comprehensive 5-dimensional computer simulations being developed to understand plasma turbulence & optimize performance

## Selected Further References

- This talk: <u>http://fire.pppl.gov</u> & <u>http://w3.pppl.gov/~hammett</u>
- Plasma Microturbulence Project <a href="http://fusion.gat.com/theory/pmp">http://fusion.gat.com/theory/pmp</a>
- GYRO code and movies <a href="http://fusion.gat.com/comp/parallel/gyro.html">http://fusion.gat.com/comp/parallel/gyro.html</a>
- GS2 gyrokinetic code <u>http://gs2.sourceforge.net</u>
- My gyrofluid & gyrokinetic plasma turbulence references: <u>http://w3.pppl.gov/~hammett/papers/</u>
- "Anomalous Transport Scaling in the DIII-D Tokamak Matched by Supercomputer Simulation", Candy & Waltz, Phys. Rev. Lett. 2003
- "Burning plasma projections using drift-wave transport models and scalings for the H-mode pedestal", Kinsey et al., Nucl. Fusion 2003
- "Electron Temperature Gradient Turbulence", Dorland, Jenko et al. Phys. Rev. Lett. 2000
- "Generation & Stability of Zonal Flows in Ion-Temperature-Gradient Mode Turbulence", Rogers, Dorland, Kotschenreuther, Phys. Rev. Lett. 2000
- "Comparisons and Physics Basis of Tokamak Transport Models and Turbulence Simulations", Dimits et al., Phys. Plasmas 2000.

# Backup Slides

#### A Grand Challenge for Fusion Science is to Understand, Predict and Control Turbulent Transport

#### Understand:

- structure and dynamics of turbulence and induced transport

#### Predict:

- scaling of different confinement regimes

#### Control:

- plasma equilibrium and confinement, local turbulence control

Continued improvement in measurement capability is essential to advance predictive understanding and develop methods for turbulence control

R. Nazikian et al.

#### A Major Challenge in Fusion Science is to Measure Turbulent Fluctuations with Good Spatial and Temporal Resolution

- Important turbulence parameters for measurement
  - correlation length  $\lambda_{c}$
  - correlation time  $\tau_c$
  - density, potential, temperature fluctuation levels
  - velocity fluctuations (self regulation)
- Simple Random Walk Estimate: Diffusivity  $D \propto \lambda_c^2 / \tau_c$



Outstanding questions in fusion science

- Is there a correlation between eddy size, fluctuation level and confinement?
- What controls the turbulent scale length in fusion plasmas?

## **Recent advances in computer simulations**

- Computer simulations recently enhanced to include all key effects believed important in core plasma turbulence (solving for particle distribution functions f( x, v<sub>||</sub>, v<sub>⊥</sub>,t) w/ full electron dynamics, electromagnetic fluctuations, sheared profiles).
- Challenges:
  - Finish using to understand core turbulence, detailed experimental comparisons and benchmarking
  - Extend to edge turbulence
- Edge region very complicated (incl. sources & sinks, atomic physics, plasma-wall interactions)
- Edge region very important (boundary conditions for near-marginal stability core, somewhat like the sun's convection zone).
- (3) Use to optimize fusion reactor designs. Large sensitivity → both uncertainty and opportunity for significant improvement

# Comparison of experiments with 1-D transport model GLF23 based on gyrofluid & gyrokinetic simulations

Caveats: core turbulence simulations use observed or empirical boundary conditions near edge. Need more complicated edge turbulence code to make fully predictive & sufficiently accurate. Edge very challenging: wider range of time and space scales, atomic physics, plasma-wall interactions...



Kinsey, Bateman, et al., Nucl. Fus. 2003