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Compiled with the hope that a record of the
random things people do around here can save
some duplication of effort -- except for fun.
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Here is some little known data which may be of interest to
computer hackers. The items and examples are so sketchy that to
~ecipher them may require more sincerity and curiosity than a
non-hacker can muster. Doubtless, little of this is new, but
nowadays it's hard to tell. So we must be content to give you an
insiaht, or save you some cycles, and to welcome further
contributions of items, new or used.

The classification of items into sections is even more illogical
than necessary. This is because later elaborations tend to shift
perspective on many items, and this elaboration will (hopefully)
continue after pUblication, since this text is retained in
"machinable" form. '~e foraive in advance anyone deterred by this
wretched typography.

People referred to are
from the A. I. Lab:

Marvin Minsky
Bill Gosper
Michael Beeler
John Roe
Richard Stallman
Jerry Freiberg

once at the A. I. Lab but now
Jan Kok
Rici Liknaitzky
Peter Samson
Roger Banks
Mike Paterson

Rich Schroeppel
Michael Speciner
Gerald Sussman
Joe Cohen
David '~al tz
David Silver

elsewhere:
William Henneman
George Mitchell
Stuart Nelson
Rollo Silver

at Digital Equipment Corporation:
Jud Lenard Dave Plumer
Ben Gurley (deceased) Steve Root

elsewhere at M.I.T.:
Gene Salamin
Eric Jensen
Edward Fredkin

PDP-I hackers
Frances Yao

once at M.I.T., but now elsewhere:
Jackson Wright Steve Brown
Malcolm Rayfield

in France:
Marco Schutzenberger Henry Cohen

at Computer Corporation of America: Bill Mann

at BBN: Robert Clements



CAVEATS:
Some of this material is very inside
excuse cryptic references.
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many readers will have to

The label "PROBLEM" ~oes not always mean exercise;
if no solution is given, it means we couldn't solve it.
If you solve a problem in here, let us know.

Unless otherwise stated, all computer programs are in PDP-6/l0
assembly language.
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*********************************************
GEOMETRY, ALGeBRA, CALCULUS
*********************************************
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ITEM 1 (Schroeppel):
(1/3)! and (2/3)! are interexpressible.
(1/4)! and (3/4) 1 are interexpressible.
Thus these two pairs are of dimensionality one.
(1/10)! and (2/l0)! are sufficient to express (N/lO)! for all N.
(1/12)! and (2/l2)! are sufficient to express (N/12) I for all N.
(1/3)! and (1/4) I are sufficient to express (N/12) 1 for all N.
Thus the three cases above are of dimensionality two.
PROBLEM: Find some order to this dimensionality business.
The reflection and multiplication formulas:

Z!(-Z)! = nZ/sin nZ

(N-I)/2
( 2n)

-NZ-l/2
N (NZ)! = Z! (Z-l/N) I (Z-2/N) 1 ••• (Z- (N-I) /N) I

ITEM 2 (Jan Kok):
PROBLEM: Given a regular n-gon with all diagonals drawn, how many
regions are there? In particular, how many triple (or N-tuple)
concurrences of diagonals are there?

ITEM 3 (Schroeppel):
Regarding convergence of Newton's method for quadratic equations:
Draw the perpendicular bisector of the line connecting the two
roots. Points on either side converge to the closest root.
On the line:
1 they do not converge
2 there is a tiense set of points which involve division by zero
3 there is a dense set of points which loop, but roundoff error

propagates so all loops are unstable
4 being on the line is also unstable (if the roots are imaginary
and you are on the real axis, you may be doing exact computation
of the imaginary part (0), hence stay on the line. Example:
X2

+ 1 = 0, XO = random real floating point number.)



ITEM 4 (Schroeppel): page 4
»y Mathlab, the discriminant of Xlt + FX 3 + GX2 + IIX + 1 is
(as the discriminant ofAX2 + 8X + C is 82 - 4AC):

- 27 Hit + 18 FGII' - 4 F'H 3 - 4 G3 H2 + F2G2H2
+ 1 * [144 GH 2 - 6 F 211 2 - 80 FG 2H

+ 18 F3 GH + 16 Git - 4 p 2 G3 ]

+ 1 2 * ,- 192 Fli - 128 G2 + 144 F2G - 27 Fit]
256 I

ITEM 5:
In general, the discriminant of an n-th degree polynomial is
n (ROOT - ROOT )2 ~ square of determinant whose i,i element

i<i i i

i-I
is ROOT (The discriminant is the lowest degree symmetric

i
function of the roots which is 0 when any two are equal.)

ITEM 6 (Schroeppel):
If A is the first symmetric function of N variables

~ X + Y + Z + •••
and 8 is the second symmetric function of N variables

= XY + XZ + ••• + YZ + •••
(8 = sum of pairs), then X2 + y2 + Z2 + ••• = A2 - 28.
X3 + y 3 + Z3 + •••• A3 _ 3AB + 3C.
Xlt + ylt + Zit + •••• Ait _ 4A 2 8 + 28 2 + 4AC - 4D.

ITEM 7 (Gosper):
If f(liX,Y •••• ) is the Ith symmetric function on N variables,

o if I > N
f(liX,Y, ••• ). I if I • 0

X*f(l-l;Y.Z, ••• ) + f(ljy.Z •••• )

The 2enerating function is simply
N I
1: f(liX,Y.Z, ••• )*S • (I+XS)(I+YS)(l+ZS) •••

1=0

(N-I variables)
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ITEM 8 (Schroeppel):
Solutions to F(X) = X3 - 3BX 2 + CX + 0 • 0 are

I
F' (B)IF(B) IF(B)

] 3B - K * I -+ 1[_]2 + (
r 2 I 2 3

I
IF(B) IF(B) F' (D)_ K2 * I -+ 1[_]2 + [ ] 3, 2 I 2 3

where K is one of the three cuberoots of 1:
1, (- 1+1=3) I 2 , ( - 1-I:-J) I 2 •
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ITEM 9 (Schroeppel & Salamin):
If X~ + BX 2 + CX + D • 0, then 2X = I!f + I!! + I!!
Zl, Z2, Z3 are roots of Z3 + 2BZ 2 + (B 2 • 4D)Z - C2 • o.
The choices of square roots must satisfy (IZT) em) (1Z3) • -c.

ITEM 10 (Salamin):
An easy solution of _4X 3 + 3X - a • 0 is X = sin((arcsin a)/3).
In a similar manner, the general quintic can be solved exactly by
use of the elliptic modular function and its inverse.
See Davis: Intro. to Nonlinear Differential and Integral
Equations (Dover), p. 172. Unfortunately, there exists
~ 1 typo, since his eqs. (7) and (13) are inconsistent.

ITEM 11 (Salamin):
The following operations generate one-to-one conformal mappings
of Euclidean N-space onto itself.

1) Translate N-space.
2) Expand N-space about one of its points.
3) Stereographically project N-space onto an N-sphere,

rotate the sphere, then project back onto N-space.
PROBLEMS:
Show that all such conformal maps are generated by these
operations for any N. If the one-to-one and onto conditions are
removed, then for N=2, conformal maps can be obtained by analytic
functions. Show that for N>2, no new conformal maps exist.



**************************************************
RECURRENCE RELATIONS
**************************************************
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ITEM 12 (Gosper & Salamin):
"the Fast Fibonacci Transform" (motivation for next item)
Define mUltiplication on ordered pairs

(A,B){C,D)=(AC+AD+8C,AC+BD).
This is just (AX+B)*(CX+D) mod X2 -X-l, and so is associative,
etc. We note (A,B){1,0)=(A+8,A), which is the Fibonacci

N
iteration. Thus, (1,0) = (FIB(N),FI8(N-l», which can be
computed in log N steps by repeated squaring, for instance.
FIB(lS) is best computed using N = 16, thus pushing the minimal
binary addition chain counterexample to 30 (Liknaitzky). (See
Knuth vol. 2, p 398.) By the last formUla,

-1
(1,0) • (FIB(-1),FIB(-2» = (1,-1),

which, as a mUltiplier, backs up one Fibonacci step (further
complicating the addition chain question). Observing that

(1,0) 0 • (FIB(O) ,FIB(-l» • (0,1)
= the (multiplicative) identity, equate it with scalar 1. Define
addition and scalar multiplication as with ordinary vectors.

-1
(A,B) = (-A,A+B)/(B 2 +AB-A 2

),

so we can compute rational functions when the denominator isn't
zero. Now, by using power series and Newton's method, we can

(X,Y)
compute fractional Fibonaccis, and even e and 10g(X,Y).
If we start with (1,0) and square iteratively, the ratio will
converge to the larger root of x 2 _x_l (. the golden ratio)
about as rapidly as with Newton's method.
This method generalizes for other polynomial roots, being an
improvement of the method of Bernoulli and Whittaker (Rektorys,
Survey of Applicable Math., p 1172). For the general second
order recurrence, F{N+l) • XF(N) + YF(N-l), we have the
multiplication rule: (A,B)(C,D) = (AD+BC+XAC,BD+YAC).

-1
Inverse: (A,B) • (-A,XA+B)/(B 2 +XAB-YA 2 ).

N
Two for the price of one: (F(l),YF(O»(l,O) • (F(N+I),YF(N».
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ITEM 13 (Salamin & Gosper):
LINEAR RECURRENCE RELATIONS

Recurrence relation: A. C A + ••• + C A
k n-l k-l 0 k-n

page 7

(1)

wi th A , ••• , A gi ven as ini tial values.
o n-l

Consider the algebra with basis vectors
n-l

XO, Xl, X2 , ••• , X
n n-l

and the identification X • C X + ••• + C Xo. (2)
n-l 0

Thus if U, V, \'1 are vectors and W • U V, then componentwise
W = 1: T U V, (3)

i j,k ijk j k

is already a basis vector, so we get A •
L n L-n k

X • X X

• A (0 < m < n).-m
can be done by k-n+l applications of (2) or by
in (3) and then applying (3) O(log k) times.

k
n, Xk <

• (C
n-l

procedure yields A :
k

combination of the basis
k

Computation of X
computing the T's

PROOF: If 0 <-
Suppose the procedure works for k < L.

n-l L-n
X + ••• +C) X

o
L-l

= C X
n-l

L-n
+ ••• + C X

o
m L

The procedure evaluates each X to A , so X evaluates to
m

C A + • • • + C A • A • QED
n-l L-l 0 L-n L

The same procedure will work for negative k using
-1 n-l n-2

X = (X - C X - ... - C )/C , (4)
n-l 1 0

the unique vector which when multiplied by X yields XO •
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Let (2) be F{X)~O and V be the algebra constructed above.

Then V is a field iff F(X) is irreducible in the field of the
coefficients of V.
PROOF: Note that an element P of V is zero iff P(X)=O mod F(X).
If G(X) H(X) ~F(X), DEG G,II < DEG F, then the product of two
non-zero elements is zero and so V can't be a field.

Let P be an arbitrary non-zero element of V.
DEG{GCD(P,F» < DEG P < DEG F.
If F(X) is irreducible, then GCD(P,F)=l, so there exist
Q{X), R(X) such that Q{X) P(X) + R(X) F(X) • 1.
Then Q(X) peX)-l mod F{X). Since P has an inverse, V is a field.

ITEM 14 (Gosper & Sala.in):
Yet another way to rapidly evaluate recurrences is to observe
that if F(N+l) = X*F(N) + V*F(N-ll,
then F(N+2). (X 2 +2V) *F(N) - V *F(N-2).
This rate doubling formula can be applied iteratively to compute
the Nth term in about log N steps, e.g., to get the 69th term
given terms 1 and 2, we form 1, 2, 3, 5, 9, 13, 21, 37, 69.
This sequence is computed from right to left by iteratively
sUbtracting half the largest possible power of 2. This is
sufficient to guarantee that some term further left will differ
from the left one by that same (halved) power of 2; e.g., 5,
••• ,21,37 have a common difference of 2-, so that term 37 can be
found from term 5 and term 21 using the fourth application of the
rate doubling formula.

The rate tripling formula is F(N+3) - (X3+3XY)*F(N) + y3*F(N-3).
For the K-tupling formula: F(N+K) ~ P(K)*F(N) + Q(K)*F(N-K)
P(K+l) • X*P(K) + Y*P(K-l) (the same recurrence as F)
Q(K+l) - -Y*Q(K)
pel) • X Q(l) - Y
P(O) - 2 Q(O) • -1

1C
Q(K) • -(-Y)

1/2
pel) - 2(-Y) *T(K;X/I=4Y) where T(KiX) is the
Kth Chebychev polynomial - cos (K arccos X)

If A(I), BCI), and C(I) obey the same second order recurrence,

(I)

is independent of I and J, provided the inverse exists.
(This is true even if coefficients are not constant,
since any two independent sequences form a basis.)
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Plugging in F and P as defined above, we get an expression for
the Nth term of the general second order recurrence in terms of
peN) and P{N+I):

[peN) P{N+I)] [P{O)
P (I)

P(I) ] -I [F(O) ]
P(2) F(I) = F (N) •

Setting X = Y = I, we get FIB(N) = (2P(N+I)-P(N»/S, which is a
complex but otherwise square root free closed form. (~. 2i)

With constant coefficients, the invariance (I) implies:

A~+J J A
Q+I+K

A
Q+I+L

A
Q+J+K

A
Q+J+L

-1 A
R+K

A
R+L

• A
P-Q+R

These matrix relations generalize directly
for Nth order recurrences.

ITEM IS (Chebychev):
The Nth Chebychev polynomial T(N) = T(N;x) = cos (N arccos x).
T{O) = I, T{ I) = x, T(N+I) • 2x T(N) - T(N-I).

N I-N
T(N;T(M» clearly • T(NM). x - 2 T(N); whose degree is N-2,

N
is the polynomial of degree < N which stays closest to x in the

I-N
interval (-1,1), deviating by at most 2 at the N+l places
where x = cos(K*n/N), K=O,I, ••• N.

N
Generating function: E T(N)*S = (l-xS)/(1-2xS+S 2).
First order (nonlinear) recurrence:

T(N+I) = xT(N) - {(I_x 2....)"'!""(I-_-t....("P'!'N-)2y.
N

(T(N+I) ,-T(N» = (T(I) ,-T(O» (1,0) ,
where (A,B)(C,D) = (AD+BC+2xAC,BU-AC).

ITEM 16: n n
I ( 1+ i x) - (1- i x)

tan (n arctan x) = - *
n n

i ( 1+i x) + (I-ix)



*********************************************
BOOLEAN ALGEBRA
*********************************************
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ITEM 17 (Schroeppel):
Problem: Synthesize a given lo&ic function or set of functions
using the minimum number of two-input AND gates. NOT gates are
assumed free. Feedback is not allowed. The given functions are
allowed to have X (don't care) entries for some values of the
variables. P XOR Q requires three AND gates. MAJORITY(P,Q,R)
requires 4 AND gates. "PQRS is a prime number" seems to need
seven gates. The hope is that the best Boolean networks for
functions might lead to the best algorithms.

ITEM 18 (Speciner):
number of monotonic increasing Boolean

N functions of N variables
o 2 (T, F)
1 3 (T, F, P)
2 6 (T, F, P, Q, P AN D Q, P 0 R Q)
3 20
4 168 • 8 * 3 * 7
5 7581 • 3 * 7 * 19 2

6 7,828,354 • 2 * 359 * 10903 (Ouchl)
N from 0 to 4 sugeest that a formula should exist, but 5 and 6
are discouraging. A difficult generalization: Given two partial
orderings, find the number of maps from one to the other that are
compatible with the ordering. A related puzzle: A partition of
N is a finite string of non-increasing integers that add up to N.
Thus 7 3 3 2 1 1 1 is a partition of 18. Sometimes an infinite
string of zeros is extended to the right, filling a half-line.
The number of partitions of N, P{N), is a fairly well understood
function. m n m k
The generating function is t Pen) x a 1 I n (I-x) •

n-O k-l
A planar partition is like a partition, but the entries are in a
two-dimensional array (the first quadrant) instead of a string.
Entries must be non-increasing in both the x and y directions.
A planar partition of 34 would be: 1

3 1
322 1
7 6 431

Zeros fill out the unused portion of the quadrant. The number of
planar partitions of n, PL(n), is not a very well understood
function. m n m k k
The generating function is t PL(n) x • 1 I n (I-x) •

n-O k=l
No simple proof of the generating function is known. Similarly,
one can define cubic partitions with entries in the first octant,
but nO one has been able to discover the generating function.
Some counts for cubic partitions and a discussion appear in
Knuth, Math. Camp. 1970 or so.



ITEM 19 (Schroeppel): page 11
The 2-NOTs problem: Synthesize a black box which computes NOT-A,
NOT-B, and NOT-C from A, B, and C, using an arbitrary number of
ANUs and ORs, but only 2 NOTs.

Clue: (Stopl Perhaps you would like to work on this awhile.)
Lemma: Functions synthesizable with one NOT are those where
the image of any upward path (through variable space) has at
most one decrease (that is, from T to F).

ITEM 20 (Roger Banks):
A Venn diagram for N variables where the shape representing each
variable is convex can be made by superimposing successive M-gons
(M = 2, 4, 8, ••• ), every other side of which has been pushed out
to the circumscribing circle. If you object to superimposed
boundaries, you may shrink the nested M-gons a very slight amount
which depends on N.

ITEM 21 (Schroeppel & Waltz):
PROBLEM: Cover the Execuport character raster completely with the
minimum number of characters. The three characters I, Hand'
works. Using capital letters only, the five characters B, I, H,
V and X is a minimal solution. Find a general method of solving
such problems.

ITEM 22 (Gasper):
PROBLEM: Given several binary numbers, how can one find a mask
with a minimal number of I bits, which when AND-ed with each of
the original numbers preserves their distinctness from each
other? What about permuting bit positions for m~nimum numerical
spread, then taking the low several bits?

ITEM 23 (Schroeppel):
(A ANU B) + (A OR B) = A + B • (A XOR B) + 2(A AND B).

ITEM 24 (Minsky):
There exists a convex figure n congruent copies of which,

n
for any n, form a Venn diagram of 2 regions.



*********************************************
RANDOM NUMBERS
*********************************************
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ITEM 2S (Schroeppel):
Random number generators, such as Rollo Silver's favorite,
which use SHIFTs and XORs, and give as values only some part
of their internal state, can be inverted. Also, the outputs
may often be used to obtain their total internal state.
For example, 2 consecutive values from Rollo's suffice
to allow prediction of its entire future. Rollo's is:
RANUOM: MOVE A,HI iregister A gets loaded with "high" word

MOVE B,LO iregister B gets loaded with "low" word
MOVEN A,LO iregister A gets stored in "low" word
LSHC A,3S. ishift the 72-bit register AB left 3S
XORB A,HI ibitwise exclusive-or of A and HI

replaces both
This suggests a susceptibility to
analysis of mechanical code machines.

See LOOP DETECTOR item in FLOWS AND ITERATED FUNCTIONS section.

ITEM 26 (1 via Salamin):
A mathematically exact method of generating a Gaussian
distribution from a uniform distribution: let x be uniform on
[0,1] and y uniform on [O,2W], x and y independent. Calculate
r • I-log x. Then r cos y and r sin yare two independent
Gaussian distributed random numbers.

ITEM 27 (Salamin):
PROBLEM: Generate random unit vectors in'N-space uniform on the
unit sphere. SOLUTION: Generate N Gaussian random numbers and
normalize to unit length.
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ITEM 28 (Schroeppel):
After about 40 minutes of run time t~ verify the absence of
any non-trivial factors less than 2 3

, the 125th Mcrsenne
number, 2125

- I, was factored on Tuesdf~' January 5, 1971,
in 371 seconds run time as follows: 2 1

- 1 •
31 • 601 • 1801 • 26 90898 06001 • 4710 88316 88795 06001.
John Brillhart at the University of Arizona had already
done this. M137 was factored on Frid,y, July 9, 1971 in
about 50 hours of computer ~ime: 2 11

- 1 ::I

32032 21559 64964 35569 • 54 39042 18360 02042 90159.

ITEM 29 (Schroeppel):
For a random number X, the probability of its largest prime
factor being (!) greater than If is In 2.
(2) less than rx is about 4.86\. This suggests
that similar probabilities are independent of X: for instance,
the probability that the largest prime factor of X is less than
2tx may be a fraction independent of the size of X.
RELEVANT DATA:
([ ] denote the expected value of adjacent entries.)

2.4
10
1.7

:52 ::I 10

CUMULATIVE SUM OF COUNT
10018
2820
402 [487]
48 :252 ::I

8
1
o

COUNT
7198 [6944]
2466
354
40
7
1
o

RANGE
10 12 TO 10'
10' TO 10"
10" TO 10 3

10 3 TO 252
252 TO 100
100 TO 52
51 TO 1
where:
"COUNT" is the number of numbers between 10 12 + 1 and
10 12

+ 10018 whose largest ~rime factor is in "RANGE".
The number of primes in 10 1 + 1 to 10 12 + 10018 is 335; the
prime number theorem predicts 363 in this range. This is
relevant to Knuth's discussion of Legendre's factoring method,
vol. 2, p. 351-354.

ITEM 30 (Schroeppe1):
Twin primes:

166,666,666,667 • (10 12 + 2)/6
166,666,666,669

The number 166,666,666,666,667 is prime, but
166,666,666,666,669 is not.

The primes which bracket 10 12 are 10 12 + 39 and 10 12
- 11.

The primes which bracket 10 15 are 10 15 + 37 and 10 15
- 11.

The number 23,333,333,333 is ~rime.

Various primes, using T ::I 10 1
, are:

40T + 1, 62.5T + 1, 200T - 3, SOOT - 1, SOOT - 7.



ITEM 31 (Schrocppel): N page 14
Ramanujan's problem of solutions to 2 - 7 • X2 was searched
to about N I: lO~o; only his solutions (N • 3, 4, 5, 7" 15) were
found. It has recently been proven that these are the only ones.
Another Ramanujan problem: Find all solutions of nJ + 1 I: x 2 •

ITEM 32 (Schroeppel):
Take a random real number and raise it to large powers; we expect
the fraction part to be uniformly distributed. Some exceptions:
1 -- ~ I: (1 + 1!)/2
2 all -1 < X < 1
3 12 (half are integers, other half

are probably uniformly distributed)
4 1 + 12 -- Proof:

N N
(1 + I!) + (1 - 11) • integer (by induction);

N
the (1 - I!) goes to zero.

5 2 + I~ -- similar to 1 + I!
6 any algebraic number whose conjugates

are all inside the unit circle
Now, 3 + I! is suspicious; it looks non-uniform, and seems to
have a cluster point at zero. PROBLEM: Is it non-uniform?

ITEM 33 (Schroeppel):
Numbers whose right digit can be repeatedly removed and
they are still prime: CONJECTURE: There are a finite
number of them in any radix. In decimal there arc 51,
the longest being 1,979,339,333 and 1,979,339,339.

ITEM 34 (Schroeppel):
PROBLEM: Can every positive integer be expressed
in terms of 3 and the operations factorial and

/-
integer square root? E.g., 5 • 11"31T.

ITEM 35 (Schroeppel):
Take as many numbers as possible from 1 to N such that no 3 are
in arithmetic progression. CONJECTURE: As N + ~, the

(In 2)/(ln 3)
uensity of such sets approaches zero, probably like N

XX.XX is a known solution for N • 5
XX.XX •••• XX.XX is a known solution for N • 14

Conjecture that XX.XX just keeps getting copied. If the
(In 2)/(ln 3)

N can be proved, it follows that there are
infinitely many primes PI, P2, P3 in arithmetic progression,

(In 2)/(ln 3)
since primes are much more common than N

ITEM 36 (Schroeppel):
PROBLEM: How many squares have no zeros
in their decimal expression? Ternary?



ITEM 37 (Gosper):
The number of n digit strings base B in which all 8
at least once is just the Bth forward difference at
powers of 0, 1, •••• E.g., for n a 4:

o 1 16 81 256 625
1 15 65 175 369

14 50 110 194
36 60 84

24 24
o

page 15
digits occur
o of the nth

"'~,.•

so there are 14 (a 2~-2) such 4-bit strings, 36 such 4-digit
ternary strings, 24 (a 41) such quaternary, and 0 for all higher
bases. 27 (= 10e?) random decimal digits are required before it
is more likely than not that every digit has occurred; with 50
digits the likelihood is 95%.

ITEM 38 (Fredkin):
By the binomial theorem, the bth forward difference at 0 of

b
the 0, 1, 2, ••• powers of n is (n-l) • E.g., for n • 4:

1 4 16 64 256
3 12 48 192

9 36 144
27 108

81
In fact, any straight line with rational slope through such an
array will always go through a geometric sequence with common

a b
ratio of the form n (n·l). In the above, east by southeast
knight's moves give the powers of 12: 1, 12, 144, ••••

ITEM 39 (Schutzenbcrger):
PROBLEM: Using N digits, construct a string of digits which
at no time has any segment appearing consecutively twice.

N = 2 + finite maximum string
N = 10 + known infinite

Uetermine maximum string length for N • 3.
SUB-PROBLEM: How many sequences exist of any particular length?

ITEM 40 (Gosper):
The variance of a pseudo-Gaussian distributed random variable
made by adding T independent, uniformly distributed random
inteier variables which range from 0 to N-1, inclusive, is
T((N - 1)/12).



ITEM 41 (Salamin):
There are exactly 23000 primes less than 218 •

page 16

ITEM 42 (Gosper):
To show that

N N+l L N+l L
E (BINOMIAL N+L L)*(X (I-X) + (I-X) X) • 1

L-O
set N to 20 and observe that it is the probability that one or
the other player wins at pingpong. (X = probability of first
player gaining one point, L • los~r's score, deuce rUle
irrelevant.) If this seems silly, try more conventional methods.
PROBLEM: If somehow you determine A should spot B 6 points for
their probabilities of winning to be equal, and B should spot C
9 points, how much should A aive C?

ITEM 43 (Schroeppel):
Let (A,B,C ••• ) be the mUltinomial coefficient
(A+ B+C••• ) ! / AI B1CI •••
This is equal modulo the prime p to
(AO,BO,CO ••• )(Al,Bl,Cl ••• )(A2,B2,C2 ••• ) •••
where AJ is the Jth from the right digit of A base p.
Thus (BINOMIAL A+B A) mod 2 is 0 iff (AND A B) is not.
The exponent of the largest power of p which divides (A,B,C ••• )
is equal to the sum of all the carries when the base p
expressions for A, B, C, ••• are added up.

ITEM 44 (Gosper):
Recurrences for mUltinomial coefficients:
(A,B,C, ••• ) • (A+B,C, ••• )(A,B) • (A+B+C, ••• )(A,B,C) ••••

PROBLEM 45 (Gosper):
Take a unit step at some heading (angle).
Uouble the angle, step again. Redouble, step, etc.
For what initial heading angles is your locus bounded?

PARTIAL ANSWER (Schroeppel, Gosper): When the initial angle is
a rational mUltiple of n, it seems that your locus is bounded
(in fact, eventually periodic) iff the denominator contains as a
factor the square of an odd prime other than 1093 and 3511, which
must occur at least cubed. (This is related to the fact that
1093 and 3511 are the only known primes satisfying

P 2
2 = 2 mod P ). But a denominator of 171 = 9 * 19 never loops,
probably because 9 divides ~(19). Similarly for 9009 and 2525.
Can someone construct an irrational mUltiple of n with a bounded
lOCUS? 00 such angles form a set of measure zero in the reals,
even though the "measure" in the rationals is about .155?
About .155 = the fraction of rationals with denominators
containing odd primes squared • 1 - IT over odd primes of
1 - l/P(P + 1). 'This product • .84533064 ± a smidgen, and
is not, alas, Ii71 ARCERF(1/4) • .84534756. This errs by 16
times the correction factor one expects for 1093 and 3511, and is
not even salvaged by the hypothesis that all primes> a million
satisfy the congruence. It might, however, be salvaged by
quantities like 171.



ITEM 46 (Schroeppel): page 17
The most probable suit distribution in bridge hands is 4-4-3-2,
as compared to 4-3-3-3, which is the most evenly distributed.
This is because the world likes to have unequal numbers:
a thermodynamic effect saying things will not be in the state of
lowest energy, but in the state of lowest disordered energy.

ITEM 47 (Beeler):
The Fibonacci series modulo P has been studied. This series has
a cycle length L and within this cycle has sub-cycles which are
bounded by zero members.
The length of powers of primes seems to be

power-l
L = (length of prime) * prime

The length of products of powers of primes seems to be
L • least common mUltiple of lengths of powers of primes

which are factors.
There can be only 1, 2 or 4 sub-cycles in the cycle of a prime.
Primes with 1 sub-cycle seem to have lengths

L a (prime - l)/N, N covering all integers.
Primes with 2 sub-cycles seem to have lengths

M
L • (prime - (-1) )/M, M covering
all integers except of form 10 K + S.

Primes with 4 sub-cycles seem to always be of form 4 K + 1,
and seem to have lengths

L • 2 (prime + l)/R or (prime - l)/S,
R covering all integers ~f form 10 K + 1, 3, 7 or 9;
S covering all integers.

At Schroeppel's suggestion, the primes have been separated
mod 40, which usually determines their number of sUb-cycles:
PRIME mod 40 SUB-CYCLES
1, 9 usually 2, occasionally 1 or 4 (about equally)
3, 7, 23, 27 2
11, 19, 31, 39 1
13, 17, 33, 37 4
21, 29 1 or 4 (about equally)
2 (only 2) 1
5 (only 5) 4
Attention was directed to primes which are 1 or 9 mod 40 but have
1 or 4 subcycles. 25 X2

+ 16 y 2 seems to express those which are
9 mod 40; (10 X ± 1)2 + 400 y2 seems to express those which
are 1 mod 40. PROBLEM: Can some of the "seems" above be proved?
Also, can a general test be made which will predict exact length
for any number?

ITEM 48 (Gosper, Schroeppel): .
I

A point of the 2 dimensional lattice is called visible iff its
coordinates are relatively prime. The invisible 2 by 2 square
with smallest X has its near corner on (14,20).
(I.e., (14,20), (15,20), (14,21), and (15,21) are all invisible.)
The corresponding 3 by 3 is at (104,6200). By the Chinese
remainder theorem, there exist invisible sets of every finite
shape. Excellent reference: Amer. Math. Monthly, May '71, p487.
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"magic hexagon" of side 3:

First discovered hy Clifford W. Adams.
who worked on the problem from 1910.

9 In 1957. he found a solution.
(Sec Aug. 1963 Sci. Am., Math. Games.)
Other length sides are impossible.

unique
18

1 11
6

8 14
15

5
4

13

2
19

16
12

10

ITEM 49:
There is a

3 17
7

ITEM 50 (Schroeppel):
There is no magic cube of order 4.
Proof: Let K em 130) be the sum of a row.
Lemma 1: In a magic square of order
four. the sum of the corners is K.
Proof: Add together each edge of the square and the two
diagonals. This covers the square entirely, and each corner
twice again. This adds to 6K, so twice the corner sum is 2K.
Lemma 2: In a magic cube of order 4, the sum of any
two corners connected by an edge of the cube is K/2.
Proof: Call the corners a and b. Let c, d and e, f be the
corners of any two edges of the cube parallel to abe Then
abcu, abef, and cdef are all the corners of magic squares. So
a+b+c+d + a+b+e+f + c+d+e+f m 3K; a.b+c+d+e+f m 3K/2; a+b • K/2.
Proof of magic cube impossibility: Consider a corner x.
There are three corners connected by an edge to x.
Each must have value K/2 - x. QED

ITEM 51 (Schroeppel):
By similar reasoning, the center of an order 5 magic cube must
be 63 = K/5. COROLLARY: There is no magic tesseract of order 5.

ITEM 52 (Salamin):
The probability that two random integers are relatively prime is
6/n 2

• PSEUDO-PROOF: Let X be the probability. Let S be the set
of points in the integer lattice whose. coordinates are relatively
prime, so that S occupies a fraction X of the lattice points.
Let S(U) be the set of points whose coordinates have a GCD of D.
S(O) is S expanded by a factor of D from the origin. So S(D)
occupies a fraction X/v 2 of the lattice, or the probability that
two random integers have a GCD of D is X/0 2

• If D unequals D',
then 5(0) intersect S(Dt) is empt{, and union of all S(O) is the
entire lattice. Therefore X*(l/1 +1/2 2 +1/3 2 +••• ) • I,
so X • 6/w 2

• This argument is not rigorous, but can be made so.

ITEM 53 (Salamin):
The probability that N numbers will lack
a Pth power common divisor is l/t(NP).

ITEM 54 (Salamin & Gasper):
The probability that a random rational number
has an even denominator is 1/3.

ITEM 5S (Schroeppel): GAUSSIAN INTEGERS
See following illustrations; also PI section.



Figure lea). This diagram is to substantiate the claim
that every Gaussian integer has a unique bit combination.
l{unning through bit combinations 0,1,10,11, ••• , the
uiagram is a map of values, radix i-I. The origin is circled;
the dot is at the 127th combination (1111111 = 2 + Si),
which is merely the last point drawn.
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Figure l{b). As lea), but radix i+l. Large circle is origin.
iJashes indicate continuity of curve at confusing places.
Uotted curve is with an infinity of ones to the left
(big dot = ••• 1111 = i). The solid and dotted curves are
symmetrical about the point marked with a small circle.
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Figure 2. Similar to lea), but showing fraction parts as well.
Reprinted by special permission from Knuth, The Art of
com~uter Programming, Volume 2, Seminumerical Algorithms,
196 , Addison-Wesley, Reading, Mass.



ITEM 56 (Beeler): page 22
The "length" of an N-digit decimal number is defined as the
number of times one must iteratively form the product of its
digits until one obtains a one-digit product (see Technology
Review Puzzle Corner, December 1969 and April 1970). For various
N, the following shows the maximum "length", as well as how many
distinct numbers (permutation groups of N digits) there are:
N MAX L DISTINCT

2 4 54
3 5 219
4 6 714
5 7 2,001
6 7 5,004
7 8 11,439
8 9 24,309
9 9 48,619

10 10 92,377
11 10 167,959
12 10 293,929
Also, for N • 10, 11 and 12, a tendency for there to be many
fewer numbers of "length" • 7 is noted. Other than this, the
frequency of numbers of any given N, through N • 12, decreases
with increasing "length". CONJECTURE (Schroeppel): No L > 10.

ITEM 57 (Beeler, Gosper):
There is at least one zero in the decimal expression of each
power of 2 between 2 86

• 77,371,252,455,336,267,181,195,264
and 23073901~, where the program was stopped. If diaits of
such powers were random, the probabilit~ that there is another
zeroless power would be about 1/10~1181. Assuming there aren't
any then raises the question:
How many final nonzero digits can a power of two have?
ANSWER (Schroeppel): Arbitrarily many. If we look at the last
n digits of consecutive powers of 2, we see:
a) None end in zero.

n
b) After the nth, they are all mUltiples of 2 •

n-l
c) They get into a loop of length 4 * 5 •

(Because 2 is a primitive root of'powers of 5.)
n-l n

But there are only 4 * 5 multiples of 2 which don't end with
n

zero and are < 10 , so we will see them all. In particular, we
will see the one composed entirely of l's and 2's, which ends
••• 11112111211111212122112.



ITEM 58 (Fredkin):
3 3 + 4 3 + 53 • 6 3 •

ITEM S9 (Schroeppe1):
91038 90995 89338 00226 07743 74008 17871 09376 2 •

82880 83126 51085 58711 66119 71699 91017 17324
91038 90995 89338 00226 07743 74008 17871 09376

ITEM 60 (Beeler):
If S • the sum of all integers which exactly divide N,
including 1 and N, then "perfect numbers" are S • 2 N;
the first three numbers which are S • 3 N are:
120 • 2 3 * 3 * 5 = 1111000 base 2
672 = 2 5 * 3 * 7 = 1010100000 base 2
523,776 = 2' * 3 * 11 * 31 = 1111111111000000000 base 2

page 23

ITEM 61 (Root):
Consider iteratively forming the sum of the factors (including 1
but not N) of a number N. This process may loop; "perfect
numbers" are those whose loop is one member, N. For example,
N • 28 = 1 + 2 + 4 + 7 + 14. An example of a two-member loop is:

sum of factors of 220 • 284
sum of factors of 284 • 220

Two-member loops are called "amicable pairs."
A program to search for loops of length> 2, all of whose.
members are < 6,600,000,000 found the known loops of length 5
(lowest member is 12496) and 28 (lowest member is 14316),
but also 13 loops of 4 members (lowest member is given):

1,264,460 • 22 * 5 * 17 * 3,719
2,115,324 • 22 * 32 * 67 * 877
2,784,580 • 22 * 5 * 29 * 4,801
4,938,136 • 2 3 * 7 * 109 * 809
7,169,104 • 2' * 17 * 26,357

18,048,976 = 2' * 11 * 102,551
18,656,380 • 22 * 5 * 932,819
46,722,700 • 22 * 52 * 47 * 9,941
81,128,632 • 2 3 * 13 * 19 * 41,057

174,277,820 • 2 2 * 5 * 29 * 487 * 617
209,524,210 • 2 * 5 * 7 * 19 * 263 * 599
330,003,580 • 2 2 * 5 * 16,500,179
498,215,416 = 2 3 * 19 * 47 * 69,739



ITEM 62 (Speciner): page 24
The first four perfect numbers are 6, 28. 496, 8128.
Two-member loops (amicable pairs) are:

220 ++ 284
1184 ++ 1210
2620 ++ 2924
5020 ++ 5564
6232 ++ 6368

10744 ++ 10856
12285 ++ 14595
17296 ++ 18416
63020 ++ 76084
66928 ++ 66992
67095 ++ 71145
69615 ++ 87633
79750 ++ 88730

100485 ++ 124155
122265 ++ 139815
122368 ++ 123152
141644 ++ 153176
142310 ++ 168730
171856 ++ 176336
176272 ++ 180848
185368 ++ 203432
196724 ++ 202444

(Exhaustive to smaller member ~ 196724 and larger member < 2 35 .)

A prime decade is where N+1, N+3. N+7 and N+9 are all prime.
The first occurrence of two prime decades wi th the 'theoretical
minimum separation is N • 1006300 and N • 1006330. The 33Sth
prime decade is N • 2342770. There are 172400 primes < 2342770.

ITEM 63 (Schroeppe1, etc.):
The joys of 239 are as follows:
n • 16 arctan (1/5) - 4 arctan (1/239),
which is related to the fact that 2 * 13~ • 1 • 239 2 ,
which is why 239/169 is an approximant (the 7th) of 12.
arctan (1/239) • arctan (1/70) - arctan (1/99)

• arctan (1/408) + arctan (1/577)
239 needs 4 squares (the maximum) to express it.
239 needs 9 cubes (the maximum, shared only with 23) to express it.
239 needs 19 fourth powers (the maximum) to express it.
(Although 239 doesn't need the maximum number of fifth powers.)
1/239 •• 00418410041841 •••• which is related to the fact that
1,111,111 • 239 * 4,649.
The 239th Mersenne number, 2 23

' - 1, is known composite,
but no factors are known.

239 • 11101111 base 2.
239 • 22212 base 3.
239 • 3233 base 4.
There are 239 frimes < 1500.
K239 is Mozart s only work for 2 orchestras.
Guess what memo this is.
And 239 is prime, of course.
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N in one of the counters, cannot
ITEM 64 (Schroeppel):
A 2-counter machine, given

N
generate 2 •
rediscovered

Proven Saturday, Sept. 26, 1970. (Independently
by Frances Yao). But (Minsky, Liknaitzky), given

N
N 2

2 , it can generate 2 (A 2-counter machine has a fixed,
finite program containing only the instructions "ADD 1",
"SUBTRACT 1", "JUMP IF NOT ZERO", which refer to either of two
unlimited counters. Such machines are known universal, but
(due to the above) they must have specially encoded inputs.)

ITEM 6S (Schroeppel):
What effort is required to compute n(X), .7
the number of primes < X1 Shanks and Brillhart claim about X

ITEM 66 (Gosper):
See space-filling curve machine item in TOPOLOGY section.
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ITEM 67 (Schroeppel):
Regarding "poker coins" game" whose rules are:
1 a player throws N coins;

he then puts one or more aside and rethrows the rest
2 this throwing is repeated until he no longer has any to throw
3 highest score (dice) or maximum number of heads (coins) wins
For poker coins, the optimal strategy, with N coins thrown" is:
Z • number of zeros (tails)

if Z • 0, quit
if Z • 1, throw the zero
if 1 < Z < N, save one one" throw the other N-l coins
if Z • N" save a zero" throw the other N-l coins

The optimal strategy for poker dice is hairier.

ITEM 68 (Schroeppel):
PROBLEM: Solve Blackout, a game as follows: Two players
alternate placing X's on a rectangular grid. No two X's may
appear adjacent along a side or across the diagonal at a corner.
The last X wins. Some theory: The "indicator" for a position is:
make all possible moves from the given position.
Evaluate the indicator of each of these successor positions.
The indicator of the first position is the smallest number which
is not the indicator of a successor position. The indicator of
the null position is o. The second player wins iff the indicator
is o. Example of calculating an indicator for the 3 x 3 board:
There are 3 distinct moves possible -- corner, side" center.
Playing in the center leaves the null position, indicator o.
Playing on the side leaves a 1 x 3 line, indicator 2. Playing in
the corner leaves a 3 x 3 L, indicator 3. The smallest number
not appearing in our list is 1, so the indicator of a 3 x 3
square is 1. For two boards (not touching) played
simultaneously, the indicator is the XOR of the indicators for
the separate boards. For any position, the indicator is ~ the
maximum game length.
PROBLEM: Find some non-exponential way to compute the indicator
of a given position. For lines, a period of 34 is entered after
the line is about 80 long. For Ls: if one leg is held fixed, the
indicator Cas a function of the other leg) seems to become
periodic with period 34. The time to enter the period becomes
greater as the fixed leg increases.
On an odd x odd board, the 1st player wins.
On a 4 x N board, the 2nd player wins.
On a 6 x 6 board, the 1st player wins by playing
at the center of one quarter.
This indicator analysis is similar for many other
take-away games" such as Nim.

ITEM 69:
Berlekamp of Bell Labs has done the 9 squares
(16 dots) Dots game; the 2nd player wins.
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ITEM 70: page 27
A neat chess problem, swiped from "Chess for Fun and Chess for
8lood", by Edward Lasker: white: pawns at QN3 and KN7, knight at
QN4, bishop at K87, king at Q82; black: pawn at QN3, king at QR6.
White mates in three moves.

ITEM 71 (Beeler):
There is only one distinct solution to the commercial
"Instant Insanity" colored-faces cubes puzzle, which is
how it comes packed. (Independently discovered by Dave Plumer.)
Mike Paterson has discovered a clever way to solve the puzzle.

ITEM 72 (Beeler):
A window-dice game is as follows:
1 The player starts with each of nine windows open,

showing the digits 1 - 9.
2 Roll two dice.

¥ 3 Cover up any digits whose sum is the sum on the dice.
4 Iterate throwing and closing windows until the equality of sums

is impossible.
5 Your score is the total of closed windows (highest wins).
An optimum strategy has been tabulated. Usually it is best
to take the largest digits possible, but not always;
it also depends critically on the remaining numbers.

ITEM 73 (8eeler):
Sim is a game where two players alternately draw lines connecting
six dots. The first person to form a triangle in his color
loses. The second player can always win, and whether his first
move connects with the first player's first move doesn't matter;
from there on, however, the strategy branches to a relatively
gruesome degree.
PROBLEM: 6 dots is minimum to ensure no stalemate with 2 players;
how many dots are required with 3 players?

ITEM 74 (Beeler):
The 4 x 4 game of Nim, also known as Tactix, is a win
for the second player, who on his first move can reply
center-symmetrically unless the first player's first move
was Bl and B2 (analyzed on RLE PDP-I).



ITEM 7S (Gosper, Brown, Rayfield): page 28
A 1963 PDP-l computer proaram gave us some interesting data on
the traditional game of peg sOlitaire (33 holes in a plus shape).

A B C
D E F

G H I J K L M
N P Q • 5 T U
V W X Y Z I 2

3 4 S
6 7 8

From the starting position, complement the board. This is the
ending position. Now from the starting position, make one move,
then complement the board. This is a position one move from a
win. By induction, you can win from the complement of any
position you can reach. Thus every successful game has a dual
game whose positions are the complements of the original ones.
This debunks the heuristic of emptying the arms of the plus first
and then cleaning up the middle, because there are just as many
dual games which empty out the middle first and then the arms!
The program found one counterintuitive win which at one point
left the center nine empty but had ten in the arms.

• B •
DE.

• • • • • • •
• P • •
V W • •

• T U

• 4 •
• 7 •

By dualizing and permuting a solution from the folklore,
we found a similar winning position with 20.
(T Q 4 R 1 L J II \'1 Y M J) leaves:

A 0 C
0 E F

G H • L •
N • • · · . U
V W • • • 1 2

3 · 5
6 7 8

then (8 V A C/O 2 6 G M F/K 5 8 I Y V 3 Q A II E).



page 29
Another useful observation is that the pegs and their orieinal
hole positions fall into four equivalence classes in which they
stay throughout the game. Thus the four pegs which can reach the
center on the first move are the only ones that ever can.
Similarly, the peg jumped over on the last move must be in one of
the two classes of eight members which get reduced on the first
move. The program's main heuristic was to reduce the larger
classes first.

a b a
c d c

a b a b a b a
c d c . c d c
a b a b a b a

c d c
a b a

With its heuristics disabled, the program simply scanned
lexicographically (left to right in the inner loop, then top to
bottom) for a peg which could move. At one point, there is a peg
which can move two ways; it chose west. Twelve moves from the
end it stopped and went into an exhaustive tree search, in which
it found two basically different wins. (Try it yourself.)

· . .
· . • • •

• • K
• • Q • • • •
• • X Y Z 1 2

345
678

ITEM 76 (Beeler):
Triangular Hi-Q (or peg solitaire) is IS pegs in a triangle.
One peg is removed, and thereafter pegs jump others,
which are removed. With pegs numbered 1 at the top,
2 and 3 in the next row, etc.,
REMOVE CAN END WITH ONLY THE PEG
1 1, 7 = 10, 13
2 2, 6, 11, 14
4 3 a 12, 4, 9, 15
5 13
Removing only one, no way exists to get to either 1 + 11 + 15
(tips) or 4 + 6 + 13 (centers of sides). Starting with peg 1
removed, 3,016 positions are attainable (not turning board); the
sum of ways to get to each of these is 10,306. An example is:
remove peg 1, then jump as follows: 6, 13, 10, 1, 2, 11, 14/13,
6, 12/13, 15, 7/4, 13, 4; leaving p~g 1.
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PROPOSED COMPUTER PROGRAMS, IN ORDER OF
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PROBLEM 71: Count the polyominos up to, say, order 20.
From Applied Combinatorial Mathematics, pages 201 and 213:
ORUER E. II. NOT ENCLOSING HOLES
III
211
322
455
5 12 12
6 35 35
7 108 107
8 369 363
9 1285 1248
10 4655 4271
11 17073
12 63600
13 238591
14 901971
15 3426576
16 13079255
17 50107911
18 192622052
The order 13 through 18 data is from Computers in Number Theory,
1971, Atkin & Birch, ed., Academic Press, which has not been
independently checked. It also gives bounds 3.72 < limit as
N goes to infinity of Nth root of number of po1yominos of order N
(including those enclosing holes) < 4.5. Also an asymptotic
formula for the number of polyominos:

N -.98±.02
4.06 • (N ) * constant. Polyominos may he constructed
in 3-space (Soma-like pieces) or higher dimensions; a curious
thought is into how many dimensions does the average, say,
20-omino extend?

PROBLEM 78: Solve "minichess", chess played on :1 5 x 5 board
where each side has lost the king's rook, knight, bishop,
and 3 pawns, and the opponents are shoved closer together
(1 empty row intervening, no double pawn moves).

PROBLEM 79: Solve the tiger puzzle, a sliding block puzzle
mentioned in Scientific American February 1964, pages 122 - 130.

PROBLEM 80: Find smallest squared square (a square composed
entirely of smaller, unequal squares). Smallest known has 24
small squares (Martin Gardner's Scientific American Book,
vol. 2, page 206). See also the following two illustrations.
Recently, someone constructed a squared rectangle with sides
in the ratio 1:2. It contains 1353 squares.



39

55

81
16 ~ 14

4-4~5

3 1

18 20

56

38 30

51

31 29

8
64 2

43
33 35

Figure 3(a). The smallest known '(in 1961, and
yet today as far as we know) squared square.
Reprinted by special permission from Martin Gardner,
The Second Scientific American Book of Mathematical Puzzles
and Uiversions, 1961, Simon and Schuster, New York, New York.
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Figure 3(b). A squared rectangle found by Schroeppel
using "String Handling Interpretive Translator,"a string
processing language written by Samson. Sides are 884808
= 2 3 * 32 * 12289 and 752225 = 52 * 30089; semiperimeter
is 1637033 = 419 * 3907. This has 28 squares, which is
more than most published squared rectangles.
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PROBLEM 81: Count the magic squares of order 5. There are
about 320 million, not counting rotations and reflections.

PROBLEM 82: List (that is, count) the semigroups of 7 clements;
also, the groups of 256 clements (estimated: 11000).

PR08LEM 83 (Gosper): Compute the integer-valued step function
F(R), O<R<l, the number of circles of radius R which fit into a
unit circle. F skips the value 6, and probably 18. How many and
how big are the gaps in the range of F? What happens in n
dimensions (including n = infinity)?

PROBLEM 84: Solve pentominos on an 8 x 8 checkerboard game(s).
Rules:
1 The checkerboard is for aid in orienting only;

black and white are the same.
2 The two players may each have a full complement of 12

pentominos, or they may "choose up" their half of one set.
3 Players alternate placing pentominos on the board.

Pentominos must not overlap.
4 The last player to place a pentomino wins.

PROBLEM 85: With regard to dissection theorems, the following are
known: a triangle into a square, 4 pieces (proven minimal); a
pentagon into a square, 6 pieces (best known) etc. ("Geometric
Uissections" by Harry Lindgreen, Scientific American November

~- 1961). A program can probably check th~ known dissections for
minimalityl See following illustration, for example.



Figure 4. A surprising square ++ hexagon dissection,
adapted from page 164 of the November, 1961 issue of Scientific
American, which see for further diagrams and discussion.



page 35
PROBLEM 86: Find the number of domino coverings for various
objects. For example, an asymptotic formula is known for
rectangles; also, on a square board, if side mod 4 • 0, coverings
appears to be a square; on a square board, if side ~od 4 D 2,
coverings appears to be twice a square. See Applied Comb. Math.,
chap. 4.4-4.6, p. 105 - 121. Article by E. W. Montroll.

PROBLEM 87: Analyze giveaway chess, which is as follows:
1 captures must be made,

although you can choose which capture to make
2 pawns Blust be promoted to queens
3 king is just another piece
4 player to give away all pieces first wins

PROBLEM 88: Analyze "escalation chess", where white gets 1 move,
black 2, white 3, etc. If a player is in check, he must get out
of check on his first move. lie may not move into check. Taking
your opponent's king is verboten, but you can pile up triple
checks, etc. A player is checkmated if he can't get his king out
of check on his first move.

PROBLEM 89: In the game "4 pawns", black has 4 pawns, a king, and
two moves to white's one. Prove the pawns win. The object in
this game is to capture the king. Black is allowed to move
through check.

PROBLEM 90: Solve Scarne's game, "Tecko," which is played on a
5 x 5 board by two players who alternate placing, one at a ti~e,

their 4 counters each, after which the counters are moved around
(including diagonally). 4 in a row or square wins.

PROBLEM 91: Solve "five-in-a-row" on an infinite board.

PROBLEM 92: Solve Tic-Tac-Toe on a 4 x 4 x 4 board.
The consensus is a win for the first player, but it's unproven.
The first player wins on 4 x 4 x 4 x 4.

PROBLEM 93: Solve checkers. There are about 10 12 positions.
(Computing time currently estimated (Schroeppel) at 1 year).

Programs below this line are considered unfeasible.

PROBLEM 94: Solve Hex on large boards (11 to 23 on a side);
through order 7 have been analyzed by hand. There is a
proof that in games where having an extra move can never
(repeat: never) hurt you, the worst the first player can
be forced to do is draw. Thus, with lIex, in which there
is no draw, the first player can always win.

PR08LEM 95: Solve chess. There are about 10~o possible
positions; in most of them, one side is hopelessly lost.

PROBLEM 96: Solve Go. About 10 170 positions.



*********************************************
CONTINUED FRACTIONS
*********************************************
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ITEM 97 (Schroeppel):
Simple proofs that certain continued fractions are 12, IJ, etc.
Proof for 12:

X • (1, 2, 2, 2, ••• l
(X-l)(X+l) • [0, 2, 2, 2, ••• l * [2, 2. 2, 2, ••• l • 1
X2 - 1 • 1
X • I!

Proof for I!:
V • [1, 1, 2, 1, 2, ••• l
(V + 1)(Y - 1) :I [2, 1, 2, 1, 2, ••• l * [0, 1, 2, 1, 2, ••• l

• 2 * [I, 2, 1, 2, I, ••• l * [0, 1, 2, 1, 2, ••• l • 2
VI - 1 • 2
V I: IJ

Similar proofs exist for IS and 16; but 11 is hairy.

ITEM 98 (Schroeppe1):
The continued fraction expansion of the positive minimum
of the factorial function (about 0.46) is
[0, 2, 6, 63, 135, 1, 1, I, 1, 4, 1, 43, ••• l.

ITEM 99 (Schroeppe1):
The value of a continued fraction with partial quotients
increasing in arithmetic progression is

I (2/D)
A/D

[A+D, A+20, A+3D, ••• l •
I (2/0)
l+(A/D)

where the I's are Bessel functions.
I (2)
o

A special case is [1, 2, 3, 4, ••• l •
I (2)

1

ITEM 100 (Perron):
11
n (1 + 1/Ak) •

k-l

1 +
1

Al -

(AI + l)Al

Al+A2+1 -

(A2 + 1)A2

A2+A3+ 1 - • • •

(A(n-l) + l)A(n-l)

A(n-l)+An+l
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On the theory that continued fractions are underused, probably
because of their unfamiliarity, I offer the following propaganda
session on the relative merits ~f continued fractions versus
other numerical representations. For a good cram course in
continued fractions, see Knuth, volume 2, page 316. (In what
follows, "regular" means that all numerators are 1, and any radix
can be read in place of decimal.)

0) 11' is 3. But not really 3, more like 3 + 1/7.
7, more like 7 + 1/15. But not really IS, ••••
continued fraction for 11' is written 3 7 15 1 292

But not really
So the regular

1 1 ••• •

1) The continued fractions for rational numbers always come out
even, and rather quickly. Thus, the number of inches per meter
is exactly 100/2.54 or 39 2 1 2 2 1 4. The corresponding decimal
fraction 39.3700787 ••• has period 42, making it almost impossible
to tell if the number is rational. (But if our data are ALL
rational, the ordered pair 5000/127 is even more concise.)

2) Quadratic surds, which are of course inexpressible as
rationals, are generally unrecognizable in decimal. Their
continued fractions, on the other hand, are periodic. Nth roots
of e 2

, ratios of Bessel functions, and ratios of linear functions
of these all have regular continued fractions formed by
interleaving one or more arithmetic sequences. These special
properties will show up regardless of number base. You might
recognize 5.436563 ••• as 2e, but even Schroeppel might not notice

2/3 2/3
that 6.1102966796 ••• was (4 e - 2)/(e - 1) until he wrote
it as 6 9 15 21 27 33 ••••

The familiar transcendental functions of rational arguments also
have simple continued fractions, but these are generally not
regular and cannot be reconstructed from numerical values by a
simple algorithm, since nonregular representations aren't unique.
The point is, however, that numbers like e, 11', 0/2, sin .5,
17 arctan 17, etc. can be expressed to unlimited precision by
simple programs which produce the terms on demand.

3) If 'ie define a rational approximation to be "best" if it
comes closer than any other rational with such a small
denominator, then continued fractions give the complete set of
best rational approximations to the value which they represent.
That is, if you truncate a (regUlar) continued fraction, at any
point, then the reSUlting rational number is a best approximation.
Furthermore. this remains true if the last term of this
approximation is replaced by any smaller positive integer other
than 1. All best approximations can be generated in this manner,
in order of increasing denominators (or numerators). For exa~ple,

the approximants to 11' = 3 7 15 1 292 ••• are:



3: 1/1, 2/1, 3/1 page 38
7: (4/1), 7/2. 10/3. 13/4, 16/5, 19/6, 22/7

IS: (25/8), 47/15, 69/22, 91/29, 113/36, ••• 311/99, 333/106
1: 355/113... ...

Note that they are all automatically in lowest terms. The size
of a Jenominator is greater than the product of the terms
involved and less than the product of the numbers I greater than
the terms. The approximations are low if the number of terms is
odd, high if it's even. (Note that if a I ends a continued
fraction, it should be added in to the previous term. Thus, to
"round off" a continued fraction after a certain term, add in the
next term iff it is ±l. In the above, 4/1 and 25/8 correspond to
termination with a 1 and are not "best"; 355/113 is "best"
because the corresponding term really should be I.) The error is
smaller than lover the product of the denominator squared and
the first neglected term, so that the total number of digits
(numerator and denominator) is usually slightly smaller than with
equally accurate decimal fractions. 355/113 is good to 7.5
places instead of 5.5, due to the unusually large term (292)
which follows.

4) Numerical comparison of continued fractions is slightly harder
than in decimal, but much easier than with rationals -- just
invert the decision as to which is larger whenever the first
discrepant terms are even-numbered. Contrast this with the
problem of comparing the rationals 113/36 and 355/113.

5) Regular continued fractions are in I to 1 correspondence with
the real numbers, unlike decimal (.5 = .49999 ••• ) or rationals
(2/3 • 6/9, 16 • ?). Even infinity has a continued fraction,
namely, the empty one! (Minus and plus infinity are the same in
continued fraction notation.)

6) Each representation favors certain operations.
uecimal favors mUltiplication by powers of 10. Rationals favor
reciprocation, as do continued fractions. To reciprocate a
regular continued fraction, add (or if possible, delete) an
initial 0 term. To negate, negate all the terms, optionally
observing that -a, -b, -c, -<1 •••• -a-I, 1, bel, c, d ••••

7) The strongest argument for positional (e.g., decimal or
floating) representation for non-integers is that arithmetic is
easy. Rational number arithmetic often loses because numerators
and denominators grow so large as to require icky multiprecision.
Algorithms for arithmetic on continued fractions seem generally
unknown. The next items describe how to arithmetically combine
continued fractions to produce new ones, one term at a time.
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Unfortunately, the effort required to perform these operations
manually is several times that for decimal, but the rewards for
machine implementation arc considerable (which can also be said
of floating point). Specifically, these rewards will be seen
to be: unlimited significance arithmetic without multiprecision
multiplication or diVision, built in error analysis, immorally
easy computation of algebraic functions, no unnecessary
computations, no discarding of information (as with roundoff. and
truncation), reversibility of computations, and the terms of the
answer start to come out right away and continue to do so until
shut off.

ITEM 1018 (Gosper):
Continued Fraction Arithmetic

Continued fractions let us perform numerical calculations a
little at a time without ever introducing any error, such as
roundoff or truncation. As if this weren't enough, the
calculations provide automatic error analysis, and obviate most
forms of successive approximation. This means we can start with
an arithmetic expression like 137i2 -;-e I (tanh IS - sin 69)
and immediately begin to produce the value as a sequence of
continued fraction terms (or even decimal digits, if we should be
so reactionary), limited only by time and storage. If there are
quantities in the expression which are known only approximately,
the calculation can prOVide error bounds on the answer as well as
identify the quantity that limited the significance.

All this is possible because each operation (+, I, -, t-) in the
arithmetic expression requests terms from the continued fractions
of its operands only when necessary,and consequently produces
terms of its own value as soon as possible. Numbers like nand e
and functions like sin and tanh have continued fraction terms in
simple sequences which can be produced by short programs.
Imprecise quantities can also be programs which deliver terms
until they run out of confidence, whereupon they initiate special
action. By then, the last guaranteeable term of the overall
expression will have already been produced.

We see then that no calculation is performed unnecessarily,
so that, for example, a subexpression which happened to be
multiplied by zero would never be evaluated. AlSO, an operation
detecting a deficiency in two or more of its operands prOVides a
natural mechanism for allocating mUltiprocessor resorces, should
you have some.



Here are the algorithms for the elementary
arithmetic operations on continued fractions.
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Let x be a continued fraction p + q /(p + q /( ••• • p + q lx'
001 I 0 0

where x' is again a continued fraction and the p's and q's are
integers. We shall call a (p q) pair a "term" of the continued
fraction for x. Often, only the p's are mentioned, in which case
the q's are implicitly alii, and x is called a "regular"
continued fraction.

Instead of a list of p's and q's, let x be a computer subroutine
which produces its next p and q each time it is called. Thus on
its first usage x will "output" p and q and, in effect, change

o 0
itself into x'. Similarly, let y be another procedurally
represented continued fraction r + slY'. Our problem will be

o 0
solved if we can write such subroutines for z(x,y) = x+y, x-y,
xy. and x/y. When called upon to output a term of z, the
subroutine might in turn call for (or "input") terms from x and y
until it is satisfied that the unread portions of x and y cannot
affect the pending term of z. Then it would output this term and
change itself into z', so that it could produce the next term
next time. Unfortunately, when we try to do this, our
expressions quickly complicate. Let us preempt this complication
by computing instead the more general function

z(x,y) = (axy+bx+cy+d)/(exy+fx+gy+h)

(or (a b c d)/(e f g h) for short) where a through h are integer
variables whose initial values we are free to choose. Various
choices express

ad\lition: x+y = (0 1 1 0)/(0 0 0 I) ,
subtraction: x-y • (0 I -1 0)/(0 0 0 I) ,

mUltiplication: xy • (1 0 0 0)/(0 0 0 I) , and
division: xly • (0 I 0 0)/(0 0 1 0) •

As we shall see, the process of inputting terms of x and y and
output tina terms of z will reduce to replacing the eight integers
a through h with linear combinations of each other.

When z inputs a term of x, z becomes a ne~ function of x'.
To see how this happens, substitute p + q/x' for every occurrence
of x in the expression for zex,y), then multiply numerator and
denominator through by x':

z(x',Y) • (pa+c pb+d qa qb)/(pc+g pf+h qe qf).



If x was, rational and has run out of terms,
it has in effect become infinite:

z(oo,y) = (0 0 a b)/(O 0 e f)

If instead we input a term of y by substituting
r + slY' for every occurrence of y:

z(x,y') = (ra+b sa rc+d sc)/(re+f se rg+h sg).

If Y runs out of terms:

Z(X,oo) = (0 a 0 c)/(O e 0 g)

To output the term (t u), so that z • t + u/z'
(i.e., z· = u/(z-t»:

z'(x,y) = (ue uf ug uh)/(a-te b-tf c-tg d-th).

Thus this basic eight variable form is preserved by all
three operations, which can be performed in any order
since they represent independent substitutions.
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For simplicity, let us assume that z will output in standard
form, that is, every u = 1 (regular) and every output term
t ~ 1 except perhaps the first. This means that ~. will always
exceed 1 and thus 0 ~ u/z' < 1, so that the integer t = z - u/z'
must = [z], the greatest integer ~ z.

Since z generally varies with x and y, it should not output
unless [z] is constant for the range of possible x and y. We can
easily compute the range of z given the ranges of x and y if we
represent each range by the endpoints of an interval (in either
order), along with a bit indicating Inside or Outside. Thus if z
is in standard form, we can say that z will always be (Inside 1 00)
(or (Outside _00 1) after the first term. If z were to always
output its nearest integer instead of its greatest, then none of
the terms after the first would be 1, although they would
probably vary in sign. In this case, z would be (Outside -2 2).

Now hold y fixed and examine the behavior of z with x. If x is
(Inside a b) then z is (Inside zeal z(b» unless the denominator
of z changes sign between a and b (i.e., z has its pole in this
interval), whereupon z is (Outside zeal z(b». Symmetrically,
when x is (Outside a b) then z is (Outside zeal z(b» unless the
signs of the denominators of zeal and z(b) differ, whereupon z is
(Inside zeal z(b». This argument still holds with x and y
interchanged.
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Now suppose that with y fixed at one of its endpoints, x
constrains z (Inside 1 2), and at y's other extreme, zex) is
(Outside 0 3). Suppose further that at the two extremes of x,
z(y) is (Inside 1 3) and (Outside 0 2). Then z(x,y) is
(Outside 0 1), the union of the four ranges. (Outside 0 2) is
the widest, indicating that z will probably get more information
from a term of y than a term of x. (Topology hackers should
recognize this Inside-Outside nonsense as ordinary intervals in
toroidal space. The clue is that both plus and minus infinity
are denoted by the empty continued fraction.)

Due to the basically monotonic behavior of z, we can guarantee
that the actual range of z will be the union of these four ranges,
and that this range will be Inside or Outside some interval.
If it is (Inside zl z2) and [zl] =- [z2], z can output the term
t • [zl]. Otherwise, z must input a term from x or y, whichever
was associated with the widest of the four ranges of z.
(Outside narrowness) is wider than (Outside wideness) is wider
than (Inside wideness) is wider than (Inside narrowness).

Evaluating z on these endpoints may be facilitated by keeping
estimates for the integer variables in floating point.

Even if z doesn't produce a term, narrowing the range of possible
z will still help in computing the range of a function of z,
especially if z gets stuck trying to output the last term of a
rational number resulting from irrational x and y. (There is no
way to guarantee that x or y won't eventually deviate, whereupon
z would egest a gigantic term.)

z can produce its value as decimal digits by mUltiplying
by 10 instead of reciprocating, after outputting t • [z):

z' (x,y) =- (IO(a-te) ·IO(b-tf) lOCc-tg) 10(d-th»/(e f g h).

Strange to say, it is not serious if z for some reason outputs
the terms 7 S 1 when it should have produced 6 9. As soon as
permitted, it will simply recant with 0 -1 -S and continue with
the correction -1 9. The sequence 7 5 1 0 -1 -S -1 9 is
equivalent to 6 9 because b 0 c is the same as b+c. In order to
undo these computations, z violates the condition (Outside -1 1)
when it is 0 -1 -S •••• This condition is obeyed by nearly all
convergent continued fractions after their first term, and its
violation will very probably cause further retractions among the
functions dependent upon z.

This computation reversal trick is also handy for mechanizing and
denoting imprecise quantities. Instead of 2.997930 ±.000003, we
have 2 1 4Hl 0 2, meaning between 2 1 481 and 2 1 483. Similarly,
137 26 0 1 replaces 137.0373 ±.0006.
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Successive approximations methods benefit considerably from not
requesting terms until needed. Consider Newton's method for
algebraic roots. We expect successive approximations to have
about twice as many correct terms each time. Since the
production of these terms cannot be aided by reading incorrect
terms, the additional correct terms must be produced before the
bad ones of the previous approximation are used. But this means
that there is no need to read in the bad ones at all. By feeding
back the output terms in place of the approximation, we get the
correct answer directly! (69\ of the credit for this goes to
Schroeppel.)

The basic eight variable form exemplified above by z(x,y) is not
the only form preserved by continued fraction term transactions.
We need only four variables and a single interval check to
compute z(x) = (ax+b)/(cx+d), the homographic function of one
argument. On the other hand, z(w,x,y) (linear in all three
arguments) requires sixteen variables and a twelve way interval
check. Each of these forms can be solved for x in terms of
z etc. to get a function of the same form. This is not true of

z(x) • (ax 2 +bx+c) l(dx 2 +ex+f),

for example, even though this form is also preserved. This form
is not guaranteed monotone, thus theoretically invalidating the
interval check algorithm, but it hardly ever errs. Even if it
did, it would quickly correct itself anyway. This form is not
only more economical than z(x,x), it is essential for the success
of the Newton's method feedback trick, which must know when two
variables. are really the same one.

By choosing the eight coefficients a thro~gh h properly,
it should be possible to rewrite arithmet~c expressions as
compositions of considerably fewer of the~e forms than one for
each +, -, *, and I. The reader is invit~d to investigate the
problem of trying to find minimal represe~tations. Depending on
the met ric for min i mal i t y, the que s t ion c al:n beeompi i cat e d by
allowing higher powers of x and y. I f the' highest powers of
x, y, z, ••• in an invariant form are i, jl, k, ••• , then the
number of integer variables required for t~e coefficients (mostly
because of all of the cross terms) is 2(i+'1) (j+l) (k+l) ••••

r

I

It is awkward in this system to evaluate transcendental functions
of irrational arguments. The problem is that you may need any
number of continued fraction (or series) terms which, instead of
being numbers, are symbolic functions of x, some infinite
continued fraction. My suggestion is to represent each symbolic
term of the function by a subroutine which is a function of x and
the next term, with this next term really a dummy until actually
called upon for output, whereupon it replaces itself with a full
fledged term subroutine which in turn refers to x and a new dummy.
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Sad to say, the integer variables in these algorithms do not
usually shrink on outputs as much as they grow on inputs.
Fortunately, the operations for input and output only require
(besides addition) multiplication by terms which are almost
invariably small. (I have not seen a term exceed 20776 except
in specially constructed numbers.) It is fairly safe! then, to
declare any function which has gotten (Outside _2 35 2 5) to be
infinite, thus terminating its continued fraction. Better still,
note that the term 20776 is equivalent to the terms
20000 0 700 0 70 0 6, i.e., a very large term can be transmitted
piecewise. Although this is just thinly disguised rnultiprecision
mUltiplication, that first piece of the term will probably
satisfy its recipient for quite some time.

In some special cases, the integer variables will become periodic
rather than large, especially when all but one of the arguments
to a function have terminated. Then, we have the form
z(x) • (ax+b)/(cx+d), known as a homographic function. If ad-be
is ±l, then a, b, c, d will eventually become 1, 0, 0, 1,
whereupon z will output the terms of x unmodified. Periodicity
will also occur when x is a Hurwitz number, i.e., when the terms
af x are the values of one or more polynomials evaluated on
consecutive integers and then interleaved. Coth 1/69, ~, and
e are Hurwitz numbers whose polynomials are linear or constant.
Hurwitzness is preserved by homographic functions. If one can
show that 11' is not a Hurwitz number, one confirms the long
standing conjectuTes that e*11', e+11', e/11', etc. are all irrational •

.
If z, x, :and yare all regular, then it generally won't be
possible to reduce z by finding a GCD of a through h which is > 1.
However, it has been determined empirically that much reduction
is often possible in oth~r cases. This reduction is almost
always by a divisor of an input or output term numerator (or 10
if output is decimal digits) and can be facilitated by keeping
cetain of the integer variables around modulo these quantities.

ITEM 10lC (Gosper):
Problem: Given an interval, find in it the rational
number with smallest numerator and denominator.
Solution: Express the endpoints as continued fractions. Find
the first term where they differ and add 1 to the lesser term,
unless it's last. Discard the terms to the right. What's left
is the continued fraction for the "smallest" rational in the
interval. (If one fraction terminates but matches the other as
far as '1 t goes, append an infini ty and proceed as above.)



*********************************************
GROUP THEORY
*********************************************

ITEM 102 (Schroeppel):
As opposed to the usual formulation of a group,
where you are given
1 there exists an I such that A * I • I * A • A, and
2 for all A, 8 and C, (A * B) * C • A * (8 * C), and
3 for each A there exists an A such that
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A * X • X * A = I, and
4 sometimes you are given that I and'X are unique.
If instead you are given A * I • A and A * A • I, then
the above rules can be derived. But if you are given A * I • A
and A * A = I, then something very much like a group, but not
necessarily a group, results. For example, every clement is
duplicated.

ITEM 103 (Gosper):
The Hamiltonian paths through the N! permutations of N objects
using only SWAP (swap any specific pair) and ROTATE (1 position)
are as follows:
N PATHS + DISTINCT REVERSES
2 2 + 0, namely: S, R
3 2 + 1, namely: SRRSR, RRSRR
4 3 + 3, namely:

SRR RSR SRR RSR RRS RSR RSR RR
RSR SRR RSR RRS RSR RRS RSR RR
SRR RSR RRS RRS RSR RRS RRR SR

PROBLEM: A questionable program said there are none for N • 5;
is this so?

ITEM 104 (Schroeppel):
Any permutation on 72 bits can be coded with a routine
containing only the PDP-6/10 instructions "ROT" and "ROTC".

*********************************************
SET THEORY
*********************************************

ITEM 105 (Komolgoroff, maybe?):
Given a set of real numbers, how many sets can you
get using only closure and complement? Answer: 14.



**************************************
QUATERN IONS
**************************************
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ITEM 107 (Salamin):
A quaternion is a 4-tuple which can be regarded

as a scalar plus a vector. Quaternions add linearly
and multiply (non-commutatively) by

(Sl+Vl){S2+V2) • 51 52 - VI.V2 + 51 V2 + VI 52 + VI x V2
where
S-scalar part, V-vector part, .-dot product, x-cross product.
If Q = 5+V • (QO,Ql,Q2,Q3), then S - QO, V = (Ql,Q2,Q3).
Define conjugation by (5+V)* • S-V. The (absolute value)2
of a quaternion is Q02 + Ql2 + Q2 2 + Q3 2 • Q Q* = Q* Q.

The non-zero quaternions form a group under multiplication
with (1,0,0,0) - 1 as identity and l/Q = Q*/(Q* Q). The unit
quaternions, which lie on a 3-sphere embedded in 4-space, form a
subgroup. The mapping F(Q) • PQ (P a unit quat.ernion) is a rigid
rotation in 4-space. .This can be verified by expressing PQ as a
4X4 matrix times the 4-vector Q, and then noting that the matrix
is orthogonal. F(Q) restricted to the unit quaternions is a
rigid rotation of the 3-sphere, and because this mapping is a
group translation, it has no fixed point.

We can define a dot product of quaternions as the dot
product of 4-vectors. Then Ql.Q2 - a iff Ql is perpendicular to
Q2. Let N be a unit vector. To each unit quaternion Q - 5+V,
attach the quaternion NQ - -N.V + N S + N x V. Then it is seen
that (NQ).(NQ) • N.N - I and (NQ).Q • O. Geometrically this
means that NQ is a continuous unit 4-vector field tangent to the
3-sphere. No such tangent vector field exists for the ordinary
2-sphere. Clearly the I-sphere has such a vector field.
PROBLEM: For which N-spheres does a
continuous unit tangent vector field exist?



page 47
Let W be a vector (~uaternion with zero scalar part) and

Q = S+V. Then Q W Q* • (5 + V.V)W + 2 5 V x W + 2 V(V.W).
Let N be a unit vector and Q the unit quaternion
Q = ±(cos(6/2) + N sin(6/2». Then
Q W Q* • (cos 6)W + (sin 6)(N x W) + (I-cos 6)N(N.W), which is W
rotated thru angle 6 about N. If Q thus induces rotation R, then
QI Q2 induces rotation RI R2. 50 the projective 3-sphere
(+Q and -Q identified) is isomorphic to the rotation group
(3 X 3 orthogonal matrices). Projectiveness is unavoidable since a
211' rotation about any axis changes Q • I continuously into
Q :I: -1.

Let U be a neighborhood of the identity in the rotation
group (ordinary 3 dimensional rotations) and Ul the corresponding
set of unit quaternions in the neighborhood of 1. If a rotation
R carries U into U', then a quaternion corresponding to R carries
Ul into Ul'. But quaternion multiplication is a rigid rotation
of the 3-sphere, so Ul and UI' have equal volume. This shows
that in the quaternion representation of the rotation group, the
llaar measure is the Lebesgue measure on the 3-sphere.

Every rotation is a rotation by some angle 6 about some
axis. If rotations are chosen "uniformly", what is the
probability distribution of 6' By the above, we choose points
uniformly on the 3-sphere (or hemisphere since it is really
projective). Going into polar coordinates, one finds
pea) = (2/11') (sin 8/2)2, 0 < 6 < 11'.
In particular, the expected value of 0 is 11'/2+2/11'.

Quaternions form a convenient 4-parameter representation
of rotations, since composition of rotations is done by
quaterni~n multiplication. In contrast, 3-parameter
representations like Euler angles or (roll, pitch, yaw) require
trigonometry for composition, and orthogonal matrices ~re

9-parameter. In space guidance systems under development at
U-Iab, the attitude of the spacecraft is stored in the iuidance
computer as a quaternion.
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POLYOMINOS, ETC.
** ••••••••••••••••••• *.* ••••••••• *.* ••• *•••••

ITEM 108:
See the PROPOSED COMPUTER PROGRAMS section
for counts of polyominos of orders < 19.
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ITEM 109 (Schroeppel):
Tessellating the plane with polyominos:
Through all hexominos, the plane can be tessellated with
each piece (withou~ even flipping any over). All but the
four heptominos below can tessellate the plane, again without
beini flipped over. Thus, flipping does not buy you anything
through order 7. (There are 108 heptominos).

II II IIHH II II
HIlHIlII II If IUIHH IIHBH

fiB II H
II H

ITEM 110 (Schroeppel):
PROBLEM: What rectangles are coverable
by various polyominos? For example,

xx
X

YYYY

can cover rectangles which are 3N x M,
except if N • I, then M must be even.

can be shown by coloring to cover only rectangles
having at leaat one side divisible by four.

ITEM III (Schroeppel):
PROBLEM: Find a necessary and sufficient condition for
an arbitrary shape in the plane to be domino coverable.

ITEM 112 (Beeler):
"Iamonus" are made of equilateral triangles, like diamonds.
"(Poly-)ominos" are made of squares, like dominos.
"Hexafrobs" are made of hexagons.
"Soma-like" pieces are made of cubes.
See also "Polyiamonds," Math. Games, Sci. Am., December 1964.
Left and right 3-dimensional forms are counted as distinct.
ORDER IAMONOS OMINOS HEXA'S SOMA-LIKE

1 1 1 1 1
2 1 1 1 1
31232
4 3 S 7 8
S 4 12 22 29
6 12 3S
7 24
8 66
9 160

10 448
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Polyominos of order 1. 2 and 3 cannot form a rectangle. Orders
4 and 6 can be shown to form no rectangles by a checkerboard
coloring. Order 5 has several boards and its solutions are
documented (Communications of the ACM. October 1965):

BOARD DISTINCT SOLUTIONS
3 x 20 2
4 x 15 368
5 x 12 1010
6 x 10 2339 (verified)
two 5 x 6 -- 2
8 x 8 with 2 x 2 hole in center -- 65

CONJECTURE (Schroeppel): If the ominos of a given order
form rectangles of different shapes, the rectangle which
is more nearly square will have more solutions.
Order-4 hexafrob boards and solution counts:

side 7 triangle -- no solutions
parallelogram. base 7. side 4 -- 9 distinct solutions

e.g.. A A A ABC C
DEB B C F C
DEE B F G G
o 0 E F F G G

Order-6 iamond boards and solution counts (see illustration):
side 9 triangle with inverted side 3 triangle

in center removed ~- no solutions
trapezoid, side 6. bases 3 and 3+6 -- no solutions
two triangles of side 6 -- no SOlutions
trapezoid. side 4, bases 7 and 7+4

-- 76 distinct solutions
parallelogram, base 6, side 6 -- 156 distinct solutions
parallelogram, base 4, side 9 -- 37 distinct solutions
parallelogram. base 3. side 12 -- no solutions
triangle of side 9 with triangles of side 1, 2 and 2

removed from its corners (a commercial puzzle)
-- 5885 distinct solutions

With Soma-like pieces. orders I, 2 and 3 do not have interesting
boxes. Order 4 has 1390 distinct solutions for a 2 x 4 x 4 box.
1124 of these have the four-in-a-row on an edge; the remaining
266 have that piece internal. 320 solutions are due to
variations of ten distinct solutions decomposable into
two 2 x 2 x 4 boxes. A Soma-like 2 x 4 x 4 solution:

AAAA BBIIH
BCCC SIIHC
DODE FGGE
FDGE FFGE

The commercial Soma has 240 distinct solutions; the booklet
which comes with it says this was found years ago on a 7094.
Verified by both Beeler and Clements.



Figure S. Some hexiamond solutions.



*********************************************
TOPOLOGY
*********************************************

ITEM 113:
Although not new (cf Coxeter, Introduction to Geometry,
1st ed. p393), the following coloring number
(chromatic number) may be useful to have around:
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--

N • [[(7 + {4S II + 1)/2]]
where N is the number of colors required to color any map on an
object which has H holes (note: proof not valid for H • 0).
For example:
A donut (holes. 1) requires 7 colors to color maps on it.
A 17-hole frob requires 17 colors.
An IS-hole frob requires 18 colors.

ITEM 114 (Schroeppel):
A most regular 7-coloring of the torus can be
made by tiling the plane with the following
repeating pattern of hexagons of 7 colors:

A ACe E E
A A Ace C E E E

A A F FCC A A E E
F F F A A A

B B F F D D A A F F
B B B D D D F F F

B B G G D D B B F F
G G G 888

C eGG E E 8 B G G
C C C E E EGG G

C C A A E E C C G G
A A A C C C

D D A A F FCC A A
D D D F F F A A A

U D 8 8 F F D D A A
8 B B D D D

E E 8 B G G D D B B
E E EGG G 8 B B

E E C C G GEE B B
C C C E E E

C C E E
Draw an area 7 unit cell parallelogram by connecting, say, the
center 8's in each of the four B B

B B B
B B • Finally, j oi n the

opposite sides of the parallelogram to form a torus in the
usual (Spacewar) fashion. QUESTION (Gosper): is there a
toroidal heptahedron corresponding to this?



ITEM 115 (Gosper): page S2
A spacefilling curve is a continuous map T + XCT),Y(T),
usually from the unit interval onto the unit square,
~ften presented as the limit of a sequence of curves made by
iteratively quadrisecting the unit square. Each member of the
sequence is then 4 copies of its predecessor, connected in the
shape of an inverted V, with the first member being a V which
connects 0,0 to 1,0. The limiting map, X(T) and YeT), can be
computed instead by a simple, finite-state machine having 4
inputs (digits of T base 4), 4 outputs (one bit 'of X and one bit
of Yl, and 4 states (2 bits) of memory (the number modulo 2 of
a's and 3's seen in T).

Let T, X, and Y be written in binary as:

T-.A B A B A B •••
1 1 2 2 3 3

ALGORITHM 5:

X-.x X X X X X •••
1 234 5 6

Y-.Y Y Y Y Y Y •••
1 2 3 4 5 6

c ..- 0 i' of O's Plod 4
0

C ..- 0 i' of 3' 5 mod 4
1

51: X ..- A XOR C i 1th bit of X
I I NOT B

I
Y ..- X XOR B i 1th bit of Y

I I I

C ..- C XOR (NOT A AND NOT B ) icount OD's
0 0 I I

C ..- C XOR (A AND B ) icount II's
1 1 I I

GO 51



OLD
C CAB

o 1 I I

NE'~

X Y C C
I I 0 1
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o 0
o 0
o 0
o 0
o 1
o 1
o 1
o 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

o 0
o 1
1 0
1 1
o 0
o 1
1 0
1 1
o 0
o 1
1 0
1 1
o 0
o 1
1 0
1 1

o 0
o 1
1 1
1 0
1 1
o 1
o 0
1 0
o 0
1 0
1 1
o 1
1 1
1 0
o 0
o 1

1 0
o 0
o 0
o 1
1 1
o 1
o 1
o 0
o 0
1 0
I 0
1 1
o 1
1 1
1 1
1 0

This is the complete
state transition table.

To carry out either the forward or reverse map. label a set of
columns as in the table above. Fill in whichever you know of AB
or XY. with consecutive rows corresponding to consecutive I's.
Put 0 0 in the top position of the OLD CC column. Exactly one
row of the above table will match the row you have written so
far. Fill in the rest of the row. Copy the NEW CC entry to the
OLD CC column in the next row. Again. only one row of the state
table will match. and so forth. For example. the map
5/6 + (1/2.1/2) (really .11010101 ••• + (.1000 ••• ,.0111 ••• »:

OLD
C CAB
o 1 I I

NEW
X Y C C

I I 0 1

o 0
o 1
o 1
o 1

1 1
o 1
o 1
o 1

1 0
o 1
o 1
o 1

o 1
o 1
o 1
o 1

•• •

II 5/6 1/2 1/2

We note that since this is a one-to-one map on bit strings, it is
not a one-to-one map on real numbers. For instance. there are 2
ways to write 1/2 •• 1000 ••• and .0111 •••• and t~us 4 ways to
write (1/2.1/2). giving 3 distinct inverses. 1/6. 1/2. and 5/6.
Since the algorithm is finite state. X and Yare rational iff T
is. e.g •• 898/4369 + (1/5.1/3). The parity number. (see SERIES
section) and l-(parity number) are the only rea1s satisfying
X(T)IIT. Y(T)-l. This is related to the fact that they have no
O's and 3's base 4. and along with O. 1/2. and 111 .111 •••• are the
only numbers preserved by the deletion of their even numbered bit
positions.



*********************************************
SERIES
*********************************************

ITEM 116 (Schroeppel & Gosper):
• NINI 4 2n

page 54

~ - - + ------
N-0 (2N)! 3 9 13

PROBLEM: Evaluate in closed form

• N!NIN!
~

N-O (3N)!

1
J which • ! (P + Q arccos (R» dT J where

o

4*41
-X

(e )/X.

ITEM 117 (llenry Cohen):

X2 X·
y -- In X + X - - + - -

2*2! 3*31

\ihere ERROR is of the order of

Xit- • • • + ERROR

ITEM 118 (Schroeppel): -Y
Uifferentiate Ye • X to get Y+YXY'-XY' - O. Substitute

for Y a power series in X with coefficients to he determined.
One observes the curious identity:

N J -1 N-J N
~ (BINOMIAL N J)J (N-J) - N (0°.1)

J-l N-1 N
and thus VeX) • t N X INI

N-l

'ITEM 119 (Schroeppe1):
PROBLEM: Can someone square some series for n to give

n 2 1 1 1
the series • -- + -- + ••• - t __ ?

6 1 2 2 2 H2



-
ITEM 120 (Euler):
The series accelerating transformation
(Abramowitz & Stegun, sec. 3.6.27)

K K K+l
AO-Al+A2- ••• • 1: (-) (A AO)/2

K K K-M
(where (A AO) :II L (-) (BINOMIAL K M) AM - Kth

M-O
forward difference on AO) when applied to

N-l 2
1f 1 1 1f 2 N!
- = 1 - - + - - ••• gives - - L
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4 3 5 4 (2N + 1) !

Applied to the formula for y in Amer. Math. Monthly
T [log2 T]

(vol. 76, 13, Mar69 p273) = 1: (-)
([ ] mean integer part of) we get T

00 -(K+l) K-l I
I: 2 I: l/(BINOMIAL 2 +J J)

K=l J-O
(Gosper) which converges fast enough for a few hundred digits.
The array of reciprocals of the terms follows, with powers of 2
factore~ out to the left from all members of each row.
4 1
813
16 1 5 6
32 1 9 15 10
64 1 17 45 35 15
128 1 33 153 165 70 21
256 1 65 561 969 495 126 28

N+l
The next to left diagonal is 2 ; the perpendicular one 3rd
from the right is 1, *9/1- 9, *10/2- 45, *11/3= 165, *12/4- 495.

ITEM 121 (Gosper):
Consider the triangular array:

1
1 1

141
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

This bears an interesting relationship to Pascal's triangle.
The 302 in the 4th southeast diagonal and the 3rd southwest one
= 4*26 + 3*66. Note that· rows then sum to factorials rather
than powers of 2. If the nth row of the triangle is dotted with
any n consecutive elements of (either) n+1st diagonal of Pascal's
triangle, we get the nth Bernoulli polynomial: for n - 5,
1(6,i) + 26(6,i+l) + 66(6,i+2) + 26(6,i+3) + 1(6,i+4) -
sum of 5th powers of 1 thru i+5, where (j,i) • BINOMIAL (j+i j).



ITEM 122 (Schroeppe1, Gosper):
1 co -N

The "parity number" • - L (parity of N)*2
2 N-O

where the parity of N is the sum of the bits of N mod 2.
The parity number's value is .4124540336401075977 ••• , or,
for hexadecimal freaks, .6996966996696996.... It can be
written (base 2) in stages by taking the previous stage,
complementing, and appending to the previous stage:

.0

.01

.0110

.01101001

.0110100110010110

.01101001100101101001 ••• radix 2

page S6

i. e. , stage 0 • 0
stage N+l • stage N +

N
-2

(1- 2

N
-2

-stage N)/2

If NUM 0 • 0, DEN 0 • 2
NUM N+l • ((NUM N)+I)*((DEN N) -1)

N... l
2 2

DEN N+ 1 :I (DEN N) • 2
N

-2
)*(1 - 2then

NUM :~+1

DEN N+l

N
-2

• stage N+1 • (stage N + 2 ) .
Or, faster, by substituting in the string at any stage:

the string itself for zeros, and
the complement of the string for ones.

It is claimed (perhaps proven by Thue?)
that the parity number is transcendental.

Its regular continued fraction begins: 0 2 2 2 1 4 3 5 2 1 4 2 1
5 44 1 4 1 2 4 1 1 1 5 14 1 50 15 5 1 1 1 4 2 1 4 I 43 1 4 I 2 1
3 16 1 2 1 2 1 50 1 2 424 1 2 5 2 1 1 1 5 5 2 22 5 1 1 I 1274 3 5
2 1 1 1 4 1 1 15 154 7 2 1 2 2 1 2 1 1 50 1 4 1 2 867374 1 1 1 5
5 1 1 6 1 2 7 2 1650 23 3 1 1 1 2 5 3 84 I 1 1 1284 ••• and seems
to continue with sporadic large terms in suspicious patterns.
A non-regular fraction is
1/(3 -1/(2 -1/(4 -3/(16 -15/(256 -255/(65536 -65535/

N N
2 2

( ••• 2 -(2 -11/( ••••
This fraction converges much more rapidly than the regular one,

I+NUM N
its Nth a pproximan t b e i ng , wh i ch is," in fa c t ,

I+DEN N N
an approximant of the regular fraction, roughly the 2 the



In addition, 4*(parity number) •
1 3 15 255 65535

2 - - * - * -- * ---- * * • • •
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2 4 16 256 65536
This gives still another non-regular fraction per the product
conversion item in the CONTINUED FRACTION section.

For another property of the parity number, see the
spacefilling curve item in the TOPOLOGY section.

ITEM 123 (Schroeppel, Gosper, Salamin):
Consider the image of the circle Izi • 1 under the function

n
2

z
f( z) =- L • This is physically analogous to a series of

n
2

clock hands placed end to end. The first hand rotates around the
center (0,0) at some rate. The next hand is half as long and
rotates around the end of the first hand at twice this rate.
The third hand rotates around the end of the second at four times
this rate; etc. It would seem that the end of the "last" hand
(really there are infinitely many) would sweep through space very
fast, tracing out an (infinitely) long curve in the time the
first hand rotates once. The hands shrink, however, because of

n
.~ the 2 in the denominator. Thus it is unclear whether the speed

of the "last" hand is really infinite; or, whether the curve's
arc length is really infinite.

nl
z

Also, it is a visually interesting curve, as are fez) • t
FIB(n) nl

z

,

and fez) • L Gosper has programmed the one mentioned
FI B(n)

first, which makes an intriguing display pattern. See following
illustrations. If you write a program to display this, be sure
to allow easy changing of:
(1) z and z on alternate terms (alternate hands rotate in

opposite directions),
(2) negation of alternate terms (alternate hands initially

point in opposite directions), and
(3) how many terms are used in the computation,
since these cause fascinating variations in the resulting curve.



Figure 6(a). Image of circles Izl • 1/2, 3/4, 7/8, 1 under the
nl

z
function fez) • t ---

nl
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IT Et.1 124 (S chrocppel) : paRe 60--"
Consider

1 1 1 1 1 1
t - = t [ ] + t [- - ] • 2 - I

N2 N-1/2 N+l/2 N2 N2 -l/4 (4N 2 _l)*N 2

Take the last sum and re-apply this transformation.
This may be a winner for computing the original sum.
For example, the next iteration gives

31 9

18 N2 (4N 2 -l)(2SN'+SN 2 +9)
where the denominator also •

N2 (2N+l)(2N-l)(SN 2 +SN+3)(SN 2 -SN+3).

ITEM 125 (Polya):
CONJECTURE: If a function has a power series with integer
coefficients and radius of convergence 1, then either the
function is rational or the unit circle is a natural boundary.
Reference: Polya, Mathematics and Plausible Reasoning,
volume 2, page 46.



****************~****************************

FLOWS AND ITERATED FUNCTIONS
*********************************************

ITEM 126 (Schroeppel):
An analytic flow for Newton's method square root:

X2 +K
Define F(X) by - . then,

2X N N
2 2

(X + IK) + (X ~ tK)
F(F(F( ••• (X»» :a1K

[N tilDes] N N
2 2

(X + IK) - (X • t"K)
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N
which = IK (coth 2 (arccoth x/If»
ITEM 127 (Schroeppel):
P and Q are polynomials in Xi when does P(Q(X» :a Q(P(X» ?
(That is, P composed with Q III Q composed with P.)
Known solutions are:
1 Various linear things.
2 X to different powers, sometimes multiplie4 by roots of 1.
3 P and Q are each another polynomial R composed

with itself different numbers of times.
4 Solutions arising out of the flow of X2 .2, as follows:

suppose X = Y + l/Y
N -N

then Y + Y can be written as a polynomial in X
for example,

p III the expression for squares • X2 .2 (N • 2)
and Q • the expression for cubes • X'.3X (N • 3)

5 Replace X by Y-A, then add A to the original constants
in both P and Q. For example, P III X2 and Q • X3,
then P = 1+(Y_I)2 • y 2_2Y+2 and Q • 1+(Y_l)3,
then P(Q) • 1+ (Y-l)' III Q(P).
Similarly, re~lacing X with AY+8 works.

6 There are no ~ore through degrees 3 and 4 (checked with
Mathlab); but are there any more at all?
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Figure 7. ITEM 128 (Schroeppel):
A map of the process n + binary string + interpret as radix -2,
iterated. To convert a number to base -2:
(n + ••• 101010) XOR ( ••• 101010) (reversible).

)
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ITEM 129 (Schroeppel): page 63
PROBLEM: Given F(X) as a power series in X
with constant term = 0, write the flow power series.
FLO\-l sub ZE ItO = X
fLOW sub ONE = P(X)
FLOW sub TWO • F(F(X»
etc.
NOTE (Gosper): If we remove the restriction that F has a power
series, the functions that satisfy an equation of the form
F(F(X» = sin X can be put into one-to-one correspondence with
the set of all functions.

ITEM 130 (Sala~in): P
N N P

If F(X)=X , the P-th flow is X , which has a branch point if N
is non-integer. Unoer the hypotheses of the previous problem,
it is possible to find the power series coefficients for P
rational, but there is no guarantee the series will converge.
PROBLEM: Is the flow interpolation unique? If it is not, what
extra conditions are necessary to ~ake it unique for natural

N
cases like X ?

ITEM 131 (Schroeppel):
raking any two numbers A and B, finding their arithmetic mean and
their geometric mean, and using these means as a new A and 8,
this process, when repeated, will approach a limit which can be
expressed in terms of elliptic integrals. (See PI section.)



ITEM 132 (Gosper): LOOP DETECTOR page 64
If a function F maps a finite set into itself, then its flow must
always be cyclic. If F is one step,of a pseudorandom number
generator, or the CDR operation on a self referent list, or any
function where it is easy to supply former values as arguments,
then there are easy ways to detect looping of the flow (Knuth,
The Art of Computer Programming, volume 2, Seminumerical
Algorithms, sec. 3.1, probe 7, page 7). If, however, the process
of iterated application of the function is inexorable,
(i.e., there is no easy way to switch arguments to the function),
then the following algorithm will detect repetition before
the third occurrence of any value.

Set aside a table TAB(J), 0 ~ J ~ log2 (largest possible period).
Let C = the number of times F has been applied, initially o.
Compare each new value of F for equality with those table entries
which contain old values of F. These will he the first S
entries, where S is the number of times C can be right shifted
before becoming O. No match means F hasn't been looping very
long, so increment C and store this latest value of F into
TAB{J), where J is the number of trailing zero bits in the binary
of C. (The first .. 16 values of J are: 0, 1, 0, 2, 0, 1, 0, 3, 0,
1, 0, 2, 0, 1, 0, 4, ••• ; Eric Jensen calls this the RULER
function.) A match with entry E means the loop length is 1 more

E+I
than the low E+2 bits of C - 2

I TEf., 13 3 ( S c h roeppel, Go s per, II e nneman & Ban k s ) ( fro m 0 a na Scot t ?) :
The "3N+1 problem" is iteratively replacing N by N/2 if N is even
or by 3N+l if N is odd. Known loops for N to fall into are:
1 the zero loop, 0 ~ 0
2 a positive loop, 4 ~ 2 ~ 1 ~ 4
3 three negative loops

(equivalent to the 3N-l problem with positive N)
-2 ~ -1 + -2
-5 + -7 + -10 + -5
-17 + -25 + -37 + -55 + -82 + -41 +

-61 + -91 + -136 + -68 + -34 + -17
In the range _10 8 < N < 6 * 10 7

, all N fall into the above loops.
Are there any other loops? Docs N ever diverge to infinity?

ITEM 134 (Schroeppe1, Gosper):
Let N be iteratively replaced by (FLATSIZE (LONGHAND N»,
the number of letters in N written longhand
(e.g., 69 ~ SIXTY NINE ~ 9 (10 counting blanks».
The process invariably loops at 4 = FOUR.
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ITEM 135 (Gosper): page 65
The "c" Curve
A brilliant archeologist is photographing a strange drawing on
the wall of a cave. He holds the camera upright for some shots,
moves it, and turns it 90 degrees for the rest. When he sees his
prints he is amazed to find one of them apparently taken with the
camera turned 45 degrees. After a moment's reflection, he
correctly concludes that it is merely a double exposure.
What was the drawing?

Answer: It is a cousin to both the dragon and snowflake curves
(and arose as a bug in a spacefilling curve). It can be
constructed as follows. Start with a line segment. Replace it
with the two legs of the isosceles right triangle of which it is
hypotenuse. Repeat this for the two new segments, always bUlging
outward in the same direction. We now have four segments forming
half a square, with the middle two segments collinear. Replacing
these four segments with eight and then sixteen, we find the
middle two segments superimposed. As the process continues, the
curve crosses itself more and more often, eventually taking on
the shape of a wildly curly letter C which forms the envelope of
a myriad of epicyclic octagons.

A faster way to approach the same limiting curve is to substitute
n

2
the curve itself for each of its 2 segments, starting with a 
90 degree ,,<It.

Yet another way to construct it is to iteratively connect
opposite ends of two copies at a 90 degree angle. (The
archeologist did this with his double exposure.) If we reduce
the scale by 12 each time, the distance between the endpoints
stays the same. If the initial line segment is red and there is
some other blue shape elsewhere in the picture, the iteration
will simultaneously proliferate and shrink the blue shapes, until
they are all piled up along the red "C". Thus, no matter what
you start with, you eventually get something that looks like the
"C" curve.

There are other pictures besides the C curve which are preserved
by this process, but they are of infinite size. You can get
them by starting with anything and running the iteration
backwards as well as forwards, superimposing all the results.
A backward step consists of rotating the two copies in directions
opposite those in the forward step and stretching by 12 instead
of shrinking. David Silver has sketched an arrangement of
mirrors which might do this to a real scene.



Figure 8. Two orders of the "C" curve.
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ITEM 136: GAUSSIAN INTEGERS (For use by next item.)
Reference: Hardy and \'lright, Theory of Numbers. The Gaussian
integers are x+iy where x and yare integers. Unique
factorization holds, except for powers of i, and the Gaussian
primes are (1) a+bi if a 2+b 2 is prime and (2) integer primes
that = 3 mod 4. If N(x+iy) • X2+y2, then N(uv) • N(u)N(v).
If P is prime and not- 3 mod 4, then ~ • a 2+b 2 has exactly one
solution. If n • 3 mod 4, then n - a +b 2 has no solution.
To factor x+iy into Gaussian primes, first factor N(x+iy).

(A) If 2 divides N(x+iy), then l+i and l-i divide x+iy.
Either factor may be used since i(i-l) • i+1.

(8) If p=3 mod 4 divides N(x+iy), then p divides x+iy.
(C) If p=l mod 4 divides N(x+iy) and p :I a 2+b 2•

then a+ib or b+ia = i(a-ib) divides x+iy.
If both do, then p divides x+iy.

ITEM 137 (Salamin): GENERATION OF ARCTANGENT FORMULAS FOR n
nl atan(yl/xl) + n2 atan(y2/x2) + •••

g n1 a rg ( x1+i y 1) + n 2 a r g ( x2+i y 2) + •••
If each x+iy is factored and the n's chosen so all prime factors
except l+i cancel out, the right hand side is a mUltiple K of
n/4. Some care is needed because of the multiple valuedness of
arg. Then, if K :I 0, we get an arctangent identity, otherwise we
get a n formula. In the special ~ase of atan(l/x), factorization
of x+i is needed. Then case (8) above can't occur, and in case
(e), a+ib and a-ib can't both divide x+i.
Example:

8 2 +1 = 13 x 5
18 2+1 = 13 x 52
57 2+1 = 13 x 53 x 2

From this we get the factorization
8+i :I (3+2i) (2-i)

l8+i :I (3-2i) (2_i)2 i
57+i :I (3-2i) (2+i) 3 (I-i)

Since we only care about the phase, multiplication
by a positive real number may be ignored below.

abc
(8+i) (18+i) (57+i) :I

a-b-c
(3+2i)

-a-2b+3c
(2+1)

c b
(I-i) i

~ie require a-b-c = 0 and -a-2b+3c = 0, which has the minimal
non-trivial solution a = 51 b = 2, c :I 3. Then we have

(8+i)5 (18+i)2 (57+i) :I (1_i)3 i 2
Taking the phase of both sides, we get

5 atan(1/8) + 2 atan(1/18) + 3 atan(1/57) :I n/4.



atan(1/3l) II

=
atan(I/50) =

atan(1/239) =
=

atan(1/2441) •
•

atan(I/32) =
•

n formulas: page 68
n/4 = atan(1/2) + atan(1/3)
n/4 = 2 atan(1/3) + atan(I/7)
n/4 • 4 atan(l/S) - atan(1/239)
n/4 • 2 atan(1/4) + atan(I/7) + 2 atan(1/13)
n/4 • 3 atan(1/4) + atan(1/13) - atan(1/38)
n/4 = 4 atan(l/S) - atan(I/70) + atan(1/99)
n/4 • 5 atan(1/8) + 2 atan(1/18) + 3 atan(I/57)
n/2 • 7 atan(1/4) - 5 atan(1/32) + 3 atan(1/132) - 4 atan(1/378)

This last angle has been measured against the International
Standard Platinum-Iridium Right Angle and certified adequate
for any purpose of the U. S. Government, when used in conjunction
with a conscientiously applied program of oral hygiene and
regular professional care.

n/4 = 7 atan(1/9) + atan(1/32) - 2 atan(I/132) - 2 atan(I/378)
n/4 = 7 atan(I/13) + 8 atan(I/32) - 2 atan(I/132) + 5 atan(1/378)

There are many easily found arctangent identities. Some are:
atan(I/57) + atan(I/68)
atan(1/44) + atan(I/105)
atan(I/91) + atan(I/1ll)
atan(1/70) - atan(I/99)
atan(I/408) + atan(1/577)
atan(1/1164) - atan(I/2225)
atan(1/4714) + atan(I/499S)
atan(1/38) + atan(1/132) - atan(I/378)
2 atan(1/13) + atan(I/239) - atan(I/2943)

Infinite sets of arctangent identities:
atan(l/n) - atan(I/(n+l» • atan(1/(n 2+n+l»

Let x =1, y =0, x =x +2y , y =x +y
o 0 n n-l n-l n n-l n-l

x /y are the continued fraction approximants to I!.
n n

atan(l/y ) + atan(l/x ) • atan(l/i )
2n 2n 2n-l

atan(l/y ) - atan(l/x ) = atan(l/x )
2n 2n 2n+l

ITEM 138 (Gosper):
n • 28 arctan (3/79) + 20 arctan (29/278)
n = 48 arctan (3/79) + 20 arctan (1457/22049)
Which isn't too interesting except that it means that
(79+3i)" (22049+1457i)20 is a negative real number.



ITEM 139 (Ramanujan):
4/n =

page 69

N
~ (-1) (1123 + 21460 N) (1*3*5* ••• *(2N-l» (1*3*5* ••• *(4N-l»
E

N=O 2N+l N
(882 ) (32 ) (N 1) ,

This series gives about 6 decimal places accuracy per term.

1 ~ (1103 + 26390 N) (1*3*5* ••• *(2N-l» (1*3*S* ••• *(4N-l»

IBn
= E

N=O 4N+2 I N
(99 ) (32 ) (N!)'

This series gives about 8 decimal places accuracy per term.
For other n series, see Ramanujan's paper "Modular Equations and
Approximations to Pi" in Quarterly Journal of Pure and Applied
Mathematics, vol. 45, page 350 (1914). For more goodies, see
"Collected Papers of Srinivasa Ramanujan", Cambridge U. Press
(1927) •

ITEM 140:
Counting the initial 3 as the zeroth, the 431st denominator in
the regular continued fraction for n is 20776. (Choong, Daykin
& Rathbone, Math. of Computation 25 (1971) p. 387).
(Gosper) In the first 26491 terms of n, the only other 5 digit
terms are the 15543rd =19055 and the 23398th -19308. (Computed from
35570 terms of the (nonregular) fraction for 4 arctan 1.)

ITEM 141:
The fraction part of 10 760 n begins: .49999998 •••

ITEM 142 (Sa1amin):
Some super-fast convergents to n if one already
has a super-fast computation of trig functions.

X approx n: X + X + sin X, £ + £'/6
X + X - tan X, £ + _£'/3

X approx n/2: X + X + cos X, £ + £"6
X + X + cot X, £ + -£ /3



ITEM 143 (Salamin): page 70
Computation of elliptic integrals, log, and n.
RE FE REN CES :
Whittaker & Watson, Modern Analysis, chap. 22
Abramowitz &Stegun, Handbook of Mathematical Functions,

sec t. 17. 3, 1 7-,. 6 1

1. ELLIPTIC INTEGRALS
Define elliptic integrals:

1
K(m) II / 1/1(1 - t 2

) (1 - m t 2Y dt
o

K' (m) :I K(l - m) •

If A and B are given, and
0 0

A :I arithmetic mean of A and B
n+l n n

8 • geometric mean of A and 8
n+ 1 n n

then define

AGM(A ,8 ) II lim A • lim 8
0 0 n n

This is called the arithmetic-geometric mean.
Quadratic convergence rate:

A
n+l

- B
n+l

• (A
n

- 8 )2 ISA
n n+l

It is known that

K'(x 2 ) AGM(I, x) • n/2 [lee A&Sl.

This gives a super fast method of computing elliptic integrals.
It is easy to compute AGM(I, x) for x in the complex plane cut
from zero to infinity along the negative real axis. So K'(M) can
be computed for -2n < arg(m) < 2w, which covers the complex
m-plane twice. Handling the phase when taking square roots will
permit exploration of more of the Riemann surface.



2. LOGARITHMS
For small m,

K(rn) • (If/2) (1 + m/4 + O(m 2 »

-If (K' (m) /K(m»
e • (m/16) (1 + m/2 + O(m 2 »

Solve for K'(m) and let m • l6/x 2 ,

page 71

K'(16/x 2 ) • log x + (4/x 2 ) (log x-I) + O(log x/x").

For x sufficiently large,

log x = K'(16/x 2
) = n/(2 AGM(I, 4/x».

Requiring a given number of bits accuracy in log x is equivalent
to requiring

I (K' (16/x 2
) - log x) flog xl < £

this becomes

I (4/ x 2) (1 - 1/ log x) I < I4/ x 21 < £

Ixl > 2/1£.

x can be complex. If Ixl is not too close to I, x can be
brought into range by reciprocating or repeated squarina.

3. PIn
Let x = e , then

-n
n = 2 n AGM(I, 4 e ).

Suppose £ = 10 to the minus a billion.
Then the above equation for 1f is valid when n > 1.15 billion.

-n
e is calculated by starting with lIe and squaring k times.

k
Thus n = 2. 2 30 = 1.07 billion and 2 31

• 2.15 billion,
so k = 30 gives 0.93 billion places accuracy and k • 31 gives
1.86 billion places.

ITEM 144 (Schroeppel):
n n n

In the above, instead of x = e , use x • 2 and x • e*2 •
The n s i mu 1tan e 0 usequa t ions can be .s 0 1vedt 0 gi vc both nand
log 2. This avoids having to square e, but requires two AGM's,
and therefore takes longer.
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\

WARNING: Numbers in this section are octal
(and occasionally binary) unless followed by a decimal point.
105=69.. (And 105.=69 hexadecimal.)

ITEM 145 (Gosper):
Proving that short programs are neither trivial nor
exhausted yet, there is the following:
0/ TLeA 1,1(1)
1/ see below
2/ ROT 1,9
3/ JRST 0
This is a display hack (that is, it makes pretty patterns) with
the low 9 bits = Y and the 9 next higher a X; also, it makes
interesting, related noises with a stereo amplifier hooked to
the X and Y signals. Recommended variations include:

CHANGE: GOOD INITIAL CONTENTS OF 1:
none 377767,,377767; 757777,,757757; etc.
TLC 1,2(1) 373777,,0; 300000,,0
TLC 1,3(1) -2,,-2; -5,,-1; -6,,-1
ROT 1,1 7,,7; AOOOOB"AOOOOB
ROTC I,ll ;Can't use TLCA over data.
AOJA 1,0

ITEM 146:
Another simple display program: ("munching squares")
It is thought that this was discovered by
Jackson Wright on the RLE PDP-l circa 1962.

DATAl 2
ADDB 1,2
ROTC 2, -22
XOR 1,2
JRST .-4

2=X, 3=Y. Try things like 1001002 in data switches. This also
does interesting things with operations other than XOR,
and rotations other than -22. (Try lOR; AND; TSC; FADR; FDV{!);
ROT -14, -9, -20, ••• )

ITEM 147 (Schroeppel):
Munching squares is just views of the graph Y • X XOR T
for consecutive values of T • time.

ITEM 148 (Cohen, Beeler):
A modification to munching squares which
reveals them in frozen states through
opening and closing curtains: insert FADR 2,1 before the XOR.
Try data switches =
4000,,4 1000,,2002 2000,,4 0,,1002
(Notation: <left half>,,<right half»
Also try the FADR after the XOR, switches. 1001,,1.



.-
ITEM 149 (Minsky): page 73
Here is an elegant way to draw almost circles on
a point-plotting display. CIRCLE ALGORITHM:

NEW X • OLD X - £ * OLD Y
NEW Y = OLD Y + & * NEW(!) X

This makes a very round ellipse centered at the origin with its
size determined by the initial point. £ determines the
angular velocity of the circulating point, and slightly affects
the eccentricity. If £ is a power of 2, then we don't even
need multiplication, let alone square roots, sines, and cosines!
The "circle" will be perfectly stable because the points soon
become periodic.

The circle algorithm was invented by mistake when I tried to
save one register in a display hack! Ben Gurley had an amazing
display hack using only about six or seven instructions, and it
was a great wonder. But it was basically line-oriented.
It occurred to me that it would be exciting to have curves, and I
was trying to get a curve display hack with minimal instructions.

ITEM ISO (Schroeppel):
PROBLEM: Although the reason for the circle algorithm's
stability is unclear, what is the number of distinct sets
of radii? (Note: algorithm is invertible, so all points
have predecessors.)

ITEM 151 (Gosper):
Separating X from Y in the above recurrence,

X(N+l) : (2_£2)*X(N) - X(N-I)
Y(N+l) : (2_£2)*Y(N) - Y(N-l).

These are just the Chebychev recurrence with cos e (the
angular increment) • 1_£2/ 2 • Thus X(N) and YeN) are expressible
in the form R cos(N e + .). The .'s and R for XeN) and YeN)
can be found from N:O,l. The .'s will differ by less than n/2
so that the curve is not really a circle. The algorithm is
useful nevertheless, because it needs no sine or square root
function, even to get started.

X(N) and YeN) are also expressible in closed form in the
algebra of ordered pairs described under linear recurrences,
but they lack the remarkable numerical stability of the
"simultaneous" form of the recurrence.

ITEM 152 (Salamin):
With exact arithmetic, the circle algorithm is stable iff
1£1 < 2. In this case! all points lie on the ellipse

X2 - £ X Y + Y = constant,
where the constant is determined by the initial point.
This ellipse has its major axis at 45 degrees (if c > 0)
or 135 degrees (if & < 0) and has eccentricity

{E/(l + E/2).



ITEM 153 (Minsky): page 74
To portray a 3-dimensional solid on a 2-dimensional display,
we can use a single circle algorithm to compute orbits for the
corners to follow. The (positive or negative) radius of each
orbit is determined by the distance (forward or backward) from
some origin to that corner. The solid will appear to wobble
rigidly about the origin, instead of simply rotating.

ITEM 154 (Gosper):
The myth that any given programming language is machine
independent is easily exploded by computing the sum of
powers of 2.
If the result loops with period • 1 with sign +,

you a~e on a sign-magnitude machine.
If the result loops with period = I at -I,

you are on a twos-complement machine.
If the result loops with period> 1, including the beginning,

you are on a ones-complement machine.
If the result loops with period> 1, not including the beginning,

your machine isn't binary the pattern should tell you
the base.

If you run out of memory, you are on a string or Bignum system.
If arithmetic overflow is a fatal error, some fascist pig with a

read-only mind is tryin~ to enforce machine independence.
But the very ability to trap overflOW is machine
dependent.

By this strategy, consider the universe, or, more precisely,
algebra:

let X • the sum of many powers of two • ••• 111111
now add X to itself; X + X • ••• 111110
thus, 2X = X-I so X = -1
therefore algebra is run on a machine (the universe)
which is twos-complement.

ITEM 155 (Liknaitzky):
To subtract the right half of an accumulator from the left
(as in restarting an AOBJN counter): IMUL A,[377777,,1]

ITEM 156 (Mitchell):
To make an AOBJN pointer when the origin is fixed
and the length is a variable in A:

IIRLOI A,-l(A)
EQVI A,ORIGIN

ITEM 157 (Freiberg):
If instead, A is a pointer to the last word

HRLOI A,-ORIGIN(A)
EQVI A,ORIGIN

Slightly faster: change the HRLOIs to MOVSIs and the
EQVI addresses to -ORIGIN-I. These two routines are
clearly adjustable for BLKOs and other fenceposts.



ITEM 158 (Gosper, Salamin, Schroeppel): page 7S
A miniature (recursive) sine and cosine routine follows.
COS: FADR A,[1.S7079632679] jw/2
SIN: MOVM B,A ;ari~ment in A

CAMG 8,[.00017] ;~ r3 I 2 13

POPJ P, jsin X • X, within 27. bits
FUVRI A,(-3.0)
PUSHJ P,SIN ;sin -X/3
FMPR B,B
FSC B,2
FADRI 8,(-3.0)
FMPRB A,B ;sin X • 4(sin -X/3)'-3(sin -X/3)
POPJ P, ;sin in A, sin or Isinl in B

;Isinl in D occurs when angle is smaller than end test

Changing both -3.0's to +3.0's gives sinh:
sinh X = 3 sinh X/3 + 4 (sinh X/3)'.
Changing the first -3.0 to a +9.0, then inserting PUSHJ P,.+l
after PUSHJ P.SIN gains about 20\ in speed and uses
half the pushdown space « 5 levels in the first 4 quadrants).
PUSlfJ P,.+l is a nice way to have something happen twice.
Other useful angle mUltiplying formulas are
tanh X • (2 tanh X/2)/(1 + (tanh X/2)2)
tan X = (2 tan X/2)/(1 - (tan X/2)2), if infinity is
handled correctly. For cos and cosh, one can use
cos X = 1 - 2 (sin X/2)2, cosh X s 1 + 2 (sinh X/2)2.

X
In general, to compute functions like e , cos X, elliptic
functions, etc. by iterated application of double and triple
argument formulas, it is necessary to subtract out the constant
in the Taylor series and transform the range reduction formula
accordingly. Thus:

F(X) = cos(X)-l F(2X). 2F*(F+2) F(E) • _£2 / 2
X

G(X) = e -1 G(2X) • G*CG+2) G(E) • E

This is to prevent the destruction of the information in the
range-reduced argument by the addition of a quantity near I upon
the success of the £ test. The addition of such a quantity
in the actual recurrences is OK since the information is restored
by the multiply. In fact, a cheap and dirty test for F(E)
sufficiently small is to see if the addition step has no effect.
People lucky enough to have a square root instruction can get
natural log by iterating X + X/(IT+X + 1) until l+X • 1.

(number of iterations)
Then mUltiply by 2 Here, a LSH or FSC
would work.



ITEM 159 (Gosper, Schroeppel): page 76
(~umbcrs herein are decimal.)
The correct epsilon test in such functions as the foregoing
SIN are generally the largest argument for which addition of
the second term has no effect on the first. In SIN, the
first term is x and the second is _x 3 /6, so the answer is
roughly the x which makes the ratio of those terms 1/2 27 ;
so x = 13 1 2 13 • But this is not exact, since the precise
cutoff is where the neglected term is the power of 2 whose 1 bit
coincides with the first neglected (28th) bit of the fraction.
Thus, x 3 /6 = 112 27 * 1/2 13

, so X = 13 1 2 13 •

ITEM 160 (Gosper):
Here is a way to get log base 2. A and B are consecutive.
Call by PUSHJ P,LOG2 with a floating point argument in A.

LOG2: LSHC A, -33
~10VSIC, - 20 1 (A)
TLC C,2ll000
1·10 VEI A, 20 0

LOGL: LSH B,-9
REPEAT 7, FMPR B,B

LSH B,2
LSIIC A,7
SOJG A,LOGL
LSH A,-l
FADR A,C
POPJ P,

;Spcciner's bum
;exponent and sign sentinel

;moby flunderflo

;fails on 4th try

;answer in A

Basically, you just square seven times and use the low seven
bits of the exponent as the next seven bits of the log.



ITEM 161 (Gosper):
To swap the contents of two locations in memory:

EXCII A,LOCI
EXCH A,LOC2
EXCH A,LOCI

Note: LOCI must not equal LOC21 If this can happen,
use MOVE-EXClI-MOVEM, clobbering A.

ITEM 162 (Gosper):
To swap two bits in an accumulator:

TRCE A,BITS
TRCE A,BITS
TRCE A,BITS

Note (Nelson): last TRCE never skips, and used to be
a TRC, but TRCE is less forgettable. Also, use TLCE
or TUCE if the bits are not in the right half.

page 77

ITEM 163 (Sussman):
To exchange two variables in LISP without using a third variable:

(SETQ X (PROG2 0 Y (SETQ Y X»)

ITEM 164 (Samson):
To take MAX in A of two byte pointers
(where A and B are consecutive accumulators):

ROTC A,6
CAMG A,B
EXCH A,B
ROTC A,-6

ITEM 165 (Freiberg):
A byte pointer can be converted to a character address < 218 by
MULl A,<# bytes/word> followed by SUBI B,l-<' b/w>(A).
To get full word character address, use SUB into a magic table.

ITEM 166 (Gosper, Liknaitzky):
To rotate three consecutive accumulators N < 37. places:

ROTC A,N
ROT B,-N
ROTC B,N

Thus MAC's can be ROTC'cd in 2M-3 instructions.
(Stallman): For 73. > N > 35.:

ROTC A,N-36.
EXCH A,C
ROT B,36.-N
ROTC A, N- 72.



ITEM 167 (Gasper, Freiberg):
;B gets 7 bit character in A

IMUL A,[2010040201]
ANU A,[21042104377]
IUIVI A,17+7

page 78
with even parity

i5 adjacent copies
ievery 4th bit of left 4 copies + right copy
;casting out 15.'s in hexadecimal shifted 7

jodd parity on 7 bits (Schroeppel)
IMUL A,[10040201] i4 adjacent copies
lOR A,[7555555400] ;leaves every 3rd bit+offset+right copy
IDIVI A,9+7 iPowcrs of 2 3 are ±l mod 9

ichanging 7555555400 to 27555555400 gives even parity

;if A is a 9 bit quantity, B gets number of l's (Schroeppel)
IMUL A,[IOOlOOlOOl] i4 copies
AND A,[421042l0421] ievery 4th bit
IDIVI A,17 ;casting out 15.'s in hexadecimal

iif A is 6 bit quantity, B gets 6 bits reversed (Schroeppel)
IMUL A,[2020202] i4 copies shifted
AND A,[1044220l0] iwhere bits coincide with reverse repeated base 28

IDIVI A,377 jcasting out 28 _1'5

jreverse 7 bits (Schroeppel)
IMUL A,[1000400200l]
AND A,[2102l02l00l0]
IDIVI A,377

jreverse 8 bits (Schroeppel)
MUL A,[10020040l002]
AND B,[20420420020]
ANDI A,4l
DIVI A,1777

;4 copies sep by OOO's base 2 (may set arith. o'flow)
;where bits coincide with reverse repeated base 28

jcasting out 377's

;5 copies in A and B
;where bits coincide with reverse repeated base 2 10

.n,
icasting out 210 .l's

)



ITEM 168 (PDP-l hackers): page 79
foo, lat IDATAI switches

adm a IADDB
and (707070
adm b
iot 14 loutput AC sign bit to a music flip-flop
jmp foo

Makes startling chords, arpeggios, and slides, with just the
sign of the AC. This translates to the PDP-6 (roughly) as:

FOO: DATAl 2
ADDB 1,2
AND 2,[707070707070] jor 171717171717, 363636363636, 454545454545, •••
ADDB 2,3
LDB 0,(360600,,2]
JRST FOO

Listen to the square waves from the low bits of O.

ITEM 169 (in order of one-ups-manship: Gosper, Mann, Lenard, [Root and Mann]):
To count the ones in a PDP-6/10 word:

LDB B,[014300"A] jor MOVE B,A then LSH B,-l
AND B,[333333,,333333]
SUB A,B
LSII B,-I
AND B,[333333,,333333]
SUBB A,B ;cach octal digit is replaced by number of lis in it
LSJI B, - 3
ADD A,B
AND A,[070707,,070707)
IDIVI A,77 jcasting out 63.'5

These ten instructions, with constants extenaed, would work
on word lengths up to 62.; cleven suffice up to 254 ••



ITEM 170 (Jensen): page 80
Useful strings of non-digits and zeros can arise when
carefully chosen negative numbers are fed to unsuspecting
decimal print routines. Different sets arise from
different methods of character-to-digit conversion.
Example (Gosper):

UPT: IOIVI F,12
HRLM G,(P) ;tuck remainder on pushdown list
SKIPE F
PUSHJ P,OPT
LUB G,[220600,,(P)] jretrieve low 6 bits of remainder
TRCE G,"O jconvert digit to character
SETOM CCT jthat was no digit!

TYO: • lOT TYOCHN, G
AOS G,CCT
POPJ P,

jor OATAO or IOPB •••

This is the standard recursive decimal print of the positive
number in F, but with a LOB instead of a HLRZ. It falls into
the typeout routine which returns in G the number of characters
since the last carriage return. When called with a -36., DPT
types carriage return, line feed, and resets CCT, the character
position counter.

ITEM 171 (Gosper):
Since integer division can never produce a larger quotient than
dividend, doubling the dividend and divisor beforehand will
distinguish division by zero from division by I or anything
else, in situations where division by zero does nothing.

ITEM 172 (Gosper):
The fundamental operation for building list structure, called
CONS, is defined to: find a free cell in memory, store the
argument in it, remove it from the set of free cells, return
a pointer to it, and call the garbage collector when the set
is empty. This can be done in two instructions:

CONS: EXCH A,[EXCH A,[ ••• [PUSHJ P,GC] ••• ]]
EXCH A,CONS

Of course, the address-linked chain of EXCH's indicated by
the nested brackets is concocted by the garbage collector.
This method has the additional advantage of not constraining
an accumulator for the free storage pointer.

UNCONS: IIRLI A, (BXCH A,)
EXCH A,CONS
EX CH A, @CON S

Returns cell addressed by A to free storage listj
returns former cell contents in A.



ITEM 173 (Gosper): page 81
The incantation to fix a floating number is usually

MULl A,400 iexponent to A, fraction to A+1
TSC A,A ;l's complement magnitude of excess 200 exponent
ASH A+l,-200-27.-8(A) ianswer in A+l

If number is known positive, you can omit the TSC.
On the PDP-lO

UFA A,[±233000,,) inot in PDP-6 repertoire
TLC A+1,233000 iif those bits really bother you

When you know the sign of A, and IAI < 226 , you can
FAD A,(±233400,,] ior FADR for rounded fix!
TLC A,233400 iif those bits are relevant

where the sign of the constant must match A's.
This works on both machines and doesn't involve A+l.
On the 10, FADRI saves a cycle and a constant, and rounds.

ITEM 174 (Gosper, Nelson):
21963283741. = 243507216435 is a fixed point of the float
function on the PDP-6/l0, i.c., it is the only positive
number whose floating point representation equals its fixed.

ITEM 175 (Gosper):
To iet the next higher number (in A) with the same number
of 1 bits: (A, B, C, D do not have to be consecutive)

MOVE B,A
MOVN e,B

,_ AND C,B
ADD A,e
MOVE D,A
XOR D,B
LSII D,-2
IDIVM D,C
lOR A,C
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ITEM 176 (Gosper):
The "banana phenomenon" was encountered when processing a
character string by taking the last 3 letters typed out,
searching for a random occurrence of that sequence in the text,
taking the letter following that occurrence, typing it out, and
iterating. This ensures that every 4-letter string output occurs
in the original. The program typed BANANANANANANANA ••••
\~e note an ambigui ty in the phrase, "the Nth occurrence of."
In one sense, there are five OO's in 0000000000; in another,
there are nine. The editing program TECO finds five. Thus it
finds only the first ANA in BANANA, and is thus obligated to type
N next. By Murphy's Law, there is but one NAN, thus forcing A,
and thus a loop. An option to find overlapped instances would he
useful, although it would require backing up N-I characters
before seeking the next N character string.

ITEM 177 (Gosper): DRAWING CURVES INCREMENTALLY

Certain plotters and displays are constrained to
approximate curves by a sequence of king-moves hetween points
on a lattice.

Many curves and contours are definable by FeX,Y) = 0 with
F changing sign on opposite sides of the curve. The following
algorithm will draw most such curves more accurately than
polygonal approximations and more easily than techniques which
search for a "next" X and Y just one move away.

We observe that a good choice of lattice points is just
those for which F, when evaluated on one of them, has opposite
sign and smaller magnitude than on one or more of its four
immediate neighbors.t This tends to choose the nearer endpoint
of each graph paper line segment which the curve crosses, if near
the curve F is monotone with distance from the curve.

First, divide the curve into arcs within which the
curve's tangent lies within one 45 degree semiquadrant. 11e can
show that for reasonable F, only two different increments (say
north and northwest) are needed to visit the desired points.

Thus, we will be changing one coordinate (incrementing Y)
every step, and we have only to check whether changing the other
(decrementing X) will reduce the magnitude of F. (If F increases
with Y, F(X,Y+I) > -FeX-I,Y+I) means decrement X.) F can often
be manipulated so that the inequality simplifies and so that F is
easily computed incrementally from X and Y.



As an example, page 83
the following computes the first semiquadrant of the circle

co: F + 0, Y + 0, X + R

Cl: F + F+2Y+l, Y + Y+l

C2: ift F > X, F + F-2X+l, X + X-I-
C3: if Y < X-I, go to Cl

C4: (Link to next arc) if Y • X-I, Y + Y+l, X + X-I

This can be bummed by maintaining Z • 2Y+l instead of Y.
Symmetry may be used to compute all eight semiquadrants at once,
or the loop may be closed at C2 and C3 with two PUSHJ's to
provide the palindrome of decisions for the first quadrant.
There is an expression for the number of steps per quadrant,
but it has a three-way conditional dependent upon the midpoint
geometry. Knowing this value, however, we can replace C3 and C4
with a simple loop count and an odd-even test for C4.

The loop must be top-tested (C3 before Cl) if the
"circle" R I: 1, with four diagonal segments, is possible.

All this suggests that displays might be designed with an
increment mode which accepts bit strings along with declarations
of the form: "0 means north, 1 means northwest". 1100 (or 0011)
will not occur with a curve of limited curvature: thus, it could
be used as an escape code, but this would be an annoying
restriction.

See the following illustration of circles drawn this way.

t In case of a tie, i.e., F has equal magnitudes with opposite
signs on adjacent points, do not choose both points but rather
have some arbitrary yet consistent preference for, say, the outer
one. The problem can't arise for C2 in the example because the
inequality F ~ X is really F > -(F-2X+l) or F > X-.S.





ITEM 178 (Schroeppel, Salamin): page 85
Suppose Y satisfies a differential equation of the form

P(X)Y(Nth derivative) + ••••• + Q(X) • R(X)
where P, ••••• Q, and R are polynomials in X
(for example, Bessel's equation, X2 Y"+XY'+(X 2 _N 2 )y • 0)
and A is an algebraic number. Then YeA) can be evaluated to
N places in time proportional to N(ln N)3.

X
Further, e and In X or any elementary function can be evaluated
to N places in N(ln N)2 for X a real number. If F(X) can be
evaluated in such time, so can 'the inverse of F(X) (by Newton's
method), and the first derivative of F(X). Also, t(3) and y
can be done in N(ln N)3.

ITEM 179 (Gosper):
A program which searches a character string for a given
substring can always be written by iterating the sequence
fetch-compare-transfer (ILDB-CAIE-JRST on the PDP6/l0) once
for each character in the sought string. The destinations
of the transfers (address fields of the JRST's) must, however,
be computed as functions of the sought string.
Let

o 1 2 3 4
S ASS Y
o 1 022

stand for the program

TO: ILDB C,A ;C gets next char from pointer in A
Tl: CAIE C,"S jskip if it's an S

JRST TO ilooP back on failure
ILDB C,A jnext

T2: CAIE C,"A ;skip if A
JRST Tl ;could be an S
ILDB C,A

T3: CAIE C,"S
JRST TO is, A, non S, so start over
ILDB C,A ;next

T4: CAIE C,"S
JRST T2 ;could be SAS.ASSY
ILDB C,A
CAIE C,"Y
JRST T2 jcould be SASS.ASSY

jfound SASSY

In other words, a number> 0 in the top row is a location
in the program where the corresponding letter of the
middle row is compared with a character of the input string.
If it differs, the number in the bottom row indicates the
location where comparison is to resume. If it matches,
the next character of the middle row is compared with the
next character of the input string.



page 86
Let J be a number in the top row and K be the number
below J, so that TK is the address field of the Jth JRST.
For each J ~ 1, 2, ••• we compute K(J) as follows:
K(l) = O. Let P be a counter, initially O.
For each succeeding J, increment P. If the Pth letter = the Jth,
K(J) • K(P). Otherwise, K(J) = P, and P is reset to O. (P(J)
is the largest number such that the first P characters match
the last P characters in the first J characters of the sought
string.)

J= 0 1 0 I 2 3 4 5
M I S S I S S I P P I I S S I S S I P P I

K(J)= 0 1 1 1 1 I 1 I 1 I 1 0 1 1 0 I I 0 5 1 0

0 1 2 3 0 1 2 3
C 0 C A C 0 L A S A S S A F R A S
0 I 0 2 0 I 3 1 0 1 0 2 I 3 1 I 0

To generalize this method to search for N strings at once, we
produce a program of ILDB-CAIE-JRST's for each of the sought
strings, omitting the initial ILDB from all but the first. We
must compute the destination of the Jth JRST in the Ith program,
TKM(I,J), which is the location of the Kth compare in the Mth
program.

It might be reasonable to compile such an instruction sequence
whenever a search is initiated, since alternative schemes usually
require saving or backing up the character pointer.

ITEM 180 (Gosper):
A problem which may arise in machine processing of visual
information is the identification of corners on a noisy boundary
of a polygon. Assume you have a broken line. If it is a closed
loop, find the vertex furthest from the centroid (or any place).
Open the loop by making this place both endpoints and calling it
a corner. We define the corner of a broken line segment to be
the point the sum of whose distances from the endpoints is
maximal. This will uivide the segment in two, allowing us to
proceed recursively, until our corner isn't much cornerier than
the others along the line.

The perpendicular distance which the vector C lies
from the line connecting vectors A and 8 is just

(C - A) x (8 - A)

2 fA - 81
but maximizing this can lose on very pointy V's.
The distance sum hack can lose on very squashed Z's.
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ITEM 181 (Gosper):
A bug you might try to avoid when designing floating

point hardware, relating to excess-200, l's complement exponent,
2's complement fraction convention:

1) An advantage is that negation and numerical comparison can
be accomplished with the same instructions for both fixed and
floating point numbers.

2) A disadvantage is that the termination of the
normalization process is ambiguous. Normally, when
the sign bit unequals the highest bit of fraction,
the number is normalized. A special case arises with

n -n
negated powers of two. (That is, -(2 ), not (2) .)
Then the fraction is 400,,0 and the sign is - also.

This means it is necessary to check whether shifting left
one more bit will bring in a one:

if it brings in a zero, you will over-normalize
if it brings in a one, you should do it

If you should but don't, rounding will un-normalize, and when you
then re-normalize, the normalizing amount will be doubled, so you
will be off by 2 smidgens (thati is, the next to low order bit).
Note that rounding can over-normalize as well as un-normalize,
so you can't just stop normalization after rounding.

You might check this in your PDP-6/10. For example,
combine 201400,,0+0 with minus 200777,,777777+20. For
o ~ 0 ~ 7777, the correct FMP result is minus 200777,,777776,
and the correct FMPR result is minus 200777,,777777.

Over-normalized negative powers of 2 work in compares and
most floating arithmetic. They lose with MOVN and as dividends.
Unnormalized floating operands win completely on the PDP-IO,
except as divisors and dividends, the latter suffering truncation
error.



ITEM 182 (Roc): VOLTAGE REGULATORS
Fairchild is now supplying positive voltage
regulators costing about 2 dollars in lots
of I (for example, the uA7805 for +5 volts).

paRe 88

ITEM 183 (Roe): CURRENT MIRRORS
The CA3083 (and CA3084) transistor arrays can be used to make
neat current mirrors. (A current mirror supplies a current on
one wire equal to that drawn from a second wire.)

ITEM 184 (Roc): ONE-SHOT
A dual MUS U-type flip-flop (such as the CD4013AE)
can be used to make a one-shot as follows:

c --r-CLOCK

t-J 1
~ ,

•• ! 5"0 1\$ <t 5 v ~-.&3RC

t 50 "5 @ 'OV

\ I
CLOCK

ITEM 1~5 (Roc): OSCILLATORS
Evryone has their own favorite oscillator circuits;
here are some we like.
I crystal, overtone, transistor
II crystal, fundamental, transistor (drives at least I TTL load)
III crystal, fundamental, CMOS, low frequency (drives I TTL load;
at 5.4 volts and no load, draws 330 microamperes; with a 165 KHz,
32 pf crystal, varies about 10 liz per volt of Vee)
IV crystal, fundamental, Ie (a favorite of Nelson's, but be
careful and lucky or it may oscillate at a frequency determined
by the crystal holder capacitance and not by the crystal; note
similarity to non-crystal oscillator V)
V not crystal controlled; for comparison with IV
VI The following blocking oscillator is quite uncritical of
component values, with the exception that the turns ratio be
such that -Vb (see graph) not exceed BVebo (about 5 volts for
silicon transistors).
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ITEM 186 (Roe): FM RADIO LINK
In work on education at our lab, we built a motorized "turtle"
controlled by computer commands in the child-oriented language
"Logo." The following is a transmitter designed as a radio link
between the computer and turtle. Input (modulation) is either
o or +12 volts; output is about 88~lz. Use a commercial FM tuner
as receiver. Note: this transmitter is ILLEGAL no matter what;
part 15 low power rule only allows if duty is less than about
1 second per 15 minutes. Uon't worry about it unless you
interfere with broadcast stations.

15K

II 'turn~ - 18
%J)IA Y.. LONG-.

_4----+----.,jruuD.....--r--~ +'
I,COI
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Ho1e: or't io".'
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ITEM 187 (Roe): PHONE LINE XHTR, RCVR page 91
When the chess program written at our lab is playing in a chess
tournament, a human attendant at the tournament moves the pieces,
punches the clock, and communicates with the program via a
portable terminal coupled to a telephone line. It is desirable
that the program know when its chess clock is running, even
though the attendant may not notice immediately that the opponent
has made his move and punched the clock. Therefore we built a
clock holder with a microswitch to sense the clock state.
The following is a 10 mw tran~mitter whose input is the
microswitch and whose output goes onto the phone line.
It switches between two frequencies, about 320 and 470 liz.
Also shown is the receiver. Input should be at least 100 mv rms
(threshold is 20 mv and overload is above 68 volts) with peak to
peak signal to noise ratio greater than 4:1. As we all know,
connections to phone lines are illegal unless made through a data
coupler supplied by TPC (The Phone Company).

.-

\--_";---~3=--__+--__---r--t

.1

+, '" '320 Hz

t'l ~ 1.170 Hz.



ITEM 188 (Roe): UC MOTOR VELOCITY SERVO page 92
une version of the "turtle" mentioned above (see RADIO LINK) uses
a UC motor to drive each of its two powered wheels. Since its
path is to be as straight as possible, a triangular pulse is
generated (to represent one "step" of the motor) and the motor's
velocity servoed to this analog command. An additional digital
command enables foreward or reverse motion. Diagram I shows a
simplified velocity servoing circuit. It has the disadvantage
that only half the maximum voltage available (-V to +V) can be
applied across the motor at anyone time. Diagram II shows the
actual circuit used in the turtle.
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ITEM 189 (Roe): OPTICAL COUPLER page 93
When two circuits are at potentials differing by a few hundred
volts but wish to communicate with each other, one solution is
to use an optical coupler. These employ a light-emitting device
placed close to a light-sensitive device. Diodes make very
fast-responding sensors, hut the signal from a light-sensitive
transistor is much stronger. Shown is a compromise, using a
transistor as a diode, with associated cleverness to get the
oelay (from input to output) down from 10 microseconds to 1.

MCT-l + 5 +,- de1q.y
~tLO 'trtm

IJ

/.f70

de,l<lY
- 'JA- sec
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ITE~1 190 (Roc): PHOTOCATHODE CURRENT aSCI LLATOR
In our fourth computer-interfaced image sensing device, TVD
(really a vidissector, not a TV), the photocathode sits at
several thousand volts negative. Nevertheless, one wishes to
sense the current it draws, since overcurrent should shut down
the photocathode voltage to avoid damage to the photocathode.
The following circuit draws no more than 400 microamperes at
10 volts (at 20 KHz out; about 200 microamperes at 10 KHz) and
couples the current information out as the frequency sent to T2,
whose coils are wound on opposite sides of a ceramic ferrite.



ITEf·1 191 (Roe): UEFLECTION AMPLI FIER page 94
TVU, mentioned above, uses a very carefully designed printed
circuit amplifier to supply current to its magnetic deflection
coils. Except for the notes with the diagram, we submit it
without further explanation or cautions.

Notes:
1 Except where noted, resistors 10%, 1/4 watt.
2 Capacitances in microfarads/volts; electrolytics aluminum.
3 Uiodes IN4727, lN4l54,lN4009 etc.; stored charge no more than

80 picocoulombs at 1 milliampere foreward current.
4 lUl03 = GE thermistor mounted at center of main heat sink.
S 220J = Analog Uevices chopper amplifier.
6 * = temperature protection circuit (overtemperature cutout).
7 Q2, Q3, Q4, Q5, Q6, Q12, Q13, Ql4, Q15, Ql6 mounted

on one 1 Centigrade degree per watt heat sink (e.g.
Wakefield 621K 1/2 inch in front of Rotron Muffin fan).
Case temperature about 70 degrees C max.
Ground heat sink and insulate transistors.

8 All transistors Motorola.
9 All zeners 1 watt.
10 VE48X = Varo; could be two 2 A SO PIV fast recovery.
11 Output capacitance about 800 pf; damping R about ISO ohms

for critical damping.
12 Slews from + (or -) 2 A to - (or +) 2 A in 4 microseconds;

dE/dt at hot side of deflection coil is about a billion v/sec.
13 Layout is critical, as with most fast high-gain circuits.

A By-passing and lead inductance: Short wide strips (or,
better, a ground plane) should be used for ground bus,
and ceramic capacitors with leads as short as practicable
used for bypassing. Best bypass capacitor is
Allen-Bradley CL series.

B Gr~und loops: reference ground (triangles) and power ground
must be interconnected only at the cold side of the sense
resistor; take care to avoid stray current through the cold
side of the signal input.

C In general, the device should be constructed like
a 144 ~iz transmitter to avoid its becomming one.

14 The 100 pf stabilizing capacitor may want to be higher to
decrease hunting and ringing, which could improve settling time
~ore than the reduced gain-bandwidth would increase it.

Ql, Q12, '113 HPS-UOI
QIl, Q2, Q3 t-tPS - USI
Q4, Q5, Q6 2N 5194
Q14, Q15, Ql6 2N 5191
Q7 MPS-U02
Q17 MPS-U52
QH, Q19 2N 3906
Q9, Q18 2N 3904
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{cross reference}

INDEX

(explanation)

Compiled by Rich Schroeppe1 and Hi1arie Orman.

o {zero} 43 68
.8453 45
1 {one} 22 57 107

125 158 159 167
169 171 173 175
177 181

1st 49 60 62 115 132
159

1st order 6 15
1:2 80
2 {two} 14 23 31 32

35 43 45 47 48 57
60 63 97 120-123
137 144 149 152
154 159 160

2-dimensiona1 153
2-NOTS 19

n
2 20 24 64
3 {three} 35 49 68

97 107 116 127
3rd 123 132 163
3-dimensiona1 112

153
3-space 77
3N+1 133
4 47 50 89 92 115

127 134 136
four-in-a-row 112
4th power 6 14 63
4-letter 176
4-space 107
4-vector 107
4.86\ 29
5 47 51 57 61 78

81 90 103
five-in-a-row 91
5th power 63 121
6 73 83 141
7 31 82 97 113 114

160
7-co1oring 114
9 72 141
14 105

18 83
20-omino 77
23 63
28 61
30 12
34 68
40 47
63 51
72 bits 25 104
120 60
130 50
220 62
239 63
256 82
284 62
292 101
355 101
672 60
1093 45
3511 45
7094 112
23000 41
2 18 41
2 8

' 57
Abramowitz 120 143
acce1eraiing 120 124
accumulator 155 162

164 166 172
Adams, Clifford 49
add 18 40 43 50
addl 64
addition 101 158 159

chain 12
additional 172
address 151 165 172

179
adjacent 68 167 111
advantage 101 172

181
AGM 131 143 144
aleph-two 129
algebra 13 151 154

algebraic
functions 101
number 32 101 178

algorithm 17 101 115
132 149-153
176-180 f1g9

alternating series
120

amazing 149
ambiguity 116 181
American Math.

Honth1y 48 120
amicable number 61

62
analysis 25 143
analytic function 11

126
analyze game 68 74

81 88 94
AND 11-19 22 23 43

115
angle 45 101 131 158
angular velocity 149

151
annoying 111
answer 45 57 105
AOBJN 155 156
appear 39 153
append 101 122
Applied

Combinatorial
Math. 77 86

approximant,
continued
fraction 63 101
122 137

approximation 101
arbitrary 19 III 177
arc 123 177
arccos 14 IS 116
arccoth 126
arcerf 45
archaeologist 135
arcsin 10



arctan 16 63 101 137
138 140

area 114
arg, complex number

137
argument 132 158-160

172
arithmetic 101

expression 101
-geometric mean

{AGM}
mean 131 143
series 14 35 99

101
arpeggios 168
array 18 38 120 121
Art of Computer

Programming
{Knuth}

aspect ratio 80 112
associative 12
asymptotic 77 86
automatic 101
axis 3 107 143 152
backing up 176 179
banananana 176
Banks. Roger 20 133
base {radix}
basis vector 13 14
Ber1ekamp, Elwyn 69
Bernoulli 12 121
Bessel functons 99

101 178
best 17 72
bignum 101 154
billion 143
binary 12 22 60 63

115 122 128 fig7
132 145 154

binomial 38 42 43
116 118 120 121

bisector 3
bishop 70 78
bit 22 25 37 55

fig1a fig1b fig2
101 104 115 122
128 fig7 132 143
145 159 160 162
167 168 170 173
175 177 181

black 70 84 88 89
black box 19
blackout 68

board 68 76 78 84
90-92 94 112

Boolean 17-24
boundary 20 125 180
bounded 45 47 77
box 112
bracket 30
branch point 130 143
bridge 46
Brillhart, John 28

65
broken line 180
Brown, Steve 75
bug 45 135 181
bum 160 177
byte 164 165
C curVe 135 fig8
calculate 26 68 143
carriage return 170
carry 43 115
casting out 167 169
CDR 132
center 51 68 76 112

114 123 149
-symmetrically 74

centroid 180
certified 137
chanaing 123 158 167
character 21 134 165

167 170 176 179
cheap 158
Chebychev 14 15 151
checkerboard 84 112
checkers 93
chess 70 78 87 88 95
Chess. for Fun and

. Chess for Blood
70

Chinese remainder
theorem 48

Choong 140
chord 168
chromatic number 113
circle 20 32 83 123

fig6a fig6b 125
149-153 177 fig9

circumscribing 20
claim 65 122
Clements, Robert 112
clever 71
clock 123 fig6a

fig6b

closed form 10 14
116 118 131 151
177 180

closest 3 15
closure 105
clue 19 101
cluster point 32
code 25
coefficient 13 14 43

44 101 118 125
130

Cohen, Joe 117 148
coin 67
color 71 73 110-114
common divisor 53
Communications of

the ACM 112
commutative 101 127
comparison 101 181
compile 179
complement 75 105

122 173 181
complex number 14 55

fig1a fig1b fig2
123 fi~6a fia6b
136-138 143

complicate 101
composition of

functions 101 107
127

computation 12-14 65
68 83 101 115 123
140 142 153 154
158 177 179

Computers in Number
Theory 77

concurrences 2
condition 11 101 III

130
conformal map 11
conjecture {problem}

33 35 S6 101 112
125

conjugate 32 107 123
conjunction 137
connected SO 73 114

115 180
CONS 172
consecutive 25 121

160 164 166 175
constant 14 SO 51

127 129 152 158
169 173



constrain 101 172
177

construct 39 4$ 80
135

continued fraction
97-101 122 137
140

arithmetic 101
continuous 107 115
contours 177
converge 3 12 120

122 124 125 130
142 143

convergent 101
convex 20 24
coordinate 48 52 107

177
copy 24 35 115 122

167
corner 48 SO 68 112

153 180
corollary 51
correct 159
correction 101
cosh 158
cosine 14 15 26 107

i42 149 151 158
cotangent 142
coth 126
count 18 29 77 81 82

108 112 115 169
177

counter 64 155 170
179

counter (token) 90
counterexample 12
counterintuitive 75
cover 21 50 72 86

110 III
Coxeter 113
cross product 107

180
cube (box) 71 112

(power) 6 45 58 63
magic 50 51
root 8 159

cubic equation 8 10
partition 18
polynomial 127

curious 59 77 118
curtains 148

curve 55 fig1a fii1b
fig2 66 115 122
123 135 fig8 149
151 177 fig9

cycle 47 132 173
data 29 75 77
Daykin 140
decimal 33 36 37 56

57 101 139 145
159 170

decomposable 112
decrease 19 S6
degree (polynomial)

5 13 IS 127
(angle) 152 177

delta 120 181
denominator 12 45 54

101 122-124 140
dense set 3
density 35
dependent 13
derivative 178
determinant 5 101
determine 39 42 47

118 149 152 153
deuce rule 42
diagonal 2 50 68 90

120 121 177
diamonds 112
dice 67 72
difference 14

forward 37 38 120
differential

equation 178
differentiate 118
digit 33 37 39 43 56

57 72 101 115 120
140 141 169 170

dimension
two 48 107 153
three 18 107 112

153
four 107
n 77 83
of vector space 1

direction 45 123
dirty 158
disadvantage 181
discover 18 49 64 71

146 149
discriminant 4 5
disordered 46
display 123 145 146

149 153 177

dissection 85 fig4
distance 153 117 180
distinct 22 56 68 71

103 112 lIS 150
171

distribution 26 32
40 46 107

diverge 133
divide into parts

177 180
division 101 181

by zero 3 171
divisor 43 53 60 101

110 136
domino 86 III 112
don't care 17
dot product 107 121
dots 69 73
double 14 45 78 158

171 181
dragon curve 135
draw (game) 73 94

(picture) 55 fi,l.
fil1b fil2 114
149 177 fig9

dual 7S
e 12 37 101 117 118

143 144 158 178
edle 50 112
egest 101
elea.nt 14g
element 82 102 121
elementary function

178
ellipse 149 152
elliptic function 10

131 143 158
empirically 101
empty S2 78 101 172
endpoint 101 177 180
energy 46
epsilon 149 152 159
equal 132 161 174
equation 3 8 9 178
equilateral 112
equivalence class 75
error 3 45 101 117

154 181
bounds 101

escalation 88
escape code 177
estimates 82 93 101
Euler 107 120



evaluate 13 14 68
116 177 178

even 54 115 133 167
177

exact {closed form}
10 26 41 159

arithmetic 3 152
example 61 68 76 85

86 101 102 110
113 124 127 137
170 177 178 181

exception 32 45 47
138 181

excess-200 173 181
exchange 163
exciting 149
Execuport 21
exist 11 14 18 39 48

76 97 102 107
expected value 29

107
exponent 43 160 173

181
express 1 13 34 47

63 131
expression 14 36 43

57 127 177
extend 77
extra move 94
factor 28 29 45 47

52 61 63 120 136
137

factorial 1 31 34 43
98 103 116 117
121 123 139

fascinating 123
fascist 154
fast 120 142 143
fatal error 154
favorite 25
feedback 17 101
fencepost 157
Fermat 106
fetch 179
Fibonacci 12 14 47

123
field 13 107
find 21 22 31 68 80

86 III
fine structure

constant 101
finite 33 39 132
finite-state 115
fit 83

fixed point
number 173 174 181
of a function 174

f1atsize 134
flip-flop 168
floating point 3 101

160 173 174 181
flow 25 126 127 129

130 132
FMP 181
foo 168
forced win 94
form {closed} 38 47

56 73 112 114 178
formula 1 12 14 18

77 86 120 137 158
forward difference

37 38 120
found 49 61 112 137

179
fraction {continued}

32 122 159 173
181

fractional fibonacci
12

fractional part S5
fig2 141

Fredkin, Edward 38
58

free 172
Freiberg, Jerry 157

165 167
frob 113
FSC 158
function 5-7 10-12

15 17-19 25 68 83
98 99 118 123
fig6a fig6b 125
129 131 132 142
143 151 158 159
174 178 179

future 25
game 42 46 67-76 78

84 87-96 112
gamma 117 120 178
gaps 83
garbage collector

172
Gardner, Martin 49

80 fig3a 112
gates 17
Gaussian

distribution 26
27 40

Gaussian integer 55
fig1a fig1b 136
137

GCD 52 101
generalize 14 18 21

47
generate 11 26 27 64

101 137
generating function

7 15 18
geometric

dissections 85
geometric mean 131

143
geometric series 38
geometry 2 177
Geometry,

Introduction to
113

gigantic 101
giveaway chess 87
Go 96
golden ratio 12 32
goodies 139
government 137
graph 147 177
greater 175
greatest integer .34

101 120
group S6 82 102-104

107
grow 101
gruesome 73
guidance 107
Gurley, Ben 149
hack 145 149 180
hackers 168
hairy 67 97
half 32 123
half-line 18
ha1fword 148 155 162
Hamiltonian path 103
hand 46 94 123 fie6a

fig6b
Handbook of Math.

Functions 143
handicap 42
hardware 181-191
Hardy, G. H. 136
hemisphere 107
Henneman, Bill 133
heptahedron 114
heptomino 109
heuristic 75 176-180

-



"

--

hex 94
hexadecimal 122 145

167
hexafrobs 112
hexagon 49 85 fig4

112 114
hexiamond 112 figS
hexomino 109
Hi-Q 76
high order bit 181
hole 77 112 113
homographic 101
how many? 39 57 77
how much? 42
Hurwitz numbers 101
iamonds 112 figS
identify 101
identity (equation)

42 101 118 137
identity (group) 12

101 102 107
illustration 55

fig1a figlb fig2
80 fig3a fig3b 85
fig4 112 fig5 123
fig6a fig6b 128
fig7 135 fig8 177
fig9

image 19 123 fig6a
fig6b

imaginary axis 3
impossible 49 50 64

72 112
imprecise 101
increase 18 56 68 99
increment 132 151

177 fig9 179
independent

variables 26 29
40 101

independent vectors
14

independently 64 71
77

indicator 68
induction 32 75
inexorable 132
infinite 35 39 91

101 123 135
infinity 83 133
information 158 180
input 17 64 101 115

170 179
Instant Insanity 71

instruction 64 104
149 158 166 169
172 179 181

integer 18 32 34 40
47 52 60 83 101
120 125 130 136
171

integral 116 143
interesting '112 121

123 138 145 146
interexpressib1e 1
international 137
interpolation 130
interval 15 101 115
intriguing 123
Introduction to

Geometry 113
invariant 101
inverse 12-14 25 112

115 118 150 178
invisible 48
iridium 137
irrational 45 101
irreducible 13
isomorphic 107
isosceles triangle

135
iterate 12 14 25 56

61 72 115 124
132-135 158 176
179

itself 122 132
Jensen, Eric 132 170
joys 63
jump 64 76
king 70 78 87 88 89
king-moves 177
knight 38 70 78
known 39 45 61 63 64

80 fig3a 85 86
127 133 143 173

Knuth, Donald 29 55
fig2 101 132

Kok, Jan 2
Komo1goroff 105
L 68
language 80 fii3b

154
large 32 94 122
larger 62 171
largest 14 29 43 72

132 159 179
Lasker, Edward 70

last 106 123 157 176
179

last digit 57
last move 68 84
lattice 48 52 68 177
least common

multiple 47
left 112 181
Legendre 29
lemma 19 50
Lenard, Jud 169
length 27 39 47 49

56 57 61 68 123
132 156 169

lexicographic 75
Liknaitzky, Rici 64

155 166
limit 35 77 115 131

142 143
Lindgreen, Harry 85
line 18 38 68 73 93

170 177 180
line-oriented 149
linear 101
linear combination

13 127 151
linked 172 177
Lisp 163
list 68 82 132 170

172
listen 168
location, memory 161

172 179
locus 45
log 12-14 26 29 35

117 143 144 158
160 178

10g2 120 132 160
logic 17-24
long 68 123 132
longest 33
longhand 134
loop 3 25 57 61 62

101 132-134 154
176 177 179 180

lose 180 181
low 22 25 145 160

168 170 181
lowest 5 46
lowest terms 101
LSH 25 158
machine 25 64 66 101

115 180



machine independent
154

magic 49-51 81 165
magnitude 123 154

173 177 1.80
majority 17
Mann, Bill 169
map 11 18 107 113

115 128 fig7 132
mask 22
match 101 115 132

173 179
Math. and Plausible

Reasoning 125
Math. of Computation

140
Math1ab 4 127
matrix 14 107
maximum 35 39 56 63

67 68 164 180
mean 131 143
measure 45 107 137
member 47 61 62 115

120
memory 115 154 161

172
Mersenne 28 63
method 3 12 21 26 29

42 126 143 170
172 178 179

metric 101
midpoint 177
minichess 78
minimal 12 21 22 85

137 149
minimal

representation
101

minimum 17 21 62 73
98

Minsky, Marvin 64
149 153

mirror 135
mistake 149
Mitchell, George 156
mode 177
modern analysis 143
modular function,

elliptic 10 139
modulus 12 13 43 45

47 86 101 122 136
167

monotonic 18 101 177

Montro11, E. W. 86
more 37 112 122
most 46 fif3b 95 114
move {aame 25
MOVN 181
Mozart, Wolfgang 63
multinomial

coefficient 43 44
mUltiple 45 57
mUltiple valued 137
mUltiplication 12

101 107 137 149
mUltiplication

formula 1 14 158
mUltiply perfect

number 60
mu1tiprecison

{bianum}
munching squares

146-148
Murphy 176
music 168
myth 154
n-space 11 27
n-sphere 11 107
narrowness 101
natural boundary 125

130
nearer 177
nearest inteaer 101
necessary III 130
negation 101 123 181
negative 133 138 143

153 170
negative radix 128

fig7
neglected term 159
neighborhood 107 177
Nelson, Stuart 162

174
never 94 162 171
new 149
Newton's method 3 12

126 178
next 120 123·160
Nim 68 74
no 18 SO 51 63 76

107 112 127 132
noise 145 180
non-commutative1y

107
non-digits 170
non-exponential 68
non-integer 130

non-regular
continued
fraction 122 140

non-trivial 28 137
145

non-uniform
distribution 32

nonlinear recurrence
15

nonzero 13 57 107
norm 136
normalize 27 181
not 17 19 68 113 115

161 172
noted 56
nth 5 7 14 IS 37 38

43 57 101 115 120
121 130 176

numerators 101
numerical 22 151 181

representations
101

n
n 118
occurrence 62
octagons 135
octal 145 169
octant 18
odd 45 68 133 167
odd-even 177
offset 167
omino {po1yomino}
one {I} 67 101 122

169 181
one-digit 56
one-to-one 11 101

115
one-ups-manship 169
ones-complement 154
only 45 47 57 63 64

71 76 174
onto mapping 11 115
opening 148
operand 101 181
operation 11 34 101

132 146 172
opponent 78 88
optimal 67 72
option 176
OR 18 19 23 25
orbit 153
orchestras 63



order 12 14 15 50 51
77 81 94 108 112
117 169 181

ordered pairs 12 151
ordering, partial 18
origin 52 149 153

156
original 22 124
orthogonal matrix

107
outer 177
output 25 101 115

168 176
overflow 154 167
overlap 84 176
packed 71
pair 12 61 62 101

103 151
palindrome 177
parallel 50
parallelogram 112

114
parameter 107
parity 115 122 167
partition 18
Pascal's triangle

121
Paterson, Mike 71
path 19 103
pattern 114 122 123

145 154
pawn 70 78 87 89
PDP-1 74 75 123

fig6a fig6b 146
168

PDP-6/10 104 168
169 173 174 179
181

peg SOlitaire 75 76
pentagon 85
pentomino 84
perfect number 60-62
period 68 101 132

154
periodic 45 101 149
permutation 22 56 75

103 104
perpendicular 3 107

120 180
Perron 100
phase 137 143
phenomenon 176
phi function 45
phrase 176

physically 123
pi 45 52 55 63 101

107 116 119 120
124 137-139 143

pi(x) 65
pingpong 42
pitch 107
PL(n) 18
place 139 166 178

180
placing 68 84 90
planar partition 18
plane 52 109 III 114

143
platinum 137
player 42 67-69

72-74 84 87 88 90
92 94 I

plotter 123 fig6a
fig6b 149 177

Plumer, Dave 71
plus 23 75
point 32 42 48 52

107' 123 130 145
149 150 152 160
174 177 180 181

pointer 156 \157 164
165 172 179

poker dice 67
polar 107
pole 101
Po1ya, Georgie 125
polygon 2 20 180
polygonal 17.7
polyiamond 112 fia5
polynomial {x 2 } 5 12

14 15 101. 121 127
178 I

po1yomino 77'1 108-110
112

pos i tion 22 168 76 93
95 96 10 3' 11 5 1 70

positive 34 98 133
137 153 170 173
174

possible 68 72 130
132

power 12 14 32 37 38
43 47 53 57 63
101 118 120 121
125 127 129 130
149 154 159 167
181

power, large 32

precision 101
predecessor 115 150
prediction 25 29 47
preempt 101
preserve 22 115
previous 122 130
prime 17 29 30 33 35

41 43 45 47 48 52
62 65 136 137

primitive root 57
print, decimal 170
probability 29 37 42

52-54 57 107
probable, most 46
probably 32 35 83 85
problem 1 2 11 17 19

21 22 27 31 32 34
36 39 42 47 49 68
70 73 101 103 107
110 III 116 119
123 127 129 130
133 150 177 180

procedurally 101
procedure 13
product 13 45 47 S6

107 122
PROG2 163
program 57 61 64 75

77-96 101 103 123
137 145-180

progression 35 99
project 11
projective 107
promoted pawn 87
proof 13 18 32 50 S2

94 97 106 113
propoganda 101
prove 89
proved 31 3S 47 64

85 122
pseudorandom 132
pushdown 158 170
PUSHJ 158 177
puzzle (games) 56 71

79 112
pUZZle (question) 18
Pythagoras, Joe 58
quadrant 18 158 177
quadratic 3 143
quadrillion 30
quadrisecting 115
Quarterly Journal of

Pure and Applied
Math. 139



quartic equation 4 9
quaternary 37
quaternion 107
queens 87
question 57 114
quintic equation 10
quotient 99 171
radius 83 125 150

153
radix {binary,

ternary,
quarternary,
octal, decimal,
hexadecimal,
negative,
complex} 33 37 43
55 figla figlb
fig2 63 101 115
122 128 fig7 154

Ramanujan 31 139
random number

generator 25 132
random number 25-27

29 32 37 52 54 57
random variable 40
random vector 27
range 40 83 101 133

158
range-reduced 143

158
rapidly 14 122
raster 21
rate 14 143
Rathbone 140
ratio 38 80 101 159
rational function 12

101 125
rational number 38

45 54 101 130
Rayfield, Malcolm

135
re-normalize 181
reactionary 101
read-only 154
real number 3 32 45

105 115 137 138
143 178

recant 101
reciprocal 101 120
recognize 101
rectangle 68 80

fig3b 86 110 112
recurrence 12-16 44

151 158

recursive 158 170
rediscovered 64
redouble 45
reduce 101
references 48 49 56

70 77 79 80 85 86
100 105 112 113
120 125 136 139
140 143

reflection 1 81
region 2 20 24
register 25 149
regular 101
Rektorys 12
related 45 63 145
relation 13 14 121
relatively prime 48

52
relevant 173
remarkable 151
remove digits 33
repeated 12 67 131

132 143 167
repeating pattern

114
replace 127 133 134

169 177
representation 107
representing 20
reqUired 37 113
restored 158
reverse bits 167
reverse paths 103
Riemann surface 143
right angle 137
rightmost dieit 14

33
rigid rotation 107
roll 72 107
rook 78
root 3 5 8 9 12 14

34 57 77 101 126
127 143 149 151
158

Root, Steve 61 169
ROT 104
rotate 11 103 107

123 135 153 166
rotation 81 107 146
roundoff 3 101 173

181
row 50 78 90 91 112

115 120 121 179
rule 12 42 67 84 102

ruler function 132
salvaged 45
Samson, Peter fig3h

164
satisfying 9 45 115

129 178
scalar 12 107
scale {stretch}
Scarne, John 90
Schutzenberger,

Marco 39
Scientific American

49 79 80 85 fig4
112

Scientific American
Book of Puzzles
80 fig3a

score 42 67 72
Scott, Dana 133
search 31 61 176 177

179
seems 47 68
segment 39 177 180
self, map into 132
self-referent list

132
semiaroups 82
semiquadrant 177
sentinel 160
separating 151
separation, minimal

62
sequence 14 38 39

115 176 177 179
series 12 47 115-125

129 130 139 158
set 3 17 35 4S 48 52

84 105 107 115
132 137 ISO 170
172

SETQ 163
Shanks, Daniel 65
shape 20 48 III 112

115
shift 25 132 167 181
short program 101

145
show 42 72 107 110

112
shrink 20 101 123

135



side 20 49 68 76 78
80 fia3b 86 94 95
110 112 114 137
177

sigma 116 118 120
123 124

sign 154 160 168 173
177 181

sian-magnitude 154
signals 145
Silver, David 135
Silver, Rollo 25
Sim 73
similar 51 6897
similarity 127
simple 18 97 115 146
simplify 177
simultaneous 68 144

lSI
sine 10 26 101 107

129 142 149 151
158 159

single 153
sinh 158
size 29 149
skip 83 162 179
sliding block puzzle

79
slope 38
small 80 101 106 158
small~r 62 158
smallest 48 68 80

fig3a
smidgen 45 181
snowflake curve 135
solid 153
solitaire 76
solution 8-10 21 27

31 35 49 71 112
fia5 127 136 137

solve 10 21 68 71 78
79 84 90-96 143
144

Soma 112
soma-like 77 112
space 11 19 27 77

107 123 158
spacecraft 107
spacefilling curve

66 115 122 135
spacewar 114
special 64 137 181
Speciner, Michael 18

62 160

speed 123 158
speed of light 101
sphere 11 27 107
sporadic 122
square (rectangle)

48 68 69 80 fig3a
fig3b 85 fig4 86
90 112 115

square root 9 34 97
101 126 137 143
152 158 159

sqrt (2) 32
sqrt(3) 116
square (exponent) 5

6 12 14 31 36 45
47 59 63 80 119
124 127 144 169

square, magic SO 147
square, munching 146

148
square waves 168
squashed 180
stability 150 151
stable'149 152
stalemate 73
Stallman, Richard

166
standard form 101
starting 76
state 25 46 115 148
Stegun 120 143
step 135
step function 83
step (walk) 45
step (number

required) 12 14
stereo 145
stereographically 11
stop 1 19
stopped 57
store 132 172
straight 38
strategy 67 72 73

154
stretch '11 52 135

127
string 18 37 39 122

128 fig7 154 170
176 177 179

String fig3b
sub-cycles 47
sub-problem 39
subexpression 101
subgroup 107

subroutine 101
substitute 101 122
substring 179
subtract 64 101 155

158
succesive

appoximations 101
successor 68
suit 46
sum 29 43 SO 60 61

72 76 121-124
fia6a fig6b 154
180

super-fast 142 143
superimposing 20 135
surface 143
Survey of Applicable

Math. 12
susceptibility 25
suspicious 32 122
Sussman, Gera14 163
swap 103 161 162
sweep 123
switch 132 146 148

168
symbolic functions

101
symmetric function

5-7
symmetry fil1b 101
synthesize 17 19
system 107 154
table 115 132 165
tabulated 72
Tactix 74
take-away laaes 68
tanlent 16 107 142

158 177
tanh 101 158
Taylor seriel 158
TechnololY Review 56
Teco 176
Teeko 90
term 14 34 101 120

122 123 129 139
140 159

term, lalt 101
terminate 101
termination 181
ternary 36 37
tessellatina 109
tesseract 51
test 47 158 159 177
text 176



theorem 29 38 48 85
106

theory 68 77
Theory of Numbers

136
thermodynamic 46
three {3} 60 70 166
Thue 122
tic-tac-toe 91 92

112
Tiger Puzzle 79
time 28 65 68 93 123

144 147 160 178
top-tested 177
toroidal space 101

114
total 25 72
tracing 123
trailing 132
transcendent'al

functi,ons '101
transcendental

number 101 122
transfer {jump} 179
transform 12 158
transformation 120

124
translate 11 107 127

168
trap 154
trapezoid 112
TReE. 162
tree search 75
triangle 73 75 85

1·12
triangle, Pascal's

121
trick 101
trillion 29 30
trinomial

coefficient 116
triple 14 88 158
truncation error 101

181
twice 39 50 86 123

158
twin primes 30

two {2} S2 57 61 62
68 72 73 84 89 90
162 163 172 177
180 181

two counter 64
two-dimensional 18
two-member 61 62
twos-complement 154

181
typeout 170
typical 77
typo 10 101
unclear 123 150
underflow 160
unequal 46 52 80 181
unfeasible 93

. uniform 26 27 32
uniformly 32 40 107
union 52 101
unique 13 49 55

fig1a figlb fi&2
101 102 130 136

unit {sphere,
interval, circle,
quaternion, cell,
square} 27 32 83
107 114 115 123

universal 64
universe 154
unknown 101
unnormalized 181
unproven 92
unstable 3
upward 19
useful 151 176
valid 113 143
value 13 17 25 29 SO

99 107 122 132
147 177

variable 6 7 17-20
40 156 163

variance 40
variations 112 123

145
vector 12 13 27 107

180
velocity 149

Venn diagram 20 24
verboten 88
verified 77 107 112
verify 28 85
vertex 180
views 147
visible 48
visual information

180
volume 107
Waltz, Dave 21
Watson 143
waves 168
white {chess,

checkers} 70 84
88 89

Whittaker 12 143
win 42 67-69 72-75

84 87 89 90 92 94
window-dice 72
wobble 153
wonder, great 149
word (computer) 25

157 165 169
Wright, E. M. 136
Wright, Jackson 146
x 2 _2 127
x 2 -x-1 12
XOR 17 23 ~5 68 115

147
Yao, F.ranc es 64
yaw 107
year 93
zero digit 18 36 57

122 132 170 181
zero element 13 47

107
zero loop 133
zero of polynomial 5
zero (number) 32 35

45 64 101 143
zero, division by 3

171
zeroless 57
zeta function 53 119

124 178
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