Simulating the Effects of Stellarator Geometry on Gyrokinetic Drift-wave Turbulence

Jessica A. Baumgaertel

Princeton University Final Public Oral Examination

May 23, 2012

Advisors: G. W. Hammett, D. R. Mikkelsen

(日) (四) (로) (로) (도) (대)

Outline

Motivation and Background

- 2 Upgrades to GS2
 - Trapped Particle Treatment

- Geometry Input
- 3 Benchmarks
- NCSX Studies
 - NCSX β Studies
 - NCSX vs. Tokamak
 - Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Outline

Motivation and Background

- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input

3 Benchmarks

4 NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Stellarators are an attractive fusion energy design

- Tokamaks: field created by external coils and plasma current
- Large inductive internal current leads to poor profile control and disruptions
- External current drive needed for steady state

- Stellarators: field created almost entirely by external coils
- Mostly disruption-free, reduced MHD instabilities
- Good profile control
- Inherently steady-state

W7-X: quasi-omnigenous

HSX: quasi-helical

NCSX: quasi-axisymmetric

LHD

◆□▶ ▲□▶ ▲토▶ ▲토▶ 로벨 - ∽♀⊙

• Plasma turbulence is believed to be due to drift-wave instabilities

- Drift waves: fluctuations in density or temperature, driven by
 - density or temperature gradients
 - magnetic curvature or ∇B
- Extensively studied in tokamaks:
 - ► Theoretically, computationally, experimentally

• Modern stellarators are optimized (subject to certain constraints) for neoclassical transport

- Neoclassical transport levels have been exceeded
- Turbulence could be the cause of higher transport levels
- Stellarators have large parameter space of configurations
- Opportunity for optimizing for turbulence

• Gyrokinetic equation: gyro-angle averaged Fokker-Planck equation

•
$$\frac{\partial h}{\partial t} + v_{||} \mathbf{z} \cdot \frac{\partial h}{\partial \mathbf{R}} + \frac{c}{B_0} [\langle \chi \rangle_{\mathbf{R}}, h] - (\frac{\partial h}{\partial t})_{coll} = \frac{q}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t} F_0$$

- Describes evolution of perturbed distribution function, $\delta f = h - F_0 \frac{q < \phi >_R}{T} + \text{smaller order terms,}$ for
 - ► small-fluctuations $(\frac{\delta f}{F_0} \sim \frac{\delta B}{B_0} \sim \frac{\rho_i}{l_{||}} \sim \frac{\rho_i}{L} \ll 1)$
 - low-frequencies ($\omega \ll \Omega_i$)
- Reduces

$$(x,y,z,v_x,v_y,v_z) \rightarrow (x,y,z,v_{||},v_{\perp})$$

- FULL (Rewoldt): Linear eigenvalue code
 - ► Used to compare nine configurations for linear ITG/TEM stability
 - NCSX case with higher β had growth rates lower than standard NCSX case
- GENE (Xanthopoulos, Jenko): Nonlinear initial-value or eigenvalue code
 - Coupled to STELLOPT to investigate optimization of stellarators for turbulent transport
- GKV-X (Sugama, Watanabe, Nunami): nonlinear code, adiabatic electrons
 - Mainly used to simulate LHD plasmas
 - Started comparisons with experiment: ITG unstable in regions of high transport

GS2 was briefly used for stellarators a few years ago

- GS2 (Dorland, Kotschenreuther) is nonlinear initial-value gyrokinetic turbulence code that
 - uses flux-tube geometry
 - uses Eulerian finite difference and spectral methods in position space and spectral methods in velocity space
 - returns linear growth rates, real frequencies, eigenfunctions and nonlinear heat and particle fluxes
 - ► has been benchmarked with FULL, GENE, and other gyrokinetic codes
 - \blacktriangleright was used for validation studies with tokamak and ST experimental data

- Original studies by Belli/Dorland: FULL/GS2 NCSX benchmark
 - unresolved questions of geometry normalizations
 - my initial thesis research improved upon this study
- Guttenfelder: HSX linear studies

- Because…
 - ► the knowledge base of turbulence in non-axisymmetric geometries is tiny compared to axisymmetric geometries,
 - ► the complexity of the problem highlights the need for multiple codes,
 - ► turbulence codes must be benchmarked and tested,
- I have...
 - developed GS2 and related geometry packages for stellarator turbulence,
 - ★ upgraded magnetically trapped particle treatment
 - \star written a new computational grid generator
 - linearly benchmarked GS2 with FULL, GENE, GKV-X for stellarator geometry,
 - used GS2 to study microstability dependence on geometry and plasma parameters in NCSX and W7-AS.

Outline

1 Motivation and Background

2 Upgrades to GS2

Trapped Particle TreatmentGeometry Input

3 Benchmarks

4 NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Outline

1 Motivation and Background

- 2 Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input

3 Benchmarks

4 NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Initial W7-X studies revealed numerical instability/bug related to complicated |B| structure

《口》 《母》 《臣》 《臣》 王曰 '오오오

GS2's grid generator should have coupled the heta and λ grids

•
$$\lambda = \mu/E = 1/B_{tp}; v_{\parallel}/v = \sqrt{1 - \lambda B(\theta)}$$

However, GS2's grid generator improperly handled complicated geometries

Trapped particle treatment now allows for such flexible grids

- Allows for multiple "totally-trapped pitch angles" in a well
- Treats barely-passing or barely-trapped particles consistently
- Fixed handling of the boundary conditions for trapped particles at turning points
- Now the pitch angle grid is allowed to be independent of the spatial grid
- All of these changes are buried in GS2's implicit solver
- There were continued issues with Rungridgen (the grid generator):
 - trying to satisfy original conditions, occasionally it would fail to create any grid at all
 - ► sometimes create grids with unrelated points in the domain

Outline

1 Motivation and Background

- Upgrades to GS2
 Trapped Particle Treatment
 - Geometry Input
 - 3 Benchmarks
- A NCSX Studies
 - NCSX β Studies
 - NCSX vs. Tokamak
 - Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

New Grid Generator for GS2

- FIGG: Flexible Improved Grid Generator
- Input:
 - ► 3D VMEC MHD equilibrium
 - GIST (Terpsichore/VVBAL)
 - \star high-res single flux-tube ballooning coefficients
 - ★ |B|, ∇B , curvature drift components, etc
- Output: lower-res coefficients and calculated pitch-angle grid
 - Initial FIGG θ grid is tied to λ grid: satisfying original condition
 - Depending on user input, θ points are added or subtracted for final FIGG θ grid
- Written in MATLAB
- Reliable, tested in several geometries

GS2 convergence studies using FIGG geometry

Outline

Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

Benchmarks

4 NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

GS2 benchmark against FULL improved

- In 2000, E. Belli and W. Dorland conducted the first linear GS2 studies with non-axisymmetric geometries (NCSX QAS3-C82)
- My initial thesis research was improving the study
 - troubleshooting geometry chain, reproducing geometry input
 - ★ bug fixes (Guttenfelder, etc)
 - \star clarifying definitions of parameters
 - ► re-benchmarking with the modern GS2
 - ★ newer energy grid
 - ★ my trapped particle modifications
- Results published: Baumgaertel, et al, Phys. Plasmas 18, 122301 (2011)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

GS2, GENE, and GKV-X agree well in NCSX benchmark

- ITG, adiabatic electrons
- Radial variable: \sqrt{s}
- $s = \Phi_T / \Phi_0 = 0.515$
- q = 2.162
- *a* = 0.345 m
- $T_i/T_e = 1.0$
- $a/L_T = 3.0$
- $a/L_n = 0.0$

GS2 and GENE agree well for W7-X $k_y \rho_i$ spectrum

- ITG, adiabatic electrons
- Radial variable: \sqrt{s}
- $s = \Phi_T / \Phi = 0.2$
- averaged minor radius *a* = 0.5 m
- $T_i/T_e = 1.0$
- $a/L_T = 3.0$
- $a/L_n = 0.0$

・ロト (日) (日) (日) (日)

Outline

Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

3 Benchmarks

NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Outline

Motivation and Background

Upgrades to GS2Trapped Particle TreatmentGeometry Input

Benchmarks

NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

NCSX Flexibility Studies allow the study of single effect

- Given a set of coils, currents were varied to discover good configurations
- Sets of configurations in which only one quantity was varied significantly
 - study isolated effects on drift-wave stability
 - discuss optimal running of NCSX

(日) (문) (문) (문) (문) (민) (이)

- $\beta = (\text{plasma pressure})/(\text{magnetic pressure})$
 - MFE needs high $\beta \approx nT/(B^2/2\mu_0)$
- ullet In tokamaks, higher eta is stabilizing to drift waves to a certain extent

- it changes the Shafranov shift
- In stellarators, will β be stabilizing? Will it have any effect?
 - the Shafranov shift shouldn't change as much
 - equilibrium set by external coils

NCSX Geometry

	eta=0%	eta=4%
$s \approx (r/a)^2$	0.25	0.25
a _N	0.322m	0.322m
α, θ_0	0,0	0,0
ŝ	-0.36	-0.28
$\iota=1/q$	0.46	0.50

・ロト (個) (E) (E) (E) (E)

ITG-ae slightly more stable in higher β equilibrium

• Electrostatic fluctuations; $j_{||} = 0$

•
$$j_{||} \propto \int d^3 v \, \delta f v_{||} \propto \beta_{GS2}$$

- β parameters: β_{equil} vs. β_{GS2} vs. β_{local}

 - β_{GS2} = 2µ₀n_{ref} T_{ref} / B²_{ref} scales δB_{||},δA_{||}
 For consistent calculations, GS2's internal β_{GS2} must be set to β_{local}/2

Electromagnetic results

• $\delta B_{||}$ found to be more important at higher β than in typical tokamak simulations • Additional parameter scans in Dissertation

Outline

Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

3 Benchmarks

NCSX Studies

• NCSX β Studies

NCSX vs. Tokamak

Nonlinear Studies

5 W7-AS Studies

6 Conclusions

Narrow NCSX cross-section might signal greater instability

- Tokamak: hybrid ARIES-AT/JET
 - took a well-studied JET case
 - extrapolated to ARIES-AT's higher κ

r/a	R/a	q _{0.8}	ŝ	к	δ
0.8	3.42	2.03	1.62	1.59	0.31

 Compare edge temperature T_{ped} to T₀: more spread out in tokamak

$$(\nabla T)_{local} = \frac{\partial T}{\partial \rho} (\nabla \rho)_{local}$$

= $-T \frac{a}{L_T} (\nabla \rho)_{local}$

 ∇T is locally much larger in some places in NCSX ⇒ stronger instability drive

- MFE devices need T_0/T_{ped} to be very high
- Near marginal stability: $T(r) = T_0 e^{-r/L_{T,crit}}$

•
$$T_{min} = T(a) = T_{ped} = T_0 e^{-a/L_{T,crit}}$$

• So
$$T_0/T_{ped} = e^{a/L_{T,crit}}$$

▶ In this simple situation: high $a/L_{T,crit} \implies$ high T_0/T_{ped}

ITG-ke mode more stable in NCSX than in tokamak

Greater stability due to more localized NCSX eigenfunctions

(Blue=tokamak, Green=NCSX)

Outline

Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

3 Benchmarks

NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak

- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

First GS2 nonlinear non-axisymmetric studies: NCSX

 Low resolution: ntheta = 292 ∈ (-5π, 5π), nlambda = 15, negrid = 12, n_x = 32, n_y = 24 (nk_x ≈ 21, nk_y ≈ 8), L_x ≈ 3, L_y = 10

Nonlinear heat flux behaves as expected

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 圓目 - のQ@

Peak heat flux moves to lower $k_v \rho_i$ at higher a/L_T

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 圓目 - のQ@

(日) (日) (日) (日) (日) (日) (日)

Outline

D Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

3 Benchmarks

A NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies

5 W7-AS Studies

6 Conclusions

- Neoclassical levels can often account for transport in the core, but not out at the edge
 - ► The core is hotter: expect more neoclassical transport
 - ► The edge is cooler with strong gradients: potential for turbulence

W7-AS geometry and experimental parameters

	<i>r/a</i> = 0.28	<i>r/a</i> = 0.8
Ti	0.35keV	0.24keV
T _e	2.6keV	0.4keV
Z_{eff}	3	3
n _e	$2 \times 10^{19} m^{-3}$	$1.6 imes 10^{19} m^{-3}$
a _N /L _{Ti}	0	3.75
a_N/L_{Te}	2.4	7.5
a_N/L_n	0	2
a _N	0.175m	0.175m
α, θ_0	$\pi/5,0$	$\pi/5,0$
$\langle \beta \rangle$	0.14	0.14
ŝ	0.24	0.12
$\iota = 1/q$	0.23	0.34

ののの 単同 <手>> <手>> <手>> <手>>

Growth rates for r/a = 0.28 less than r/a = 0.8 at $a/L_{Te,exp}$

• Other scans $(a/L_{T_i}, a/L_n, v)$ available in the Dissertation.

Mixing-length approximation for heat diffusivity

- Nonlinear simulations are required to accurately calculate heat diffusivities
- Mixing-length theories can approximate diffusivities

$$\chi_{mix} = rac{\gamma}{k_{ heta,loc}^2}$$

•
$$k_{\theta,loc} = k_{\perp}(\theta = 0) = k_y \sqrt{g_1(0)}$$

- ► k_y is an average poloidal wavenumber
- $g_1(\theta)$ is one of the metric coefficients
- The experimentally-measured values of total χ_e are about
 - $\chi_{exp,inner} \approx 2 \times 10^4 \text{ cm}^2/\text{s}$
 - $\chi_{exp,outer} \approx 10^4 \text{ cm}^2/\text{s}$

Diffusivity using γ_{peak} within a factor of $0.8\chi_{exp}$ at r/a = 0.8

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필필 - 이익⊙

• With the experimental values for $T_i, T_e, a/L_{Ti,e,n}$, and v,

•
$$\gamma_{inner} pprox 2.9 imes 10^5 ~{
m sec}^{-1}$$
 at $k_y
ho_i = 1.4$

•
$$(k_{ heta,loc}
ho_ipprox 0.6, ext{ with } g_1(0)pprox 0.21)$$

• $\gamma_{outer} \approx 7.5 \times 10^5 \ {
m sec}^{-1}$ at $k_y \rho_i = 2.2$

•
$$(k_{ heta,loc}
ho_i \approx 0.8$$
, with $g_1(0) \approx 0.14)$

- $\chi_{mix,inner} \approx 0.7 \times 10^4 \ cm^2/s \approx 0.35 \chi_{exp,inner}$
- $\chi_{mix,outer} \approx 0.8 \times 10^4 \text{ cm}^2/\text{s} \approx 0.8 \chi_{exp,outer}$

- Turbulence typically peaks at $k_y \rho_i = \frac{1}{2} (k_y \rho_i)_{linear peak}$
- $\gamma_{inner} \approx 0.9 \times 10^5 \ {
 m sec}^{-1}$ at $k_y
 ho_i = 0.7$
- $\gamma_{outer} \approx 4.1 imes 10^5 \ {
 m sec}^{-1}$ at $k_y
 ho_i pprox 1.1$
- $\chi_{mix,inner-half} \approx 0.9 \times 10^4 \ cm^2/s \approx 0.4 \chi_{exp}$
- $\chi_{mix,outer-half}\approx 2.0\times 10^4~cm^2/s\approx 2.0\chi_{exp}$

- Turbulence is comparable to neoclassical estimate in the core
- Turbulence may dominate heat transport in the outer regions
 - $\chi_{mix,outer} \approx 2\chi_{exp,outer}$
- Caveats:
 - ► Rigorous nonlinear gyrokinetic studies needed to quantify further
 - Only one α (flux tube) was checked; it should be the fastest growing
 - ► The value of *i* and global shear in the geometry for the inner radius is uncertain; new, possibly more-accurate equilibrium is now available.

Outline

D Motivation and Background

Upgrades to GS2
Trapped Particle Treatment
Geometry Input

3 Benchmarks

A NCSX Studies

- NCSX β Studies
- NCSX vs. Tokamak
- Nonlinear Studies
- 5 W7-AS Studies

6 Conclusions

Summary

- Upgraded GS2 trapped particle treatment to allow for more flexible grids
- Tested new geometry framework for 3D GS2 simulations
- Wrote new grid generator for GS2
- Improved linear benchmark with FULL in NCSX geometry
- Linearly benchmarked GS2, GENE, GKV-X for NCSX, W7-X
- Showed marginal improvement in stability in higher β NCSX cases
- ullet Demonstrated the need to include $\delta B_{||}$ in high β studies
- Compared NCSX and a highly-shaped tokamak for linear stability: NCSX comparable or slightly more stable
- Ran first nonlinear GS2 simulations for non-axisymmetric geometry
- Used experimental parameters and compared stability for two locations in W7-AS
 - \blacktriangleright the outer location had much higher growth rates and χ_{mix} than the inner location
 - mixing-length estimates for nonlinear heat flux are within a factor of 2-3 of experiment

Future Work: Development

• Improvements to GS2

- ► add $v_{||}/v = \sqrt{1 \lambda B(\theta)} = 0$ interpolation for grid points without $B(\theta) = 1/\lambda$
 - * the integral of the distribution function $\int f \frac{dv_{||}}{v}$ integrates from $v_{||,1}$ to $v_{||,end}$
 - * if $v_{||,1} \neq 0$, the integral misses the piece of the function from $[0, v_{||,1}]$
 - * this difference should be small, but interpolating the result at $v_{\parallel} = 0$ would improve accuracy
- Modifications to FIGG
 - \blacktriangleright add bounce/orbit-averaging of ω_{drift} terms over cell width to decrease resolution needed

Future Work: Physics

- Benchmarks with GENE, GKV-X in NCSX geometries
 - Zonal Flows (attempts discussed in Dissertation)
 - Nonlinear heat fluxes
- Further NCSX studies
 - nonlinear comparisons of β equilibria
 - studies with additional scans of equilibria from flexibility studies: \hat{s} , t
 - nonlinear heat fluxes and growth rates at other α s should be compared for NCSX and tokamak cases
 - possible Dimits shift investigated
- Expand W7-AS studies
 - Only one α (flux tube) was checked; it should be the fastest growing: could check more.
 - ► The value of *i* and global shear in the geometry for the inner radius is uncertain; new, possibly more-accurate equilibrium is now available.
 - nonlinear heat fluxes should be compared at both radii in W7-AS to experimental values
 - ► computationally challenging due to higher parallel resolution needed

Acknowledgements

- G.W. Hammett, D.R. Mikkelsen
- P. Xanthopoulos, M. Nunami, E.A. Belli, W. Dorland, W. Guttenfelder, M.A. Barnes
- D. Gates, S. Jardin, C. Phillips, J. Krommes
- Barbara Sarfaty, Jennifer Jones
- Martha Redi, James Morgan, Andrew Zwicker, John DeLooper, Patti Wieser
- Luc Peterson, Craig Jacobson, Erik Granstedt, Jongsoo Yoo, Eisung Yoon
- Josh Kallman, Laura Berzak, Steffi Diem, Nate Ferraro, Tim Gray, Dave Smith
- Jong-Kyu Park, Nik Logan
- Kelsey Tresemer, Meghan Peterson, Audrey Sederberg, Rachel Loer, Erica Caden, Sarah Angelini
- Dad, Mom, David, Amy, and Jenny

<ロ> <()</p>

Geometry

<ロト < 母 ト < 臣 ト < 臣 ト 三国 の < で</p>

3D geometry builder chain for GS2

- Starting from a VMEC 3D MHD equilibrium:
- Historically:
 - ► Terpsichore
 - \star Boozer coordinate transformation of global equilibrium
 - * Radial coordinate: normalized toroidal flux
 - VVBAL
 - $\star\,$ Chooses surface and single flux tube
 - ★ Calculates ballooning coefficients
 - $\star\,$ Radial coordinate: normalized poloidal flux
 - ► Rungridgen: GS2's grid generator
- New:
 - ► GIST (Xanthopoulos)
 - ★ Packages Terpsichore and VVBAL
 - * Radial coordinate: either poloidal or toroidal flux
 - ► FIGG: GS2's new grid generator

GS2 convergence studies using FIGG geometry

NCSX: Electrostatic ITG-TEM growth rates lower for higher β

Electromagnetic results: including $\delta B_{||}$

• Including $\delta B_{||}$ is important for high eta

ITG-ae stability similar for NCSX and Tokamak

(日) (四) (로) (로) (도) (대)

ITG-ke mode more stable in NCSX than in tokamak

ITG-ae mode threshold for r/a = 0.8 is $a/L_{Ti} \approx 0.5$.

(日) (日) (日) (日) (日) (日) (日)

TEM-ETG threshold changes little with collisionality for r/a = 0.28

(日) (日) (日) (日) (日) (日) (日)

Growth rates increase at $a/L_{Te,exp}$ with collisionality for r/a = 0.8

(日) (四) (로) (로) (도) (대)

TEM-ETG growth rate dependence on a/L_n for r/a = 0.8

TEM-ETG growth rate dependence on v for r/a = 0.28, 0.8

(日) (日) (日) (日) (日) (日) (日)