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Abstract

Here is the abstract.

1 First section

A general linear regression equation can be written in the form:

y =
∑

i

aixi = ~a · ~x

[Bevington tends to separate out a constant term, but a formula of the form y =
a0 + a1x can always be written in this form by defining x0 = 1, and I think this form
is more compact and simpler.] A convenient way to derive the error propagation
formulas is to assume that each regression coefficient ai = āi + δai, where āi is the
true value of ai, and δai is a random variable that represents the uncertainty in ai.
δai has a mean of 0 and a variance of σ2

ai. I.e. upon ensemble averaging we have

〈ai〉 = āi

and
〈(ai − āi)

2〉 = 〈(δai)
2〉 = σ2

ai

And of course the mean value of y is the trivial result

〈y〉 = ȳ =
∑

i

āixi

Given a multiple regression formula, what is the uncertainty in the predicted y
(which might be the H-mode power threshold) for a new set of parameters ~x (which
might represent ITER for example, or which might represent C-MOD if we are trying
to predict C-MOD from the rest of the database)? The uncertainty in y is the square
root of

σ2
y = 〈(y − ȳ)2〉 = 〈(∑

i

δaixi)
2〉

= 〈(∑
i

δaixi)(
∑
j

δajxj)〉
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Or
σ2

y =
∑

i

∑
j

xi〈δaiδaj〉xj

=
∑

i

∑
j

xiσ
2
a,i,jxj

= ~x · ~~σ2
a · ~x (1)

And the important point to remember is that the error in the i’th coefficient may
be correlated with the error in the j’th coefficient so in general one has to keep this
full matrix. To check this result, we note that in the 2-D limit, this reproduces one
of Bevington’s summary formulas for error propagation. On p. 64 of the original
edition of his book, at the end of chapter 4 on propagation of errors, he notes that
for the formula x = au ± bv, where a and b are fixed constants but u and v have
uncertainties, then the uncertainty in x is given by

σ2
x = a2σ2

u + b2σ2
v + 2abσ2

uv

This is equivalent to Eq. (1). [I am using Bevington’s early Fortran edition, where
Bevington is sole author. There is a later edition that has programs in Basic instead
of Fortran I think, and I think it is written posthumously with a co-author.]

To make sure we all understand, I will use some standard notation for linear
regression as given in a tutorial by Otto J.W.F. Kardaun and Andreas Kus, “Basic
Probability Theory and Statistics for Experimental Plasmas Physics” (IPP 5/68,
September 1996, Max-Planck-Institut Fur Plasmaphysik). Starting with Eq. 3.3 on
p. 60, a standard set of data for regression can be written as

~Y =
~~X~α + ~E

where Yi is the i’th observation of the dependent variable, Xij is the set of j indepen-
dent variables for the i’th observation (and the first independent variable is always
1 to represent the constant offset term), and Ei is the error on the i’th observation.
The standard linear regression formula for the estimate of the value of the coefficients
~α that minimizes the RMS error is given by Kardaun Eq. 3.13:

~̂α = (
~~X

t ~~X)−1 ~~X
t
~Y

and the covariance matrix for ~α, which gives the uncertainties in the αi’s and the
correlations between those uncertainties, is given by Kardaun Eq. 3.15:

~~Var(~̂α) = (
~~X

t ~~X)−1σ2

where the standard assumption is that σ2 is estimated from the errors as σ2 =∑
i E

2
i /(N − p − 1), where N is the number of independent observations and (p+1)

is the number of fit coefficients αj. This variance matrix is what I define as ~~σ2
a in

Eq. (1) (the ~a I used in deriving Eq. (1) is the same as Kardaun’s ~α).
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Kardaun’s tutorial show various limiting cases of this formula, and his Fig 3.3
illustrates the main point that the uncertainty is smallest if you evaluate x in the
middle of the data base, but increases as you extrapolate. A trivial limit to check
(which I think is Kardaun’s Case 1 on p. 66) is the 0-d case, where there is a single
unknown parameter α1 = α. In this case Xi1 = 1, and one finds that

~~X
t ~~X = N

so V ar(α) = σ2/N . This is the standard result that if you have N observations, the
uncertainty in the mean is less than the scatter of the N observations by a factor of
1/
√

N .
To make sure you understand these results, another check is in the 1-D case of

simple least-squares fit to a straight line. The result is that for an equation of the
form y = a + bx, the uncertainty in a predicted ŷ when extrapolated to x̂, is the
square root of

σ2
ŷ =

σ2

N

[
1 + λ2

]
(2)

where

λ =
x̂− x̄

σx

is the distance being extrapolated from the center of the database, in units of standard
deviations over which x has been varied. I.e., x̄ =

∑
i xi/N and σ2

x =
∑

i(xi − x̄)2/N .
One can get this same result from Bevington’s summary formulas at the end of his
Chapter 6 (on least squares fit to a straight line) by combining his formulas for σ2

a and
σ2

b in the appropriate way, for the case where the x variable has been redefined so that
x̄ = 0. To get the full formula of Eq. (2), one would need to generalize Bevington’s
calculation to include the cross-correlation between the errors in a and b (in general
the cross-correlation σ2

ab is nonzero unless x̄ = 0, and Bevington neglected to write
down this cross-correlation formula for the 1-D case). For multiple regression, he does
give the covariance matrix, but again in a special form separating out the a0 term. I
think the above formulas are in a simpler form.
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