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Summary 

•  Nonlinear gyrokinetic simulations of NSTX RF discharges show 
electron temperature gradient driven turbulence. 

•  This ETG turbulence can account for at least 50% of measured 
experimental electron heat flux. 

•  Reversed magnetic shear suppresses this turbulence. 

•  We have discovered a stronger nonlinear up-shift of the critical 
gradient for transport at negative magnetic shear. 

•  A mode unaffected by magnetic shear may cause transport at 
high gradients. 

•  High-k scatting measurements miss the peak of ETG 
turbulence spectrum. 

•  An improved TGYRO transport solver can more robustly and 
more quickly predict plasma temperature profiles. 
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NSTX is a Unique Laboratory for Studying Electron Losses 

•  Low aspect Ratio ST, Neutral Beam Power, Strong Sheared 
Flows, High      , Strong Reversed Shear, Good Curvature 

•  Ion transport in NSTX near neoclassical levels 
–  Electrons are dominant loss mechanism 

–  Kaye et al. PRL 98, 175002 (2007) 
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Electron and Ion Thermal Diffusivities in NSTX. 
Color bars indicate calculated neoclassical transport 
levels. Ref: Kaye et al 2007.
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GYRO is a 5D Eulerian Global Continuum Non-Linear 
Gyrokinetic Simulation Tool 

4 

•  Uses advanced numerical 
techniques to obtain higher 
accuracy with lower resolution 

•  Flux tube or global 

•  Adiabatic Ions, Adiabatic 
Electrons, Kinetic Electrons and 
full GK compatibility 

•  ExB shear flow compatibility 

•  Highly parallelizable 

J Candy, R. E. Waltz et al. J. Phys Conf Ser 78, 012008 (2007)
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Electron-scale fluctuations in NSTX appear during NSTX 
#124948 when linearly unstable to ETG

High-k location 

• Mazzucato et al PRL (2008)

measured gradient 

critical gradient 
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Simulating NSTX Discharge #124948 @ 300 ms  

•  Low Magnetic Shear 

•  Low ExB Flow Shear 

•  RF Heating Gives Peaked Electron Temperature Profile 

•  Global Simulations @ Reduced Mass Ratio 

•  Only Simulate Electron Scales 
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Some physical parameters for NSTX 124948 @ 300 ms 

Data from TRANSP/TORIC analysis of RF shot with NBI blips, extracted with transp2gyro
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TRANSP2GYRO  
Tool Converts Experimental Data to Simulation Input 

TRANSP stores 
XP data on server 

Experimental data 
and analysis 

Data stored on 
MDS+ server 

fusiongrid 

transp2gyro 
extracts and 

converts time slice 

trxpl 

Extracts 
plasmastate file 

from MDS+ server 

iterdb2gyro 

Converts 
plasmastate to 
INPUT_profiles 

TGYRO Suite 
reads time slice 

TGYRO 

Transport Driver 

GYRO and TGLF 

Turbulent Fluxes 

NEO 

Neoclassical Fluxes 
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Potential Fluctuations Strongest on Outboard Side. 
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Adiabatic and Kinetic Ions Agree for Range of ExB Shears
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~ 50% of Experimental 

Electron Heat Flux Using 
Measured Profiles 

Profiles are stiff to experimental gradients. 
An improved TGYRO transport solver could 
account for this and improve experimental 
comparisons. 
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Removing electron-ion collisions has little effect on heat 
transport. 
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Adding magnetic fluctuations has slight effect at longer 
wavelengths. 
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Poloidal cross-section shows elongated streamers. 

Radial direction
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Anisotropic electron density power spectrum has 
implications for experimental comparison.
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Approx. high k locations:
Ch. 3 Ch. 4 Ch. 5

X X X

Logarithmic Electron Density Power Spectrum

As high-k scattering diagnostic misses the 
ETG peak, synthetic diagnostics become 
more important. 
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• Predicted Te profile that agrees 
with experimental heat flux

Measured Te Profile 

Predicted Te Profile 

Qe using Measured Te Profile 

Qe using Predicted Te Profile 

Measured Qe Profile 

TGYRO-TGLF Predicts Te for Low-Shear NSTX Discharge 
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Plasma Edge: 

Missing Physics 

New Algorithm: Convergence in under 15 iterations 

Old Algorithm: No Convergence after 200 iterations 
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Improved TGYRO Algorithms Allow for More Robust, Faster 
Convergence 

•  Based on Levenberg-Marquardt Residual Minimization 

•  Combined with Search Direction Backtracking to only take a 
step that reduces the error in the solution 

•  With TGLF, can robustly reduce difference in target and 
transport fluxes to machine precision in half the calls to 
TGLF 
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Find location along search direction with lowest global residual.

Travel in a direction that combines steepest descent and Newton 
directions to robustly progress towards root.
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Simulating Strongly Reversed Magnetic Shear: 
NSTX Discharge #129534 @ 232 ms  

•  RF-Driven Electron Temperature Gradient  
–  All linearly unstable 

•  Scan Electron Temperature Gradient 

•  70 Nonlinear Flux Tube Simulations 

•  16 or 24 Modes, electron-scale resolutions (see below) 

•  Gyrokinetic electrons, gyrokinetic or adiabatic ions 

•  Electrostatic, No ExB Flow Shear 

•  ~2,000,000 total CPU hours @ ORNL XT5 (Jaguar) 
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The Nonlinear Up-shift of the Critical Gradient for Transport 
is Very Strong in Reversed Shear 
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Linear 
Critical 

Gradient 

Non-Linear 
Critical 

Gradient: 

Factor of 4 
Increase 

Over Linear 

Maximum Linear 
Growth Rate 

Nonlinear 
Transport 

Levels 



APS-DPP 52– GK Simulation in NSTX (Peterson) November, 2010 

Key Observations About Nonlinear Critical Gradient 

•  Both kinetic ion resolutions see nonlinear critical gradient 
threshold for transport at same location. 

•  This transport threshold is ~ 4x linear instability threshold. 

•  Nonlinear critical gradient is consistent with observations of 
maximum attainable gradients in NSTX reversed shear 
discharges. (H. Yuh) 

•  Increased transport with additional modes is consistent with 
other benchmarking work on ETG. (Nevins et al PoP 2006) 

•  Adiabatic Ion simulations, while linearly unstable, do not 
show significant transport, even for R/LTe > 50, consistent 
with earlier ETG observations. (Jenko & Dorland PRL 2002) 
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Parameters For Nonlinear Reversed Shear 
Flux Tube Simulations 

20 

16 Modes 24 Modes 

• Adiabatic Ions 

• Kinetic Ions 
• Kinetic Ions 
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Below Nonlinear Critical Gradient Threshold:  
Streamers Sheared Apart, Low Transport 
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Eddies Sheared, 
Saturate at Low 

Amplitude 

Linearly Unstable, 
But Low Levels of 

Transport 
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Low-transport modes centered on Midplane 
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No Single Mode Dominates in Shear-Suppressed Regime 
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Modes Compete for 
Transport-Dominance 
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Zonal Flows Appear Correlated with Finite-n Potential 
Fluctuations 
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Long time-scale dynamics 
as modes compete. 

Do they saturate? 

Low-
magnitude 
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Above Nonlinear Critical Gradient Threshold: 
 Streamers Not on Midplane, Large Transport 
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Radial Streamers 
out of Top and 

Bottom  

Midplane Eddies 
Sheared Apart, 
Even at High 

Driving Gradient 
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Transport-Causing Mode is Strongest Off Midplane 
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The Fastest Growing Dies Away,  
Not Responsible for Transport 
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Fastest Growing 
Mode Quickly Damps  

Mode Causing 
Transport Grows on 
Slower Time Scales M
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Above Nonlinear Critical Gradient, Quicker Saturation 
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Zonal Flows Actually Stronger 
than Below Threshold 
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Transport Causing Mode Found With Both Linear Initial Value 
and Field Eigenmode Solvers 
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Linear 
Ballooning 
Structure Nonlinear Potential 

Fluctuations in 
Mode 

Sub-dominant Linear 
Growth Rate, 

Nonlinearly Saturates at 
Highest Amplitude 
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Conclusions 

•  Global Nonlinear Simulations of NSTX RF-heated 
discharges in both low and strongly reversed magnetic show 
turbulence driven by the electron temperature gradient 
–  Low-shear case: can account for roughly half of observed transport 

•  Improved TGYRO algorithms allow for robust, quicker profile 
predictions, account for stiff profile transport problem 
–  Error reduced to machine precision in half the calls to TGLF 

•  Reversed Shear temperature gradient scans find a second-
instability threshold for transport 
–  ~ 4x the linear critical gradient, only seen with kinetic ion simulations 

•  Above threshold, a slow-growing mode saturates with 
highest amplitude, causes majority of transport 
–  Linearly sub-dominant, nonlinearly dominant 

–  Streamers out of top and bottom: midplane streamers sheared 
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Future Work 

•  Thorough analysis of transport causing mode’s linear 
properties 
–  Goal: investigate second-instability threshold, top/bottom streamers 

•  Use gyrokinetic parameter scans around reversed shear 
discharge as benchmark for TGLF 
–  Goal: more robust and accurate ST TGLF/TGYRO transport 

predictions 

•  Calculate synthetic high-k spectra based on these GK 
simulations 
–  Goal: comparison with high-k experimental data 

–  Goal: investigate “bursty” high-k signals in this regime 

•  Multi-scale nonlinear simulations 
–  Goal: link ion and electron scales, especially if this intermediate-k 

transport causing mode is important. 
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