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The �rst toroidal, gyrokinetic, electromagnetic simulations
of small scale plasma turbulence are presented. The turbu-
lence considered is driven by gradients in the electron tem-
perature. It is found that \ETG" turbulence can induce ex-
perimentally relevant thermal losses in magnetic con�nement
fusion devices. For typical tokamak parameters, the transport
is essentially electrostatic in character. The simulation results
are qualitatively consistent with a model that balances lin-
ear and secondary mode growth rates. Signi�cant streamer-
dominated transport at long wavelengths occurs because the
secondary modes that produce saturation become weak in the
ETG limit.

PACS: 52.35.Ra, 52.35.Kt, 52.65.Tt

Understanding and controlling transport which arises
from small scale turbulence in magnetized plasma is a
central challenge for magnetic con�nement fusion re-
search. Here, we present the �rst toroidal, electromag-
netic, gyrokinetic simulations of turbulence driven by
electron temperature gradients. Experimentally signi�-
cant thermal transport is observed when long wavelength
toroidal ETG instabilities are unstable. A straightfor-
ward model provides insight into why this happens.
The equations which describe electrostatic microinsta-

bilities driven by electron temperature gradients [1{4]
(ETG) and by ion temperature gradients (ITG) are very
similar. In fact, the linear instabilities are exactly the
same, except that the species labels for length and time
scales are exchanged. The length scale for each is the
Larmor radius of the non-adiabatic species, i.e., �e and
�i respectively. The time scales for the two modes
are LTe=vte and LTi=vti, where LTs and vts are the
equilibrium temperature gradient scale length and ther-
mal velocity for species s. In a typical fusion plasma,
�i � 60�e and vte � 60vti, so that electron scale turbu-
lence is characterized by shorter wavelengths and higher
frequencies. Simple mixing length arguments suggest
�s � �2svts=LTs � �s0, so that �i � 60�e.
This disparity in anomalous electron and ion ther-

mal transport is not typically observed in laboratory ex-
periments, suggesting that there could be an important
di�erence between electron- and ion-scale physics. In
part, the absence of this disparity arises because signi�-
cant electron transport is driven by ion-scale turbulence,
mostly as a result of the non-adiabatic response of elec-
trons which are trapped in low magnetic �eld regions.
This is the origin of electron thermal transport in the
IFS/PPPL [5] model, for example. However, there are

experimental cases [6,7] in which distinctly anomalous
electron thermal transport is observed without accompa-
nying anomalous ion thermal transport or ion-scale 
uc-
tuations. Here, we address the basic questions of whether
ETG turbulence is a reasonable candidate for explaining
experimental observations such as these, and if so, why.
ETG instabilities are characterized by k��e � 1, where

k� is a typical poloidal wavenumber of an eddy. Because
k?�i � 1, the ion response to a perturbation is adia-
batic: ni � exp f�Zjej�=Tig: As a consequence, ETG
turbulence drives no particle transport. Instead, it pro-
duces primarily electron thermal 
ux and possibly cur-
rent di�usion. Here, k? is a typical wavenumber of the
perturbation in the plane perpendicular to the magnetic
�eld, Zjej is the ion charge, � is the 
uctuating electro-
static potential, and Ti is the ion temperature.
The literature suggests that ETG transport could be

(a) of modest size, by analogy [8] with electrostatic ITG
simulations (�e � �e0), (b) near experimental levels be-
cause of electromagnetic e�ects, with �e � �e0=� [2{4],
where � is the ratio of plasma and magnetic pressures,
or (c) potentially very large, because of the formation
of radially extended eddies (\streamers") [9,10] whose
growth is limited by secondary instabilities. Our sim-
ulations support the latter view. We also identify the
dominant secondary instabilities which lead to nonlinear
saturation, and the tertiary instabilities that limit the
amplitude of zonal 
ows.
Electromagnetic, weakly collisional ETG turbulence

satis�es the nonlinear gyrokinetic [11,12] ordering. We
use two independently developed parallel codes [13] to
simulate the gyrokinetic Vlasov-Maxwell system, GENE

and GS2. Each evolves a �ve dimensional perturbed dis-
tribution function f = f(x; �; �) on a �xed grid. GENE is
the gyrokinetic generalization of a drift kinetic code [14].
GS2 is the nonlinear generalization of a standard gyroki-
netic microstability code [15]. In each code, �eld-line
following coordinates (x; y; z) are used to describe tur-
bulence in a tube of magnetic 
ux [16,10,17]. Periodic
boundary conditions which take into account the twist of
the magnetic �eld are used to prevent quasilinear 
atten-
ing of the driving gradients [16]. The simulation results
presented here do not include ÆBk since � � 1; GENE sim-
ulations also ignore trapped particles. We employ a high
aspect ratio MHD equilibrium characterized by magnetic
shear ŝ, normalized beta gradient �, and minor/major ra-
dius r=R. Reference parameters are safety factor q = 1:4,
ŝ = 0:8, R=LT = 6:9, R=Ln = 2:2, Ti = Te, Ze� = 1,
� = 0:45, and r=R = 0:18. Here, L is an equilibrium
temperature or density scale length. A typical simula-
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tion domain has Lx = 175�e, with 1 < Lx=Ly < 4, and
�x = �y = 1:8�e. Along the �eld line, there are 16-32
gridpoints per 2�. The velocity space grid is typically
50 � 10. Strongly turbulent ETG runs require � 105

dynamically adjusted time steps.
The turbulent electric and magnetic �elds induce radial

thermal transport Q (de�ned in Ref. [13]). The thermal
di�usivity is de�ned by � = Q=(�n(0)rT (0)), in units of
�s0. As a check on the numerics, we have successfully
benchmarked GS2 and GENE for parameters similar to the
reference parameters. Also, GS2 reproduces [lower curve,
Fig. (1), �i = 0:8�i0] the transport measured in gyroki-
netic particle-in-cell simulations [18] of electrostatic ITG
turbulence.
The turbulent thermal di�usivities vs. time shown in

Fig. (1) are typical. The upper curve (normalized to �e0)
is from an electromagnetic ETG simulation. The lower
curve (normalized to �i0) is from an electrostatic (� = 0)
ITG simulation. The larger normalized electron thermal

ux indicates that turbulence on ion and electron scales
is essentially di�erent, and that ETG turbulence may
be strong enough to induce thermal losses of the same
order as ITG turbulence. We observe that large nor-
malized ETG thermal transport is associated with high
amplitude, radially elongated streamers at the outboard
midplane in the turbulent steady state [Fig. (2)].
The simulations do not support the model of Ref. [19],

which predicts large ETG transport from the magnetic
nonlinearity. In 16 �nite � simulations [Fig. (3)], each
with � � 10%, we observe that the ETG heat 
ux is
predominantly electrostatic, even when the peak in the

uctuation spectrum lies close to k?Æ, where Æ is the
collisionless skip depth. The contribution from magnetic

utter is at most a few percent of the total heat 
ux.
We now turn to a model related to ideas in Refs. [10,20]

which provides insight into the simulation results. Given
a �nite amplitude linear eigenmode (the \primary" in-
stability), we identify \secondary" instabilities, whose
growth rates increase with the amplitude of the primary.
The secondary instabilities eventually grow faster than
the primary mode, until they reach nonlinear amplitudes
and saturate the primary mode. Sheared zonal 
ows are
created from the breakup of the primary modes. These

ows contain a linearly undamped component that could
persist in the turbulent state, lowering the saturation
level [21,18,22]. We also identify \tertiary" instabilities,
which limit the amplitude of the zonal 
ows. Tertiary
growth rates are proportional to the amplitude of the
zonal 
ows. In contrast to the ITG system [22], the dy-
namics of secondary and tertiary modes in the ETG sys-
tem are similar.
First addressing the dynamics of secondary modes, we

consider a simple limit of electron gyro
uid equations
[23]. In the limit of a large amplitude primary, the
sound wave coupling and background gradients may be
neglected. The guiding center electron density, perpen-
dicular temperature, and electrostatic potential satisfy

dn

dt
+

1

2

�r2
? ; T?

�
= 0 ; n =

�
� � (1 + �)r2

?

�
 ; (1)

and dT?=dt = 0, where d=dt = @=@t + [ ; �], and terms
of order (k?�)

4 have been neglected. (Earlier treatments
[9,10] along the lines of the present model neglected the
polarization drift; without it, the present secondary in-
stability is missing, so that simulations may fail to satu-
rate.) As in Ref. [22], the relative phase of the temper-
ature and density perturbations in the ETG eigenmode
is such that the perpendicular temperature dynamics do
not signi�cantly a�ect the results, so we neglect T? here.
Length scales are normalized to �e, � = Ze�Te0=Ti0,
n = nphysLTe=(�en0), and  = e physLTe=(�eTe0).
Ignoring magnetic shear, we consider the lineariza-

tion  =  p(y) + ~ (y) exp(
t + ikxx), in which a crude
model of the primary mode structure is given by  p(y) =
 p0 cos(kpy). Here, kp represents the primary's poloidal
wavenumber and  p0 determines its amplitude. One �nds

��
�

1 + �

�

 + k2x�


�
~ = @y

h
�
2@y( ~ =�
)

i
(2)

with �
 = 
�ikx 0p(y). The ETG secondary equation dif-
fers from conventional Kelvin-Helmholtz (KH) because
of the �rst term on the left-hand side (the ion response).
Balancing this term with the other terms in Eq. (2) leads
to a maximum growth rate � k4p p0 for kx � kp. This

growth rate is a factor of (k?�e)
2 smaller than conven-

tional KH. Relative to ITG modes, whose secondary in-
stability growth rates exceed conventional KH [22], sec-
ondary instabilities of ETG modes are quite weak, par-
ticularly for small k?�e. This weakening of the secondary
instabilities is the main reason that ETG turbulence sat-
urates at high normalized levels for some parameters.
A closed form solution of Eq. (2) exists in the limit

(kx � kp � 1), with eigenvalue 
 = �k4p(1 + ��1) p0,

� = (kx=kp)
2=
p
2. For the less restrictive limit kp � 1,

� may be found numerically [Fig. (4)]. Also shown is
the radial component of the velocity of the eigenmode
for kx=kp = 0:75, with kp = 0:1. Boundary layers form
at the nulls  0p(y) = �kp p0 sin(kpy), where the coeÆ-
cient of the highest derivative term, �
 = 
 � ikx 

0
p(y),

becomes very small (�
 = 
). The width of these layers is
given by kp�y � 
=(kxkp p0) � 0:2(1+ ��1)k2p � 1. To
accurately resolve these quasi-singular regions for a given
kp�e requires ky�

max
e � (kp�e)

�1, a challenging require-
ment in a simulation with unstable toroidal ETG modes
in the range of kp�e � 0:1. Fortunately, one can show
the growth rate is insensitive to the detailed eigenmode
stucture in these singular regions. Moreover, higher or-
der FLR e�ects, neglected in this simple model, further
reduce the sensitivity.
For ŝ 6= 0, the primary modes twist with the �eld lines,

causing the physical k2? to exceed k2x + k2y. This e�ect,
which tends to enhance the growth rate of secondary
modes, is reduced by the decrease in the primary mode
amplitude along the �eld lines, and by higher order FLR
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terms not included here. We �nd the net result is typi-
cally a modest enhancement in 
 and unstable kx. To un-
derstand this, the previous analysis can be generalized to
allow for @z 6= 0. Again considering large primary mode
amplitudes, one �nds the leading order growth rates of
the 2D secondary modes are given by the generalization
of Eq. (2) with @2x + @2y ! r2

? = (@x + ŝ�@y)
2 + @2y :

��
�

1 + �

�

 + (1 + ŝ2�2)�
00

�
~ = �
r2

?
~ ; (3)

where � = 2�qRz. The eigenmodes modes are localized
in � (or z) at �-values satisfying @�
 = 0. Applying

the transformation  ̂ = e�icy ~ , c = �kxŝ�=(1 + ŝ2�2)

to Eq. (3) and de�ning k̂2x = k2x=(1 + ŝ2�2) and k̂2p =

k2p(1 + ŝ2�2), Eq. (2) is recovered with hatted variables.
Consistent with this, solving Eq. (3) numerically with
periodic boundary conditions, we obtain maxima in the

growth rate at discrete values of � and k̂x � k̂p, with


max � k̂4p p0 (the same as before). Maximizing this over
a toroidal ETG mode eigenfunction typically yields less
than a factor of two enhancement in 
 and the associated
unstable kx.
The predictions of the models just described are in rea-

sonable agreement with the secondary instability growth
rates observed in nonlinear gyrokinetic ETG simula-
tions. For example, for the reference parameters (except
� = � = 0) with kp�e = 0:2 and kx�e = 0:5, we �nd
� � 0:3, compared with the expected � � 0:2.
Balancing the primary and secondary mode growth

rates produces a scaling for the normalized saturation
level of the primary modes, �sat � 
l=k

4
?
. For compari-

son with nonlinear simulation results described in more
detail elsewhere [13], we maximize this expression over kx
and ky using the growth rate of the toroidal ETG mode,
and evaluating k4

?
by squaring the average k2

?
de�ned in

Ref. [5]. Representative curves are shown in Fig. (5). The
simple model predicts the region of high transport seen
in Fig. (3) reasonably well. Physically, high transport is
predicted when the dominant modes shift to longer wave-
lengths. For 
 � p

!d!��e � kkvt, instability requires

kp�e >� LT =(qR). Small Ln=R can be strongly stabilizing

[24].
Without curvature, we �nd that electromagnetic ETG

turbulence saturates at low levels, �e � �e0. We note
that unlike toroidal modes, slab eigenmodes necessarily
have �nite kz 6= 0. As a result, the saturation of slab
modes may be controlled by a di�erent secondary insta-
bility [10]. Because our slab simulations are qualitatively
di�erent and saturate at low levels, we did not include
slab ETG instabilities in the maximization of 
=k4? de-
scribed above.
The nonlinear development of the secondary instabil-

ities leads to the production of zonal 
ows, which are
subject to tertiary instabilities. Ignoring the e�ects of
background gradients, rotational symmetry of Eq. (1)
in the perpendicular plane means that Eq. (2) also de-

scribes tertiary instabilities in ETG turbulence, so that
secondary and tertiary modes in ETG turbulence are
both weak. By contrast, the nature of the adiabatic elec-
tron response in ITG turbulence breaks this symmetry,
so that while tertiary instabilities in the ITG system are
weak, the secondary instabilities are strong. [22] This is
consistent with the larger normalized transport observed
in ETG simulations. To date, we have not observed zonal

ow accumulation in simulations with adiabatic ions.
To summarize, we have addressed questions raised by

experimental evidence of anomalous electron transport
in the absence of ion-scale turbulence. We presented
gyrokinetic simulations of ETG turbulence. Our simu-
lations are fully toroidal and electromagnetic. We have
shown that ETG turbulence, which cannot be easily sta-
bilized by equilibrium scale E�B shear because of much
higher growth rates, and despite its characteristic small
scales, is a plausible candidate for explaining these ex-
perimental observations. The high normalized satura-
tion amplitude is associated with the observation of ra-
dially extended streamers. By identifying the important
secondary and tertiary instabilities, we explained key fea-
tures of these structures, and thus explained why normal-
ized ETG transport can be much larger than normalized
ITG transport, despite the fact that the linear instabil-
ities are mathematically identical. Signi�cant streamer-
dominated transport at long wavelengths occurs because
the secondary modes that produce saturation become
weak in the ETG limit.
Important questions remain unanswered. We have not

undertaken quantitative comparisons with experimental
data. Our model implies the need for careful box-size
scalings and multiple species simulations to pin down the
actual predicted value of �ETGe . Finally, interactions be-
tween ETG turbulence and longer wavelength instabili-
ties require investigation.
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FIG. 1. �ETGe (upper curve) and �ITGi (lower curve) for
similar parameters.

FIG. 2. Characteristic � contours in the outboard x-y
plane. This snapshot was taken at the end of the ETG run
shown in Fig. 1. The �gure is 256�e � 64�e.
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FIG. 3. (a) Nonlinear simulation results for the reference
parameters as a function of ŝ and �.

FIG. 4. Secondary instability of long wavelength ETG
modes. (a) Growth rate (b) eigenmode (for kx=kp = 0:75).

FIG. 5. 
=k4?, evaluated for the reference parameters, with
varying ŝ and �.
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