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Edge region very difficult

Edge pedestal temperature  profile near the edge of an H-
mode discharge in the DIII-D tokamak. [Porter2000]. 
Pedestal is shaded region.
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Present core gyrokinetic codes are highly optimized for core, need new codes (or 
major upgrades) to handle complications of edge region of tokamaks (& stellarators):

open & closed field lines (sheath boundary conditions, plasma-wall-interactions), 
large amplitude fluctuations (positivity constraints, non-Maxwellian full-F), atomic 
physics, non-symmetric RMP/stellarator coils, magnetic fluctuations near beta limit…

Hard problem:  but success of core gyrokinetic codes and progress of XGC PIC code 
makes us believe this is tractable, with a major initiative
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Appear to be the first continuum gyrokinetic 
simulations of SOL turbulence

• There have been a few pioneering explorations in past, but they were not 
continued, apparently because of various numerical difficulties

– Pioneering work with finite-difference TEMPEST (LLNL, ~2006), focused on 4D 
axisymmetric neoclassical calc. Switched to 4th-order finite-volume COGENT code, 
better conservation/numerical properties (APS  2016: 5D slab, not yet SOL).

– "Use of the FEFI nonlocal gyrokinetic model is planned but a sheath model compatible 
with violent shear Alfvén dynamics in front of the divertor plate remains to be found.”  
(Zweben, Scott, et al., 2009) 
“Comparison of scrape-off layer turbulence in Alcator C-Mod with three dimensional gyrofluid computations”, PoP, 
http://dx.doi.org/10.1063/1.3191721

• Numerical challenges of edge:
– Large amplitude fluctuations, need f>0 (sheath instabilities if f<0 ?)
– Conservation properties (small charge imbalances drive large potentials)
– Stable interaction of gyrokinetics w/ sheath
– High frequency “ΩH” mode / “Ampere cancellation problem”?
– Complications, but not main roadblocks: Coordinate singularies, collisions, …
– ...

http://dx.doi.org/10.1063/1.3191721
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2cd order Symplectic or Arakawa methods for fluids/PDEs
equivalent to 2cd order Finite-Differencing 

Advection paradigm test problem:

Symplectic / Arakawa algorithm
= standard 2cd order centered finite-difference

@F (x, t)

@t
= �v

@F

@x

@Fj

@t
= �v

(Fj+1 � Fj�1)

2�x

Exactly conserves particles:
X

j

Fj = const.

X

j

F 2
j = const.and “free energy” / “entropy” / L2

norm:



Relatively okay solution, will converge to exact solution as Δx --> 0.  But disappointing it 
requires so many grid points, that there are artificial oscillations, and that F<0.

Simple test: Advection of Gaussian pulse in periodic box
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F(x)



Harder test: Advection of Gaussian + Top Hat in periodic box
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F(x)



Even high-order (3rd) upwind with (hyper)diffusion has overshoots.  Godunov’s theorem: linear 
algorithm can’t avoid artificial overshoots unless very diffusive 1st order upwind is used.  
Negative density doesn’t make physical sense, could cause sheath problems.
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F(x)

Many common continuum algorithms (Arakawa, high-order 
upwind, spectral) can have difficulties in the edge
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Uses 3rd order initial spatial interpolation before limiter, 3rd order SSP-RK.  Seems better at CFL=0.5 with 2cd order time-space-
coupled time step, (exact at CFL=1), but for complex flows, will be regions at wide range of CFL=v*dt/dx, incl. CFL<<1.

Nonlinear limiters developed in 1970s-1990s do fairly well 
(except for some clipping of extrema)

(Eliminates artificial overshoots. Gets around Godunov’s theorem because of nonlinear filtering.)
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(Suresh-Huynh 1997, Colella-Sekora 2008 comparable)
(From algorithm tests in Peterson & Hammett, SIAM J. Sci. Comput, 2013,
http://w3.pppl.gov/~hammett/gyrofluid/papers/2013/peterson_positivity.pdf )

State-of-the-Art (1997-2011) Nonlinear Limiters (Aerospace/CFD)
Introduce minimal diffusion only near sharp gradients

Good limiters can be implemented in finite-
volume (COGENT code, Dorf et al.) or DG 
algorithm (GKEYLL code, Shi, Hakim, Hammett).

F(x)

http://w3.pppl.gov/~hammett/gyrofluid/papers/2013/peterson_positivity.pdf


Progress & Plans for Discontinuous Galerkin 
Gyrokinetic Code Gkeyll
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• Developing new gyrokinetic code using advanced continuum/Eulerian algorithms 
(Discontinuous Galerkin, DG) that can help with challenges of edge region of fusion 
devices.  Want to study edge problems like the height of the pedestal, SOL width, how 
much improvement can be made with lithium walls.  Eventually could be a major 
component of a whole-device simulation using exascale computers.

• Essential to have independent codes to cross-check each other for difficult problems.

• Code & techniques could eventually be applied to a wider range of problems where 
kinetic effects become important, including astrophysics and non-plasma problems.

• Good progress:
- Extensive tests in lower dimensions, http://www.ammar-hakim.org/sj/
- Invented several DG algorithm improvements.  Improved treatment of diffusion

terms: Hakim, Hammett, Shi (2014)   http://arxiv.org/abs/1405.5907
- Demonstrated 1D SOL Test problem of ELM on JET (Shi et al. (Phys. Plasmas 2015)
- Demonstrated ability to handle magnetic fluctuations in an efficient way.
- Now full 3D+2v  (x, y, z, v||, v⊥) long-wavelength gyrokinetics in SOL (simplified

helical geometry), incl. Lenard-Bernstein collisions, conducting sheath B.C.s. 

http://www.ammar-hakim.org/sj/
http://arxiv.org/abs/1405.5907
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• Higher order methods do more FLOPS to extract more out of data, need fewer data 
points, reduce communications that can be a bottleneck on exascale computers.

• DG allows use of limiters / upwinding to avoid negative density overshoots, which 
can be a major problem in the edge region of fusion devices.

• We found a version of DG that can conserve energy exactly for Hamiltonian systems 
like gyrokinetics, even with upwinding / limiters (for continuous time) 

• DG flexibility to use Maxwellian-weighted basis functions, sparse grid ideas.

• Locality of DG means it should scale well like other continuum codes (GENE 
continuum code has demonstrated excellent strong scaling to 262,000 cores) 

• DG:  Efficient Gaussian integration --> ~ twice the accuracy / interpolation point: 
- Standard interpolation:  p uniformly-spaced points to get  p     order accuracy
- DG         interpolates p optimally-located points to get 2p-1 order accuracy

(DG has ~2x accuracy per point of Finite-Volume.  We typically use p=2 or 3.)

• Kinetic turbulence very challenging, benefits from all tricks we can find.  Potentially 
big win:  Factor of 2 reduction in resolution --> 64x speedup in 5D gyrokinetics

Why consider Discontinuous Galerkin (DG) Algorithms 
for (Gyro)kinetics at Exascale?



Discontinuous Galerkin (DG) Combines Attractive Features 
of Finite-Volume & Finite Element Methods 

Standard finite-volume (FV) methods evolve cell averages + interpolations.
DG evolves higher-order moments in each cell.  I.e. uses higher-order basis functions, like 
finite-element methods, but, allows discontinuities at boundary like shock-capturing finite-
volume methods --> (1)  easier flux limiters like shock-capturing finite-volume methods 
(preserve positivity) (2) calculations local so easier to parallelize.

Hot topic in CFD & Applied Math:  >1500 citations to Cockburn & Shu JCP/SIAM 1998
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Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use discontinuous function spaces (usually
made of polynomials) to represent the solution.

Figure: The best L2 fit of x
4 + sin(5x) (green) using piecewise constant (left), linear

(center), and quadratic (right) polynomials.

Eric Shi Extension of Gkeyll to 2D APS DPP Meeting 5 / 19



Discontinuous Galerkin (DG) Combines Attractive 
Features of Finite-Volume & Finite Element Methods 

Don’t get hung up on the word “discontinuous”.  Simplest DG is piecewise constant: 
equivalent to standard finite volume methods that evolve just cell averaged quantities.  
Can reconstruct smooth interpolations between adjacent cells when needed.

Need at least piecewise linear DG for energy conservation (conserves energy even with 
upwinding).  Standard Finite Volume methods do not conserve energy exactly (except 
Arakawa, which has overshoots).  Unlike Navier-Stokes fluid eqs., energy conservation 
in kinetic/Vlasov-Boltzmann equations is indirect, involving integration-by-parts and 
particle-field energy exchange.
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Discontinuous Galerkin Solutions

Discontinuous Galerkin schemes use discontinuous function spaces (usually
made of polynomials) to represent the solution.

Figure: The best L2 fit of x
4 + sin(5x) (green) using piecewise constant (left), linear

(center), and quadratic (right) polynomials.

Eric Shi Extension of Gkeyll to 2D APS DPP Meeting 5 / 19



In each cell ⌦j , expand in basis fcns: f(v, t) ⇡ fh(v, t) =
X

k

fk(t)bk(v)

Standard DG Polynomial Basis Functions:
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@f(v, t)

@t
= G[f ]

If G = �@�/@v, then b0(v) = 1 give density conservation:

Z

⌦j

dv ḟh = ��(vj+1/2) + �(vj�1/2)

Choose ḟk = dfk/dt to minimize error: ✏2 =

Z

⌦j

dv

 
X

k

ḟkbk �G

!2

Error projected into space of bk(v) is zero:

Z

⌦j

dv bk(v)
⇣
ḟh �G

⌘
= 0

(This is the essence of general Galerkin formulations.  DG combines this 
with a Godunov approach of a Riemann solver / upwind fluxes at 
discontinuous boundaries and efficient evaluation of integrals.)



Standard Maxwellian-Weighted DG Basis Functions:
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For many plasma problems of interest, we know Maxwellian-weighted basis functions 
would be more efficient.   Polynomial basis functions are ill-behaved at high v, can’t 
integrate to v = ∞, where asymptotic behavior is Maxwellian (sometimes at higher 
“temperature”).  Helps handle moderate collision frequencies of edge region.

f(v, t) ⇡ fh(v, t) =
X

k

fk(t) exp(��v2/2)bk(v)| {z }
b̂k(v)

Minimizing error leads to: 0 =

Z

⌦j

dv b̂k(v)
⇣
ḟh �G

⌘

But now, b̂0 = exp(��v2/2) does not lead to standard particle conservation
if G = �@�/@v

Standard energy conservation doesn’t hold either.

Z

⌦j

dv b̂0ḟh = � b̂0(v)�(v)
���
vj+1/2

vj�1/2

+

Z

⌦j

dv
@b̂0
@v

�(v)



Conservative Maxwellian-Weighted DG Basis Functions:
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The trick for preserving conservation properties of DG with Maxwellian-

weighted basis functions, b̂k(v) = W (v)bk(v), starts by going back to beginning,

to the norm defining the error, and introducing a weighting factor:

✏2 =

Z

⌦j

dvW�1
(v)

 
X

k

ḟk b̂k(v)�G

!2

Choosing ḟk to minimize error gives:Z

⌦j

dvW�1
(v)b̂m(v)

 
X

k

ḟk b̂�G

!
= 0

Z

⌦j

dv bm(v)

 
X

k

ḟk b̂k �G

!
= 0

Now b0(v) = 1 gives standard particle conservation. Higher moments give mo-

mentum and energy conservation for collision operator (Hamiltonian terms more

complicated..., see A. Hakim’s poster.)

Weighted DG can be thought of as Petrov-Galerkin, test fncs 6= basis fcns



Collision Operator Benchmark

Compare Maxwellian-weighted and polynomial basis functions by solving the
equation (Lenard-Bernstein collision operator)

@f

@t
= C [f ] = ⌫

@

@vk

✓
vkf + v2T
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Eric Shi Maxwellian-Weighted Basis Functions for DG Methods MPPC Workshop 12 / 1817



Example Using Local Maxwellian Parameters

�6 �4 �2 0 2 4 6
v�

0.0

0.2

0.4

0.6

0.8

1.0

1.2
f

Numerical

Exact

Figure: The local Maxwellian parameter calculation is applied to discretize a function

including a non-monotonic bump to demonstrate the ability to handle strongly

non-Maxwellian functions.

Eric Shi Maxwellian-Weighted Basis Functions for DG Methods MPPC Workshop 17 / 1818
(Similar to Gaussian Radial Basis Functions but conserves 
energy and applied only piecewise in velocity)



1D Test problem: Classical Parallel Heat Conduction
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@f(z, v||, t)

@t
+ v||

@f

@z
= C[f ]

Background temperature gradient (w/ force balance), Chapman-Enskog-Braginskii
problem locally becomes equivalent to 1D problem:

@f(v||, t)

@t
= C[f ] + T v||

 
1

2

v2||
v2t

� c1

!
f

(t ⌧ 1. c1 determined by constraint of no momentum injection.)
Lenard-Bernstein Collision model (much better than Krook model for plasmas):

C[f ] =
@

@v||

✓
⌫v||f + ⌫v2t

@f

@v||

◆

Solve to steady state, calculate heat flux =
R
dv||(1/2)mv3||f .



Heat Flux Benchmark: Error Scaling
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Figure: Relative error in heat flux calculation for cases of varying cell width, keeping

vmax = 8vT .

Eric Shi Maxwellian-Weighted Basis Functions for DG Methods MPPC Workshop 15 / 18

4x improvement

Maxwellian-weighted basis functions much more efficient
4x faster in 1v,

16x faster in 2v

20

(Exponential-weighted basis functions not yet implemented in 
main Gkeyll code, but utility demonstrated in standalone code.)
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For simplicity, consider long-wavelength full-F gyrokinetics, curvature drifts turned off, 
and time-independent dielectric coefficient ε⊥0(x) = c2/vA2 = c24π Σs n0(x) m/B2 :

Energy Balance in full F GK (with linear polarization):

@f

@t
+

@

@z

�
v||f

�
+r · (~vEf) +

@

@v||

⇣ q

m
E||f

⌘
= C[f ] + S

@f

@t
= {H, f}+ C[f ] + S

Can write the GK equation in Hamiltonian form with H =
1

2
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2
|| + q�
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Z
d
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v fH �
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3
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8⇡
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3
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s
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1

2
mv

2
E

Can show conserved total energy (in a 
periodic domain with no sources) is:

(guiding center charge
+ polarization charge = 0) 

�r? · (✏?0r?�) = 4⇡�gc = 4⇡
X

s

q

Z
d3v f

<latexit sha1_base64="gGH7VK1ngbmOS0KLuvk68xG0Vhw="></latexit>
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In first term of dWtot/dt, 

Proof (fill in the details as homework):

dWH
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x

X

s

Z
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3
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In the edge/SOL region, there are large density fluctuations on the time scale of the 
turbulence, so can’t assume n(x,t) factor in polarization density is independent of time.  
Generalize to time-dependent dielectric coefficient ε⊥(x,t) = c2/vA2 = c24π Σs n(x,t) m/B2 :

Energy Balance in full F GK (with nonlinear polarization)

General Poisson-bracket form of GK eq. unchanged, but Hamiltonian modified to 
include a second order contribution:

�r? · (✏?r?�) = 4⇡�gc = 4⇡
X

s

q

Z
d3v f

H =
1

2
mv

2
|| + q�� 1

2
mv

2
E

As described in papers by Sugama, Brizard, Scott, Krommes, et al., in a field-
theory approach to GK one needs 2cd order contributions to H that scale as ϕ2, so 
taking variations w.r.t. ϕ leads to the term in the GK Poisson equation that is linear 
in ϕ.

Now the conserved total energy is just: Wtot =

Z
d
3
x

X

s

Z
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x���

Z
d
3
x

X

s

n
1

2
mv

2
E

= W|| +

Z
d
3
x

X

s

n
1

2
mv

2
E
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(typo corrected: 𝑛 had been 𝑛!.)
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LAPD Plasma source

(Fig from Carter 2013)

First 5D Continuum Gyrokinetic Simulations with 
With Gkeyll w/ Open Field Lines & Sheath b.c.

Builds on earlier 
pioneering fluid 
simulations of LAPD by 
Rogers and Ricci 
(predecessor to GBS 
code), and by 
Umansky, Friedman, et 
al. (BOUT++). 



Low-Frequency Turbulence in a Linear Magnetized Plasma
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Plasma turbulence in a linear device is explored for the first time with three-dimensional global two-

fluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are

present in the simulations: the Kelvin-Helmholtz instability, a sheath-driven instability, and a resistive

drift wave instability. The Kelvin-Helmholtz mode is shown to dominate the transport of plasma across the

magnetic field. Simple scaling laws are obtained for the plasma profiles.

DOI: 10.1103/PhysRevLett.104.225002 PACS numbers: 52.35.Ra, 52.30.Ex, 52.35.Kt

Linear plasma devices (e.g., [1–6]) are of widespread
interest to the plasma physics community because they
allow the exploration of basic plasma phenomena without
the complexities of magnetic curvature and shear. Of par-
ticular interest in this work, the Large Plasma Device
(LAPD) experiment [1] creates a linear plasma approxi-
mately 18 m long and 30 cm in radius with straight
magnetic field lines that terminate on the end walls.
Among its many uses, this experiment has been applied
to the study of turbulence and transport [7–11] due to
modes such as the Kelvin-Helmholz (KH) instability and
drift waves. These modes are of high interest because they
are ubiquitous in magnetized plasmas, and drift waves, in
particular, are believed to play a central role in the edge
region of fusion devices. The latter topic is of great im-
portance to the fusion community because edge turbulence
largely governs the overall fusion performance of toka-
maks and similar machines.

We present here global 3D two-fluid simulations of
turbulence in a linear device with LAPD-like plasma pa-
rameters and Bohm sheath boundary conditions in the
parallel direction. Spatially localized source terms are
added to the density and temperature equations that mimic
the top-hat-like shape of the source region in the LAPD
experiments. Since the simulations evolve the full profiles
of the various quantities with no separation made between
‘‘perturbations’’ and ‘‘equilibrium,’’ they can explore the
self-consistent evolution and structure of the plasma pro-
files in the presence of (1) the input of plasma and heat
from the sources, (2) the cross-field transport produced by
plasma instabilities (drift waves, for example), and (3) par-
allel losses at the sheaths where the magnetic field lines
terminate on the end walls. Our simulation results are new
and unexpected: we find that drift wave modes, although
present, are not the main source of heat and particle cross-
field transport in the device, nor are sheath-driven insta-
bilities [12], which arise in the system from the sheath
(Bohm) boundary conditions in the parallel direction [13].
Rather, the main agent of transport is the KH instability.
This is a fully global mode, driven by shear in the equilib-

rium electric potential arising from the sheath boundary

conditions [13]: e! ’ !Te, where! ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2"meÞ

p
’

3. The nonlinear evolution of the KHmode produces large-
scale eddies that are the main source of cross-field profile
relaxation.
For our study we use the electrostatic Braginskii equa-

tions [14] with Ti $ Te and # $ 1:

dn

dt
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@Vke
@z
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n

@n

@z
þe

@!

@z
%1:71

@Te

@z
þejk

$k
;

(4)

where pe ¼ nTe, ½a; b( ¼ @xa@yb% @ya@xb, df=dt ¼
@f=@t% ðc=BÞ½!; f(, jk ¼ enðVki % VkeÞ, "ci ¼
eB=ðmicÞ. The z is the coordinate parallel to B. We solve
Eqs. (1)–(4) on a field-aligned grid using a finite difference
scheme with Runge-Kutta time stepping and small numeri-
cal diffusion terms. The computational domain has a rect-
angular shape spanning ð%L=2; L=2Þ, L ¼ 100%s0 in the
perpendicular directions and ð%Lz=2; Lz=2Þ in the parallel
direction with nx ¼ ny ¼ 1024, nz ¼ 64. We use profiles
for the density and temperature sources Sn, ST that are
similar to the top-hat-like source profiles in LAPD: Sn;T ¼
S0n;Tf1% tanh½ðr% rsÞ=Ls(g=2 where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We

consider the nominal values for a helium LAPD plasma:
Lz ’ 18 m, "ci ) 960 kHz, R ’ 0:5 m (the approximate
radius of the LAPD plasma chamber), rs ’ 28 cm, n0 )
2* 1012 cm%3, Te0 ) 6 eV, cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
) 1:2*

106 cm=s, %s0 ¼ cs0="ci ) 1:4 cm, cs0=R) 2:4 MHz.
The parameters used in the simulations are S0n ¼
0:03n0cs0=R, S0T ¼ 0:03Te0cs0=R, Ls ¼ 0:5%s0,

PRL 104, 225002 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
4 JUNE 2010

0031-9007=10=104(22)=225002(4) 225002-1 ! 2010 The American Physical Society
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Association EURATOM-Confédération Suisse, CH-1015 Lausanne, Switzerland
(Received 23 March 2010; published 2 June 2010)

Plasma turbulence in a linear device is explored for the first time with three-dimensional global two-

fluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are

present in the simulations: the Kelvin-Helmholtz instability, a sheath-driven instability, and a resistive

drift wave instability. The Kelvin-Helmholtz mode is shown to dominate the transport of plasma across the

magnetic field. Simple scaling laws are obtained for the plasma profiles.
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Linear plasma devices (e.g., [1–6]) are of widespread
interest to the plasma physics community because they
allow the exploration of basic plasma phenomena without
the complexities of magnetic curvature and shear. Of par-
ticular interest in this work, the Large Plasma Device
(LAPD) experiment [1] creates a linear plasma approxi-
mately 18 m long and 30 cm in radius with straight
magnetic field lines that terminate on the end walls.
Among its many uses, this experiment has been applied
to the study of turbulence and transport [7–11] due to
modes such as the Kelvin-Helmholz (KH) instability and
drift waves. These modes are of high interest because they
are ubiquitous in magnetized plasmas, and drift waves, in
particular, are believed to play a central role in the edge
region of fusion devices. The latter topic is of great im-
portance to the fusion community because edge turbulence
largely governs the overall fusion performance of toka-
maks and similar machines.

We present here global 3D two-fluid simulations of
turbulence in a linear device with LAPD-like plasma pa-
rameters and Bohm sheath boundary conditions in the
parallel direction. Spatially localized source terms are
added to the density and temperature equations that mimic
the top-hat-like shape of the source region in the LAPD
experiments. Since the simulations evolve the full profiles
of the various quantities with no separation made between
‘‘perturbations’’ and ‘‘equilibrium,’’ they can explore the
self-consistent evolution and structure of the plasma pro-
files in the presence of (1) the input of plasma and heat
from the sources, (2) the cross-field transport produced by
plasma instabilities (drift waves, for example), and (3) par-
allel losses at the sheaths where the magnetic field lines
terminate on the end walls. Our simulation results are new
and unexpected: we find that drift wave modes, although
present, are not the main source of heat and particle cross-
field transport in the device, nor are sheath-driven insta-
bilities [12], which arise in the system from the sheath
(Bohm) boundary conditions in the parallel direction [13].
Rather, the main agent of transport is the KH instability.
This is a fully global mode, driven by shear in the equilib-

rium electric potential arising from the sheath boundary

conditions [13]: e! ’ !Te, where! ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2"meÞ

p
’

3. The nonlinear evolution of the KHmode produces large-
scale eddies that are the main source of cross-field profile
relaxation.
For our study we use the electrostatic Braginskii equa-

tions [14] with Ti $ Te and # $ 1:
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where pe ¼ nTe, ½a; b( ¼ @xa@yb% @ya@xb, df=dt ¼
@f=@t% ðc=BÞ½!; f(, jk ¼ enðVki % VkeÞ, "ci ¼
eB=ðmicÞ. The z is the coordinate parallel to B. We solve
Eqs. (1)–(4) on a field-aligned grid using a finite difference
scheme with Runge-Kutta time stepping and small numeri-
cal diffusion terms. The computational domain has a rect-
angular shape spanning ð%L=2; L=2Þ, L ¼ 100%s0 in the
perpendicular directions and ð%Lz=2; Lz=2Þ in the parallel
direction with nx ¼ ny ¼ 1024, nz ¼ 64. We use profiles
for the density and temperature sources Sn, ST that are
similar to the top-hat-like source profiles in LAPD: Sn;T ¼
S0n;Tf1% tanh½ðr% rsÞ=Ls(g=2 where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We

consider the nominal values for a helium LAPD plasma:
Lz ’ 18 m, "ci ) 960 kHz, R ’ 0:5 m (the approximate
radius of the LAPD plasma chamber), rs ’ 28 cm, n0 )
2* 1012 cm%3, Te0 ) 6 eV, cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
) 1:2*

106 cm=s, %s0 ¼ cs0="ci ) 1:4 cm, cs0=R) 2:4 MHz.
The parameters used in the simulations are S0n ¼
0:03n0cs0=R, S0T ¼ 0:03Te0cs0=R, Ls ¼ 0:5%s0,
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rs ¼ 20!s0, mi=me ¼ 400, ! ¼ 3, R=!s0 ¼ 40, " ¼
e2n0R=ðmics0#kÞ ¼ 0:03, Lz ¼ 36R. In the figures we
normalize n to n0, Te to Te0, $ to Te0=e, perpendicular
lengths to !s0, parallel lengths to R, and time to R=cs0. In
the perpendicular directions, we make the computational
domain large enough (L ¼ 100!s0 $ 1:4 m) so that essen-
tially no plasma reaches the walls and thus the transverse
boundary conditions have no impact on the simulations.
This simplifies the simulations but is different from the
experiments, which have a somewhat smaller circular cross
section ($1 m diameter). Another simplification concerns
the sources: in the simulations the sources are uniform in
the parallel direction, and standard Bohm boundary con-
ditions Vki¼%cs, Vke ¼ %cs expð!& e$=TeÞ are ap-
plied at the end walls z¼%Lz=2. In the LAPD experi-
ments, however, the situation is more complicated. Ener-
getic electrons are injected by an anode-cathode arrange-
ment at one end [1], and the potential of the anode and
cathode can be biased relative to the walls of the vacuum
chamber. Data can be taken during the active period of the
source or in the afterglow phase, in which the temperature
falls rapidly as the plasma is lost in the parallel direction.
More research is needed to determine how the boundary
conditions of the simulations and operating configuration
of the experiments can best be matched. For this reason,
our results should be regarded as only the first step toward
modeling turbulence in the LAPD.

Figure 1 (left-hand panels) shows typical cuts of $, Te,
and n perpendicular to B through the center (z ¼ 0) of a 3D
simulation. The corresponding long-time averages, also at
z ¼ 0, are shown in Fig. 2 (solid lines). The time averages
of $ and Te satisfy e$ ’ !Te as noted earlier. The density
and temperature equations are sufficiently similar so that
the normalized density and temperature profiles are nearly
the same: Te / n, ~Te=Te $ ~n=n. Aside from the fluctua-

tions, the profiles of $, Te and n are approximately con-
stant in the parallel direction, as can be seen from the
parallel slices through y ¼ 0 plotted in Fig. 3.
The turbulent fluctuations in these figures stem from

three main instabilities. The largest perpendicular struc-
tures in Fig. 1 correspond to the most unstable KH modes
in the system. These are global modes with a radial extent
comparable to L0, the radial gradient scale length of $,
poloidal wave numbers k%L0 $ 1, and kk ’ 0. The shorter
scale activity in the plots is produced by drift waves and, of
lesser importance at these parameters, sheath modes. In
contrast to the KH and sheath modes, drift waves require
finite kk to be unstable. The peak drift wave linear growth
rate in our system is &’0:085ð1þ1:71'Þcs=Ln, ' ¼
Ln=LT , for kk ’0:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"=ðcsLpÞ

q
and ky!s’0:57. The most

unstable parallel wavelengths for typical LAPD parameters
are comparable to the length of the machine, kk $ 2(=Lz.
The instantaneous profiles of the density, temperature,

and electric potential are typically steeper, by about a
factor of 2, than the smooth, Gaussian-like time-averaged
profiles shown in Fig. 2. The difference between the two is
caused by the global nature of the KH fluctuations, which
are continually excited in the steep gradient region and
cause an order-unity flattening of the local gradients.
Figure 4 (left-hand panel) shows a plot of L0, where
1=L0 ¼ maxðdr$=$Þ, taken from a cut along y ¼ 0 of
the instantaneous $ profile (solid lower line, L0 $ 3!s0)
compared to that computed from the time-averaged profile

FIG. 1 (color online). Plots of $ (top), Te (center), and n
(bottom) perpendicular to B in 3D (left) and 2D (right) simula-
tions.

FIG. 2 (color online). Cuts of the long-time averages of $
(left), Te (center), and n (right) in 3D (black solid lines) and 2D
(red dashed lines) simulations.

FIG. 3 (color online). Plots of $ (top), Te (center), and n
(bottom) parallel to B in 3D simulations.
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rs ¼ 20!s0, mi=me ¼ 400, ! ¼ 3, R=!s0 ¼ 40, " ¼
e2n0R=ðmics0#kÞ ¼ 0:03, Lz ¼ 36R. In the figures we
normalize n to n0, Te to Te0, $ to Te0=e, perpendicular
lengths to !s0, parallel lengths to R, and time to R=cs0. In
the perpendicular directions, we make the computational
domain large enough (L ¼ 100!s0 $ 1:4 m) so that essen-
tially no plasma reaches the walls and thus the transverse
boundary conditions have no impact on the simulations.
This simplifies the simulations but is different from the
experiments, which have a somewhat smaller circular cross
section ($1 m diameter). Another simplification concerns
the sources: in the simulations the sources are uniform in
the parallel direction, and standard Bohm boundary con-
ditions Vki¼%cs, Vke ¼ %cs expð!& e$=TeÞ are ap-
plied at the end walls z¼%Lz=2. In the LAPD experi-
ments, however, the situation is more complicated. Ener-
getic electrons are injected by an anode-cathode arrange-
ment at one end [1], and the potential of the anode and
cathode can be biased relative to the walls of the vacuum
chamber. Data can be taken during the active period of the
source or in the afterglow phase, in which the temperature
falls rapidly as the plasma is lost in the parallel direction.
More research is needed to determine how the boundary
conditions of the simulations and operating configuration
of the experiments can best be matched. For this reason,
our results should be regarded as only the first step toward
modeling turbulence in the LAPD.

Figure 1 (left-hand panels) shows typical cuts of $, Te,
and n perpendicular to B through the center (z ¼ 0) of a 3D
simulation. The corresponding long-time averages, also at
z ¼ 0, are shown in Fig. 2 (solid lines). The time averages
of $ and Te satisfy e$ ’ !Te as noted earlier. The density
and temperature equations are sufficiently similar so that
the normalized density and temperature profiles are nearly
the same: Te / n, ~Te=Te $ ~n=n. Aside from the fluctua-

tions, the profiles of $, Te and n are approximately con-
stant in the parallel direction, as can be seen from the
parallel slices through y ¼ 0 plotted in Fig. 3.
The turbulent fluctuations in these figures stem from

three main instabilities. The largest perpendicular struc-
tures in Fig. 1 correspond to the most unstable KH modes
in the system. These are global modes with a radial extent
comparable to L0, the radial gradient scale length of $,
poloidal wave numbers k%L0 $ 1, and kk ’ 0. The shorter
scale activity in the plots is produced by drift waves and, of
lesser importance at these parameters, sheath modes. In
contrast to the KH and sheath modes, drift waves require
finite kk to be unstable. The peak drift wave linear growth
rate in our system is &’0:085ð1þ1:71'Þcs=Ln, ' ¼
Ln=LT , for kk ’0:24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"=ðcsLpÞ

q
and ky!s’0:57. The most

unstable parallel wavelengths for typical LAPD parameters
are comparable to the length of the machine, kk $ 2(=Lz.
The instantaneous profiles of the density, temperature,

and electric potential are typically steeper, by about a
factor of 2, than the smooth, Gaussian-like time-averaged
profiles shown in Fig. 2. The difference between the two is
caused by the global nature of the KH fluctuations, which
are continually excited in the steep gradient region and
cause an order-unity flattening of the local gradients.
Figure 4 (left-hand panel) shows a plot of L0, where
1=L0 ¼ maxðdr$=$Þ, taken from a cut along y ¼ 0 of
the instantaneous $ profile (solid lower line, L0 $ 3!s0)
compared to that computed from the time-averaged profile

FIG. 1 (color online). Plots of $ (top), Te (center), and n
(bottom) perpendicular to B in 3D (left) and 2D (right) simula-
tions.

FIG. 2 (color online). Cuts of the long-time averages of $
(left), Te (center), and n (right) in 3D (black solid lines) and 2D
(red dashed lines) simulations.

FIG. 3 (color online). Plots of $ (top), Te (center), and n
(bottom) parallel to B in 3D simulations.
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Model Sheath Boundary Conditions

x

B || zϕ = 0 

ϕ(x,y,0) ≠ 0 

• GK Poisson Eq. solved in 2D planes at fixed z, only needs bcs on side walls 
(on x or y boundaries).  Discontinuous jump between ϕ(x,y,0) just inside plasma and 
ϕ=0 end plates represents unresolved sheath.  Determines reflected electrons:

fe(x, y, 0, v||, µ, t) = fe(x, y, 0,�v||, µ, t) for 0 < v|| < vc

fe(x, y, 0, v||, µ, t) = 0 for vc < v||

• This is gyrokinetic version of electron sheath boundary condition used in early 
fluid edge simulations (Ricci, Rogers, et al., Friedman et al.), without assuming 
Maxwellian f.  (Further generalizations possible in future.)

• Unlike some logical sheath models, allows j||≠0, in which case guiding center 
charge builds up and ϕ in plasma rises.  Allows currents to flow through walls.

(1/2)mv2c = q�sheath
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• If side walls at zero potential, then there is no energy input from ion polarization 
current to side walls.  Total energy Wtot is sum of parallel kinetic energy and 
perpendicular ExB flow energy, which satisfies:

Energy Balance in SOL (with linearized polarization):

dWtot/dt = Ps �
Z

dS||
X

s

Z
d3vf(1/2)mv3|| �

Z
dS||�j||

RHS represents (1) power input from the source, (2) kinetic energy flux to top of 
sheath, and (3) acceleration of ions and deceleration of electrons by sheath before 
they hit wall.  If j|| through the sheath is non-zero, puts energy into ExB flows. 
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Initially worried about complications in interactions 
between sheaths (1011 Hz) & gyrokinetics (~105 Hz)

• In a gyrokinetic code, don’t want to directly resolve tiny Debye-scale sheath (~10-3
cm), evolves on extremely rapid time scale.

• “Logical sheath”: adjust phi at boundary to reflect most electrons and let through 
just enough electrons to match ion flux, j|| = 0 (Parker, Procassini, Birdsall, Cohen 1993) 

• Used in our 1D SOL ELM heat-pulse tests (Shi, Hakim, Hammett 2015), compares well with 
full PIC code, but how to interface with multi-dimensional GK?

• Eventually implemented gyrokinetic equivalent of sheath boundary conditions in 
early fluid edge simulations (Ricci, Rogers, GBS; Umansky, Friedman, BOUT++):

• Use GK Poisson eq. to determine potential everywhere in simulation, use jump 
between that at edge & 𝜙= 0 plates to determine what fraction of electrons to 
reflect.  Allows currents to flow into walls, steady state gives usual 𝜙s ~ 3 Te.

• Tried to increase side wall potential to avoid sharp gradients with sheath potential, 
was like biasing system with a power supply, drove huge potentials.

• Forgot collisions at first (because of previous ELM work), drives ultra-high 
frequencies

• Initially started with too much density near side walls, drove huge potentials. 
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• Left: Collisionless simulation, ϕ vs. time near simulation center, for a case with 
spatially uniform source.  The potential is initially at a normal sheath level of ~3 Te, but 
get huge, very-high-frequency oscillations after an ion connection time L||/vti ~ 0.7 ms.

• Right: Collisions included,  density vs. time.  Normal sheath & turbulence level.

• Sheath potential confines most electrons.  Essential to have some collisions to 
scatter some electrons over the sheath barrier.

Some collisions needed for normal steady-state sheath
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First Gkeyll Simulation of 3D+2v Gyrokinetic 
Turbulence in Scrape Off Layer (SOL) / LAPD.  

• Was worried about difficulties in gyrokinetic-sheath interactions and other edge computational 
challenges.  Indeed ran into & fixed several problems that drove high frequency, large 
amplitude fluctuations (special DG algorithms helped).  Now appears fairly robust.  (Working to 
reduce positivity and numerical heating issues.)

• Grid : Nx× Ny× Nz× Nv||× Nμ = 36x36x10x10x5 cells with 2 nodes in each dimension, 
approx. equiv. to 72×72×20×20×10 points (200 velocity grid points per spatial grid point).

• Gyrokinetic extension of pioneering fluid work (Rogers & Ricci, Umansky, Friedman et al.)

Density snapshots in 
LAPD simulation at 2 
locations

33



Simulation of LAPD: strong turbulent transport

RMS fluctuation level in 
qualitative good agreement with 
LAPD observations (Friedman et 
al. PoP (2013)).  (More precise 
simulations of specific 
experiment in future.)

Turbulent fluctuations causes 
significant radial broadening of 
the density profile ⟨n⟩(r)
relative to density source.
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Simulations of biasing on LAPD 
show turbulence is quickly suppressed

• LAPD experiments with biasable limiter show suppression of turbulence by sheared 
rotation.1

• Can model limiter bias by modifying sheath boundary condition

• Starting from turbulent state, adding +20V biasing of limiter,  simulation finds rapid 
suppression of turbulence
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• Although DG limiters on boundary fluxes could ensure cell averaged positivity, the 
local density somewhere within a cell can go negative.

• Small diffusion used within a cell to restore positivity.  This can add energy.  Added 
an energy correction operator within the order of accuracy of the algorithm (similar 
to Taitano, Chacon, et al. JCP 2015).

• At present, still have some numerical heating near the end plates where T|| gets 
smaller than the minimum energy representable on μ (v⊥) grid, when collision 
operator tries to isotropize.

• Can be fixed in the future with non-uniform μ grid, or with exponential-basis 
functions (which have no limit on minimum energy).

• Other algorithmic improvements:  super-time-stepping / implicit collision operator,   
exponential basis functions, sparse quadrature methods to reduce number of basis 
functions in high dimensions...

Future positivity/energy improvements to DG algorithm & code
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Sparse Grid Methods Might Give 
Major Speedup to DG

• Consider piecewise parabolic DG basis functions in each cell, in 1 D:

f(x) = f0 + f1x+ f2x
2
.

• Straightforward Lagrange tensor product for gyrokinetics, with 3 points in
each dimension has 35 = 243 points per cell.

• But this involves terms up to 10th order, O((�x)2(�y)2(�z)2(�v||)
2(�µ)2),

most of which can’t matter to the accuracy of the algorithm.

• Keeping only terms through 2cd order reduces number of basis functions
per cell by more than a factor of 10.

• Related to sparse-grid quadrature. Some initial work in Applied Math com-
munity on combining with DG, requires more research to work out details, tricks
for energy conservation, how to best implement, ...
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Sparse Grid Methods Should Give 
Major Speedup to DG

Heiss & Winschel, J. Econometrics 2008

Standard 2cd order basis 
functions requires 3 points 
in each direction:
35 = 243 points total

Equivalent order of accuracy 
sparse basis functions can be 
represented with only 21 points, 
~10x savings.

standard 7x7 grid Equivalent sparse grid with 
same order of accuracy:

2D
6th order
example:

5D
2cd order
case:
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• First results from Gkeyll code of 5D continuum gyrokinetic simulations on open field 
lines with model sheath boundary conditions.

• Simulation of LAPD-like configuration shows density fluctuation levels in the right 
ballpark.  Have also done TORPEX/Helimak type geometry with bad curvature drive 
of toroidal magnetic field.

• Using various simplifications at present, such as simple helical magnetic field model 
without separatrix, but sufficient to demonstrate feasibility of approach and contains 
some key physics of the SOL (such as bad curvature drive of toroidal instabilities, 
rapid parallel losses to divertor plates and interactions with sheaths).  

• Could begin physics studies about the nature of SOL turbulence, such as:
Why doesn't this turbulence spread power more widely on divertor plates.  
What are effects of reduced recycling with lithium?  

• Future work:  More detailed atomic physics, viscosity from neutral.  Extensions to 
general geometry to handle open and closed field lines simultaneously with a 
separatrix.  Algorithmic improvements.

Conclusions


