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Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic 
gyrokinetic equation. The principal model presented includes evolution equations for 
the guiding center n, uII , TII , and TI along with an equation expressing the quasineutrality 
constraint. Additional evolution equations for higher moments are derived that may be 
used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping 
model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which 
is equivalent to a multipole approximation to the plasma dispersion function, extended to 
include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear 
terms are found that model the perpendicular phase mixing of the distribution function along 
contours of constant electrostatic potential. These “FLR phase-mixing” terms introduce 
a hyperviscositylike damping a k: 1 cf>,kXk’ 1, which should provide a physics-based damping 
mechanism at high kl p which is potentially as important as the usual polarization drift 
nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear 
FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, 
three-dimensional initial value code, Linear results are presented, showing excellent agreement 
with linear gyrokinetic theory. 


I. INTRODUCTION 


A. Overview 


Nonlinear problems in plasma physics have been in- 
vestigated numerically with a tremendous variety of tech- 
niques. These techniques may be very broadly classified 
into particle simulations, in which many particle trajecto- 
ries are evolved in time according to simple physical laws, 
and fluid simulations, in which a few moments of the dis- 
tribution function are evolved according to somewhat 
more complicated relations. The conventional wisdom was 
that problems which intrinsically involve wave-particle in- 
teractions and/or finite Larmor radius (FLR) effects, of- 
ten referred to as kinetic effects, could not be adequately 
addressed with fluid techniques, since for these processes 
the details of the distribution function seem to matter a 
great deal in the analysis. However, as has been recently 
shown,le7 many kinetic effects can be included in purely 
fluid theories when derived with such details in mind. In 
particular, we recommend Ref. 2 as an introduction to our 
approach to fluid models of kinetic effects. Furthermore, 
many authors*-” often utilize fluid theories in nonlinear 
analyses, because of the relative simplicity and occasional 
insights afforded by the reduced dynamics described by 
fluid equations. FinaIly, numerical solutions of fluid equa- 
tions may be found using the relatively vast and well- 
understood arsenal of simulation techniques developed in 
the computational fluid dynamics and plasma physics com- 
munities. 


Our long range goal is to derive “gyrofluid” equations 
(so called because they are derived by taking moments of 
the gyrokinetic equations and include models of kinetic 
effects that are missing from traditional fluid equations) 
with sufficiently accurate models of kinetic effects to sim- 
ulate the general class of plasma microturbulence which is 


believed responsible for anomalous transport in tokamaks. 
In this class of “microturbulence” we include the broad 
range of instabilities that are covered by the gyrokinetic 
ordering. ” This includes not only the usual trapped- 
electron-driven drift waves and variants, but also the ion- 
temperature-gradient (ITG) instability or longer wave- 
length modes with magnetohydrodynamic (MHD)-type 
effects, such as the drift-resistive ballooning mode. 


The specific goal of the present paper, however, is to 
develop effective fluid models of important FLR-induced 
effects. it is thus sufficient to look at electrostatic pertur- 
bations in a sheared-slab geometry and assume the electron 
dynamics are adiabatic. Linearly, these equations contain 
only slab ITG instabilities’3S’4 and stable electron drift 
waves, but we intend eventually to extend these equations 
to the broader range of turbulence spanned by the gyroki- 
netic ordering. The extension to include the toroidal drift 
resonance necessary for the toroidal version of the ITG 
instability has been carried out,‘5,16 and we have plans to 
extend these equations to include the effects of collisions, 
trapped particles, and fully electromagnetic perturbations. 
We derive fully nonlinear equations here, though we 
present in this paper only linear numerical benchmarks. 
Many issues related to nonlinear effects are addressed here 
for completeness, such as nonlinear closure assumptions. 
We will report our nonlinear results in a future publication. 


Many authors have considered the problem of includ- 
ing FLR effects in fluid equations for ITG studies. Ha- 
maguchi and I-Iorton17*‘s developed a “minimum” FLR 
model and investigated its behavior analytically and nu- 
merically using a three-dimensional sheared-slab code 
which we have used as a platform for our own numerica 
studies. Lee and Tang” presented fluid equations with a 
more complete set of FLR effects for analytical investiga- 
tions of nonlinear conservation properties and mode cou- 
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pling, but like Hamaguchi and Horton’s equations, they 
are valid only in the kl (1 limit, and in the absence of 
magnetic shear. Brizard 2f has gone quite a bit further, de- 
riving a set of gyrofluid equations in general geometry and 
including finite-p effects, though he assumes that the total 
distribution function may be considered to be bi- 
Maxwellian, leading him to overestimating the FLR aver- 
aging effects (see Sec. III C), and to leave higher moments 
such as the heat fluxes unspecified. The higher moments, 
however, are in general non-negligible, and must be care- 
fully handled; by neglecting these heat fluxes, one neglects 
wave-particle effects, such as phase mixing. 


Similon21 developed better FLR models which, unlike 
Refs. 17-19, are linearly exact to all orders in k, p for a 
shearless slab geometry. However, his formulation ne- 
glected the effects of temperature gradients (because he 
was concentrating on the usual drift wave) and contained 
inaccuracies of order ( kl p)2 in the nonlinear and shear 
terms (see Sec. III C 1 below). The FLR model employed 
in Waltz et aLI5 has some similarities to Similon’s work 
(extended to include temperature gradients and the toroi- 
da1 curvature drive), though it also contains inaccuracies 
of order ( kL p)’ from ExB nonlinearities and shear. The 
FLR models developed below regain second-order accu- 
racy for small kl p, even when nonlinearities and magnetic 
shear effects are included. They are also all well behaved at 
large kl p, much as the Pad6 approximation 
exp( --x2) z l/( 1 +x2) is both second-order accurate for 
small x and well behaved for large x [unlike the Taylor 
series approximation exp ( -x2) z 1 -x2]. The improved 
accuracy for nonlinearities and shear is gained at the ex- 
pense of losing rigorous higher-order accuracy for the 
shearless linear limit., unless an equal number of parallel 
velocity moments and perpendicular velocity moments are 
kept (such as in ‘f3 + 3” model or the “4+4”~ model shown 
in the Appendix). Our model is related to Similon’s, but 
we have found that the nonlinear terms are significantly 
simplified if one takes guiding center fluid moments (in 
guiding center coordinates), rather than attempting to 
transform the gyrokinetic equation back to particle coor- 
dinates first (also noted independently by Brizard2’). 


A unique feature of our FLR model is its inclusion of 
a nonlinear FLR-induced phase-mixing effect which arises 
from the FLR-corrected nonlinear Jo (k, p ) E X B drift. 
Lehnert’?” pointed out that this phase mixing is present in 
the original kinetic equation in “higher-order orbit theory” 
than he has so far considered, but did not describe a way to 
include the effect in fluid equations. High-energy particles 
gyroaverage gradients in the potential more strongly than 
low-energy particles and hence drift more slowly. This 
spread in drift velocities leads to phase mixing, a collision- 
less damping process. Nonlinear gyrokinetic particle sim- 
ulations automatically include this effect, but its signifi- 
cance has not been widely appreciated (excepting 
Lehnert’s work) and its effect has been ignored in previous 
fluid simulations. This “FLR phase mixing” leads to a 
hyperviscositylike damping approximately proportional to 
k< 1 QkkX k’ I. Because it is proportional to a, it only ap- 
pears nonlinearly. It provides a physics-based collisionless 


damping mechanism at high k, p, which is potentially just 
as important as the usual polarization drift nonlinearity, 
and may provide an important sink for saturation in a 
nonlinear, turbulent system. 


Ultimately, we foresee a gyrofluid plasma model that 
would merge the FLR and kinetic models presented here, 
the toroidal resonance model of Waltz et al. I5 and Beer,16 
the fully electromagnetic, general geometry results of 
Brizard,20 and the collisional effects considered by Chang 
and Callen.4*s We hope to understand better the nonlinear 
dynamics of fusion plasmas by carrying out numerical sim- 
ulations within this extended fluid paradigm. We view our 
gyrofluid simulations to be complementary to gyrokinetic 
particle simulations, as each method will likely prove to 
have different strengths and weaknesses. Because the gy- 
rofluid equations are derived from the gyrokinetic equa- 
tion, gyrokinetic particle simulations are more fundamen- 
tal and potentially more accurate. On the other hand, the 
reduced dimensionality of the gyrofluid equations (from 
five to three) should make numerical solutions less recal- 
citrant. Though it is too early to make quantitative com- 
parisons of efficiency, it has been useful to cross-check and 
benchmark our linear results. Eventually, we will compare 
carefully our nonlinear predictions, perhaps providing new 
physical insight into a difficult problem. 


As it stands, our fluid models of kinetic etI’ects may not 
be adequate for some types of problems, especially those in 
which strongly non-Maxwellian features characterize the 
distribution function. For such problems, it would proba- 
bly be necessary to keep a large number of fluid moments 
to describe the detailed shape of the distribution function, 
in which case the fluid approach may lose its efficiency 
advantages. For example, we have recently found that the 
standard nonlinear plasma echo phenomenon cant be repro- 
duced with the fluid equations using our phase-mixing clo- 
sure if the parallel nonlinearities are retained in a fairly 
large set of equations (we have found that ten parallel 
velocity moments are needed even for an echo which oc- 
curs fairly quickly). 23 Non-Maxwellian features could also 
result in a given problem if particle trapping in a single 
electrostatic wave were important, or if (as in the usual 
quasilinear theory) velocity-space plateaus were created. 
However, we do not expect such effects to be important in 
ITG turbulence or for most other types of tokamak micro- 
turbulence. The relevant velocity space nonlinearity 
[ aEll dF,/&,, in Eq. (l)] is smaller by a factor of 
E= p/L (the+ gyrokinetic expansion parameter) than the 
other nonlinear term in Eq. ( 1). That is, 


The ordering assumes that the velocity-space gradients of 
the distribution function -l/u, and consequently that 
terms of this size are small. In a strongly turbulent plasma 
with many interacting modes, each with different resonant 
particle velocities, it is unlikely that stronger velocity-space 
gradients can persist. We expect our general approach to 
be broadly applicable to many outstanding problems in 
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plasma physics; we refer the interested reader to work in 
progress cited in Ref. 2. 


B. Motivation and outline 


One of the early proposed reasons for the improved 
confinement of the Supershot regime was the reduction of 
L,/L, or rli, with a commensurate reduction of ITG tur- 
bulence. However, analysis of the tokamak fusion test re- 
actor (TPTR) 24 density perturbation experiments and 
other TFTR transport studies disproved the reigning con- 
cept of marginal vi stability and showed that existing trans- 
port estimates based on fluid models of slab ITG turbu- 
lence were too high by a couple of orders of magnitude.25t26 
At about the same time, Kotschenreuther pointed out that 
existing gyrokinetic and fluidt7 estimates of ITG heat 
transport differed by at least an order of magnitude.27 Our 
gyrofluid model can resolve this disagreement, as we can 
recover Kotschenreuther’s gyrokinetic results by retaining 
kinetic effects and Hamaguchi and Horton’s fluid results 
by neglecting them. The kinetic effects we address are 
phase mixing (parallel and perpendicular) and FLR aver- 
aging. Although the slab ITG mode is now understood 
probably to be too weak to explain measured x/s, it ap- 
pears that the addition of toroidal drive to the ITG mode 
may raise it back to a level consistent with the core mea- 
surements; the theoretical xi is probably still too weak in 
the outer half of the plasma where other instabilities pre- 
sumably dominate.26 Ultimately, one would prefer to sim- 
ulate the nonlinear ITG dynamics in a more realistic ge- 
ometry. Waltz” and Beer16 employ models similar to ours 
in a toroidal setting. 


In Sec. II we review the gyrokinetic Vlasov-Poisson 
system, the starting point of our derivation. The parallel 
phase-mixing model we begin with is described in Refs. 1 
and 2. This physically motivated phase-mixing model in- 
cludes wave-particle effects such as Landau damping and 
its inverse, processes that are very important in drift wave 
physics. In Sec. III B we generalize the closure to describe 
the effects of anisotropic temperature fluctuations, so as to 
include FLR effects (linear and nonlinear) more easily. In 
Sec. III C, we develop two models of FLR averaging more 
usefu1 than the usual Taylor series expansions of the gy- 
roaveraging operators for numerical investigations. These 
models remain robust approximations for k, pal, where 
the Taylor series expressions fail. The more accurate 
rrI’h’2” model (Sec. III C 2) may be easily added to exist- 
ing spectral codes, while the “Pad&” model (Sec. III C 4) 
could improve the accuracy of finite-difference codes. Both 
models take into account the gyroaveraging of the shear 
pointed out by Bakshi2* and Linsker29 and recover the adi- 
abatic ion response in the k, p&l limit. A new, nonlinear 
FLR phase-mixing model is described in Sec. III D. Last, 
linear results are presented in Sets. IV and V, in which we 
discuss the problem of deciding how many moments it is 
necessary to retain for the present problem, in the local 
limit (Sec. IV) and in the presence of magnetic shear (Sec. 
V). We have utilized the gyrokinetic integral eigenmode 
code of Linsker29 extensively to benchmark the linear per- 
formance of our kinetic models. 


II. THE ELECTROSTATlC GYROKINETIC-POISSON 
SYSTEM 


The starting point for our derivation is the nonlinear 
electrostatic gyrokinetic equation.12*30.3’ We will find a set 
of fluid equations by taking velocity-space moments of this 
equation directly. Conceptually, we could begin with the 
Vlasov equation, generate a set of moments including the 
stress tensor, heat flux tensor, and so on, and then take the 
low-frequency (o+$I) limit in the fluid equations. How- 
ever, since we are interested in turbulence well character- 
ized by the gyrokinetic ordering, it is natural to take ad- 
vantage of the strong magnetic field to simplify the kinetic 
equation first, and then to take the moments. This course 
has the sizable advantage of retaining the finite Larmor 
radius (FLR) effects ( kL p- 1) relatively easily. “Gyro- 
viscous cancellations” are recovered automatically with 
comparatively little effort, even for k, p- 1. Also, parallel 
and perpendicular dynamics (linear and nonlinear) natu- 
rally separate, as is appropriate for a collisionless system. 
The resulting equations are similar to the CGL double- 
adiabatic equations. 


In this paper, we shall consider turbulence in the elec- 
trostatic limit, and ignore the effects of nonadiabatic elec- 
trons. If electromagnetic perturbations are retained in the 
derivation below, the reduced MHD equations can be 
recovered32120 by taking k, P-E and ignoring the kinetic 
phase-mixing model. It is straightforward to add nonadia- 
batic electrons, velocity gradients, or toroidal effects to the 
present model, extending the class of instabilities that can 
be modeled beyond the sheared-slab ITG mode. 


The usual gyrokinetic ordering is w/Q- p/L 
-kll p--PI/Fe-e@/T,-E<l and k, p- 1, where w is a 
typical frequency of the fluctuation spectrum, R is the ion 
cyclotron frequency, p is the ion Larmor radius, L is a 
typical scale length of the system, k,, and k, are typical 
parallel and perpendicular wave numbers of the fluctuation 
spectrum, and Q, is the electrostatic potential. 


The nonlinear, electrostatic gyrokinetic equation1273033’ 
governing the dynamics of the ion distribution function 
may be written in conservative form as 


aF 
dt+V* F’(q bJ&] =o, 


(1) 


where F(R,ulf ,vl ,t) is the gyrophase-independent part of 
the distribution function; that is, it is the density of guiding 
centers at position R with parallel velocity vII and perpen- 
dicular velocity u1 . Here F includes both the equilibrium 
F. and fluctuating Fr components, but excludes the 
gyrophase-dependent part of the distribution, given by 


h’%u,, ,vl ,a,t) = - (F- (?$$)jFo, 


where the particle position X=R+p is related to the guid- 
ing center position R and the gyroradius vector p (which 
depends on the gyrophase a). Averaging over the gy- 
rophase angle a (while holding R fixed) is denoted by 
(* s-)~ The total distribution function f(R,u,, ,ul , a,t) 
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=F+f, where 7 represents an adiabatic response around 
the gyro-orbit and is related to the polariza;ion drift. 


The ExB velocity is given by vE=c/J3h XV@; Jo is a 
linear operator which carries out the gyroaveraging oper- 
ation. It is simply a Bessel function in Fourier space: Jo(~)=~fi”d~ei(x,.,/n)co,. 


= n-o &-( igg)‘” 
= i. &-&)“v~. (2) 


In real space, the Bessel function is an operator which may 
not commute with other operators that appear in the anal- 
ysis. It is therefore important to keep track of what has 
been gyroaveraged (and therefore what is being operated 
upon by a given Jo) at each point in the derivation; Jc 
operates only on Cp in Eq. ( 1) . 


Note that this ordering retains the physics of strong 
turbulence even though the fluctuating quantities are or- 
dered small, since their derivatives may be 0( 1). That is, 
although FI/FO-E, (V, F,)/(V, F,,) - 1, thus retaining 
the dominant ExJ3 nonlinearity. 


This equation is closed by the quasineutrality con- 
straint ni( x) =ne(x), which when written in terms of the 
guiding center quantities becomes 


lii-n,(l-Q$$=& 
! 


in which l?,Z(b)=I,(b)e-b and l,(b)=i-“J,(ib) is the 
modified Bessel function. Here &(x> is the contribution to 
the local particle density from the gyrophase-independent 
part of the guiding-center distribution function F, 


i&(x)= Id3vJ@‘= j-d3v(Fo+J&). (4) 


In this expression, Jo operates on the distribution function 
(though F, is slowly varying so Jd;o~Fo). The second 
term on the left-hand side of Eq. (3) (usually called the 
“polarization density”) is the contribution to the local par- 
ticle density from f, the gyrophase-dependent part of the 
distribution function. 


We can use the same fluid equations derived below for 
the ions to describe the electron dynamics, usually also 
assuming k, p,(l. However, in this paper we shall con- 
sider only the adiabatic part of the electron response, and 
thus Eq. (3) becomes 


lel &-niD(l--To)$=no I+-$@-((@))) . (5) 
i ( e ) 


The ( (Q)) term on the right-hand side represents the flux 
surface average of the electrostatic potential, 


<{@))=&j-‘vdySL’dZ@, 
YZ 0 0 


and must be included to prevent nonphysical electron 
transport across the flux surface. 


111. DERlVATlON OF THE GYROFLUID EQUATIONS 


A. General gyrofluld equations 


We choose to take the moment averages in guiding 
center coordinates. Thus n is the density of guiding centers, 
mnull is the momentum of guiding centers, etc. Specifi- 
cally, 


Fd-‘v, null - 
s 


Fv,, d3u, 


PL.Z ; 
1 


( )J Fv: d3v, plI -m F(z+ --UJI )‘d3v, 
s 


(vII -ulI ) d3v, 


q =m J- F(vll -uII )3 d3v, (6) 


Fvf (u,, -q >2 d3v, 


rll =m 
s 


F(vll .-q )” d3v, 
_- 


Fu; (II,, --uiI )3 d3v. 


using these definitions and the relations 
PII ,I =nTl~ ,L , we may derive the following general fluid 
equations by taking various integrals of the form 
Jd3v v;jvfi ... over Eq. (1): 


f3n 
z+V* (null ~+~(Jo)vE) =O, (7) 


%+V* [ ($p-nui )&+n(ull Jo)vE] 


+~6*n(Jo)VQ=0, (8) 


a(~11 +mnui 1 
at +v- [(qll +3pli.q +mnui 16 


+n(mvp Jo>vE]+2e6*n(vll J,)VQ>=O, (9) 


a(411 +3q PII +mnuj ) 
at +V* [(‘I, +4q q, +6u; plI 


-/-)?znuif )i+n(mvi Jo)vE]+3e6.n(vi Jo)V@=O, 
(10) 


(6 +nq TL >i+n (+-Jo)vE)=O, (11) 
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n 


(12) 


where ( *. * ) = ld3vF( . . .)/ld3v. These equations are the 
exact, nonlinear evolution equations for the first few mo- 
ments of the electrostatic gyrokinetic equation in the col- 
lisionless limit. They express the conservation of density, 
parallel momentum, parallel and perpendicular energy, 
and so on. However, their utility is limited unless closure 
approximations are specified. In this case, we must make 
two distinct closure assumptions. 


First, we must close the usual fluid hierarchy that r,e- 
sults from the linear parallel convection term [V l (Full b) 
in the gyrokinetic equation]. Because of this term, the time 
evolution of each fluid moment is driven in part by the 
gradient of the next-higher parallel velocity moment. It has 
been shown’** that collisionless phase mixing (and thus 
Landau damping) may be modeled by approximating this 
single term in the highest moment equations retained. Note 
that in the present case, we will find expressions for rIr and 
r, which appear in Eqs. ( 10) and ( 12), respectively. No 
dissipation is introduced into the evolution equations for 
the lower moments by this closure, which therefore remain 
exact nonlinear expressions. Later in this particular deri- 
vation, however, we do neglect the higher-order parallel 
nonlinearities, as noted in the Introduction. 


Second, we must close each of the FLR terms ( * * *Jo) 
that arise from the gyroaveraging process. The gyroaver- 
aging operator Jo depends in general upon all even powers 
ofv, I as is evident from Eq. (2). Thus, (Jo) is in general 
a function of all 0:” moments of the distribution function. 
We will approximate these higher moments in terms of 
moments which we evolve in time. Furthermore, the non- 
linear part of the Jove. V term in Eq. ( 1) is responsible for 
perpendicular FLR phase mixing analogous to the parallel 
phase mixing that arises from the uII VII term. The closure 
approximations for the various ( * * *Jo) terms may be cho- 
sen to model this collisionless damping process. To our 
knowledge, all previous fluid closure approximations for 
the FLR terms have missed this effect. 


We will discuss the closure approximations for various 
parallel and FLR terms in the next several sections. The 
final gyrofluid equations are given in Sec. III E. 


8. Parallel phase-mixing closure 


The parallel phase-mixing model outlined in Ref. 1 is 
immediately appropriate for the parallel fluid moments 
(such as rll ), but does not directly address the effects of 
anisotropic temperature perturbations, which for k, p- 1 
are as important as the parallel temperature fluctuations 
and should be treated on an equal footing. Note that T, 
appears linearly in Poisson’s equation and nonlinearly in 
the density equation at the same order as each of the other 
terms retained. Rather than using only one equation to 
express the evolution of the total temperature 


T= ( 2TI + TII )/3 and trying to correct for the difference 
between T, and TII with an approximate stress tensor, we 
choose to evolve two separate equations for the parallel 
and perpendicular temperatures. This route allows one to 
find the nonlinear FLR corrections ( a T, ) easily, and 
bypasses the tedious algebra associated with the gyrovis- 
cous corrections. Because the perpendicular temperature 
evolution equation includes the same kind of parallel res- 
onance term as is found in each of the other equations, one 
expects to fmd a similarity in the parallel phase-mixing 
closures. In fact, the underlying kinetic equation guaran- 
tees the connection between the parallel moments (n, uIl , 
TII , and qll ) and the perpendicular moments ( T, , q1 , r, , 
and sI ), which we exploit in Sec. III C. 


The closure prescription in Ref. 1 is to approximate the 
highest moments which occur in the fluid hierarchy with 
the Maxwellian part of each plus a small correction due to 
the perturbed part of the distribution function, chosen 
to reproduce the linear response function 
R(c) = -E/(noe@/To) in the low- and high-frequency 
limits. However, examination of Eqs. (7)~( 12) reveals 
that linearly when k, p< 1, the perpendicular moment fluc- 
tuations are decoupled from the density perturbations. 
Rather than trying to solve for the closure of the FLR 
terms and the phase-mixing terms all at once, we will take 
advantage of this decoupling and consider the problem in a 
slightly different light. 


1. Linear propagator 


Consider a simple one-dimensional, homogeneous sys- 
tem in the absence of particle interactions. Linearly, the 
perturbed distribution function evolves according to 


dF1 aF, 
dt+u ,=wgw, (13) 


where g is a perturbation assumed to occur at time r=O. It 
is convenient to define the kinetic linear propagator 9, 
whose inverse can be represented in Fourier space as 


3;‘s -iw+ikv , (14) 


so that F,k= Y&k and we must use the Landau prescrip- 
tion for the singularity on the real axis. For the moment, 
we consider the case in which gk(v) is Maxwellian with a 
perturbation only in the density. Note that previously’ we 
considered the case in which g a I.$‘~( v) a El, dFM/dul, , 
as is appropriate for an electric field term in the usual 
Landau damping problem. Here we show that one finds the 
same closure coefficients for the case in which the initial 
perturbation g a F,(u). This is not a coincidence; rather, it 
is related to, the fact that the solution to Eq. (13), 
F,k=Fdu)e *k(z-“r), contains products of FM and all pow- 
ers of the velocity v” as time goes on: 


FM(u)e-‘k”‘EFM(u) 
v2 


1-ikut-(kt)2T+... 


The density response in the frequency domain is sim- 
PlY 
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nlk 1 - no=G J B~P,=~~~~U~~Y,=-~~~~~, (15) 
in which 5;=w/ @ 1 kll 1 v, vt= JT/m, and Z(c) is the 
usual plasma dispersion function. We may recast the clo- 
sure scheme in Ref. 1 in terms of the lowest moments of 
the linear propagator. From this viewpoint, the generaliza- 
tion to anisotropic temperature tluctuations will be trivial. 


For simplicity, consider a two-moment fluid model, n 
and UII , of the same system. The linearized fluid equations 
written in nondimensional units [see Eqs. (53) and (54)] 
are 


dn 
z+q q =6(tW(z>, (16) 


in which S(z) = Jdv g(z,v). Following Ref. 1, we approx- 
imate ~11 in terms of the lower moments n and UII : 


PII =Pn--uVll q , (18) 


and Fourier transform the resulting equations to find the 
appropriate closure relations for fi and y. Anticipating the 
result, the form of the collisionless diffusion coefficient p 
for this simple fluid model is taken to be 


Jz 
y=plIkll 1 


in Fourier space, and by an integral operator in real space.’ 
Here p and yi are dimensionless parameters of O( 1) to be 
determined. 


Using Eq. (17) to find ~11 and substituting the result 
into Eq. ( 16) leads to 


( 
ikl;- B -‘w+g$Jqq n=S- ) 


We may use this to define the linear propagator for density, 
n=d!,J’. We may rewrite 2, in the form 


y,=I I 
S+h . 


0 (‘2+ipL-P/2 ) = -f+y*). (19) 


The closure coefficients ,ul and B are determined b? r&&r- 
ing the density propagator [Eq. ( 19>] to match the zeroth 
moment of the kinetic propagator [Eq. ( 15)] in both the 
“adiabatic” (c< 1) and “fluid” (5% 1) limits. The resulting 
function &(c) is a two-pole approximation to the plasma 
dispersion function Z( [), shown in Fig. 1. We find that 
p=l and ,ur= h/2. 


2. Anisotropic temperature fluctuations 


Since this formalism makes no reference to the pres- 
ence of the electric field, it generalizes trivially to the case 
of fluctuations of the perpendicular temperature (which 
are decoupled from the potential fluctuations in the k, p( 1 
limit). To isolate the closure terms for the perpendicular 


moments, we consider the case in which g(z,vll ,vl ) in Eq.’ 
( 13) is bi-Maxwellian with a perturbation in T, only, and 
not in n. That is, 


gkq Jl > “&(Vll ,Ul ) 1+ [. (g-r’)S’ o]. 


The fluid equations analogous to Eqs. ( 16) and ( 17) are 


q$+v,, 41 =fxt)S,.(z), 


aa 
x+vj, r1 -0. (21) 


As before, the appropriate normalizations are given in Eqs. 
( 53 ) and (54). As before, -we approximate the highest mo- 
ment rl in terms of the lower moments T, and q1 , 


r, 4% -PII .a 3 (22) 


and Fourier transform the resulting equations. Note that 
we are now interested in the linear propagator for the per- 
pendicular temperature. fluctuation, 


~,‘~2-i~f - iki P 
: -. , ~+iw,&l I ’ 


which we may write as 


q-=-g(g). 
It is now easily shown that we should choose /3 and y 
exactly as before. Since the kinetic linear propagator 2 is 
independent of vl , the second perpendicular moment of 
Y’-’ is exactly the same as was found in Eq. (15) (in 
nondimensional units). This is not surprising, since the 
underlying,kinetic resonance is the same for the hierarchy 
of parallel moments (n,u,, ,...) as for the hierarchy of per- 
pendicular moments ( TL ,ql ,...). Equation (22), with 
;;\1”2;” Y= J71./2/Ikll I, P rovides the closure for ri in 


Keeping the evolution equations for n coupled mo- 
ments leads in this way to n-pole Pad6 approximants for 
the plasma dispersion function. For analytic investigations, 
it is usually convenient to keep an equal number of parallel 
and perpendicular moments, as all of the Z-function ‘ap- 
proximations which appear are then the same. 


y.1.. : 


3. Moment reduction scheme 


‘In Ref. 2 we presented a one-moment model, “the sim- 
plest possible fluid model of phase-mixing.” That model 
was Eq. (16). with the closure approximation 
uII = - (Y/I kll I )VII n, and vl= @. Note that this 
same expression for u11 can be obtained by taking the 
k,l SW limit of Eq. (17) [with the closure for pIl given by 
Eq. ( 18)]. We will use this fact to generalize the one- 
moment model to include some additional adiabatic and 
FLR effects. ._ ._ 


In its current’form, the one-moment model makes~ no 
reference to the electric field, so it will not recover the 
adiabatic limit (w&kll ) where the density should be pro- 
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portional to @, n = -a. The problem is that @ appears 
explicitly only in the dull /at equation, so a closure approx- 
imation in a lower-moment equation will not include the 
effects of 0 unless the closure is modified in some way. One 
way to do this is to go back to Eq. (17) and include the 
electrostatic potential on the right-hand side, With Eq. 
(18), Eq. (17) then becomes 


aull ~~+VII ~+PI tlzlk,, lq =-VjI *. 


Taking the large kll limit of this equation leads to a new 
closure approximation for ulI which includes the effect of 
the electric potential, ~11 = - (Y,/] kl, 1 )V,, (n+@). In- 
serting this closure into Fq. (16) causes the density to 
relax to the adiabatic limit. This mends the deficiency with 
a result we might have guessed, since we always expect to 
recover the adiabatic response in the zero-frequency limit. 


This procedure can be generalized to derive an n- 1 
moment closure from an n-moment closure. The basic idea 
is that by taking the high-k,, limit of the nth fluid moment 
equation, then the a/at becomes negligible and one obtains 
a frequency-independent closure approximation for the nth 
moment which can be used in the n - 1 moment equation, 
Physically, this is related to the fact that phase mixing is 
most important for w(kl, vt, which is where the closure 
can be determined. The opposite limit, o%kl, 7.1~ is the cold- 
plasma limit where the highest moment can be ignored and 
the choice of closure is not too important. 


For example, the two-moment closure for piI in Eq. 
( 18) can be derived by taking the large-kll limit 
( kll u,)w,w,) of the three-moment equation for TII , Eq. 
(65). In turn, the three-moment closure for qll used in Eq. 
(65) can be derived by taking the large-k,, limit of the 
four-moment equation for qll , Eq. (59). Likewise, taking 
the high-kll limit of Eq. (61) leads to the closure approx- 
imation 


41 =--J&-J’,I (TI +;f: ‘+ 
where V: ~IJ =: V: Q includes FLR-related adiabatic terms 
in the T, dynamics. This closure for qL is used in the 
“3 + 1” model of Eqs. (63)-( 66), which uses three parallel 
moments but only one perpendicular moment. In the Ap- 
pendix, we present an eight-moment gyrofluid model, 
which we refer to as the “4+4” model, since it contains 
four parallel moments (n, uII , Tlf , and qll ) and four per- 
pendicular moments (r, F q1 , rl , and S, ). Each of our 
lower-moment models can easily be obtained from this 
“4-l-4” set. 


One caveat should be mentioned. The n-n - 1 mo- 
ment reduction procedure outlined in this section must be 
modified if there are more than four parallel or perpendic- 
ular moments. For n >4, care must be taken about the 
choice of decomposing the highest moment into reducible 
and irreducible parts [e.g., Eq. (23)]. Only one choice will 
lead to the proper reduction from n moments to n- 1 mo- 
ments. 


1 


0.5 
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-0.5 


I”( ‘/“I ’ t I ’ ” 1 
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- 
x.2 0.5 
E 
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FIG. 1. 1 $&Z(t) for one- and two-pole models of parallel phase mixing 
(e.g., of T, ). 


4. Paraflel phase-mixing closure summary 


We implement the parallel phase-mixing closure in 
Eqs. (10) and (12) by approximating the highest two full 
moments, rll and r, in terms of the lower moments. We 
find it useful first to write each in terms of its reducible 
components plus an irreducible correction: 


rll - 34 ==++I and r, =‘$-&+ &, . 


This step simplifies the later algebra without changing the 
final result. We then linearize, and approximate the irre- 
ducible part so as to reproduce the low- and high- 
frequency limits of the lowest moments of the linear prop- 
agator. The closure approximation has a simple form in 
wave-number space. That is, in dimensional units, 
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& 
% = - Dll 1 k,, 1 -$I 411 +811 p$q 1 


and (24) 


@t 
5% z--1 p,, , -ik,, 41 +b’l’$Tl 1. 


The constants Dll , 4 ,811 , and 4 are 


2J?; 6 
Dll =w, QL --p 


32-g%- 
PII =- 3r-8 ’ 01 =A 


(25) 


exactly as found in Refs. 1 and 2. Figures 1 and 2 show the 
real and imaginary parts of the local kinetic response func- 
tion for a Maxwellian F,, R(c) = 1 + cZ(c) compared 
with our fluid approximations. 


In these figures, the argument of the plasma dispersion 
function is real. The approximations to the collisionless 
response in all but the one-pole models are reasonable, 
improving as more moments are kept. Each reproduces the 
most important qualitative features of the response. The 
one-pole model is the roughest, for while it is correct at 
{=O and c= 03 and gives damping for intermediate values 
of 6, the real part of the response function has the wrong 
sign for [> 1. 


Most importantly, our approach eliminates the singu- 
larities that are present at resonances in the collisionless 
limit of most previous fluid equations. These closure rela- 
tions are exact for some distribution that is close to 
Maxwellian’ (but only approximate in the case that the 
equilibrium distribution function is Maxwellian). It is 
therefore not surprising that Landau damping and its in- 
verse, ion Compton scattering, and other “kinetic” phe- 
nomena are described reasonably well by these few equa- 
tions. 


c 


C. Finite Larmor radius effects 


We now investigate the conventional (nondissipative) 
FLR effects buried in the various integrals involving Jo in 
the fluid equations, Eqs. (7)-( 12). (The collisionless dis- 
sipation induced by FLR will be considered in Sec. III D.) 
These integrals are of the form 


s d3v v;hfi FJ,=n(v~hf, Jo). 


Note that an exact, fully nonlinear (arbitrary F) evalua- 
tion of (Jo) would require an infinite set of velocity space 
moments, since Jo contains all even powers of vI ; approx- 
imations are therefore necessary. 


The standard second-order Taylor series expansion of 
Jo yields (Jo) N 1 -b/2, in which b= pfkf and 
p:=(vf )/(2fl)=T, /(ma). This approximation is 
equivalent to assuming that each of the perpendicular mo- 
ments higher than (vf ) is identically zero. In addition to 
the various Jo integrals in the fluid equations where Jo 


operates on @, we must also evaluate Eq. (4), in which Jo 
operates on F itself. A Taylor series expansion of the Jo in 
Eq. (4) yields 


fi= d3vJ$‘=nfV: 
s 


Expanding nTL in the last term into equilibrium and per- 
turbed components in the gyrokinetic ordering (where, for 
example, ~tr (no but VI ~zr -VI n,) leads to 


(27) 


where bo= k: T, o/(ma2). The Taylor series approach 
provides the simplest second-order accurate model. It is 
useful for developing analytic understanding in the k, p( 1 
limit, but should be used cautiously because of the large 
errors introduced for k, p > 1. The errors are particularly 
important in numerical simulations, since the typical grid 
needed to resolve the dynamics introduces large kL p val- 
ues into the system. That is, the grid spacing in the direc- 
tion of the background gradient must be Ax-p, which 
implies that the maximum k,p present is -r. The Taylor 
series approximation is egregiously wrong for such wave 
numbers, since 1 -b/2 =: - 4, while Jo is bounded between 
-0.4 and 1. In Fig. 3, we compare different expressions for 
(Jo). The error in the Taylor series approximation for the 
(Jo) FLR terms is unacceptably large for kL p > 4. The 
Taylor series expansion of I’,(b) N 1 -b [which appears in 
the quasineutrality constraint, Eq. (3)] goes awry even 
sooner, as it is negative for kl p > 1, while I’,(b) is always 
positive. This can cause significant errors in the linear 
growth rates and eigenmode shapes, as demonstrated in 
Figs. 9-l 1, which will be discussed in Sets. IV and V. 


Another way to carry out the various Jo integrals is to 
assume that the total guiding center F is always bi- 
Maxwellian (with perturbations in n, T, , ~11 , and TII 1. 
This would imply, for example, that 


T2 
(Jo)=e-b’2=1+&V; +&VT +..*, (28) 


and so on, where b= bo+ b, cc T, o+ TI r contains both 
equilibrium and perturbed parts of the TI . We remind the 
reader that the V: operators above operate only on @ in 
Eqs. (7)-( 12). Applying the same assumption that F is 
always bi-Maxwellian to Eq. (4)) where Jo operates on F 
itself, leads to 


2 


iii= d3v J$-Ho=e-bo’2n,+---e s no po -b /2 2 


T, o 2 O V,Tl,. 


This “Maxwellian total F,” or (Jo) zexp( -b/2), approx- 
imation reduces to the second-order Taylor series approx- 
imation in the small-k, p limit, but it is better behaved for 
large k, p. That is, it gives the reasonable result that 
(Jo)+0 as k, p-+ CO. We tried this approach at an early 
stage in our research (an approach used independently by 
Brizard2’), but discovered that it did not match the kinetic 
linear dispersion relation very well for k, p- 1 or larger 
(e.g., see Fig. 9). The reason is that although the equilib- 
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rium F. is Maxwellian, the linear perturbation F, is quite 
non-Maxwellian in vr . Indeed, the standard linear solution 
of Eq. ( 1) in an unsheared slab gives F, a FoJo(cr+v~ /3). 
Inserting this into Eq. (4) yields a linear dispersion rela- 
tion with terms proportional to Fo s 0 d3v - J;=(J;),=~,(bo). 


n0 


This is quite different from the case where the total F (in- 
cluding F, ) is assumed Maxwellian, where the 
(Jo) = exp( -b/2) in the fluid equations combines with 
another factor of exp( -b/2) in the pi calculation to give 
terms proportional to exp( -b). Since the correct kinetic 
result, IYa( b), has a much weaker b dependence at large b 
(asymptotically proportional to l/ $) , the “Maxwellian 
total F’ approximation results in too much gyroaveraging 
at large 6. This major difference between (Jo)2 and <J$> is 
part of what motivated the (Jo) z (J$ li2= I’:‘” model 
considered below. We shall find that it is linearly correct to 
all orders in k, p in the absence of magnetic shear and 
nonlinearly second-order accurate in its presence. How- 
ever, first we consider Similon’s approach. 


1. Similon and the particle space approach 


Similon2’ derived a set of fluid equations for the non- 
linear electron drift wave problem. Since the quasineutral- 
ity constraint depends directly on the particle density 
E= sd3v J$ (plus the polarization part) and not on the 
guiding center density n = sd3v F, he chose to perform the 
velocity averages in particle space rather than guiding cen- 
ter space. That is, he operated on the gyrokinetic equation 
with Jo before evaluating the moment integrals. This ap- 
proach has the advantage of easily reproducing the proper 
kinetic linear dispersion relation in an unsheared slab. The 
primary disadvantages lie in the complexity of the nonlin- 
ear and shear terms evaluated in particle space. 


Operating on Eq. ( 1) from the left with Jo, and keep- 
ing only the EX B nonlinearity, leads to 


=O. 


We then take moments of this equation, using the deiini- 
tions 


5, E 
s 


d3v J,,Fl, EoiT,, 1 E 
s d3v Joq FI, 


and so on. Deferring the discussion of magnetic shear for 
the moment (so that 6=Z and JoVll -VII Jo=O), we may 
carry out the velocity space averages by assuming that the 
equilibrium F. is Maxwellian with density and temperature 
gradients in the R direction. With the normalizations given 
in Eqs. (53) and (54)) we find the linear evolution equa- 
tion for the particle-space perturbed density ,% 


afi 
~=-VII 511 -[rO+rli(ro-r,)vf 1:. (30) 


1 


L=z 
kn 0.5 


E 


+ 
4 
-g 0 


-0.5 
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FIG. 2. 1 +@(LJ for three- and four-pole models of parallel phase mix- 
ing (e.g., of n). 


Note that by operating on the gyrokinetic equation with Jo 
before taking velocity-space integrals, we find terms a ro,r 
from integrals such as J-d30 F&, and thus reproduce the 
proper kinetic FLR behavior, unlike the “Maxwellian total 
F’ model of the previous section. We will show in Sec. III 
C! 3 how the guiding center approach is able to reproduce 
Eq. (30) with the appropriate transformations from guid- 
ing center quantities 8, T, , 1~11 , qr ,... to particle quantities 
E, q ,... * 


Unfortunately, the nonlinear term in Eq. (29) is quite 
complicated, since the leftmost gyroaveraging operator Jo 
now operates on both the distribution function and the 
electrostatic potential, and 


JoV’IJOVE)#F,J&E. 


Similon approximated (on p. 93 of his dissertation) this 
term by assuming that the vl. dependence of P, was pro- 
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FIG. 3. Comparison of FLR approximations to (Jo). 


portional to Fe.Jc(k, uI /0), allowing him to develop a 
simple fluid model of FLR effects in the nonlinear EXB 
terms. However, errors of order e p2 are introduced by 
this approximation. As we show in the next section, we 
find that by taking fluid moments in guiding center space 
(delaying the second gyroaveraging operation to Poisson’s 
equation) we can avoid having to take moments of quan- 
tities such as Jc(Ft JoyE), and thus regain e p2 accuracy. 


A second complication in the particle-space approach 
arises from the fact that the gyro:veraging operator Jo and 
the parallel derivative operator b(x) *V do not commute 
when the magnetic field is sheared. This introduces a gy- 
roaveraging of kll which may be important for some 
modes, as pointed out by Bakshi et ~~4~s and Linsker.2g In 
the usual sheared slab model, where b(x) =z^+jx/L, one 
finds 


p2 cY2@ 
J,(b”-vQ>)=&v(J,Q>)+-- 2L s ax av+Q’k? P4)* 


using the small b approximation for JQ The fastest-growing 
modes typically have k, p - 4 and an average kll of order 
k&L, so that the shear correction term is typically 
smaller than the lowest-order kl, term by a factor of order 
L/L, which is usually small. However, as Linsker2’ has 
shown, this gyroaveraged shear effect can be quite impor- 
tant for other modes, particularly for narrow modes local- 
ized near the rational surface, where kll -0. Since there 
are modes with significant growth rates which satisfy this 
criterion, it is necessary to treat the gyroaveraging of the 
shear as accurately as other FLR corrections. 


Similon noted the difficulty presented by the shear and 
pointed out that the expression 


s d3u FoJob”.VJo~==no(J,i;gVJo)o~= I-;‘2b”. Vl?;‘2Q, 


remained valid in the presence of shear. [This is proved 
most easily in Fourier space where the x in b(x) becomes 
--i~3/~3k,.] Though he used this identity for moments of the 
last term in Eq. (29)) Similon ignored the effects of shear 
when taking moments of the JcTb l Vu,, /F1) term. 


Our approach is motivated in part by Similon’s in- 
sights, though we improve upon his approach by taking 
moments of the gyrokinetic equation in guiding center 
space, and also extend it to allow the presence of equilib- 
rium and perturbed temperature gradients. We outline the 
details of our approach in the next two sections. 


2. Guiding cenfer approach 


Equations (7)-( 12) were derived by taking moments 
of the gyrokinetic equation directly, without first operating 
on it with a second Jo as was done in the previous section. 
The transformation from guiding center fluid quantities to 
particle fluid quantities will be considered in the next sec- 
tion. Here we focus on how to approximate terms such as 
<JO) and show how they lead to various linear and nonlin- 
ear FLR effects. 


As an example, consider the following term from Eq. 
(7): 


v* (n(Jo)vd. (31) 


From Eq. (2), one sees that in general (Jc) is a function of 
all UT’ moments of the guiding center F. We will make the 
following closure approximation to express this in terms of 
just the lowest (0; ) = T, /m moment, whose dynamics we 
do follow: 


(JO) &‘2(b) +NLPM, (32) 


where NLPM is a model of nonlinear, FLR-induced phase 
mixing to be discussed in Sec. III D. This I’h’2(6) approx- 
imation was motivated by the contrast between the “Max- 
wellian total F’ model, which led to (Jo) ==exp( -b/2), 
and Similon’s real space approach where (at least linearly 
in a shearless slab) two Bessel functions are combined be- 
fore taking moments, leading to (& = I?,(b). In some 
sense, our (Jo) z (J$ 1’2 = lYA’2 (b) approximation antici- 
pates the second gyroaveraging operation which will occur 
for the Poisson equation. Note that it is rigorous through 
second order in k, p (i.e., it matches the second-order 
Taylor series result (J,) = 1 -b/2), and therefore agrees 
with the exp( -b/2) model through second order, while 
imposing less gyroaveraging than the exponential model 
for large b. We will find that the FA’2 model has the added 
advantage of exactly reproducing the FLR effects in the 
local, linear (unsheared slab) kinetic dispersion relation. 


Both the equilibrium and fluctuating components of 
the perpendicular temperature are “hidden” in the argu- 
ment to the Bessel function, since b cc T, e+ TL i. Using 
the chain rule to carry out the divergence, we find that 


ar;12 
ve [nr~2(b)vR]=(Vn).~~‘2vE+n(Vb)~‘vE 


0 0 
+t2r;‘2w-VE). 


0 
(33) 
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Although T, , <T, e, V, T, , -V, T, e. Thus, while b 
may be replaced with b. in terms 1 and 3 , the gradient 
in 2 produces two terms, proportional to Vba and Vb,. 
Because rh’2 operates unambiguously on @, we defne 
Y z I’;‘” ( b,) @ and vy, = Fh” ( b,, ) v,+ For notationai conve- 
nience, we now introduce two modified Laplacian opera- 
tors V: and Vf : 


arf2 rA’2+b- 
i db . 


(34) 
Note that as b-0, the operators 9: , 4 : -+ V: . 


In slab geometry, the divergence of vE vanishes from 
Eq. (33), leaving 


v- [?zlyZ(b)VEl” (gkY+q ‘Vry 


in which we have separated n and T, into equilibrium and 
fluctuating parts as before. The last term on the right-hand 
side is a nonlinear FLR correction which appears quite 
naturally. In the small-k, p limit, r$‘2= 1 -k: p2/2; these 
terms reduce to the familiar Taylor series expansion. How- 
ever, in the large k, p limit, since Vi -+ -i, this expression 
is much less stiff than the Taylor series expansion. Using 
the normalizations given in Eqs. (53) and (54), we find 
the equation for an/at [Eq. (56)]. 


Consider now the ((mu: /2)Jc) term which appears in 
the perpendicular pressure equation, Eq. ( 11). If the ul 
dependence of F is close to Maxwellian (which is true at 
least for the linear F. component), then we can use the 
Maxwellian identity (mu: /2)F,= TI a( T, F,J/aT, to 
rewrite this in a form in which we can use Eq. (32) : 


n(!$Jo)zTI-&-(TL J-d3uFJo) 


a 
zpL z’ br;‘2) + NLPM. 


(Again, NLPM is a model of nonlinear, FLR-induced 
phase mixing to be discussed in Sec. III D.) In slab geom- 
etry, (u: ) enters only through FLR corrections, so to 
maintain overall second-order accuracy it is only necessary 
to keep the lowest-order contribution ((mu: /2)Jo) z T, . 
We use the more robust expression above to obtain higher- 
order accuracy in the linear limit (where F=Fo is Max- 
wellian) along with an approximate treatment of nonlinear 
effects consistent with the form of the closures used in 
other terms. (The situation in toroidal geometry is more 
complicated. There, the (0: ) moment enters through the 
grad 3 drifts as well, so that the number of (0;‘) moments 
kept affects the accuracy of both the toroidal drift reso- 
nance model’5’16 and the FLR model.) Inserting this ex- 
pression for ((mu: /2)Jo) into Eq. ( 1 1 ), and expanding in 
the gyrokinetic ordering as we did for the density equation, 
we arrive at the linear and nonlinear FLR terms found in 
Es. (60). 


Finally, we should also explicitly state how we approx- 
imate terms like (~11 Jo) and (ui Jo). Our reasoning is as 
follows: 


lq Jd = ( [ (q --[I )+q IJO) +,, +,,ZQr&i2, 
where the heat flux qL results from the (( uI1 - uII )u: ) 
moment, and we have approximated the terms higher or- 
der in k, p by analogy with Eq. (32). Similarly, 


b~Jo:,=Wq, -q )3+3u,, Uf -34 q +ui IJO) 
z (911 +3q PII H-ly” 


+ higher-order nonlinear terms. 


3. Guiding center- parficfe space fransformafion 


We have chosen to write our equations in guiding cen- 
ter space, in order to take account of the gyroaveraging of 
the shear and to find the nonlinear terms most easily. It is 
not surprising to find that the simplicity we gained in the 
evolution equations is somewhat offset by a more compli- 
cated quasineutrality condition. We now develop a trans- 
formation from guiding center moments (n,T, ,...I to the 
particle moments (if&Z,, ,... ). This is necessary because the 
Poisson equation, Eq. (3), depends directly on n, not n. 
Along the way, we will also find that this transformation 
shows that particle fluid equations [such as Eq. (30)] are 
linearly equivalent to the guiding center fluid equations, 
Eqs. (56)-(60). 


The (nonpolarization part of the) perturbed particle 
density is K, = Jd3u &F,, as defined in Eq. (4). It is im- 
portant to note that here, unlike in the evolution equations, 
the Bessel function operates on the distribution function. 


We note that any linear solution of Eq. ( 1) in the 
absence of shear may be written as 


Fdwq, ,UI ,t) =F,~(x,q ,q )J~ 


X [ abwy ,r) + (&-- l)P(x,q A] 


aF0 


in which F. is the equilibrium distribution function, Jo 
operates on a and /3, and a and p are functions indepen- 
dent of uI . The moments of a and j3 are determined self- 
consistently from the definitions of the guiding center fluid 
quantities 


s d3v F,GB, 
f 


: d3i/&F, zpL . 


Substituting Eq. (35) into Eqs. (36), and using the nor- 
malizations given in Eqs. ( 53) and (54), we find two equa- 
tions in two unknowns: 


SJO) 
n=(Jow+~w, 
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PI =[ (l+&,)(Jd]b). 


+[ [ l+~+~(b2$)]~J,))m. 


Given the ansatz in Eq. (35)) the transformation from the 
density of guiding centers to the density of particles is thus 
defined by (Jo) [Eq. (32)]. The result of the algebra is 


l/2 
l-0 


n=D(b) i 
N(b)n+;q Tl 


1 
, (37) 


in which 


(38) 


and 


$f 
D(b) EN(b) +-q-. (39) 


Note that D(b) > 0. Expanding Eq. (37) for small b, one 
can verify that it reproduces Eq. (27) and is therefore 
second-order accurate in kL p. We may now find the guid- 
ing center quasineutrality condition [Eq.(62)] by noting 
that nA)=nrD, substituting Eq. (37) into Eq. (5), and op- 
erating on the resulting equation from the Ieft with IA’2. 


In addition, we wish to find an equation describing the 
evolution of 5. To accomplish this, we combine Eq. (37) 
and the linear parts of Eqs. (56) and (60)) yielding 


dE l/2 
r0 1 


x= -ocb,v” N(b)ulI ‘$12 q1 


- &+77i(r()-r,,vf 1:. 


Note that the coefficients of &D/Jy in Eqs. (30) and (40) 
are exactly the same. A comparison of the parallel convec- 
tion terms suggests that the transformation given in Eq. 
(37) may be generalized. This is the case, as the transfor- 
mations 


l/2 
- --y 


‘II =D(b) Nb)u,, +;ft q1 , 


I-y2 
41 =jgjyj 


( 


1 
Nb)pll +zf; rl 


1 
, 


l/2 
I-0 1 


ql ED(~) Wdq, +,?; sl 


(41) 


(42) 


(43) 


are consistent with the observation made in Sec. III B that 
the parallel phase-mixing closure for perpendicular tem- 
perature fluctuations had the same form as the closure for 
parallel temperature fluctuations (i.e., a three-moment clo- 
sure for pll has the same form as the three-moment closure 
for rI , and can be combined by the above transformations 
to give the same form for a three-moment closure for 41 ). 
Ignoring the nonlinear terms, which are unfortunately very 
complicated in particle space, these transformations pro- 
vide an alternate route to Eqs. (A5)-(A8) once Eqs. 


(56)-( 59) are known. Specifically, one can find the linear 
4-t 4 gyrofluid model by repeating the procedure in Sec. III 
C 1 for the parallel particle space moments Z, cl1 , ?;I, , and 
qll , closing the resulting four equations as outlined in Ref. 
1, and utilizing the transformations [Eqs. (37) and (41)- 
(43)] along with Eqs. (56)-(59). The moment-reduction 
scheme outlined in Sec. III B 3 then uniquely determines 
the closures for models which retain fewer moments. While 
this gives one confidence that the linear FLR and parallel 
phase-mixing models have a degree of internal consistency, 
the. complicated form of the nonlinear moments which 
arises in the particle space derivation precludes one from 
taking full advantage of this route. It is more straightfor- 
ward to develop accurate models of nonlinear terms by 
taking moments in guiding center space. 


4. Alternative FLR models 


It is perhaps not obvious why such an elaborate FLR 
model is necessary. Figure 3 compares different approxi- 
mations for (Jo). Clearly, though valid in the small-b limit, 
the Taylor series approximation is disastrously inaccurate 
for b&l; other approximations are better. In particular, 
we have investigated the equations resulting from 
the (Jo) =eebj2, ( 1 + b/2)‘-’ approximations, described 
briefly below. 


We may recover the sheared-slab, electrostatic limit of 
Brizard’s gyrofiuid equations” from Eqs. ( 56)-( 62) 
by leaving 411 and 41 unspecified, taking 
A’, =A’-21 =X2,=0, Y =e’v’b/2+, N(b) = D(b) =l, rede- 
fining 


and replacing the IO in the “7” term of Eq. (62) with eHb. 
We have also considered a simpler FLR model which 


is second-order accurate, well behaved at large b, and 
straightforward to implement in a finite-difference code. 
Though we solve Eqs. (56)-(62) with a spectral method 
that handles the expressions involving the IA” functions 
easily, it may be advantageous for some problems to use 
the Pad& approximation (Jo) = ( 1 + b/2) -‘. We refer to 
this model as the “Pad&” model for this reason, though it 
should be noted that the IA’” model is also a Pad&like 
approximation to the full FLR effects in the presence of 
magnetic shear. The Pad& model may be obtained from 
Eqs. (56)-(62) by taking Y= (1+6/2)-‘a, N(b) =D(b) 
= 1, redefining 


a( l+b/2)-’ 
;‘?f (l+b/2)-‘=.b ab -, 
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replacing the TO in the “7” term of Eq. (62) with 
( 1+ b/2) -2 and the IO in the “8” term of Eq. (62) with 
( 1+ b) -‘. We present some results from this approach in 
Sec. V A. 


D. FLR phase mixing 


The phase-mixing process that underlies Landau 
damping is fundamentally due to the distribution of veloc- 
ities of the particles freely streaming along the field lines. 
This spread in velocities causes neighboring particles to 
move apart, mixing away (damping) any density pertur- 
bations that arise, even in the asymptotically collisionless 
limit. In addition to the spread in parallel velocities of 
particles, there is also a spread in the gyroaveraged ExB 
drift velocities, which leads to phase mixing in the perpen- 
dicular direction. Physically, high-energy particles with 
large gyroradii will have a slower EXB drift than low- 
energy particles with small gyroradii; this spread in drift 
velocities leads to mixing. This process does not appear to 
be simply related to the usual stochastic perpendicular 
heating normally associated with large-amplitude 
fluctuations.8,33-35 Nonlinear FLR phase mixing is a com- 
plicated process that is difficult to reproduce accurately 
with fluid models, but the models we present below repro- 
duce its essential qualitative features, providing a nonlinear 
damping process important at large k, p and mixing- 
length levels of @. 


To illustrate the essence of this effect, we first consider 
a simplified one-dimensional problem, where a given elec- 
trostatic field varies in only one direction (such as would 
be the case for a long, thin eddy, in the region away from 
one of the two regions of curvature). Taking Q>=@(y), so 
vE=uE(y)$ and assuming no gradients in the equilibrium 
F, and no parallel gradients, Eq. ( 1) reduces to 


(44) 


We will concentrate on a single Fourier mode of a, so the 
ky in JO can be considered a fixed number. We now look for 
the response of this equation to an initial perturbation of 
the form F,(t=O) =exp(ikgc)F,(u), where Fm is a Max- 
wellian. The solution is 


Although F, oscillates in time, all velocity moments of F, 
will decay in time, just as in the parallel phase mixing 
discussed earlier. For example, consider the density re- 
sponse 


nl k(t) =eeik5 d3v F, 


Z!Z s &u e-ik,tJdkyUl /~~‘EtFm( u) , (45) 


Expanding Jo in the small k, p limit, this integral can be 
evaluated analytically, 


s 


c~ duL uI eikx(k$f /4S12)v&e-u: /(2$) 


0 


1 
=?Z@? - ikxuEt 


I - ik,bvEt/2 ’ 
where b= k;vf/fl* in this 1-D problem. (We could find an 
asymptotic representation of this integral without expand- 
ing in kl p, using the method of stationary phase. The 
Riemann-Lebesgue lemma36 guarantees that the integral 
goes to zero as t- CO. Since the fluid equations generate an 
exponentially damped approximation, which is too strong, 
this detail is unnecessary. ) From Eq. (46), we see that the 
density decays in time, though it has a long tail -l/t, 
unlike the parallel phase-mixing case’ where initial density 
perturbations decay as exp( - kf @/2), faster than expo- 
nential. The full Jo effects on Hi,(t) can be found by nu- 
merically integrating Eq. (45). The results are shown in 
Figs. 4-6. For b> 1, there is a rapid initial decay followed 
by a long tail containing several harmonic components 
with slowly decaying amplitudes. 


Because of the long tail, the time-Fourier transform of 
the kinetic response is not well behaved as o tends to zero, 
hence we are not able to match the kinetic and fluid results 
in frequency space as before. However, we may choose the 
closure coefficients so that the qualitative features of the 
true solution are preserved, and check our estimate numer- 
ically for a wide range of parameters. 


1. A one-moment, 1-D fluid model 


The fluid model of parallel phase mixing was based on 
a closure approximation for the uIl VII kinetic term which 
introduced a damping rate of order 


q = tkll Ivt= I$ I<(q -4q ))2)“2. 
Likewise, a fluid model of perpendicular FLR phase mix- 
ing comes from making a closure approximation for the 
J,vda/& term which introduces a damping term of order 


~1 z t k, I ( (Joe-- (JOKE) I*> ‘I2 


= lkxvEj [To(b)-e-b]1/2, (47) 
evaluating the averages ( + * *) over a Maxwellian. For small 
kl p, this reduces to vl z [ kxvEj b/2, which reproduces the 
initial decay rate in Eq. (46). 


We will illustrate this by first developing a one- 
moment fluid model of FLR phase mixing. Taking the 
density moment of Eq. (45) gives 


Using a small k,,p approximation for the Bessel function 
yields 


an k: d7-L vE~-~"nvE~=o. (48) 


At this point we must introduce a closure approximation 
for the unknown highest moments (T, ) in terms of the 
known lower moments (n). If we were to neglect dT, /8x, 
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then we would just get n(t) oscillating at a frequency 
IO= kXvE( 1 --b/2) with no damping. For short times, 
this actually is similar to the kinetic result 
nIk(t)zexp(-ikXvEt)(l+ikxv &t/2)+***, but it misses 
the long-time damped behavior of Eq. (46). To correct 
this, we follow the same procedure used for parallel clo- 
sures and include a dissipative term in our closure approx- 
imation for T, , 


(49) 
The absolute value that appears in the first term on the 
right-hand side guarantees that that term is always dissi- 
pative. The second (reactive) term allows us to match the 
phase of the fluid approximation to that of the kinetic so- 
lution. We expect the matching coefficients Ai and y1 to be 
0( 1). Defining a relative squared error 


SdtInf(t) --ndG I 2 


‘= Sd~lndt)12 ’ 


where nf is the fluid approximation from Eq. (49) and n,k 
is the kinetic result from Eq. (46); we find that a minimum 
value of e=O.17 can be achieved with (YJ.,) = (0.4, 0.6). 


We extend this model to larger k, p.by analogy with 
the results of Sec. III C, replacing the b’s that appear in the 
closure terms on the right-hand side of Eq. (49) with the 
operator ---Vi r0 “*. [The ( 1 -b/2) factor on the left-hand 
side becomes I’An in accordance with Sec. III C.] We de- 
fine a one-pole FLR phase-mixing operator J-1 operating 
on some moment M by 


“l;M==v,j (;B: b) .v[w-q;~~ q .VM, (50) 
where (Y&) = (0.4, 0.6) as found in the small b limit. 
The comparison between the one-moment fluid model em- 
ploying this ,Y, operator, and the exact kinetic result from 
numerically integrating Eq. (45), is shown in Figs. 4-6. 
For small b, where the damping rate is small, the compar- 
ison is quite good. For b of order 1 or larger, the agreement 
is not as good. Nevertheless, this is a significant improve- 
ment over past fluid models which ignored FLR phase 
mixing altogether and would have oscillated in Figs. 4-6 
without any damping. Some fluid models in the past em- 
ployed an ad hoc linear hypervisocity term to provide 
damping at large k, p. Our model provides a physics-based 
nonlinear damping term with at least the proper qualitative 
scaling with @, b, and k,. 


2. Extension to more moments and 2-D 


Rather than making a closure approximation for T, 
in Eq. (48), we can follow the dynamics for T, by taking 
the VI moment of Eq. (44). This requires a closure ap- 
proximation for (VT Jo), or at least. of (u;f ) if the small 
k, p expansion of Jo is used. Following a similar path used 
to derive the one-moment fluid, model ‘above, we finally 
arrive at the following two-moment model of FLR phase 
mixing: 


using the nondimensional units of Eqs. (53) and (54), 
where dYzl and Udt”22 are given by. 


Choosing ( y2,A2) = ( 1.6, 1.3 ) gives a relative squared error 
in the small-b limit of 


0 
nl 


-Exact 


(a) 
h kxl t 


0 
nl 


(W 
FIG. 4. One- and .two-pole FLR phase-mixing models for b=O. 1. 
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‘= 


Sdtlnf(f)-nlk(t) I* 


Sdflndf) I* 
= 0.06, 


somewhat better than the 0.17 achieved by the one- 
moment model. Here ~?‘“~i represents closure approxima- 
tions for higher-order terms in (Jo) of order k’: p4. A com- 
parison with the numerical kinetic solution of Eq. (45) for 
general b is shown in Figs. 4-6. Although the two-moment 
model is formally more accurate than the one-moment 
model for small b [and it recovers d (t) accuracy for the 
initial relaxation of a perturbation], we find that in practice 
it is of comparable accuracy to the one-moment model for 
general 6. An improved model employing additional mo- 
ments could probably be found at the cost of additional 
complexity. 


So far we have been considering the FLR phase mixing 
caused by a given, static, l-D, a(u). The kinetic equation 
is reversible, and if at some time Q(y) suddenly changed 
sign [or if @=@(y)cos wt was oscillatory], then F, would 
begin to “un-phase-mix” and eventually reconstruct the 
original density perturbation. (In fact, notice that our FLR 
phase-mixing model provides damping only nonlinearly 
and does not introduce any damping into the linear equa- 
tions, since the linear JovE* VFc terms are known and do 
not require any closure approximations.) In a turbulent 
nonlinear 2-D system, it seems unlikely that the 2-D con- 
vection paths given by the equipotential lines of J@(n,y) 
would ever exactly reverse to reconstruct the initial pertur- 
bation. This is even less likely in a turbulent 3-D system 
where the ulI of the particles would also have to be re- 
versed to reconstruct the initial conditions. Nevertheless, 
the FLR phase-mixing process is very complicated, and it 
may be that in some cases (perhaps a weak-turbulence 
limit or a case involving a few isolated modes) our model 
may overestimate the amount of FLR phase mixing that is 
actually occurring. In nonlinear simulations one should 
therefore check the decorrelation times and lengths, and 
also check the sensitivity of the simulations to the choice of 
Y and /2 coefficients in the Xi, Jy;t, and x2, operators. 


Briefly, we outline one way to approximate terms like 
I+; VE’ VIM in general geometry. First, note that Vf op- 
erates Only on vE, so we can define an averaged velocity 
field v= 6: vE using standard FFT’s since the V: operator 
is evaluated most easily in k space. Since this is already a 
crude model of a fairly complicated process, it may be 
sufficient to approximate 


Iv-VIM= l%l l&f+ luyl l&v 


and then rearrange this to be in conservative form: 


Iv*VIM- -&( M&g) -f( ,q&-7). x Y  
(52) 


The basic idea is to provide a fast numerical approximation 
by evaluating terms like ( l/ I k, 1) dM/dx in k, space where 
they are most easily evaluated, and then transform back to 
real space to multiply by ] u, I. This rough approximation 


0 
ni 


-Exact 
------One-pole 
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FIG. 5. One- and two-pole FLR phase-mixing models for b= 1. 


will overestimate the FLR phase-mixing effect, since we 
have neglected “interference” terms inside the original ab- 
solute value. In the original kinetic equation, the J,,vE*VFl 
nonlinearity vanishes if both IQ, and Fi have cylindrical 
symmetry (or less restrictively, if V, F,]]V I Jo@), which 
may be related to the formation of long-lived coherent 
structures. The nonlinearity in Eq. (52) no longer satisfies 
this property exactly, though the nonlinear damping will 
be reduced for regions of the plasma which satisfy a kind of 
“square symmetry” where the two terms in Eq. (52) sep- 
arately vanish. If a more accurate numerical implementa- 
tion of J’%  is needed, one would probably have to map M  
onto a grid which followed the convection contours, use 
FFT’s along each convection contour to evaluate the phase 
mixing from 1 v l V f M, and then map the phase-mixed M  
back to the regular grid where the rest of the terms in the 
fluid equations are advanced in time. 
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FIG. 6. One- and two-pole FLR phase-mixing models for b= 10. 


As we have seen, FLR phase mixing is a difficult pro- 
cess to model accurately with fluid equations. Hopefully 
the nonlinear simulations will not be too sensitive to the 
exact details of the damping mechanism at high kl p, es- 
pecially if the turbulent spectrum is peaked at longer wave- 
lengths with k, ~(1. Furthermore, the model we present 
here does capture the essential qualitative features of FLR 
phase mixing with the proper physics-based scalings: a 
nonlinear damping process important at high k, and large 
cp. 


E. Normalized gyrofluid equations 


With the closure approximations specified, we may 
now complete the derivation of the nonlinear gyrofluid 
equations easily. The moments and the potential are sepa- 
rated into equilibrium and fluctuating components 


[n =nc+ ~1~ (t),...] and the normalizations used in Sec. III C 
are utilized again. Specifically, the nondimensional per- 
turbed variables (<$ ,...) are given in terms of the dimen- 
sional perturbed variables (nr,ull t,...) by 


nl q 1 TII 1 TL 1 411 I 41 1 e@l ------- 
no’ it ’ Ti ’ T, ‘VPll o ‘V@I o ’ Ti 


- - 
=$(n;i$ ,T,, ,TI ,i?l ,?i $6. n (53) 


Furthermore, we normalize (x,y,z,t) according to 


X--x0 
j&--, jd 


Z 
&- 


tvt 
(54) 


Pi pi’ Ln’ 
and ?=z. 


n 


We have used the definitions L; ’ = -8 In no/&, 
ot= ,/m5 and pi=vt&. For convenience, we do not 
write the tildes over the nondimensional variables except 
where confusion might otherwise be generated. Thus, 
throughout most of this paper, (y1,u,l ,...) are the same as 
the nondimensional variables (&;,I ,...) in Eq. (53) and 
should not be confused with the original dimensional mo- 
ments defined and used in Eqs. (6)-( 12). 


We set our model in the usual sheared-slab geometry. 
In dimensionless units, this leads to 


VL =2;+$-$, Ln bv=-g+sx$ L SEE-. (55) 
s 


Denoting the gyroaveraged potential I’;‘* (b,) Q, = Y, we 
also define 


d a 
,,=,,+vq*v, vql=ixVY. 


Neglecting the parallel nonlinearities (which are 
higher order in E) but retaining the EX B nonlinearities 
and the nonlinear FLR terms, we may obtain a 4+2 gy- 
rofluid model: 


- 5 


(56) 


x+ kf: Vv l Vql +Jt”*lql +1;.V(Tll 
dull 


( 1 
+n+Y)=O, 


l 


i- 
5 


dTll ay 
-yg+4Tll +6Wq +qll )+ql ay’o, 


5 


n 
W3+~)TII 


i- 5 2 


+ JZI kll I q 411 =o, 
- 


(57) 


(58) 


(59) 
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-t ( 
;e +qil cl++; ) 1 


gzo, 


+-4”-22T1 +b’q, 
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(60) 


‘VUli +& vq)*Vq, +- 
c 5 


1 


+6-v BL TL +fq: Y + ,&I,/ ID, qL =o, 
(- I- - ’ 


(61) 
4 4 


Poisson’s equation (assuming quasineutrality and adia- 
batic electrons) is 


r0 
rw-w&l=,,,( N(b)n+fd: TI 


6 w ),-.- 


+ (ro- 1 )Y; 
8 


7 


(62) 


r= TdT,, qi= L,/L,, and L,‘= -a In Tdtlx. The ar- 
gument of the Bessel functions is b= (kzf k$). The mod- 
ified perpendicular Laplacian operators V: and V: are 
defined in Eqs. (34). The origins of the terms marked with 
underbraces are noted below. 


(1) Nonlinear FLR terms which arise from the diver- 
gence of (Jo). The usual nonlinear terms are included in 
the definition of d/dt. 


(2) The nondissipative part of the rII closure; 
/3,, =(32-9~)/(3n-8). 


(3) The dissipative part of the rII closure; Dll =2 
x &i/(3+8). 


(4) The r, closure; Or = G/2 and /31 = 1. 
(5) A model of nonlinear FLR phase mixing. The op- 


erators are defined in Eqs. (50) and (52). 
(6) In the absence of nonadiabatic electrons, the flux 


surface averaged potential must be explicitly subtracted to 
prevent nonphysical electron transport across rational sur- 
faces. 


(7) With (8), the expression for the perturbed particle 
space density, N(b) and D(b) are defined in Eqs. (38) and 
(39). 


(8) The usual ion polarization density. 
A simple (but still reasonably accurate) set of equa- 


tions consists of evolution equations for the density, paral- 
lel velocity, and parallel and perpendicular temperatures 
(the “3 + 1” model). In this model, the FLR phase mixing 
of the parallel velocity is modeled with a one-pole model, 
rather than a two-pole model, and the closures for qlt and 
q1 are found by taking the k,( vt)o, w.+ limit of Eqs. (59) 
and (6 1)) respectively. The result is 


*VT, +dv*,T~ +ih.4,, 
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d”li; dt+J’-,u,, +&V(T,, 


dTlt 
-p-N, T , ,  + i, l v2q 


+n+Y) =0, (64) 


+ ‘lit1 ay +-tizn,,- a’ 3+B” ik,, 1 Tt, =0, 


(65) 


a* 
- ay 


+qj&-lk,, I(6 TL +$: ‘Jf) =O. 
Poisson’s equation is not changed in this simpler 


model. 


IV. THE LOCAL, LINEAR DlSPERSlON RELATION 


It is useful to consider the local limit as a partial check 
of our model. We could derive the local dispersion relation 
for the 4+2 model by Fourier and Laplace transforming 
the linearized versions of Eqs. (56)-( 62). The result is a 
polynomial in w which may then be solved numerically. 
However, if equal numbers of parallel and perpendicular 
moments are kept, the dispersion relation may be factored 
into a form very similar to the familiar kinetic dispersion 
relation. For example, in dimensionless units, the disper- 
sion relation for the 4+4 model (see the Appendix) is 


--Si[ 5*+ (,*-;)gz4G, 1) =o. (67) 


The only approximation to the usual kinetic result is 
Z,(g), given in Ref. 1. It is a four-pole approximation to 
the plasma dispersion function Z(c). In this limit, the l?$/” 
FLR model is exact to all orders in k, p for n +n models 
(in the presence of temperature gradients, n> 3). With the 
aid of MATHEMATICA~‘~~~ MAPLE,~' we have derived the 
dispersion relations for each of the intermediate models 
(from 3 + 1 to 4+4). Except for the n + n models, the 
dispersion relations cannot be easily factored into recog- 
nizable terms. Rather than delve into alot of unpleasant 
algebra here, we will instead rely upon Figs. 7-9 to show a 
few important features of the local limit. 


In Fig. 7(a), the 3 + 3 and 3 + 1 models are compared 
to one branch of the local linear dispersion relation for 
“li=2, kll L,=O.l, and Ti= T,. Note that the agreement is 
good even for k,,pi> 1, where linear FLR effects are impor- 
tant. The improvement that may be obtained with addi- 
tional moments is shown in Fig. 7(b). This kind of im- 
provement, especially from the 3 + 1 to the 4 + 2 model, is 
quite typical of the local gyrofluid dispersion relations. 
Physically, it may be understood as follows: temperature 
tluctuations are quite important to the linear ITG dynam- 
ics, since the driving terms proportional to the background 
gradients appear in both the p, and ?“,, equations. In- 
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eluding the heat flux evolution equations provides two-pole 
models for the parallel and perpendicular temperature per- 
turbations. Figure 1 shows the improvement obtained as 
one moves from a one-pole model to a two-pole model of 
the expression 1 +&Z( 5). While this is not exactly the par- 
allel temperature response function, the improvement in 
the corresponding expression is comparable. 


Figure 8 compares the gyrofluid model to kinetic re- 
sults shown in a previous paper.3g The parameters are 
kl p=O.71, kll L,=O.O13, and Ti=T,. Above v-3.4, the 
kinetic analysis predicts no instability. The 3 + 3 gyrofluid 
dispersion relation closely matches this kinetic result, since 
Bq. (67) differs from Eq. ( 11) of Dong et al. 39 only in the 
plasma dispersion function. The limitations of the less ac- 
curate 3+ 1 gyrofluid model are made more apparent. 
While the 3-t 1 model reproduces the kinetic frequency 
with reasonable accuracy near qi=2, the real frequency 
does not match as well as vi increases, and the second 
branch of the dispersion relation is .overdamped. (For clar- 
ity, above qi= 3.5 we show the branch of the 3 + 1 disper- 
sion relation that corresponds to the marginally stable 
branch of the exact dispersion relation. There is another 
3 + 1 branch that remains very slightly unstable, with a 
different real frequency.) Based on this high-k, p, 
low-k11 L, example, we may expect to see the shortcomings 
of the 3+ 1 model in the sheared system at high k, p near 
the rational surface. However, if we later find surprising 
results with the 3+ 1 model, we may easily check them 
with a more accurate gyrofluid model. 


From the Iocal dispersion relation, we may also derive 
the marginal stability curve, vi vs kypi. We are able to 
recover the kinetic result40p41 exactly using the 3+3 or 
4+4 models, as shown in Fig. 9. Also shown are marginal 
stability curves derived from the 3 + 1 I’;‘” and e -b’2 mod- 
els, and the commonly used, particle fluid Taylor series 
approximations to {Jg). The latter involves only three 
equations, for ji, El1 , and Fll . For k, p= 1 the Taylor 
series curve crosses the v axis, an unphysical result. 


It is clear that the I’;” models more faithfully repre- 
sent the linear physics than does the e-b’2 model. Given 
the roughly comparable complexity of the two models- 
they are equally demanding to implement numerically- 
there is no reason to choose the less accurate FLR model. 
The PadC approximation, on the other hand, represents a 
clear improvement over the Taylor series model, and is just 
slightly more difficult to implement in a finite-difference 
code, requiring only a standard tridiagonal solver. 


V. LINEAR SHEARED SLAB RESULTS 


A. Pad6 FLR model 


While the Pad& model (described in Sec. III C 4) does 
not perform quite as well as the (Jo) = FA’* model in the 
large k,L p limit (Fig. 9), it is nevertheless well behaved, 
and has the advantage that it may be easily incorporated 
into existing finite-difference codes. Figure 10 compares a 
linear eigenmode obtained with this model to the exact 
kinetic solution and to the commonly used particle space 
Taylor series result for a typical case. The parameters are 


vi=29 LJL,=40.0, kypi=O.6, and Ti=T,. The Taylor 
series approximations for the FLR effects predict a much 
wider mode than linear gyrokinetic theory. The gyroki- 
netic code finds o=-0.049+0.039i, and the 4+2 PadC 
model gives w= -0.032+0.032i. This level of error is typ- 
ical of the Padt model. By way of comparison, the Taylor 
series model yields o= -0.170+0.05Oi. While the Padi 
FLR model still misses the real frequency by 35%, it is a 
substantial improvement over the Taylor series prediction. 
If simulations or analyses which include the full FLR ef- 
fects show that the long-wavelength modes tend to domi- 
nate the saturated spectrum, the errors for the short- 
wavelength modes may be tolerable for the 
(Jo) = ( 1 +b/2) -’ approximation. 


B. Full kinetic model 


Several years ago, Bakshi28 and Linsker29 pointed out a 
“kinematic term” related to the gyroaveraging of kll in 
systems with magnetic shear. All of the gyrofluid results 
presented below include this effect second order in kL p, 
sufficient accuracy to allow us to recover his Mode II,29 
which he showed to exist only in the presence of the kine- 
matic effect, and to be unstable for k,pi> 1. We have 
found, however, that, in practice, this effect is usually not 
significant for the majority of linear ITG eigenmodes, as 
the radial modifications do not extend beyond a very few 
gyroradii from the rational surface, and the frequency 
shifts are usually small. 


Typical sheared-slab results from the 3+ 1 model are 
shown in Fig. 11. The parameters are qi=2, LJL, =40, 
kypi=0*707,.and Ti=Tp The frequency found with Lin- 
sker’s gyrokinetic integral code is w = - 0.0674 + 0.04 14i; 
the 3 + 1 gyrofluid model yields w = -0.0528 +0.03 18i. 
Evolving the heat flux moments as well (the 4 + 2 model) 
improves the frequency prediction to w= -0.0674 
+O.O384i In Fig. 11 (c) we show the result from a widely 
used, particle space fluid model. The eigenmode is much 
broader than that found by either the gyrofluid or gyroki- 
netic codes, though qualitatively similar. The frequency 
predicted by this model, which uses a term cc Vi to model 
Landau damping and Taylor series expansions for the FLR 
effects, is w = - 0.35 + 0. 1Oi. 


With this comparison, we clearly show that Landau 
damping and FLR effects can dramatically affect the dy- 
namics of the ITG mode. We have found that both kinetic 
effects affect the linear ITG eigenmodes strongly, even in 
the small-k,p limit or away from marginal stability. In the 
latter case, since Landau damping is the only dissipation in 
the system, the fastest-growing eigenmodes tend to arrange 
themselves so that the volume-averaged fluid parameters 
(a/( kll ut) ) is never large. A good FLR model is needed 
even in the long-wavelength limit, since as k,pi-O, the 
linear eigenmodes develop more radial structure, so that 
b - 1. This tendency may be noted in Figs. 12 and 13, as 
the unstable modes for small kypi tend to have the charac- 
ter of 1=3,4. 


Linear estimates of x> Often attention is focused on the 
I=0 (where I is the radial mode number) mode in linear 
mixing-length studies. However, there is no physical or 
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FIG. 7. Local dispersion relation for vi=2, k,, L,=O.l, and T,= T, 


mathematical reason to exclude other eigenmodes from a 
mixing-length-type estimate, particularly if the fastest- 
growing or “largest” modes are not the I=0 modes. For 
most of the parameter space in which we have bench- 
marked our code (low Ti, moderate to weak shear, and 
r= 1), we find that other eigenmodes with comparable or 
larger average radial mode widths (despite the higher ra- 
dial mode number) often have significantly larger growth 
rates than the fundamental mode. Figures 12 and 13 illus- 
trate this point. 


First, a note on how to interpret these figures is in 
order. Since we solve the gyrofluid equations as an initial- 
value problem, the resulting eigenmode corresponds to the 
fastest-growing mode, as long as the equations are evolved 
long enough to allow that mode to dominate. Thus, for 
each value of k,p, the gyrofluid model yields a single so- 
Iution. We have not recovered the other branches of the 
dispersion relation by performing a Fourier transform of 


rli 


FIG. 8. Local dispersion relation for k, p=O.71, k,, L,=O.O13, and 
T,= T, 


the time series data, though this is certainly possible. 
Figure 12 shows all of the branches of the linear dis- 


persion relation for yi=2, LJL,=40, and Ti= T, which 
are at some point (for 0.1 < kypi < 1.1) fastest growing for 
the 43-2 gyrofluid model or the integral gyrokinetic code.29 
The gyrofluid equations successfully resolve the mode with 
the largest growth rate in each case. The I=0 mode is not 
the fastest-growing mode until k,pj> 1; for most of the 
parameter space, the fastest-growing mode is of odd parity, 
with an I= I character. 


For k,,pj=0,7, the fastest-growing mode in Fig. 12 is 
odd, with average radial mode width of A,= 1.9, where we 
define the average radial mode width as 


u 
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FIG. 9. Marginal stability curves for different FLR models. 
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Here, the angle brackets indicate a volume average. For the 
same parameters, the I=0 mode has AX= 1.4. Given the 
additional difference in growth rates, a simple mixing- 
length estimate (yA$ of the transport from these two 
modes differs by a factor of 3. At lower values of k,,pi, for 
which the I=0 growth rate is much smaller, the discrep- 
ancy can be greater than an order of magnitude. Even 
worse, an analysis which focused only on the I=0 mode 
would incorrectly conclude that the system was only 
weakly unstable for k,p,<O.3. 


Figure 13 shows the same information for the same 
parameters, except vi= 3 and the 3 + 1 model’is included. 
Also, the even and odd parity modes are shown on differ- 
ent panels for clarity. Again, the fastest-growing mode is 
odd for much of this region of parameter space, with the 
I=0 mode only becoming important at high kypP There is 
no single dominant radial eigenmode structure for the en- 
tire range of k,,pi. Figure 14(a) shows that the I==0 mode 
has the largest average radial mode width, yet the mixing- 
length estimate Of xi given by r/( e ) is largest for the I= 1 
mode for most values of kypi in this region of parameter 
space [Fig. 14(b)]. Again, we emphasize that our gyrofluid 
model picks out the fastest-growing mode for each set of 
parameters; it should be clear that all of the radial eigen- 
modes are present from Figs. 12 and 13. 


We also see from Figs. 13 and 14(b) that for these 
parameters, the peak of the mixing-length estimate of xi 
(at kL piGO.4) is downshifted 40% from the peak of the 
growth rate, which is at k, pi>O.6. The downshift is more 
or less pronounced for different parameters, but indicates 
that the longer-wavelength modes are probably more im- 
portant to transport than the simplest mixing-length argu- 
ments would suggest. 


At least two others factors complicate a linear mixing- 
length estimate. First, there may be even longer wave- 
length modes which are linearly damped or weakly unsta- 
ble yet which nevertheless play an important role in 
determining the nonlinear thermal transport. Second, fun- 
damentally nonlinear processes” may determine the rele- 
vant scales. Thus, we do not emphasize the mixing-length 
estimates here. We present them primarily to show that the 
gyrofluid equations compare very favorably with linear gy- 
rokinetic theory, and to point out the potential hazards of 
concentrating one’s linear analysis on a single unstable ral 
dial eigenmode. Having shown that our model performs 
satisfactorily in the linear regime, we may explore the non- 
linear physics with more confidence. 


VI. CONCLUSIONS 


Our goal has been to derive a fluid model that retains 
as much of the kinetic physics as possible, and to bench- 
mark the equations and our numerical codes with the ex- 
isting, well-developed linear gyrokinetic theory. We believe 
that our gyrofluid simulations will complement existing 
particle simulation efforts that are more fundamental and 
potentially more accurate. On a general note, we feel that 


our fluid approach. while certainly not appropriate for all 
problems, will be adequate for the investigation of tokamak 
turbulence, since ( 1) the nonlinear fluid equations express 
fundamental conservation laws which the turbulence must 
satisfy (conservation of particles, parallel momentum, par- 
allel and perpendicular energy, and more if higher mo- 
ments are retained), (2) they contain fairly accurate mul- 
tipole models of the kinetic linear propagator, and are able 
to produce the proper linear frequency and wave-number 
spectra, and (3) they contain the dominant nonlinearities 
(EX B and the related FLR nonlinearities) which couple 
these linear modes together to provide the nonlinear satu- 
ration mechanism for the turbulent, nonlinear system. 


We addressed several issues as we sought to extend the 
results of Ref. 1 from the shearless, drift-kinetic limit [their 
Eqs. ( 1 lff)] to the sheared-slab, gyrokinetic limit. First, we 
generalized the previous Landau damping closure to in- 
clude new perpendicular velocity moment equations. We 
derived eight guiding center moment equations (for n, ~11 , 
TII 2 411 2 T, r 413 r, 9 and s, ) and showed how to reduce 
them to as few as may be needed for a particular applica- 
tion. We noted that for ITG turbulence, a 3 + 1 model (n, 
~11 , TII , and TI ) probably provides sufficient accuracy. 


Second, we discussed how to approximate the velocity 
space averages of gyroaveraged quantities. We showed that 
the usual Taylor series approximations to these terms are 
inappropriate for numerical studies of ITG turbulence, as 
the radial grid spacing required to resolve the dynamics 
intrinsically involves modes with kl p> 1, for which the 
Taylor series approximations are inadequate. *We presented 
two FLR models of varying complexity and utility, each 
second-order accurate in kL p, and well behaved for 
k, p,l. 


Our most satisfactory model, the I’:” model, is lin- 
early exact in the absence of magnetic shear if an equal 
number of parallel and perpendicular moments are kept. It 
can be easily implemented in existing spectral codes, as it 
requires only simple modifications of the perpendicular La- 
placians and .of Poisson’s equation. These modifications 
also reduce the stiffness of the system, as the modified 
Laplacian operators are bounded by -0.5 ‘as k, p-+ CO, 
With this FLR model in the gyrofluid equations, we match 
well the linear gyrokinetic predictions29739 of frequencies, 
growth rates, and mode structures even near marginal sta- 
bility, where the ITG mode is known to be strongly af- 
fected by kinetic effects. 


We also outlined an FLR model more suitable for 
finite-difference applications, the Pade model. This model 
reproduces the kinetic growth rates to within only -25% 
accuracy in the regime in which we benchmarked its per- 
formance. However, we showed that with it, one may re- 
cover linear gyrokinetic eigenmodes with good accuracy. 
Like the IA’” model, the Pad6 model reduces the stiffness 
of the system. 


Next, we described a new nonlinear, FLR phase- 
mixing effect. This perpendicular phase-mixing process is 
analogous to parallel phase mixing, deriving from the 
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V l (JOvEF1 ) term of Eq. ( 1) , just as Landau damping de- 
rives from the VI, (oil F,) term. It may be as important as 
the Hasegawa-Mima’ polarization drift nonlinearity when 
Tic T,, as it is cc kf [ $kXk’ I. It should provide an 
FLR-induced hyperviscositylike sink of turbulent energy 
for k, p> 1. We presented a gyrofluid model that captures 
the qualitative features of the resulting nonlinear gyroki- 
netic response, though we noted that it is a difficult effect to 
model accurately with fluid equations. We expect this ef- 
fect to reduce the xi we eventually find with our simula- 
tions. 


In carrying out the derivation of the new nonlinear 
gyrofluid terms, we showed a fairly general way to proceed 
when trying to model kinetic effects with fluid equations. 
For example, using the same method, one could find fluid 
models of the precessional drift resonance, cyclotron reso- 
nances, or the toroidal drift resonance. The latter has in 
fact already been accomplished.‘5,‘6 Additional simpler 
physics effects, such as nonadiabatic electrons and sheared 
equilibrium flows, have been added to this model with no 
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FIG. 10. Electrostatic potential (arb. units) of the fastest-growing mode 
for q,=Z, L/.&=40, k,p,=O.6, and r,= T,: (a) gyrokinetic, (b) gyro- 
fluid (Padi 4+2), and (c) Taylor series. 


complications; results will be reported in future publica- 
tion. 


Finally, we showed a few of the linear, numerical 
benchmarks we have carried out. Utilizing the kinetic 
models described above, we found excellent agreement 
with linear gyrokinetic theory. Previous fluid estimates of 
the linear frequencies and mode widths were generally too 
large by factors of -2 and overestimated the nonlinear 
thermal flux by a factor of 10.” From the evidence we 
presented here, we conclude that the 3 + 1, Ir)‘2 model is 
probably sufficiently accurate for the study of ITG turbu- 
lence. In any event, we showed that our gyrofluid systems 
which retain more moments do become more accurate. 
Thus, we may (for example) use the 4 + 2 model to check 
nonlinear results obtained from the 3 + 1 model for consis- 
tency. 


In comparing with linear gyrokinetic theory, we 
pointed out that concentrating on a single radial eigen- 
mode is likely to be misleading. We noted that mixing- 
length estimates can vary widely depending on which 
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mode is selected, making such estimates uncertain unless a 
reliable selection criterion can be developed. Thus, we have 
begun nonlinear investigations of turbulent, nonlinear 
plasma phenomena numerically and analytically within 
this extended fluid paradigm to determine the scaling of xi 
with the nondimensional parameters of the problem. 


Note added in prooj To the “ultimate” gyrofluid model 
described in the Introduction, we would add the electro- 
magnetic generalizations of the fluid-kinetic closures that 
have been linearly investigated by Chang and Callen4.’ and 
by Hedrick and Leboeuf.42 
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APPENDIX: 43-4 GYROFLUID MODEL 


In this appendix, we present the nonlinear 4+4 (n, 


(Al) 


uII 7 TII 7 ~111 3 T, 5 41 , ~1 9 and sl ) gyrofluid model for 
completeness. While most problems probably do not re- 
quire the accuracy afforded by this model, it is nevertheless 
useful to show that our closure schemes improve as more 
moments are retained. The nonlinear 4+4 model equa- 
tions are 


l Vq, +A’-z,qL -th*V(T,, +n+Y)=O, 


(AZ) 


(4431 
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(A8) 
Here gL is defined by the relation 


(so that ~3’~ ,=Q ,-T, 1). Poisson’s equation [Eq. (62)] 
is unaffected by the additional moments. 
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