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•  Fusion energy motivation:  reducing microturbulence could improve fusion 
•  Intro to properties of gyrokinetic equations and tokamak turbulence 
•  Comprehensive GK sims of core very successful, challenges in edge 

•  Algorithm work: 
–  Maxwellian-weighted basis functions in DG while preserving conservation 

properties  (see E. Shi’s poster) 
–  Gkeyll, a new code for edge GK using a special energy-conserving 

version of DG for Hamiltonian systems. 
–  (Other versions of Gkyell for Vlasov-Poisson, Vlasov-Maxwell, and multi-

fluid-Maxwell using various algorithms.  See A. Hakim’s poster) 
–  Ampere cancellation problem in gyrokinetics, a subtle fix in DG/FEM 
–  Multiscale coupling of 5D turbulence and 1D transport: extreme scaling 

computing for comprehensive tokamak simulations 
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Maxwellian-
Weighted DG 

Basis Functions 



Standard DG Polynomial Basis Functions: 
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@f(v, t)

@t
= G[f ]

If G = �@�/@v, then b0(v) = 1 give density conservation:

In each cell ⌦j , expand in basis fcns: f(v, t) ⇡ fh(v, t) =
X

k

fk(t)bk(v)

Z

⌦j

dv ḟh = ��(vj+1/2) + �(vj�1/2)

Choose

˙fk = dfk/dt to minimize error: ✏2 =

Z

⌦j

dv

 
X

k

˙fkbk �G

!2

Error projected into space of bk(v) is zero:

Z

⌦j

dv bk(v)
⇣
˙fh �G

⌘
= 0



Standard Maxwellian-Weighted DG Basis Functions: 
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For many plasma problems of interest, we know Maxwellian-weighted basis functions 
would be more efficient.  (Polynomial basis functions can’t integrate to 
v = ∞, where asymptotic behavior is Maxwellian (sometimes at higher 
“temperature”), moderate collisions, turbulence driven by gradients of Maxwellians.) 

f(v, t) ⇡ fh(v, t) =
X

k

fk(t) exp(��v2/2)bk(v)| {z }
ˆbk(v)

Minimizing error leads to: 0 =

Z

⌦j

dv ˆbk(v)
⇣
˙fh �G

⌘

But now,

ˆb0 = exp(��v2/2) does not lead to standard particle conservation

if G = �@�/@v

Standard energy conservation doesn’t hold either. 

Z

⌦j

dv b̂0ḟh = � b̂0(v)�(v)
���
vj+1/2

vj�1/2

+

Z

⌦j

dv
@b̂0
@v

�(v)



Conservative Maxwellian-Weighted DG Basis Functions: 
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The trick for preserving conservation properties of DG with Maxwellian-
weighted basis functions, b̂k(v) = W (v)bk(v), starts by going back to beginning,
to the norm defining the error, and introducing a weighting factor:

✏2 =

Z

⌦j

dvW�1(v)

 
X

k

ḟk b̂k(v)�G

!2

Choosing ḟk to minimize error gives:Z

⌦j

dvW�1(v)b̂m(v)

 
X

k

ḟk b̂�G

!
= 0

Z

⌦j

dv bm(v)

 
X

k

ḟk b̂k �G

!
= 0

Now b0(v) = 1 gives standard particle conservation. Higher moments give mo-
mentum and energy conservation for collision operator (Hamiltonian terms more
complicated..., see A. Hakim’s poster.)

Weighted DG can be thought of as Petrov-Galerkin, test fncs 6= basis fcns



1D Test problem: Classical Parallel Heat Conduction 
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@f(z, v||, t)

@t
+ v||

@f

@z
= C[f ]

Background temperature gradient (w/ force balance), Chapman-Enskog-Braginskii

problem locally becomes equivalent to 1D problem:

@f(v||, t)

@t
= C[f ] + T v||

 
1

2

v2||
v2t

� c1

!
f

(t ⌧ 1. c1 determined by constraint of no momentum injection.)

Lenard-Bernstein Collision model (much better than Krook model for plasmas):

C[f ] =
@

@v||

✓
⌫v||f + ⌫v2t

@f

@v||

◆

Solve to steady state, calculate heat flux =

R
dv||(1/2)mv3||f .



Maxwellian-weighted basis functions much more efficient 
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Here, heat flux integrand ~ v6 fMaxwellian, weighted 
towards tail. 
 
In 3D with ν ~ 1/v3, get integrand ~ |v|11 fMaxwellian. 
 
Unweighted polynomial basis functions converge 
slowly when far out in tail. 
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Maxwellian-weighted basis functions much more efficient 
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4x improvement 

Combined with 2x improvement in v⊥ à total 8x faster. 
 
(See Eric Shi’s poster.) 
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Fusion Intro 



•  Need to pursue many alternative energy sources.  All have tradeoffs & 
uncertainties. Challenging to supply all energy needed in the long term.  
Energy demand expected to triple throughout the century as poor 
countries continue to develop. 

•  Fusion energy is hard, but it’s an important problem, we’ve been 
making progress, and there are interesting ideas to pursue that could 
improve it: 
–  “advanced tokamak” regimes, spherical torus 
– Liquid metal walls: handle power loads better, “black hole” absorbing wall reduces 

cold neutral recycling & improves performance.  LTX, NSTX, … 
– Recent advances in high-field superconductors: 5.3à9.2 T, Pfus ~ p2 ~ B4 ~ x 9 
– Stellarators:  After 40+ years of research, a hidden symmetry discovered that 

improves performance 
–  other ideas…, robotic manufacturing, … 

My Perspective on Fusion Energy 



Progress in Fusion Energy  
Outpaced Computer Speed 

ITER goal: 200 GJ/pulse (500 MW = 30 x JET’s power 16 MW, for 400x longer), 107 MJ/day of fusion heat).  

JET 3m, 
16 MW 

TFTR 2.6m 
10 MW 

PLT 0.4 MA, 1.3m 

ITER 6.2m 
500 MW 

Many innovations 
along the way, not 
just brute force 
larger machines. 



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.8 0.9  1  1.1 1.2 1.3 1.4 1.5

R
el

at
iv

e 
C

ap
ita

l C
os

t

H98

n ∝ nGreenwald 

13 

Improving Confinement Can Significantly  
↓ Size & Construction Cost of Fusion Reactor 

Well known that improving confinement & β can lower 
Cost of Electricity / kWh, at fixed power output. 
 
Even stronger effect if consider smaller power:   
better confinement allows significantly smaller  
size/cost at same fusion gain Q (nTτE). 
 
Need detailed turbulence simulations to make case 
for reliable projection to improved confinement. 
 
Caveats: qualitative cost trend, limits on improvements set by 
blankets, etc., need detailed engineering studies. 
 
Standard H-mode empirical scaling: 
           τE   ~ H Ip

0.93 P-0.69 B0.15 R1.97 …  
(P = 3VnT/τE & assume fixed nTτE, q95, βN, n/nGreenwald), get: 
        R ~ 1 / ( H2.4 B1.7 ) 
 
ITER std H=1, steady-state H~1.5 
ARIES-AT  H~1.5 
MIT ARC (fire.pppl.gov FESAC) H89/2 ~ 1.4 (new HTS ~Bx2, Pfus ~ B4 at fixed )  

n ~ const. 

R
el

at
iv

e 
C

on
st

ru
ct

io
n 

C
os

t 

(Plots assumes a/R=0.25, cost ∝ R2 roughly.  Plot accounts for constraint on B @ 
magnet with 1.16 m blanket/shield, i.e. B = Bmag (R-a-aBS)/R) 



Gyrokinetic Simulation of 
Microturbulence in main Tokamak Core 

Candy, Waltz (General Atomics) 



A Crash Course in Magnetic 
Confinement (in 3 slides) 



B

Particles have helical orbits in B field, not confined along B.  Try to fix by wrapping B into a 
torus.   

Fermi (~1946): but now  
B ~ 1/R, so particles will drift 
out: 



C L 
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Torus with sheared helical 
magnetic fields 

magnetic shear can help stabilize instabilities 
(negative & zero average shear can be better, average ≠ local shear) 

From F.F. Chen, “An Indispensable Truth”, 2011 

Extreme example, 
magnetic field is mostly in 
toroidal direction in 
standard tokamak. 



These physical mechanisms can be seen 
in gyrokinetic simulations and movies 

Unstable bad-curvature  
side, eddies point out, 
direction of effective 
gravity 

particles quickly move along field 
lines, so density perturbations are 
very extended along fields lines, 
which twist to connect unstable to 
stable side 

Stable  
side, 
smaller 
eddies 

effective 
gravity 



Fairly Comprehensive 5-D Gyrokinetic Turbulence Codes  
Have Been Developed 

•  Solve for the particle distribution function  
f(r,θ,α,E,µ,t) (avg. over gyration: 6D à 5D) 

•  500 radii x 32 complex toroidal modes (96 
binormal grid points)  
x 10 parallel points along half-orbits 
x 8 energies x 16 v||/v 
12 hours on ORNL Cray X1E w/ 256 MSPs 

•  Realistic toroidal geometry, kinetic ions & 
electrons, finite-β electro-magnetic 
fluctuations, full linearized collisions.   

•  Sophisticated spectral/high-order upwind 
algorithms.  This plot from continuum/
Eulieran code GYRO (Candy & Waltz, 
SciDAC), GENE (Jenko et al., Garching / 
UCLA) similar.  These and other codes 
being widely compared with experiments. 

small scale, small amplitude density fluctuations 
(<1%)  suppressed by reversed magnetic shear 

(Candy, Waltz, General Atomics) 20 
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Gyrokinetic Eq. 
Summary 



rB and curvature drifts:

magnetic moment µ = (m/2)v2?/B

E ⇥B velocity:

vE = � c

B
r¯

�⇥ ˆb

at long wavelength (the hard part): 

@Bf̄

@t
+r ·

⇣⇣
v||b̂+ vE + vd

⌘
Bf̄

⌘

+
@

@v||

✓✓
� 1

m
b̂ ·r(e�̄+ µB) + v||(b̂ ·rb̂)vE

◆
Bf̄

◆
= C[f̄ ]

�r? ·
 
X

s

nsmsc2

B2
r?�

!
=
X

s

qs

Z
d3v f̄s

Derivation refs.:  Frieman-Chen, Lee, Dubin, 
Hahm, Sugama, Brizard, Miyata, Parra, … 

With small corrections, can be written in

Hamiltonian form @f/@t = {H, f}+ C[f ].



rB and curvature drifts:

magnetic moment µ = (m/2)v2?/B

E ⇥B velocity:

vE = � c

B
r¯

�⇥ ˆb

using gyro averaged potential:

¯�(~R) =

1

2⇡

Z
d✓ �(~R+ ~⇢(✓))

=

1

2⇡

Z
d✓

X

~k

�~k exp(i
~k · (~R+ ~⇢(✓))

=

X

~k

J0(k?⇢)�~k exp(i
~k · ~R)

@Bf̄

@t
+r ·

⇣⇣
v||b̂+ vE + vd

⌘
Bf̄

⌘

+
@

@v||
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� 1

m
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Discontinuous Galerkin 
Algorithms for Hamiltonian/

Kinetic Problems 
 

(See Ammar Hakim’s  
poster for details) 
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Interes'ng	
  Previous	
  DG	
  	
  
for	
  Vlasov-­‐Poisson	
  (VP)	
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•  Ayuso,	
  Carrillo,	
  &	
  Shu	
  2011:	
  	
  1D,	
  First	
  DG	
  scheme	
  in	
  literature	
  for	
  which	
  
energy	
  conserva'on	
  can	
  be	
  shown	
  

•  Ayuso,	
  Carillo,	
  &	
  Shu	
  2012:	
  extensions	
  to	
  mul'-­‐D,	
  requires	
  mul'ple	
  (2	
  x	
  D)	
  
Poisson	
  solves	
  	
  

•  Ayuso	
  &	
  Hajian	
  2012:	
  	
  1D,	
  also	
  requires	
  2	
  Poisson	
  solves	
  per	
  step	
  

•  Yingda	
  Chen,	
  I.	
  Gamba,	
  P.	
  Morrison,	
  et	
  al.,	
  Energy	
  conserva'on	
  for	
  Vlasov-­‐
Maxwell	
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•  Navier-Stokes fluid eqs. directly represent conservation of particles, momentum, 
& energy.  Finite-Volume methods automatically conserve these also. 

•  Energy conservation in Vlasov-Poisson and other Hamiltonian systems more 
subtle: energy conservation an indirect property (integrate by parts, careful 
treatment of particle-field energy exchange).  (Arakawa conserves energy, but 
standard limiters/upwinding would lose energy conservation.) 

•  We appear to be first to note a version of DG (based on J.-G. Liu & C.-W. Shu, 
2000 for 2D incompressible hydro) can exactly conserve energy for general 
Hamiltonian problems, ∂f/∂t = {H,f}, (for continuous time) with single Poisson 
solve. 

•  Interestingly, energy is conserved even with upwind fluxes for f --> limiters 
(helpful to minimize artificial oscillations & preserve positivity). 

•  This version requires H to be in a continuous subspace of the basis functions 
used for f.   DG for f, FEM to solve Poisson-type eqs. to find potentials. 

Special versions of DG for Hamiltonian systems 
(See A. Hakim’s poster & future paper) 
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• Hakim’s Gkeyll code is using this Hamiltonian DG for gyroknetic studies of 
tokamak turbulence, and for Vlasov-Poisson (with static B) for plasma thruster 
simulations. 

• To preserve the feature of the GK Poisson equation of multiple independent 
2D Poisson solves, we discovered a local quasi-projection operator that 
produces a continouous 3D phi from the 2D solves, while retaining a self-
adjoint property so that energy conservation is preserved. 

• For Vlasov-Maxwell simulations, using a different energy-conserving 
treatment. 

Special versions of DG for Hamiltonian systems 
(See A. Hakim’s poster & future paper) 



Simultaneous	
  momentum	
  &	
  energy	
  conserva'on	
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•  Our	
  scheme	
  can	
  conserve	
  energy	
  or	
  momentum	
  exactly	
  (depending	
  on	
  the	
  
basis	
  func'ons	
  for	
  phi),	
  but	
  not	
  both.	
  	
  Can	
  add	
  a	
  correc'on	
  term	
  ~ (Δx)p to	
  
conserve	
  momentum	
  and	
  energy	
  simultaneously	
  (Finite	
  Volume	
  version:	
  
Taitano,	
  Chacon,	
  and	
  Simikov,	
  JCP14)	
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Edge pedestal temperature  profile near the edge of an H-mode 
discharge in the DIII-D tokamak. [Porter2000]. Pedestal is shaded 
region. 

Edge region very difficult 

R (cm) 

Te
m

p.
 (e

V
) 

0 

500 

1000 

 
Major extensions to gyrokinetic codes needed to handle additional complications of edge 
region of tokamaks (& stellarators): 
 
open & closed field lines, steep gradients near beta limit, electric & magnetic fluctuations, strong shear-flow layers, steep-
gradients and large amplitude fluctuations, positivity constraints, wide range of collisionality, non-axisymmetric RMP coils, 
plasma-wall interactions, strong sources and sinks in atomic physics. 
 
A new code with these capabilities might also be useful for a wider range of astrophysics and 
other applications. 
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New continuum code using combination of advanced algorithms that could help it be 
significantly more efficient and robust, particularly on coarse velocity space grids. 
Advanced algorithms include: 
 
•   certain versions of discontinuous Galerkin (DG) methods that are quite efficient and 
have good conservation properties (subtle for kinetic Hamiltonian problems), while 
allowing certain types of limiters (help preserve positivity). 
 
•   Maxwellian-weighted (or more general) basis functions,  

•   subgrid / hypercollision models to model phase-mixing and turbulent mixing to 
unresolved scales (handles recurrence issues). 
 
DG combines some advantages of Finite Volume (FV) with Finite Element accuracy: 
     FV interpolates  p uniformly-spaced points to get  p     order accuracy 
     DG interpolates p optimally-located points to get 2p-1 order accuracy 
 
(DG has lower phase-errors like Finite Elements / Compact Finite Differencing, but 
calculations are local like FV, explicit code easier to parallelize.) 

General goal: new robust (gyro)kinetic code 
benefiting from several advanced continuum algorithms 
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Ampere 
Cancellation 

sublteties in DG/
FEM 



Simplest	
  Alfven	
  Wave	
  in	
  Gyrokine'cs	
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Handling	
  the	
  ∂A||/∂t	
  term	
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GS2’s	
  implicit	
  formula'on	
  never	
  had	
  problem.	
  	
  I	
  worked	
  with	
  Jenko	
  in	
  2001	
  to	
  fix	
  problem	
  in	
  GENE.	
  	
  
Related	
  papers	
  by	
  Candy	
  &	
  Waltz	
  JCP	
  2003,	
  Y.	
  Chen	
  &	
  S.	
  Parker	
  JCP	
  2003,	
  B.	
  Cohen	
  2002,	
  Dannert	
  &	
  
Jenko	
  2004,	
  Belli	
  &	
  Hammea	
  2005,	
  Bobno	
  et	
  al.	
  IAEA	
  2010.	
  	
  Latest	
  PIC	
  methods:	
  E.	
  A.	
  Startsev	
  &	
  W.W.	
  
Lee	
  2014	
  (Double	
  Split	
  Weight),	
  	
  A.	
  Mishchenko	
  et	
  al.	
  Phys.	
  Plasmas	
  2014	
  (Pullback	
  method).	
  



Challenge for magnetic fluctuations in DG 
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This electrostatic field drives a current that is a square wave, and wants to 
make a square wave A||(z).  But projection of this square wave A|| onto a 
continuous subspace gives  A|| =0, as if β=0.  This gives very high frequency 
mode at grid scale, requiring a very small time step Δt < k||,max vte / (k⊥,min ρs). 

Shortest Wavelength �(z)

E� = �@�(z)/@z

We are using a novel version of the Discontinuous Galerkin (DG) algorithm
that can exactly conserve energy for general Hamiltonian problems @f/@t =
{H, f}. (Based on algorithm by J.-G. Liu and C-W. Shu, 2000.) Requires H
(and thus � & A||) to be continuous.



Fix for magnetic fluctuations for DG 
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In order to conserve 
energy, the projection 
operator must be self-
adjoint.  We have 
found a local filtering/
projection operator 
that is self-adjoint. 



Summary: 
Properties of Gyrokinetic Turbulence in Tokamaks, & 
Discontinuous Galerkin Methods for (Gyro)Kinetics 
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•  Fusion energy motivation 
 

•  Gkeyll, a new code for edge GK using a special energy-conserving version of 
DG for Hamiltonian systems. 

•  (Other versions of Gkyell for Vlasov-Poisson, Vlasov-Maxwell, and multi-fluid-
Maxwell using various algorithms.  See A. Hakim’s poster) 

•  Algorithm work: 
–  Maxwellian-weighted basis functions in DG while preserving conservation 

properties  (see E. Shi’s poster) 
–  Ampere cancellation problem in gyrokinetics, a subtle fix in DG/FEM 
–  Multiscale coupling of 5D turbulence and 1D transport: extreme scaling 

computing for comprehensive tokamak simulations 


