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Definition of Poisson bracket

Bill wrote convective time derivative in the gyrokinetic equation including the
nonlinearity as:
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Simplifying to x = ¢ (the electrostatic potential), the “Poisson bracket” can be
written as
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(once normalizations put back in).



Borrowing from previous slides:

p.1-9: simple physical picture of “bad-curvature” drive
p. 15 small scale fluctuations
p. 17 geometry start



Aligning coordinate system with magnetic field reduces resolution require-
ments by a factor of p, = p/L. Very efficient.

http://w3.pppl.gov/i~mbeer/ictpl.ps
p.17/18 flux tube coordinates and annular toroidal wedge equivalent

If flux tube has a toroidal width of 27/n,, and a radial extent from the ¢ = ¢,
surface to the ¢ = ¢; + mg/ng, then the flux-tube domain is mathematically ex-
actly equivalent to simulating a toroidal wedge of a toroidal annulus (a slice of
a hollow Bundt cake).

Toroidal periodicity on wedge means effectively simulating n = 0, ng, 2ng, 3ng, . . ..
l.e., n = 87 mode similar to n = 86 mode, can use coarser grid in kg = m/r = nq/r.

Example: ny, = 10, radius from ¢ = 2.2 to ¢ = 2.3, kgp =~ (m/r)p = 0.1,0.2,0.3, ... for

a/p = 400, or
a r .
ng ~ — min(kgpre
Pref aq ( f)



http://w3.pppl.gov/~mbeer/ictp1.ps

Because turbulent eddies are so extended along field lines, while having a short
correlation length perpendicular to the field line, it is more natural to think in
terms of elongated flux-tube simulation domain. In this case these quantiza-
tion/periodicity constraints aren’t really relevant in most cases of turbulent in-
terest (see papers by Cowley, Kulsrud, and Sudan, and Beer, Cowley, Hammett,
etc.).

p. 16: Key is to make the box more than a few decorrelation lengths in all direc-
tions so opposite sides of box are random with respect to each other. Then can
assume statistical homogeneity: the statistics of the range of sizes of eddies
that go in and out one side of the box is the same as at the other side of the box.

Use this “statistical similarity” to assume exact periodicity. Provides natural
boundary conditions for small scale homogeneous turbulence.



Standard flux-tube simulations make further assumptions for simplicity: geo-
metrical quantities vary along field line but are assumed to not vary much across
the width of a thin flux tube. For example assume |B| is constant in directions
perpendicular to the flux tube when calculating Jy(k,v, /), etc. [Paper by Adil
Hassam et.al. discuss extension of usual flux-tube geometry to include terms
needed to get Stringer spin-up.]

Though constant gradients kept in terms like w,r o< V(T'), variations of equilib-
rium T(r) across box neglected if it appears without gradient (like in gyroradius

for Bessel functions)
T(r)
Though background tem-

perature gradient is con-
stant on scale of box,
local VT (r,t) allowed to
self-consistently fluctuate.

These are standard, widely-used, two-scale/periodic approximations, going
back to ballooning mode theory, Hasegawa-Mima, homogeneous turbulence
simulations in Navier-Stokes fluids, Balbus-Hawley shearing-box simulations of
Magneto-Rotational-Instability in astrophysical accretion disks...



Flux-tube also natural for full implementation of “standard gyrokinetics”. Global
codes are starting to investigate what are thought to be some of the most im-
portant finite p, corrections, but finite p, corrections in the gyrokinetic equation
or in the assumed equilibrium have not been completely worked out.

?7? Describe Waltz picture of ExB shear p, effects, showing gyro-Bohm, Bohm,
etc. regimes...

E x B shear suppression of turbulence model based on BDT theory, Waltz ap-
proximation:

YEzB
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where ~;;,, ~ v;/L, and

(using enFE, ~ Op/0r), leads to

Has gyro-Bohm, Bohm, worse-than-Bohm (Goldston ;-) ) regimes

Similar stabilizing effects if radial derivative of poloidal group velocity w/ky ~
w/ kg included. Global codes are studying this.



Waltz-Candy source term seems reasoanble to me (though | haven’t checked
all the details of it). Given time-averaged profiles T(r),ny(r), etc. Microinsta-
bilities would cause these profiles to relax to be uniform. If one is very close
to marginal stability, only a little bit of relaxation would shut off the turbulence.
There must be some source/sink terms (neutral beams, RF, radiation, charge-
exchange losses), that maintains the profiles against turbulent diffusion. Waltz
adds a time-averaged source to do this (beam heating, etc. is constant in time),

whatever is required to match the time-averaged profiles 7\ (r) etc. given by the
experiments..

Profiles are allowed to fluctuate in time self-consistently.

Check: Waltz-Candy compared bounded simulation using compensating
sources/sinks with periodic simulation using no sources/sinks and got good
agreement.



p.15: characteristics of:
ITG (lon Temperature Gradient driven instability)
TEM (Trapped electron mode)



Antonsen et.al. picture of why negative magnetic shear is stabilizing:

By(r)
(1+ fcosf)(1+ Alcost)

Bpol ~

Squeezing of flux surfaces by Shafranov
shift A" = dRy/dr ~ —(r/R)(Bys + ¢;/2) can
increase B, a lot.

Local magnetic shear o« (d/dr)B,;
(d/dr)B,. leads to important parameter o =
—Rq*df3/dr of the s — o model. L

High o gives rise to a local negative mag-
netic shear.

Probably dominant stabilizing term in ST’s.
See recent paper by Clarisse Bourdelle using GS2 to study various effects:

http://w3.pppl.gov/ hammett/gyrofluid/papers/2002/bp clarisse.pdf


http://w3.pppl.gov/~hammett/gyrofluid/papers/2002/bp_clarisse.pdf

Emily Belli has studied other shaping effects, finds radial derivative of elonga-
tion is more important that elongation itself, etc.:



