HAKMEM

by
M. Beeler
R.W. Gosper
R. Schroeppel

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-70-A-03620002.

Compiled with the hope that a record of the random things people do around here can save some duplication of effort -- except for fun.

Here is some little known data which may be of interest to computer hackers. The items and examples are so sketchy that to decipher them may require more sincerity and curiosity than a non-hacker can muster. Doubtless, little of this is new, but nowadays it's hard to tell. So we must be content to give you an insight, or save you some cycles, and to welcome further contributions of items, new or used.

The classification of items into sections is even more illogical than necessary. This is because later elaborations tend to shift perspective on many items, and this elaboration will (hopefully) continue after publication, since this text is retained in "machinable" form. We forgive in advance anyone deterred by this wretched typography.

People referred to are from the A. I. Lab: Marvin Minsky Rich Schroeppel Bill Gosper Michael Speciner Michael Beeler Gerald Sussman John Roe Joe Cohen Richard Stallman David Naltz Jerry Freiberg David Silver
once at the A. I. Lab but now elsewhere:
Jan Kok William Henneman
Rici Liknaitzky George Mitchell
Peter Samson Stuart Nelson
Roger Banks Rollo Silver Mike Paterson
at Digital Equipment Corporation:
Jud Lenard Dave Plumer
Ben Gurley (deceased) Steve Root
elsewhere at M.I.T.:
Gene Salamin PDP-1 hackers
Eric Jensen Frances Yao
Edward Fredkin
once at M.I.T., but now elsewhere:
Jackson Wright Steve Brown
Malcolm Rayfield
in France:
Marco Schutzenberger Henry Cohen
at Computer Corporation of America: Bill Mann
at BBN: Robert Clements

```
CAVEATS:
                                    page 2
Some of this material is very inside m many readers will have to
excuse cryptic references.
The label "PROBLEM" does not always mean exercise;
if no solution is given, it means we couldn't solve it.
If you solve a problem in here, let us know.
Unless otherwise stated, all computer programs are in PDP-6/10
assembly language.
CONTENTS, HAKMEM 140
    GEOMETRY, ALGEBRA, CALCULUS
    6 RECURRENCE RELATIONS
10 BOOLEAN ALGEBRA
12 RANDOM NUMBERS
13 NUMBER THEORY, PRIMES, PROBABILITY
25 AUTOMATA THEORY
26 GAMES
30 PROPOSED COMPUTER PROGRAMS
36 CONTINUED FRACTIONS
45 GROUP THEORY
45 SET THEORY
46 QUATERNIONS
48 POLYOMINOS, ETC.
51 TOPOLOGY
54 SERIES
61 FLOWS AND ITERATED FUNCTIONS
67 PI
72 PROGRAMMING HACKS
82 PROGRAMMING ALGORITHMS, HEURISTICS
87 HARDWARE
\begin{tabular}{|c|c|c|}
\hline Page & Figure & \\
\hline 19, 20 & 1a, 1b & Binary integers radix i-1, i+1. \\
\hline 21 & 2 & Radix i-1 fraction parts (Knuth). \\
\hline 31, 32 & 3a, 3b & Squared square, rectangle. \\
\hline 34 & 4 & Square, hexagon dissection. \\
\hline 50 & 5 & Hexiamond solutions. \\
\hline 58, 59 & 6a, 6b & "clock hands" series. \\
\hline 62 & 7 & Binary numbers radix -2. \\
\hline 66 & 8 & "C" curves. \\
\hline 84 & 9 & Incremental curve drawing. \\
\hline
\end{tabular}
```

ITEM 1 (Schroeppel):
(1/3)! and (2/3)! are interexpressible.
($1 / 4$)! and (3/4)! are interexpressible.
Thus these two pairs are of dimensionality one.
($1 / 10$)! and ($2 / 10$)! are sufficient to express ($N / 10$) ! for all N.
(1/12)! and (2/12)! are sufficient to express (N/12)! for all N.
($1 / 3$)! and (1/4)! are sufficient to express (N/12) l for all N.
Thus the three cases above are of dimensionality two.
PROBLEM: Find some order to this dimensionality business.
The reflection and multiplication formulas:
$z!(-Z)!=\pi Z / s i n \pi z$
$(2 \pi)^{(N-1) / 2} N^{-N Z-1 / 2}(N Z)!=Z!(Z-1 / N)!(Z-2 / N)!\ldots(Z-(N-1) / N)!$
ITEM 2 (Jan Kok):
PROBLEM: Given a regular n-gon with all diagonals drawn, how many regions are there? In particular, how many triple (or N-tuple) concurrences of diagonals are there?

ITEM 3 (Schroeppel):
Regarding convergence of Newton's method for quadratic equations: Draw the perpendicular bisector of the line connecting the two roots. Points on cither side converge to the closest root.
On the line:
1 they do not converge
2 there is a dense set of points which involve division by zero 3 there is a dense set of points which loop, but roundofferror propagates so all loops are unstable
4 being on the line is also unstable (if the roots are imaginary and you are on the real axis, you may be doing exact computation of the imaginary part (0), hence stay on the line. Example:
$X^{2}+1=0, X_{0}=$ random real floating point number.)

ITEM 4 (Schroeppel):
By Mathlab, the discriminant of $X^{4}+F^{3}+G X^{2}+H X+I$ is (as the discriminant of $A X^{2}+B X+C$ is $B^{2}-4 A C$):
$-27 \mathrm{H}^{4}+18 \mathrm{FGH}^{3}-4 \mathrm{~F}^{3} \mathrm{H}^{3}-4 \mathrm{G}^{3} \mathrm{H}^{2}+\mathrm{F}^{2} \mathrm{G}^{2} \mathrm{H}^{2}$
$+I$ * $\left[144 \mathrm{GH}^{2}-6 \mathrm{~F}^{2} \mathrm{H}^{2}-80 \mathrm{FG}^{2} \mathrm{H}\right.$
$\left.+18 \mathrm{~F}^{3} \mathrm{GH}+16 \mathrm{G}^{4}-4 \mathrm{~F}^{2} \mathrm{G}^{3}\right]$
$+\mathrm{I}^{2}{ }^{2}{ }^{*}\left[-192 \mathrm{~F} \mathrm{I}^{5}-128 \mathrm{G}^{2}+144 \mathrm{~F}^{2} \mathrm{G}-27 \mathrm{~F}^{4}\right]$
ITEM 5:
In general, the discriminant of an n-th degree polynomial is $\Pi_{i<i}\left(\text { ROOT }_{i}-\operatorname{ROOT}_{j}\right)^{2}=$ square of determinant whose i, j element
is ROOT ${ }^{\text {i-1 }}$. (The discriminant is the lowest degree symmetric j
function of the roots which is 0 when any two are equal.)
ITEM 6 (Schroeppel):
If A is the first symmetric function of N variables $=X+Y+Z+\ldots$
and B is the second symmetric function of N variables

$$
=X Y+X Z+\ldots+\underset{Y}{Y}+
$$

$(B=$ sum of pairs $)$, then $X^{2}+Y^{2}+Z^{2}+\ldots=A^{2}-2 B$.
$X^{3}+Y^{3}+Z^{3}+\cdots=A^{3}-3 A B+3 C D^{4}+\cdots A^{4}-4 A^{2} B+2 B^{2}+4 A C-4 D$.
ITEM 7 (Gosper):
If $f(I ; X, Y, \ldots)$ is the $I t h$ symmetric function on N variables,

The generating function is simply
$\sum_{I=0}^{N} f(I ; X, Y, Z, \ldots) * S^{I}=(1+X S)(1+Y S)(1+Z S) \ldots$

ITEM 8 (Schroeppel):
Solutions to $F(X)=X^{3}-3 B X^{2}+C X+D=0$ are

where K is one of the three cuberoots of 1 : $1,(-1+\sqrt{-3}) / 2,(-1-\sqrt{-3}) / 2$.

ITEM 9 (Schroeppel \& Salamin):
If $X^{4}+B X^{2}+C X+D=0$, then $2 X=\sqrt{Z 1}+\sqrt{22}+\sqrt{23}$
$Z 1,22, Z 3$ are roots of $Z^{3}+2 B Z^{2}+\left(B^{2}-4 D\right) Z-C^{2}=0$.
The choices of square roots must satisfy $(\sqrt{21})(\sqrt{22})(\sqrt{23})=-C$.
ITEM 10 (Salamin):
An easy solution of $-4 X^{3}+3 X-a=0$ is $X=\sin ((a r c s i n a) / 3)$. In a similar manner, the general quintic can be solved exactly by use of the elliptic modular function and its inverse.
See Davis: Intro. to Nonlinear Differential and Integral
Equations (Dover), p. 172. Unfortunately, there exists ≥ 1 typo, since his eqs. (7) and (13) are inconsistent.

ITEM 11 (Salamin):
The following operations generate one-to-one conformal mappings of Euclidean N-space onto itself.

1) Translate N-space.
2) Expand N-space about one of its points.
3) Stereographically project N-space onto an N-sphere, rotate the sphere, then project back onto N-space.
PROBLEMS:
Show that all such conformal maps are generated by these operations for any N. If the one-to-one and onto conditions are removed, then for $N=2$, conformal maps can be obtained by analytic functions. Show that for $N>2$, no new conformal maps exist.

RECURRENCE RELATIONS

ITEM 12 (Gosper \& Salamin):
"the Fast Fibonacci Transform" (motivation for next item)
Define multiplication on ordered pairs

$$
(A, B)(C, D)=(A C+A D+B C, A C+B D) .
$$

This is just $(A X+B)^{*}(C X+D)$ mod $X^{2}-X-1$, and so is associative, etc. We note $(A, B)(1,0)=(A+B, A)$, which is the Fibonaci

N
iteration. Thus, $(1,0)=(F I B(N), F I B(N-1))$, which can be computed in log N steps by repeated squaring, for instance. FIB(15) is best computed using $N=16$, thus pushing the minimal binary addition chain counterexample to 30 (Liknaitzky). (See Knuth vol. 2, p 398.) By the last formula,
-1

$$
(1,0)=(\operatorname{FIB}(-1), \operatorname{FIB}(-2))=(1,-1),
$$

which, as a multiplier, backs up one Fibonaci step (further complicating the addition chain question). Observing that

$$
(1,0)^{0}=(\operatorname{FIB}(0), \operatorname{FIB}(-1))=(0,1)
$$

$=$ the (multiplicative) identity, equate it with scalar l. Define addition and scalar multiplication as with ordinary vectors.

$$
(A, B)^{-1}=(-A, A+B) /\left(B^{2}+A B-A^{2}\right),
$$

so we can compute rational functions when the denominator isn't zero. Now, by using power series and Newton's method, we can (X, Y)
compute fractional Fibonaccis, and even e and log(X,Y). If we start with (1,0) and square iteratively, the ratio will converge to the larger root of $x^{2}-x-1$ ($=$ the golden ratio) about as rapidly as with Newton's method.
This method generalizes for other polynomial roots, being an improvement of the method of Bernoulli and Whittaker (Rektorys, Survey of Applicable Math., p 1172). For the general second order recurrence, $F(N+1)=X F(N)+Y F(N-1)$, we have the multiplication rule: $(A, B)(C, D)=(A D+B C+X A C, B D+Y A C)$.

$$
-1
$$

Inverse: $(A, B)=(-A, X A+B) /\left(B^{2}+X A B-Y A^{2}\right)$.
Two for the price of one: ($F(1), Y F(0))(1,0)=(F(N+1), Y F(N))$.

ITEM 13 (Salamin \& Gosper):
LINEAR RECURRENCE RELATIONS
Recurrence relation: $\quad A_{k}=C_{n-1} A_{k-1}+\cdots+C_{0} A_{k-n}$
with A_{0}, \ldots, A_{n-1} given as initial values.
Consider the algebra with basis vectors

$$
x^{0} x^{1} x^{2}
$$

$$
\begin{equation*}
x^{0}, x^{1}, x^{2}, \ldots, x^{n} \tag{2}
\end{equation*}
$$

and the identification $X^{n}=C \quad x^{n-1}+\ldots+C \quad x^{0}$. $n-1 \quad 0$
Thus if U, V, W are vectors and $W=U V$, then componentwise

$$
\begin{equation*}
W_{i}=\sum_{j, k} T_{i j k} U_{j} V_{k}, \tag{3}
\end{equation*}
$$

where the T's depend only on the C's. The following simple procedure yiclds A_{k} : express the vector $X \quad$ as a linear combination of the basis vectors, then set $X=A \quad(0 \leq m<n)$. Computation of x can be done by $k-n+1$ applications of (2) or by computing the T's in (3) and then applying (3) O(log k) times.

PROOF: If $0 \leq k<n, X$ is already a basis vector, so we get A. Suppose the procedure works for $k<L . X^{L}=x^{n} x^{L}$

$$
\begin{aligned}
& =\left(C_{n-1} x^{n-1}+\ldots+c_{0}\right) x^{L-n} \\
& =c_{n-1} x^{L-1}+\cdots+c_{0} x^{L-n}
\end{aligned}
$$

The procedure evaluates each X^{m} to A, so X^{L} evaluates to

$$
C_{n-1} A_{L-1}+\ldots+C_{0}^{A}=A_{L-n} \cdot Q_{L}
$$

The same procedure will work for negative k using

$$
\begin{equation*}
x^{-1}=\left(x^{n-1}-c_{n-1} x^{n-2}-\ldots-c_{1}\right) / c_{0} \tag{4}
\end{equation*}
$$

the unique vector which when multiplied by x yields X^{0}.

Let (2) be $F(X)=0$ and V be the algebra constructed above. Then V is a field iff $F(X)$ is irreducible in the field of the coefficients of V.
PROOF: Note that an element P of V is zero iff $P(X)=0 \bmod F(X)$. If $G(X) H(X)=F(X)$, DEG G, H < DEG F, then the product of two non-zero elements is zero and so V can't be a field.

Let P be an arbitrary non-zero element of V.
DEG(GCD $(P, F)) \leq D E G P<\operatorname{DEG} F$.
If $F(X)$ is irreducible, then $G C D(P, F)=1$, so there exist
$Q(X), R(X)$ such that $Q(X) P(X)+R(X) F(X)=1$.
Then $Q(X) P(X)=1 \bmod F(X)$. Since P has an inverse, V is afield.
ITEM 14 (Gosper \& Salamin):
Yet another way to rapidly evaluate recurrences is to observe that if $F(N+1)=X * F(N)+Y * F(N-1)$,
then $\quad F(N+2)=\left(X^{2}+2 Y\right) * F(N)-Y^{2} * F(N-2)$.
This rate doubling formula can be applied iteratively to compute the Nth term in about log N steps, e.g., to get the 69 th term given terms 1 and 2, we form 1, 2, 3, 5, 9, 13, 21, 37, 69. This sequence is computed from right to left by iteratively subtracting half the largest possible power of 2. This is sufficient to guarantee that some term further left will differ from the left one by that same (halved) power of 2 ; e.g., 5 , ..., 21,37 have a common difference of 2^{4}, so that term 37 can be found from term 5 and term $2 l$ using the fourth application of the rate doubling formula.

The rate tripling formula is $F(N+3)=\left(X^{3}+3 X Y\right)^{*} F(N)+Y^{3}{ }^{*} F(N-3)$. For the K-tupling formula: $F(N+K)=P(K) * F(N)+Q(K) * F(N-K)$ $P(K+1)=X * P(K)+Y * P(K-1) \quad$ (the same recurrence as F) $Q(K+1)=-Y^{*} Q(K)$
$P(1)=X \quad Q(1)=Y$
$P(0)=2 \quad Q(0)=-1$
K
$Q(K)=-(-Y)$
K/2
$P(K)=2(-Y) \quad$ T $(K ; X / \sqrt{-4 Y})$ where $T(K ; X)$ is the Kth Chebychev polynomial $=\cos (K$ arccos $X)$

If $A(I), B(I)$, and $C(I)$ obey the same second order recurrence,

is independent of I and J, provided the inverse exists. (This is true even if coefficients are not constant, since any two independent sequences form a basis.)

Plugging in F and P as defined above, we get an expression for the N th term of the general second order recurrence in terms of $P(N)$ and $P(N+1)$:
$\left[\begin{array}{ll}P(N) & P(N+1)\end{array}\right]\left[\begin{array}{ll}P(0) & P(1) \\ P(1) & P(2)\end{array}\right]^{-1}\left[\begin{array}{l}F(0) \\ F(1)\end{array}\right]=F(N)$.
Setting $X=Y=1$, we get $F I B(N)=(2 P(N+1)-P(N)) / 5$, which is a complex but otherwise square root free closed form. ($\sqrt{-4}=2 i$)

With constant coefficients, the invariance (I) implies:

$$
\left[\begin{array}{cc}
A & A \\
P+I & P+J
\end{array}\right]\left[\begin{array}{ll}
A & A \\
Q+I+K & Q+J+K \\
A & A \\
Q+I+L & Q+J+L
\end{array}\right]^{-1}\left[\begin{array}{l}
A_{R+K} \\
A \\
R+L
\end{array}\right]=A \begin{array}{ll}
\\
&
\end{array}
$$

Thesc matrix relations generalize directly for Nth order recurrences.

ITEM 15 (Chebychev):
The ivth Chebychev polynomial $T(N)=T(N ; x)=\cos (N \arccos x)$. $T(0)=1, T(1)=x, T(N+1)=\underset{N}{2 x} \underset{1-N}{(N)}-T(N-1)$.
$T(N ; T(M))$ clearly $=T(N M) . \quad x-2 T(N)$ whose degree is $N-2$, is the polynomial of degree $<N$ which stays closest to x in the $1-\mathrm{N}$
interval ($-1,1$), deviating by at most 2^{1-N} at the $N+1$ places where $x=\cos \left(K^{*} \pi / N\right), K=0,1, \ldots N$.

Generating function: $\Sigma T(N) * S=(1-x S) /\left(1-2 x S+S^{2}\right)$. First order (nonlinear) recurrence:

$$
T(N+1)=x T(N)-\sqrt{\left(1-x^{2}\right)\left(1-T(N)^{2}\right)} .
$$

N
$(T(N+1),-T(N))=(T(1),-T(0))(1,0) \quad$,

$$
\text { where }(A, B)(C, D)=(A D+B C+2 x A C, B D-A C) \text {. }
$$

$\tan (n \arctan x)=\frac{1}{} \quad \frac{(1+i x)^{n}-(1-i x)^{n}}{(1+i x)^{n}+(1-i x)^{n}}$
bOOLEAN ALGEBRA

ITEM 17 (Schroeppel):
Problem: Synthesize a given logic function or set of functions using the minimum number of two-input AND gates. NOT gates are assumed free. Feedback is not allowed. The given functions are allowed to have X (don't care) entries for some values of the variables. P XOR Q requires three AND gates. MAJORITY(P, $Q, R)$ requires 4 AND gates. "PQRS is a prime number" seems to need seven gates. The hope is that the best Boolean networks for functions might lead to the best algorithms.

ITEM 18 (Speciner):
number of monotonic increasing Boolean
$N \quad$ functions of N variables
$\begin{array}{lll}0 & 2 & (T, F) \\ 1 & 3 & (T, F, P)\end{array}$
$26(T, F, P, Q, P$ AND Q, P OR Q)
320
$4168=8$ * 3 * 7
$5 \quad 7581=3 * 7 * 19^{2}$
67 7.828,354 = 2 * 359 * 10903 (Ouchl)
N from 0 to 4 suggest that a formula should exist, but 5 and 6 are discouraging. A difficult generalization: Given two partial orderings, find the number of maps from one to the other that are compatible with the ordering. A related puzzle: A partition of N is a finite string of non-increasing integers that add up to N. Thus 73321111 is a partition of 18 . Sometimes an infinite string of zeros is extended to the right, filling a half-line. The number of partitions of $N, P(N)$, is a fairly well understood function.

The generating function is $\sum_{n=0} P(n) x=1 / \prod_{k=1}(1-x)$.
A planar partition is like a partition, but the entries are in a two-dimensional array (the first quadrant) instead of a string. Entries must be non-increasing in both the x and y directions. A planar partition of 34 would be: 1

3221
$\begin{array}{llll}7 & 6 & 3 & 1\end{array}$
Zeros fill out the unused portion of the quadrant. The number of planar partitions of n, $\mathrm{PL}(\mathrm{n})$, is not a very well understood
function. $\quad \infty \quad n \quad x^{n} \quad k$
The generating function is $\quad \Sigma \operatorname{PL}(n) x=1 / \Pi \quad(1-x)$.
$n=0 \quad k=1$
No simple proof of the generating function is known. Similarly, one can define cubic partitions with entries in the first octant, but no one has been able to discover the generating function. Some counts for cubic partitions and a discussion appear in Knuth, Math. Comp. 1970 or so.

ITEM 19 (Schroeppel):
page 11
The $2-N O T s$ problem: Synthesize a black box which computes NOT-A, NOT-B, and NOT-C from A, B, and C, using an arbitrary number of ANDs and ORs, but only 2 NOTs.

Clue: (Stop! Perhaps you would like to work on this awhile.) Lemma: Functions synthesizable with one NOT are those where the image of any upward path (through variable space) has at most one decrease (that is, from T to F).

ITEM 20 (Roger Banks):
A Venn diagram for N variables where the shape representing each variable is convex can be made by superimposing successive M-gons ($M=2,4,8, \ldots$) every other side of which has been pushed out to the circumscribing circle. If you object to superimposed boundaries, you may shrink the nested M-gons a very slight amount which depends on N.

ITEM 21 (Schroeppel \& Waltz):
PROBLEM: Cover the Execuport character raster completely with the minimum number of characters. The three characters I, H and \# works. Using capital letters only, the five characters B, I, M, V and X is a minimal solution. Find a general method of solving such problems.

ITEM 22 (Gosper):
PROBLEM: Given several binary numbers, how can one find a mask with a minimal number of 1 bits, which when AND-ed with each of the original numbers preserves their distinctness from each other? What about permuting bit positions for minimum numerical spread, then taking the low several bits?

ITEM 23 (Schroeppel):

$$
(A A N D B)+(A O R B)=A+B=(A X O R B)+2(A \text { AND B). }
$$

ITEM 24 (Minsky):
There exists a convex figure n congruent copies of which,
for any n, form a Venn diagram of 2^{n} regions.

ITEM 25 (Schroeppel):
Random number generators, such as Rollo Silver's favorite, which use SHIFTs and XORs, and give as values only some part of their internal state, can be inverted. Also, the outputs may often be used to obtain their total internal state. For example, 2 consecutive values from Rollo's suffice to allow prediction of its entire future. Rollo's is:
RANDOM: MOVE A,HI ;register A gets loaded with "high" word
MOVE B, LO ;register B gets loaded with "low" word MOVEM A,LO ;register A gets stored in "low" word LSHC A, 35. ;shift the 72-bit register AB left 35 XORB A,HI ;bitwise exclusive-or of A and $H I$ replaces both
This suggests a susceptibility to analysis of mechanical code machines.

See LOOP DETECTOR item in FLOWS AND ITERATED FUNCTIONS section.
ITEM 26 (? via Salamin):
A mathematically exact method of generating a Gaussian distribution from a uniform distribution: let x be uniform on $[0,1]$ and y uniform on $[0,2 \pi], x$ and y independent. Calculate $r=\sqrt{-\log x}$. Then $r \cos y$ and r sin y are two independent Gaussian distributed random numbers.

ITEM 27 (Salamin):
PROBLEM: Generate random unit vectors in N-space uniform on the unit sphere. SOLUTION: Generate N Gaussian random numbers and normalize to unit length.

ITEM 28 (Schroeppel):
After about 40 minutes of run time to verify the absence of any non-trivial factors less than 2^{35}, the 125 th Mersenne number, $2^{125}-1$, was factored on Tuesday, January 5, 1971, in 371 seconds run time as follows: 2^{125} - $=$ 31 * 601 * 1801 * 269089806001 * 4710883168879506001. John Brillhart at the University of Arizona had already done this. M137 was factored on Friday, July 9, 1971 in about 50 hours of computer time: $2^{137}-1=$ 32032215596496435569 * 5439042183600204290159.

ITEM 29 (Schroeppel):
For a random number X, the probability of its largest prime factor being (1) greater than \sqrt{X} is $1 n 2$. (2) less than $\sqrt[3]{X}$ is about 4.86\%. This suggests
that similar probabilities are independent of X; for instance, the probability that the largest prime factor of X is less than
$\sqrt[2]{X}$ may be a fraction independent of the size of X.
RELEVANT DATA:
([] denote the expected value of adjacent entries.)
RANGE

| 10^{12} TO 10^{6} | 7198 |
| :--- | :--- | :--- |
| 10^{6} TO 10^{4} | 2466 |
| 10^{4} TO 10^{3} | 3544 |
| 10^{3} TO 252 | 40 |
| 252 TO 100 | 7 |
| 100 TO 52 | 1 |
| 51 TO 1 | 0 |

CUMULATIVE SUM OF COUNT
10018
2820
402 [487] 2.4
$48 \quad ; 252=10$
$8 \quad 1.7$
$1 \quad ; 52=10$

51 TO 1 0
where:
"Count" is the number of numbers between $10^{12}+1$ and $10^{12}+10018$ whose largest prime factor is in "RANGE". The number of primes in $10^{12}+1$ to $10^{12}+10018$ is 335 ; the prime number theorem predicts 363 in this range. This is relevant to Knuth's discussion of Legendre's factoring method, vo1. 2, p. 351-354.

ITEM 30 (Schroeppel):
Twin primes:

$$
166,666,666,667=\left(10^{12}+2\right) / 6
$$

$$
166,666,666,669
$$

The number $166,666,666,666,667$ is prime, but 166,666,666,666,669 is not
The primes which bracket 10^{12} are $10^{12}+39$ and $10^{12}-11$.
The primes which bracket 10^{15} are $10^{15}+37$ and $10^{15}-11$.
The number $23,333,333,333$ is prime.
Various primes, using $T=10^{12}$, are:
$40 \mathrm{~T}+1,62.5 \mathrm{~T}+1,200 \mathrm{~T}-3,500 \mathrm{~T}-1,500 \mathrm{~T}-7$.

ITEM 31 (Schroeppel):
N
page 14
Ramanujan's problem of solutions to $2-7=X^{2}$ was searched to about $N=10^{40}$; only his solutions ($N=3,4,5,7,15$) were found. It has recently been proven that these are the only ones. Another Ramanujan problem: Find all solutions of $n!+1=x^{2}$.

ITEM 32 (Schroeppel):
Take a random real number and raise it to large powers; we expect the fraction part to be uniformly distributed. Some exceptions: $1-\Phi=(1+\sqrt{5}) / 2$
2-- all-1<x<1
$3-\sqrt{2}$ (half are integers, other half are probably uniformly distributed)
4--1 + $\sqrt{2}$-- Proof:
$(1+\sqrt{2})^{N}+(1-\sqrt{2})^{N}=$ integer (by induction);
the ($1-\sqrt{2}$) goes to zero.
$5-2+\sqrt{2}-\operatorname{similar}$ to $1+\sqrt{2}$
6 -- any algebraic number whose conjugates
are all inside the unit circle
Now, $3+\sqrt{2}$ is suspicious; it looks non-uniform, and seems to have a cluster point at zero. PROBLEM: Is it non-uniform?

ITEM 33 (Schroeppel):
Numbers whose right digit can be repeatedly removed and they are still prime: CONJECTURE: There are a finite number of them in any radix. In decimal there are 51 , the longest being $1,979,339,333$ and $1,979,339,339$.

ITEM 34 (Schroeppel):
PROBLEM: Can every positive integer be expressed in terms of 3 and the operations factorial and
integer square root? E.g., $5=\sqrt{3} \sqrt{T}$.
ITEM 35 (Schroeppel):
Take as many numbers as possible from 1 to N such that no 3 are in arithmetic progression. CONJECTURE: As $N \rightarrow \infty$, the
density of such sets approaches zero, probably like N $X X . X X$ is a known solution for $N=5$
XX. XX.... XX.XX is a known solution for $N=14$

Conjecture that $X X . X X$ just keeps getting copied. If the
(ln 2)/(ln 3)
$N \quad$ can be proved, it follows that there are infinitely many primes Pl, P2, P3 in arithmetic progression,
(ln 2)/(ln 3)
since primes are much more common than N
ITEM 36 (Schroeppel):
PROBLEM: How many squares have no zeros
in their decimal expression? Ternary?

ITEM 37 (Gosper):
page 15
The number of n digit strings base B in which all B digits occur at least once is just the Bth forward difference at of the nth powers of $0,1, \ldots$. E.g., for $n=4$:

| 0 | 1 | 16 | 81 | 256 | 625 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$1 \quad 14^{15} 500^{65} 110^{175} 194^{369}$
$\begin{array}{llll}36 & 60 \quad 84\end{array}$
$24 \quad 24$
0
so there are $14\left(=2^{4}-2\right)$ such 4-bit strings, 36 such 4-digit ternary strings, 24 ($=4$!) such quaternary, and 0 for all higher bases. 27 ($=10 e ?$) random decimal digits are required before it is more likely than not that every digit has occurred; with 50 digits the likelihood is 95%.

ITEM 38 (Fredkin):
By the binomial theorem, the bth forward difference at of
b

In fact, any straight line with rational slope through such an array will always go through a geometric sequence with common a b
ratio of the form $n(n-1)$. In the above, east by southeast knight's moves give the powers of 12: 1, 12, 144,

ITEM 39 (Schutzenberger):
PROBLEM: Using N digits, construct a string of digits which at no time has any segment appearing consecutively twice.
$N=2 \rightarrow$ finite maximum string
$N=10 \rightarrow$ known infinite
Determine maximum string length for $N=3$. SUB-PROBLEM: How many sequences exist of any particular length?

ITEM 40 (Gosper):
The variance of a pseudo-Gaussian distributed random variable made by adding T independent, uniformly distributed random integer variables which range from 0 to $N-1$, inclusive, is $T\left(\left(N^{2}-1\right) / 12\right)$ 。

ITEM 41 (Salamin):
page 16
There are exactly 23000 primes less than 2^{18}.
ITEM 42 (Gosper):
To show that
$\sum_{L}^{N}(\text { BINOMIAL } N+L L)^{*}\left(X^{N+1}(1-X)^{L}+(1-X)^{N+1} X^{L}\right)=1$
$\mathrm{L}=0$
set N to 20 and observe that it is the probability that one or the other player wins at pingpong. ($X=$ probability of first player gaining one point, $L=10 s e r{ }^{\prime} s$ score, deuce rule irrelevant.) If this seems silly, try more conventional methods. PROBLEM: If somehow you determine A should spot B 6 points for their probabilities of winning to be equal, and B should spot C 9 points, how much should A give C?

ITEM 43 (Schroeppel):
Let (A,B,C...) be the multinomial coefficient
($A+B+C \ldots)!/ A!B!C!\ldots$
This is equal modulo the prime p to
($\mathrm{A} 0, B 0, C 0 \ldots)(A 1, B 1, C 1 \ldots)(A 2, B 2, C 2 \ldots) \ldots$
where $A J$ is the J th from the right digit of A base p.
Thus (BINOMIAL $A+B A$) mod 2 is 0 iff (AND A B) is not.
The exponent of the largest power of phich divides ($A, B, C . .$.)
is equal to the sum of all the carries when the base p
expressions for A, B, C, \ldots are added up.
ITEM 44 (Gosper):
Recurrences for multinomial coefficients:
$(A, B, C, \ldots)=(A+B, C, \ldots)(A, B)=(A+B+C, \ldots)(A, B, C)=\ldots$
PROBLEM 45 (Gosper):
Take a unit step at some heading (angle). Double the angle, step again. Redouble, step, etc.
For what initial heading angles is your locus bounded?
PARTIAL ANSWER (Schroeppel, Gosper): When the initial angle is a rational multiple of π, it seems that your locus is bounded (in fact, eventually periodic) iff the denominator contains as a factor the square of an odd prime other than 1093 and 3511, which must occur at least cubed. (This is related to the fact that 1093 and 3511 are the only known primes satisfying
P
2
$2=2 \bmod p$). But a denominator of $171=9$ * 19 never 100 ps , probably because 9 divides $\phi(19)$. Similarly for 9009 and 2525. Can someone construct an irrational multiple of π with a bounded locus? Do such angles form a set of measure zero in the reals, even though the "measure" in the rationals is about . 155? About . $155=$ the fraction of rationals with denominators containing odd primes squared $=1-\Pi$ over odd primes of $1-1 / P(P+1)$. This product $=.84533064 \pm$ a smidgen, and is not, alas, $\sqrt{\pi / 2}$ ARCERF (1/4) $=.84534756$. This errs by 16 times the correction factor one expects for 1093 and 3511 , and is not even salvaged by the hypothesis that all primes $>$ a million satisfy the congruence. It might, however, be salvaged by quantities like 171 .

ITEM 46 (Schroeppel):
page 17
The most probable suit distribution in bridge hands is 4-4-3-2, as compared to 4-3-3-3, which is the most evenly distributed.
This is because the world likes to have unequal numbers:
a thermodynamic effect saying things will not be in the state of lowest energy, but in the state of lowest disordered energy.

ITEM 47 (Beeler):
The Fibonaci series modulo P has been studied. This series has a cycle length L and within this cycle has sub-cycles which are bounded by zero members.
The length of powers of primes seems to be
power-1
L = (length of prime) * prime
The length of products of powers of primes seems to be
$L=1 e a s t$ common multiple of lengths of powers of primes which are factors.
There can be only 1,2 or 4 sub-cycles in the cycle of a prime.
Primes with 1 sub-cycle seem to have lengths
$L=(p r i m e-1) / N, N$ covering all integers.
Primes with 2 sub-cycles seem to have lengths
M
$\mathrm{L}=($ prime - (-1) $) / \mathrm{M}$, M covering
all integers except of form $10 \mathrm{~K}+5$.
Primes with 4 sub-cycles seem to always be of form $4 K+1$, and seem to have lengths

```
\(L=2(\) prime +1\() / R\) or (prime - 1)/S,
R covering all integers of form \(10 \mathrm{~K}+1,3,7\) or 9 ;
S covering all integers.
```

At Schroeppel's suggestion, the primes have been separated mod 40, which usually determines their number of sub-cycles: PRIME mod 40 SUB-CYCLES
1, 9 usually 2, occasionally 1 or 4 (about equally)
3, 7, 23, 27 2
11, 19, 31, 39 1
13, 17, 33, 374
21, $29 \quad 1$ or 4 (about equally)
2 (only 2) 1
5 (only 5) 4
Attention was directed to primes which are 1 or 9 mod 40 but have 1 or 4 subcycles. $25 X^{2}+16 Y^{2}$ sems to express those which are $9 \bmod 40 ;(10 X \pm 1)^{2}+400 Y^{2}$ seems to express those which are 1 mod 40. PROBLEM: Can some of the "seems" above be proved? Also, can a general test be made which will predict exact length for any number?

ITEM 48 (Gosper, Schroeppel):
A point of the 2 dimensional lattice is called visible iff its coordinates are relatively prime. The invisible 2 by 2 square with smallest X has its near corner on (14, 20). (I.e., $(14,20),(15,20),(14,21)$, and $(15,21)$ are all invisible.) The corresponding 3 by 3 is at $(104,6200)$. By the Chinese remainder theorem, there exist invisible sets of every finite shape. Excellent reference: Amer. Math. Monthly, May i71, p487.

ITEM 49:
There is a unique "magic hexagon" of side 3:

ITEM 50 (Schroeppel):
There is no magic cube of order 4.
Proof: Let $K(=130)$ be the sum of a row.
Lemma 1: In a magic square of order
four, the sum of the corners is K.
Proof: Add together each edge of the square and the two diagonals. This covers the square entirely, and each corner twice again. This adds to 6 K , so twice the corner sum is 2 K . Lemma 2: In a magic cube of order 4, the sum of any two corners connected by an edge of the cube is K/2.
Proof: Call the corners a and b. Let c, d and e, f be the corners of any two edges of the cube parallel to ab. Then abcu, abef, and cdef are all the corners of magic squares. So $a+b+c+d+a+b+e+f+c+d+e+f=3 K ; a+b+c+d+e+f=3 K / 2 ; a+b=K / 2$. Proof of magic cube impossibility: Consider a corner x. There are three corners connected by an edge to x.
Each must have value K/2 - x. QED
ITEM 51 (Schroeppel):
By similar reasoning, the center of an order 5 magic cube must be $63=K / 5$. COROLLARY: There is no magic tesseract of order 5 .

ITEM 52 (Salamin):
The ${ }_{2}$ probability that two random integers are relatively prime is $6 / \pi^{2}$. PSEUDO-PROOF: Let X be the probability. Iet S be the set of points in the integer latice whose coordinates are relatively prime, so that S occupies a fraction X of the lattice points. Let $S(V)$ be the set of points whose coordinates have a GCD of D. $S(D)$ is S expanded by afactor of D from the origin. So $S(D)$ occupies a fraction X / D^{2} of the lattice, or the probability that two random integers have a GCD of D is X / D^{2}. If D unequals D^{\prime}, then $S(D)$ intersect $S\left(D^{\prime}\right)$ is empty, and union of all $S(D)$ is the entire lattice. Therefore $x^{*}\left(1 / 1^{2}+1 / 2^{2}+1 / 3^{2}+\ldots\right)=1$,
so $X=6 / \pi^{2}$. This argument is not rigorous, but can be made so.
ITEM 53 (Salamin):
The probability that N numbers will lack
a Pth power common divisor is $1 / \zeta(N P)$.
ITEM 54 (Salamin \& Gosper):
The probability that a random rational number has an even denominator is $1 / 3$.

ITEM 55 (Schroeppel): GAUSSIAN INTEGERS
See following illustrations; also PI section.

Figure $1(a)$. This diagram is to substantiate the claim that every Gaussian integer has a unique bit combination. Kunning through bit combinations $0,1,10,11, \ldots, t h e$ uiagram is a map of values, radix i-l. The origin is circled; the dot is at the 127 th combination (1111111=2+5i), which is merely the last point drawn.

Figure 1 (b). As $1(a)$, but radix $i+1$. Large circle is origin. نashes indicate continuity of curve at confusing places. Lotted curve is with an infinity of ones to the left (big dot $=\ldots .1111=$ i). The solid and dotted curves are symmetrical about the point marked with a small circle.

Figure 2. Similar to $1(a)$, but showing fraction parts as well. Reprinted by special permission from Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 1969, Addison-Wesley, Reading, Mass.

ITEM 56 (Beeler):
page 22
The "length" of an N-digit decimal number is defined as the number of times one must iteratively form the product of its digits until one obtains a one-digit product (see Technology Review Puzzle Corner, December 1969 and April 1970). For various N , the following shows the maximum "length", as well as how many distinct numbers (permutation groups of N digits) there are: $\mathrm{N} \quad \mathrm{MAX} \mathrm{L}$ DISTINCT
2454
$3 \quad 5 \quad 219$
$4 \quad 6 \quad 714$

5	7	2,001

$6 \quad 7 \quad 5,004$
$7 \quad 8 \quad 11,439$
$8 \quad 9 \quad 24,309$

9	9	48,619

$10 \quad 10 \quad 92,377$
$11 \quad 10 \quad 167,959$
$12 \quad 10 \quad 293,929$

Also, for $N=10,11$ and 12 , a tendency for there to be many fewer numbers of "length" $=7$ is noted. Other than this, the frequency of numbers of any given N, through $N=12$, decreases with increasing "length". CONJECTURE (Schroeppel): No L >10.

ITEM 57 (Beeler, Gosper):
There is at least one zero in the decimal expression of each power of 2 between $2^{86}=77,371,252,455,336,267,181,195,264$ and $2^{30739014}$, where the program was stopped. If digits of such powers were random, the probability that there is another zeroless power would be about $1 / 10^{411816}$. Assuming there aren't any then raises the question:
How many final nonzero digits can a power of two have?
ANSWER (Schroeppel): Arbitrarily many. If we look at the last n digits of consecutive powers of 2 , we see:
a) None end in zero.
b) After the nth, they are all multiples of 2 . n-1
c) They get into a loop of length 4 * 5 . (Because 2 is a primitive root of'powers of 5.) $n-1 \quad n$
But there are only 4 * multiples of 2 which don't end with n
zero and are < 10 , so we will see them all. In particular, we will see the one composed entirely of $l^{\prime} s$ and 2's, which ends ...11112111211111212122112.

ITEM 59 (Schroeppel):

| 91038 | 90995 | 89338 | 00226 | 07743 | 74008 | 17871 | $09376^{2}=$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82880 | 83126 | 51085 | 58711 | 66119 | 71699 | 91017 | 17324 |
| 91038 | 90995 | 89338 | 00226 | 077443 | 74008 | 17871 | 09376 |

ITEM 60 (Beeler):
If $S=$ the sum of all integers which exactly divide N, including 1 and N, then "perfect numbers" are $S=2 N$;
the first three numbers which are $S=3 \mathrm{~N}$ are:
$120=2^{3} * 3 * 5=1111000$ base 2
$672=2^{5} * 3 * 7=1010100000$ base 2
$523,776=2^{9} * 3 * 11 * 31=1111111111000000000$ base 2
ITEM 61 (Root):
Consider iteratively forming the sum of the factors (including 1 but not N) of a number N. This process may loop; "perfect numbers" are those whose loop is one member, N. For example, $N=28=1+2+4+7+14$. An example of a two-member loop is: sum of factors of $220=284$ sum of factors of $284=220$
Two-member loops are called "amicable pairs."
A program to search for loops of length $>$ 2, all of whose. members are < 6,600,000,000 found the known loops of length 5 (lowest member is 12496) and 28 (lowest member is 14316), but also 13 loops of 4 members (lowest member is given):

$$
\begin{aligned}
1,264,460 & =2^{2} * 5 * 17 * 3,719 \\
2,115,324 & =2^{2} * 3^{2} * 67 * 877 \\
2,784,580 & =2^{2} * 5 * 29 * 4,801 \\
4,938,136 & =2^{3} * 7 * 109 * 809 \\
7,169,104 & =2^{4 *}{ }^{4} 1^{*} * 26,357 \\
18,048,976 & =2^{4} * 11 * 102,551 \\
18,656,380 & =2^{2} * 52^{*} 932,819 \\
46,722,700 & =2^{2} * 5^{2} * 47 * 9,941 \\
81,128,632 & =2^{3} * 13 * 19 * 41,057 \\
174,277,820 & =2^{2} * 5 * 29 * 487 * 617 \\
209,524,210 & =2^{*} 5^{*} 7^{*} * 19 * 263 * \\
330,003,580 & =2^{2} * 5 * 16,500,179 \\
498,215,416 & =2^{3} * 19 * 47 * 69,739
\end{aligned}
$$

ITEM 62 (Speciner):
The first four perfect numbers are 6, 28, 496, 8128.
Two-member loops (amicable pairs) are:

$$
\begin{aligned}
& 220 \text { + } 284 \\
& 1184 \rightarrow 1210 \\
& 2620+\rightarrow 2924 \\
& 5020+55564 \\
& 6232+6368 \\
& 10744 \rightarrow 10856 \\
& 12285 \rightarrow+14595 \\
& 17296 \rightarrow 18416 \\
& 63020 \rightarrow 76084 \\
& 66928 \rightarrow 66992 \\
& 67095+\rightarrow 71145 \\
& 69615 \rightarrow 87633 \\
& 79750 \leftrightarrow 88730 \\
& 100485 \leftrightarrow 124155 \\
& 122265+139815 \\
& 122368 \text { + } 123152 \\
& 141644+153176 \\
& 142310+168730 \\
& 171856 \rightarrow 176336 \\
& 176272 \rightarrow 180848 \\
& 185368 \rightarrow 203432 \\
& 196724 \rightarrow 202444
\end{aligned}
$$

(Exhaustive to smaller member ≤ 196724 and larger member < 2^{35}.) A prime decade is where $N+1, N+3, N+7$ and $N+9$ are all prime. The first occurrence of two prime decades with the theoretical minimum separation is $N=1006300$ and $N=1006330$. The 335 th prime decade is $N=2342770$. There are 172400 primes < 2342770 .

ITEM 63 (Schroeppel, etc.):
The joys of 239 are as follows:
$\pi=16 \arctan (1 / 5)-4 \arctan (1 / 239)$,
which is related to the fact that 2 * $13^{4}-1=239^{2}$,
which is why $239 / 169$ is an approximant (the 7 th) of $\sqrt{2}$.
$\arctan (1 / 239)=\arctan (1 / 70)-\arctan (1 / 99)$
$=\arctan (1 / 408)+\arctan (1 / 577)$
239 needs 4 squares (the maximum) to express it.
239 needs 9 cubes (the maximum, shared only with 23) to express it.
239 needs 19 fourth powers (the maximum) to express it.
(Although 239 doesn't need the maximum number of fifth powers.)
$1 / 239=.00418410041841 \ldots$, which is related to the fact that
$1,111,111=239$ * 4,649.
The 239 th Mersenne number, 2^{299} - 1 , is known composite,
but no factors are known.
$239=11101111$ base 2.
$239=22212$ base 3 .
$239=3233$ base 4.
There are 239 primes < 1500 .
K239 is Mozart's only work for 2 orchestras.
Guess what memo this is.
And 239 is prime, of course.

ITEM 64 (Schroeppel):
A 2-counter machine, given N in one of the counters, cannot N
generate 2. Proven Saturday, Sept. 26, 1970. (Independently rediscovered by Frances Yao). But (Minsky, Liknaitzky), given N
N 2
2 , it can generate 2. (A 2-counter machine has a fixed, finite program containing only the instructions "ADD l",
"SUBTRACT 1", "JUMP IF NOT ZERO", which refer to either of two unlimited counters. Such machines are known universal, but (due to the above) they must have specially encoded inputs.)

ITEM 65 (Schroeppel):
What effort is required to compute $\pi(X)$,
the number of primes < X ? Shanks and Brillhart claim about $X^{\text {• }}$.
ITEM 66 (Gosper):
See space-filling curve machine item in TOPOLOGY section.

GAMES
**

ITEM 67 (Schroeppel):
Regarding "poker coins" game, whose rules are:
1 a player throws N coins;
he then puts one or more aside and rethrows the rest
2 this throwing is repeated until he no longer has any to throw 3 highest score (dice) or maximum number of heads (coins) wins
For poker coins, the optimal strategy, with N coins thrown, is:
$z=$ number of zeros (tails)
if $z=0$, quit
if $Z=1$, throw the zero
if $1<Z<N$, save one one, throw the other N-l coins if $Z=N$, save a zero, throw the other N-1 coins
The optimal strategy for poker dice is hairier.
ITEM 68 (Schroeppel):
PROBLEM: Solve Blackout, a game as follows: Two players alternate placing X's on a rectangular grid. No two X's may appear adjacent along a side or across the diagonal at a corner. The last X wins. Some theory: The "indicator" for a position is: make all possible moves from the given position. Evaluate the indicator of each of these successor positions. The indicator of the first position is the smallest number which is not the indicator of a successor position. The indicator of the null position is 0. The second player wins iff the indicator is 0. Example of calculating an indicator for the 3×3 board: There are 3 distinct moves possible -- corner, side, center. Playing in the center leaves the null position, indicator 0 . Playing on the side leaves a 1×3 line, indicator 2. playing in the corner leaves a $3 \times 3 \mathrm{~L}$, indicator 3. The smallest number not appearing in our list is 1 , so the indicator of a 3×3 square is l. For two boards (not touching) played simultaneously, the indicator is the XOR of the indicators for the separate boards. For any position, the indicator is \leq the maximum game length.
PROBLEM: Find some non-exponential way to compute the indicator of a given position. For lines, a period of 34 is entered after the line is about 80 long. For Ls: if one leg is held fixed, the indicator (as a function of the other leg) seems to become periodic with period 34. The time to enter the period becomes greater as the fixed leg increases.
On an odd x odd board, the lst player wins.
On a $4 \times N$ board, the $2 n d$ player wins.
On a 6×6 board, the $1 s t$ player wins by playing
at the center of one quarter.
This indicator analysis is similar for many other
take-away games, such as Nim.
ITEM 69:
Berlekamp of Bell Labs has done the 9 squares
(16 dots) Dots game; the 2nd player wins.

ITEM 70:
page
A neat chess problem, swiped from "Chess for Fun and Chess for Blood", by Edward Lasker: white: pawns at QN 3 and KN7, knight at QN4, bishop at KB7, king at QB2; black: pawn at QN3, king at QR6. White mates in three moves.

ITEM 71 (Beeler):
There is only one distinct solution to the commercial "Instant Insanity" colored-faces cubes puzzle, which is how it comes packed. (Independently discovered by Dave Plumer.) Mike Paterson has discovered a clever way to solve the puzie.

ITEM 72 (Beeler):
A window-dice game is as follows:
1 The player starts with each of nine windows open, showing the digits $1-9$.
2 Roll two dice.
3 Cover up any digits whose sum is the sum on the dice.
4 Iterate throwing and closing windows until the equality of sums is impossible.
5 Your score is the total of closed windows (highest wins).
An optimum strategy has been tabulated. Usually it is best
to take the largest digits possible, but not always;
it also depends critically on the remaining numbers.
ITEM 73 (becler):
Sim is a game where two players alternately draw lines connecting six dots. The first person to form a triangle in his color loses. The second player can always win, and whether his first move connects with the first player's first move doesn't matter; from there on, however, the strategy branches to a relatively gruesome degree.
PROBLEM: 6 dots is minimum to ensure no stalemate with 2 players; how many dots are required with 3 players?

ITEM 74 (Beeler):
The 4×4 game of Nim, also known as Tactix, is a win for the second player, who on his first move can reply center-symmetrically unless the first player's first move was B1 and B2 (analyzed on RLE PDP-1).

ITEM 75 (Gosper, Brown, Rayfield):

page 28
A 1963 PDP-1 computer program gave us some interesting data on the traditional game of peg solitaire (33 holes in a plus shape).

			A	B	C	
		D	E	F		
G	H	I	J	K	L	M
N	P	Q		S	T	U
V	W	X	Y	Z	1	2
		3	4	5		
			6	7	8	

From the starting position, complement the board. This is the ending position. Now from the starting position, make one move, then complement the board. This is a position one move from a win. By induction, you can win from the complement of any position you can reach. Thus every successful game has a dual game whose positions are the complements of the original ones. This debunks the heuristic of emptying the arms of the plus first and then cleaning up the middle, because there are just as many dual games which empty out the middle first and then the arms! The program found one counterintuitive win which at one point left the center nine empty but had ten in the arms.

By dualizing and permuting a solution from the folklore, we found a similar winning position with 20. (T Q 4 R1L JHWYMJ) leaves:

Another useful observation is that the pegs and their original hole positions fall into four equivalence classes in which they stay throughout the game. Thus the four pegs which can reach the center on the first move are the only ones that ever can. Similarly, the peg jumped over on the last move must be in one of the two classes of eight members which get reduced on the first move. The program's main heuristic was to reduce the larger classes first.

			a	b	a	
		c	d	c		
a	b	a	b	a	b	a
c	d	c		c	c	d
c	c					
a	b	a	b	a	b	a
		c	d	c		
		a	b	a		

With its heuristics disabled, the program simply scanned lexicographically (left to right in the inner loop, then top to bottom) for a peg which could move. At one point, there is a peg which can move two ways; it chose west. Twelve moves from the end it stopped and went into an exhaustive tree search, in which it found two basically different wins. (Try it yourself.)

ITEM 76 (Beeler):
Triangular $\mathrm{Hi}-\mathrm{Q}$ (or peg solitaire) is 15 pegs in a triangle. One peg is removed, and thereafter pegs jump others, which are removed. With pegs numbered lat the top,
2 and 3 in the next row, etc.,
remove Can end with only the peg
$1 \quad 1,7=10,13$
$2 \quad 2,6,11,14$
$4 \quad 3=12,4,9,15$
$5 \quad 13$
Removing only one, no way exists to get to either $1+11+15$ (tips) or $4+6+13$ (centers of sides). Starting with peg 1 removed, 3,016 positions are attainable (not turning board); the sum of ways to get to each of these is 10,306. An example is: remove peg 1, then jump as follows: 6, 13, 10, 1, 2, 11, 14/13, 6, 12/13, 15, 7/4, 13, 4; leaving peg 1.

PROPOSED COMPUTER PROGRAMS, IN ORDER OF INCREASING RUNNING TIME (Schroeppel)

Figure 3(a). The smallest known (in 1961, and yet today as far as we know) squared square. Reprinted by special permission from Martin Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, 1961, Simon and Schuster, New York, New York.

Figure 3(b). A squared rectangle found by Schroeppel using "String Handling Interpretive Translator," a string processing language written by Samson. Sides are 884808 $=2^{3} * 3^{2} * 12289$ and $752225=5^{2} * 30089$; semiperimeter is $1637033=419 * 3907$. This has 28 squares, which is more than most published squared rectangles.

PROBLEM 81: Count the magic squares of order 5. There are about 320 million, not counting rotations and reflections.

PROBLEM 82: List (that is, count) the semigroups of 7 elements; also, the groups of 256 elements (estimated: 11000).

PROBLEM 83 (Gosper): Compute the integer-valued step function $F(R), 0<R<1$, the number of circles of radius R which fit into a unit circle. F skips the value 6, and probably 18. How many and how big are the gaps in the range of F ? What happens in n dimensions (including $n=i n f i n i t y) ?$

PROBLEM 84: Solve pentominos on an 8×8 checkerboard game(s). Rules:
1 The checkerboard is for aid in orienting only; black and white are the same.
2 The two players may each have a full complement of 12 pentominos, or they may "choose up" their half of one set.
3 Players alternate placing pentominos on the board. Pentominos must not overlap.
4 The last player to place a pentomino wins.
PROBLEM 85: With regard to dissection theorems, the following are known: a triangle into a square, 4 pieces (proven minimal); a pentagon into a square, 6 pieces (best known) etc. ("Geometric Dissections" by Harry Lindgreen, Scientific American November 1961). A program can probably check the known dissections for minimality! Sec following illustration, for example.

Figure 4. A surprising square \rightarrow hexagon dissection, adapted from page 164 of the November, 1961 issue of Scientific American, which see for further diagrams and discussion.

PROBLEM 86: Find the number of domino coverings for various objects. For example, an asymptotic formula is known for rectangles; also, on a square board, if side mod $4=0$, coverings appears to be a square; on a square board, if side mod $4=2$, coverings appears to be twice a square. See ^pplied Comb. Math., chap. 4.4-4.6, p. 105-121. Article by E. W. Montroll.

PROBLEM 87: Analyze giveaway chess, which is as follows:
l captures must be made, although you can choose which capture to make
2 pawns must be promoted to queens
3 king is just another piece
4 player to give away all pieces first wins
PROBLEM 88: Analyze "cscalation chess", where white gets lave, black 2, white 3, ctc. If a player is in check, he must get out of check on his first move. He may not move into check. Taking your opponent's king is verboten, but you can pile up triple checks, etc. A player is checkmated if he can't get his king out of check on his first move.

PROBLEM 89: In the game "4 pawns", black has 4 pawns, a king, and two moves to white's one. Prove the pawns win. The object in this game is to capture the king. Black is allowed to move through check.

PROBLEM 90: Solve Scarne's game, "Tecko," which is played on a 5×5 board by two players who alternate placing, one at a time, their 4 counters each, after which the counters arc moved around (including diagonally). 4 in a row or square wins.

PROBLEM 91: Solve "five-in-a-row" on an infinite board.
PROBLEM 92: Solve Tic-Tac-Toe on a $4 \times 4 \times 4$ board.
The consensus is a win for the first player, but it's unproven. The first player wins on $4 \times 4 \times 4 \times 4$.

PROBLEM 93: Solve checkers. There are about 10^{12} positions. (Computing time currently estimated (Schroeppel) at lyear).

Programs below this line are considered unfeasible.
PROBLEM 94: Solve Hex on large boards (llo 23 on a side); through order 7 have been analyzed by hand. There is a proof that in games where having an extra move can never (repeat: never) hurt you, the worst the first player can be forced to do is draw. Thus, with llex, in which there is no draw, the first player can always win.

PROBLEM 95: Solve chess. There are about 10^{40} possible positions; in most of them, one side is hopelessly lost.

PROBLEM 96: Solve Go. About 10^{170} positions.

CONTINUED FRACTIONS

ITEM 97 (Schroeppel):
Simple proofs that certain continued fractions are $\sqrt{2}, \sqrt{3}$, etc. Proof for $\sqrt{2}$:

$$
\begin{aligned}
& x=[1,2,2,2, \ldots] \\
& (x-1)(x+1)=[0,2,2,2, \ldots] *[2,2,2,2, \ldots]=1 \\
& x^{2}-\frac{1}{1}=1 \\
& x=\sqrt{2}
\end{aligned}
$$

Proof for $\sqrt{3}$:

$$
\begin{aligned}
& Y=[1,1,2,1,2, \ldots] \\
& (Y+1)(Y-1)=[2,1,2,1,2, \ldots] *[0,1,2,1,2, \ldots] \\
& Y^{2}=2=[1,2,1,2,1, \ldots] *[0,1,2,1,2, \ldots]=2 \\
& Y=\sqrt{3}
\end{aligned}
$$

Similar proofs exist for $\sqrt{5}$ and $\sqrt{6}$; but $\sqrt{7}$ is hairy.
ITEM 98 (Schroeppel):
The continued fraction expansion of the positive minimum of the factorial function (about 0.46) is
$[0,2,6,63,135,1,1,1,1,4,1,43, \ldots]$.
ITEM 99 (Schroeppel):
The value of a continued fraction with partial quotients increasing in arithmetic progression is

I ($2 / \mathrm{D}$)
$[A+D, A+2 D, A+3 D, \ldots]=\frac{A / D}{I}$
$1+(A / D)$
where the I's are Bessel functions.
I (2)
0
A special case is $[1,2,3,4, \ldots]=\frac{(2)}{I(2)}$.
1
ITEM 100 (Perron):

$$
\begin{gathered}
\prod_{k=1}^{n}(1+1 / A k)= \\
1+\frac{1}{A 1-} \frac{(A 1+1) \Lambda 1}{A 1+A 2+1-} \frac{(A 2+1) A 2}{A 2+A 3+1-} \quad \frac{(A(n-1)+1) A(n-1)}{A(n-1)+A n+1} .
\end{gathered}
$$

ITEM 101A (Gosper):
page 37
On the theory that continued fractions are underused, probably because of their unfamiliarity, I offer the following propaganda session on the relative merits of continued fractions versus other numerical representations. For a good cram course in continued fractions, see Knuth, volume 2, page 316. (In what follows, "regular" means that all numerators are 1 , and any radix can be read in place of decimal.)

0) π is 3. But not really 3, more like $3+1 / 7$. But not really 7, more like $7+1 / 15$. But not really 15 , So the regular continued fraction for π is written $\begin{aligned} & 3 \\ & 7\end{aligned} 15129211 \ldots \ldots$

1) The continued fractions for rational numbers always come out even, and rather quickly. Thus, the number of inches per meter is exactly $100 / 2.54$ or 39212214 . The corresponding decimal fraction 39.3700787... has period 42, making it almost impossible to tell if the number is rational. (But if our data are ALL rational, the ordered pair 5000/l27 is even more concise.)
2) Quadratic surds, which are of course inexpressible as rationals, are generally unrecognizable in decimal. Their continued fractions, on the other hand, are periodic. Nth roots of e^{2}, ratios of Bessel functions, and ratios of linear functions of these all have regular continued fractions formed by interleaving one or more arithmetic sequences. These special properties will show up regardless of number base. You might recognize 5.436563... as 2 e , but even Schroeppel might not notice 2/3 2/3
that 6.1102966796... was (4e-2)/(e - 1) until he wrote it as $\begin{array}{lllllll}9 & 15 & 21 & 27 & 33 & \ldots\end{array}$

The familiar transcendental functions of rational arguments also have simple continued fractions, but these are generally not regular and cannot be reconstructed from numerical values by a simple algorithm, since nonregular representations aren't unique. The point is, however, that numbers like e, $\pi, \sqrt{2}$, sin. 5 , $\sqrt{7}$ arctan $\sqrt{7}$, etc. can be expressed to unlimited precision by simple programs which produce the terms on demand.
3) If we define a rational approximation to be "best" if it comes closer than any other rational with such a small denominator, then continued fractions give the complete set of best rational approximations to the value which they represent. That is, if you truncate a (regular) continued fraction at any point, then the resulting rational number is a best approximation. Furthermore, this remains true if the last term of this approximation is replaced by any smaller positive integer other than 1. All best approximations can be generated in this manner, in order of increasing denominators (or numerators). For example, the approximants to $\pi=37151292$... are:

3: $\quad 1 / 1,2 / 1,3 / 1$
page 38
7: $\quad(4 / 1), 7 / 2,10 / 3,13 / 4,16 / 5,19 / 6,22 / 7$
15: $\quad(25 / 8), 47 / 15,69 / 22,91 / 29,113 / 36, \ldots 311 / 99,333 / 106$
1: $\quad 355 / 113$

Note that they are all automatically in lowest terms. The size of a denominator is greater than the product of the terms involved and less than the product of the numbers l greater than the terms. The approximations are low if the number of terms is odd, high if it's even. (Note that if a lends a continued fraction, it should be added in to the previous term. Thus, to "round off" a continued fraction after a certain term, add in the next term iff it is ± 1. In the above, $4 / 1$ and $25 / 8$ correspond to termination with a 1 and are not "best"; $355 / 113$ is "best" because the corresponding term really should be l.) The error is smaller than l over the product of the denominator squared and the first neglected term, so that the total number of digits (numerator and denominator) is usually slightly smaller than with equally accurate decimal fractions. $355 / 113$ is good to 7.5 places instead of 5.5, due to the unusually large term (292) which follows.
4) Numerical comparison of continued fractions is slightly harder than in decimal, but much easier than with rationals -- just invert the decision as to which is larger whenever the first discrepant terms are even-numbered. Contrast this with the problem of comparing the rationals 113/36 and 355/113.
5) Regular continued fractions are in 1 to correspondence with the real numbers, unlike decimal (.5 = .49999...) or rationals ($2 / 3=6 / 9, \sqrt{6}=$?). Even infinity has a continued fraction, namely, the empty one! (Minus and plus infinity are the same in continued fraction notation.)
6) Each representation favors certain operations. Lecimal favors multiplication by powers of 10. Rationals favor reciprocation, as do continued fractions. To reciprocate a regular continued fraction, add (or if possible, delete) an initial 0 term. To negate, negate all the terms, optionally observing that $-a,-b,-c,-d \ldots=-a-1,1, b-1, c, d \ldots$...
7) The strongest argument for positional (e.g., decimal or floating) representation for non-integers is that arithmetic is easy. Rational number arithmetic often loses because numerators and denominators grow so large as to require icky multiprecision. Algorithms for arithmetic on continued fractions seem generally unknown. The next items describe how to arithmetically combine continued fractions to produce new ones, one term at a time.

Unfortunately, the effort required to perform these operations manually is several times that for decimal, but the rewards for machine implementation arc considerable (which can also be said of floating point). Specifically, these rewards will be seen to be: unlimited significance arithmetic without multiprecision multiplication or division, built in error analysis, immorally easy computation of algebraic functions, no unnecessary computations, no discarding of information (as with roundoffand truncation), reversibility of computations, and the terms of the answer start to come out right away and continue to do so until shut off.

ITEM 101B (Gosper):
Continued Fraction Arithmetic
Continued fractions let us perform numerical calculations a little at a time without ever introducing any error, such as roundoff or truncation. As if this weren't enough, the calculations provide automatic error analysis, and obviate most forms of successive approximation. This means we can start with an arithmetic expression like $\sqrt{3 / \pi^{2}}{ }^{2}+e /(t a n h ~ \sqrt{5}-\sin 69)$ and immediately begin to produce the value as a sequence of continued fraction terms (or even decimal digits, if we should be so reactionary), limited only by time and storage. If there are quantities in the expression which are known only approximately, the calculation can provide crror bounds on the answer as well as identify the quantity that limited the significance.

All this is possible because each operation (,$+ /,-, V^{-}$) in the arithmetic expression requests terms from the continued fractions of its operands only when necessary, and consequently produces terms of its own value as soon as possible. Numbers like π and e and functions like sin and tanh have continued fraction terms in simple sequences which can be produced by short programs. Imprecise quantities can also be programs which deliver terms until they run out of confidence, whereupon they initiate special action. By then, the last guaranteeable term of the overall expression will have already been produced.

We see then that no calculation is performed unnecessarily, so that, for example, a subexpression which happened to be multiplied by zero would never be evaluated. Also, an operation detecting a deficiency in two or more of its operands provides a natural mechanism for allocating multiprocessor resorces, should you have some.

Here are the algorithms for the elementary arithmetic operations on continued fractions.

Let x be a continued fraction $p_{0}+q_{0} /\left(p_{1}+q_{1} /\left(\ldots=p_{0}+q_{0} / x^{\prime}\right.\right.$ where x^{\prime} is again a continued fraction and the $p^{\prime} s$ and $q^{\prime} s$ are integers. We shall calla (p q) pair a "term" of the continued fraction for x. often, only the $p^{\prime} s$ are mentioned, in which case the $q^{\prime} s$ are implicitly all 1 , and x is called a "regular" continued fraction.

Instead of a list of $p^{\prime} s$ and $q^{\prime} s$, let x be a computer subroutine which produces its next p and q each time it is called. Thus on its first usage x will "output" $p a_{0} q_{0}$ and, in effect, change
itself into x^{\prime}. Similarly, let y be another procedurally represented continued fraction r + $/ y^{\prime}$. Our problem will be solved if we can write such subroutines for $z(x, y)=x+y, x-y$. $x y$, and x / y. When called upon to output a term of z, the subroutine might in turn call for (or "input") terms from and y until it is satisfied that the unread portions of x and y cannot affect the pending term of 2 . Then it would output this term and change itself into z^{\prime}, so that it could produce the next term next time. Unfortunately, when we try to do this, our expressions quickly complicate. Let us preempt this complication by computing instead the more general function

$$
z(x, y)=(a x y+b x+c y+d) /(e x y+f x+g y+h)
$$

(or (a b c d) /(efgh) for short) where a through hareinteger variables whose initial values we are free to choose. Various choices express

$$
\left.\begin{array}{rlrlllll}
\text { addition: } & & x+y & =\left(\begin{array}{lllll}
0 & 1 & 1 & 0
\end{array}\right) /\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right), \\
\text { subtraction: } & x-y & =\left(\begin{array}{ll}
0 & 1
\end{array}\right. & -1 & 0
\end{array}\right) /(0)
$$

As we shall see, the process of inputting terms of x and y and outputting terms of z will reduce to replacing the eight integers a through h with linear combinations of each other.

When z inputs a term of x, z becomes a new function of x^{\prime}. To see how this happens, substitute $p+q / x^{\prime}$ for every occurrence of x in the expression for $z(x, y)$, then multiply numerator and denominator through by x^{\prime} :

$$
z\left(x^{\prime}, y\right)=(p a+c p b+d q a q b) /(p c+g p f+h q e q f)
$$

If x was rational and has run out of terms,
it has in effect become infinite:

$$
z(\infty, y)=\left(\begin{array}{llll}
0 & 0 & a & b
\end{array}\right) /\left(\begin{array}{llll}
0 & 0 & e
\end{array}\right)
$$

If instead we input a term of y by substituting $r+s / y^{\prime}$ for every occurrence of y :

$$
z\left(x, y^{\prime}\right)=(r a+b \text { sa rc+d sc)/(re+f se rg+h sg). }
$$

If y runs out of terms:

$$
z(x, \infty)=\left(\begin{array}{llll}
0 & a & c
\end{array}\right) /\left(\begin{array}{llll}
0 & \text { e }
\end{array}\right)
$$

To output the term ($t u$), so that $z=t+u / z^{\prime}$ (i.e., $z^{\prime}=u /(z-t)$):

$$
z^{\prime}(x, y)=(u e \text { uf ug uh) } /(a-t e b-t f \text { c-tg d-th). }
$$

Thus this basic eight variable form is preserved by all three operations, which can be performed in any order since they represent independent substitutions.

For simplicity, let us assume that z will output in standard form, that is, every $u=1$ (regular) and every output term $t \geq 1$ except perhaps the first. This means that z^{\prime} will always exceed 1 and thus $0 \leq u / z^{\prime}<1$, so that the integer $t=z-u / z^{\prime}$ must $=[z]$, the greatest integer $\leq z$.

Since z generally varies with x and y, it should not output unless [2] is constant for the range of possible x and y. We can easily compute the range of z given the ranges of x and y if we represent each range by the endpoints of an interval (in either order), along with a bit indicating Inside or Outside. Thus if z is in standard form, we can say that z will always be (Inside l^{∞}) (or (Outside $-\infty$)) after the first term. If z were to always output its nearest integer instead of its greatest, then none of the terms after the first would be l, although they would probably vary in sign. In this case, z would be (Outside -2 2).

Now hold y fixed and examine the behavior of z with x. If x is (Inside $a b$) then z is (Inside $z(a) z(b))$ unless the denominator of z changes sign between a and b (i.e., z has its pole in this interval), whereupon z is (Outside $z(a) z(b))$. Symmetrically, when x is (Outside a b) then z is (Outside $z(a) z(b)$) unless the signs of the denominators of $z(a)$ and $z(b)$ differ, whereupon z is (Inside $z(a) z(b))$. This argument still holds with x and y interchanged.

Now suppose that with y fixed at one of its endpoints, x constrains z (Inside 1 2), and at $y^{\prime} s$ other extreme, $z(x)$ is (Outside 0 3). Suppose further that at the two extremes of x, $z(y)$ is (Inside 1) and (Outside 0 2). Then $z(x, y)$ is (Outside 0), the union of the four ranges. (Outside 0) is the widest, indicating that z will probably get more information from a term of y than a term of x. (Topology hackers should recognize this Inside-Outside nonsense as ordinary intervals in toroidal space. The clue is that both plus and minus infinity are denoted by the empty continued fraction.)

Due to the basically monotonic behavior of z, we can guarantee that the actual range of z will be the union of these four ranges, and that this range will be Inside or Outside some interval. If it is (Inside zl z2) and $[z l]=[z 2], z$ can output the term $t=[z 1]$. Otherwise, z must input a term from x or y, whichever was associated with the widest of the four ranges of z. (Outside narrowness) is wider than (Outside wideness) is wider than (Inside wideness) is wider than (Inside narrowness).

Evaluating z on these cndpoints may be facilitated by keping estimates for the integer variables in floating point.

Even if z doesn't produce a term, narrowing the range of possible z will still help in computing the range of a function of z, especially if 2 gets stuck trying to output the last term of a rational number resulting from irrational x and y. (There is no way to guarantee that x or y won't eventually deviate, whereupon z would egest a gigantic term.)
z can produce its value as decimal digits by multiplying by 10 instead of reciprocating, after outputting $t=[z]$:

$$
z^{\prime}(x, y)=(10(a-t e) 10(b-t f) 10(c-t g) 10(d-t h)) /(e f g h)
$$

Strange to say, it is not serious if z for some reason outputs the terms 751 when it should have produced 6 . As soon as permitted, it will simply recant with $0-1-5$ and continue with the correction-1 9. The sequence 7 5 1 1 $0-1-5-19$ is equivalent to 69 because $b 0 c$ is the same as $b+c$. In order to undo these computations, z violates the condition (Outside-1 1) when it is $0-1-5 \ldots$... This condition is obeyed by nearly all convergent continued fractions after their first term, and its violation will very probably cause further retractions among the functions dependent upon z.

This computation reversal trick is also handy for mechanizing and denoting imprecise quantities. Instead of $2.997930 \pm .000003$, we have 2148102 , meaning between 21481 and 21483 . Similarly, 1372601 replaces $137.0373 \pm .0006$.

Successive approximations methods benefit considerably from not requesting terms until needed. Consider Newton's method for algebraic roots. We expect successive approximations to have about twice as many correct terms each time. Since the production of these terms cannot be aided by reading incorrect terms, the additional correct terms must be produced before the bad ones of the previous approximation are used. But this means that there is no need to read in the bad ones at all. By feeding back the output terms in place of the approximation, we get the correct answer directly! (69\% of the credit for this goes to Schroeppel.)

The basic eight variable form exemplified above by $2(x, y)$ is not the only form preserved by continued fraction term transactions. We need only four variables and a single interval check to compute $z(x)=(a x+b) /(c x+d)$, the homographic function of one argument. On the other hand, $z(w, x, y)$ (linear in all three arguments) requires sixteen variables and a twelve way interval check. Each of these forms can be solved for x in terms of z etc. to get a function of the same form. This is not true of

$$
z(x)=\left(a x^{2}+b x+c\right) /\left(d x^{2}+e x+f\right),
$$

for example, even though this form is also preserved. This form is not guaranteed monotone, thus theoretically invalidating the interval check algorithm, but it hardly ever errs. Even if it did, it would quickly correct itself anyway. This form is not only more economical than $z(x, x)$, it is essential for the success of the Newton's method feedback trick, which must know when two variables are really the same one.

By choosing the eight coefficients a through h properly, it should be possible to rewrite arithmetic expressions as compositions of considerably fewer of these forms than one for each +, -, *, and /. The reader is invited to investigate the problem of trying to find minimal representations. Depending on the metric for minimality, the question can be complicated by allowing higher powers of x and y. If the highest powers of x, y, z, \ldots in an invariant form are i, j, k, \ldots, then the number of integer variables required for the coefficients (mostly because of all of the cross terms) is $2(i+1)(j+1)(k+1) \ldots$...

It is awkward in this system to evaluate transcendental functions of irrational arguments. The problem is that you may need any number of continued fraction (or series) terms which, instead of being numbers, are symbolic functions of x, some infinite continued fraction. My suggestion is to represent each symbolic term of the function by a subroutine which is a function of x and the next term, with this next term really a dummy until actually called upon for output, whereupon it replaces itself with a full fledged term subroutine which in turn refers to x and a new dummy.

Sad to say, the integer variables in these algorithms do not usually shrink on outputs as much as they grow on inputs. Fortunately, the operations for input and output only require (besides addition) multiplication by terms which are almost invariably small. (I have not seen a term exceed 20776 except in specially constructed numbers.) It is fairly safe, then, to declare any function which has gotten (Outside - $2^{35} 2^{35}$) to be infinite, thus terminating its continued fraction. Better still, note that the term 20776 is equivalent to the terms 20000070007006 , i.e., a very large term can be transmitted piecewise. Although this is just thinly disguised multiprecision multiplication, that first piece of the term will probably satisfy its recipient for quite some time.

In some special cases, the integer variables will become periodic rather than large, especially when all but one of the arguments to a function have terminated. Then, we have the form $z(x)=(a x+b) /(c x+d)$, known as a homographic function. If ad-bc is ± 1, then a, b, c, d will eventually become $1,0,0,1$, whereupon z will output the terms of x unmodified. Periodicity will also occur when x is a llurwitz number, i.e., when the terms of x are the values of one or more polynomials evaluated on consecutive integers and then interleaved. Coth $1 / 69, \sqrt{105}$, and e are llurwitz numbers whose polynomials are linear or constant. Hurwitzness is preserved by homographic functions. If one can show that π is not a llurwitz number, one confirms the long standing conjectures that $e * \pi, e+\pi, e / \pi$, etc. are all irrational.

If z, x, and y are all regular, then it generally won't be possible to reduce z by finding a GCD of a through h which is >1. However, it has been determined empirically that much reduction is often possible in other cases. This reduction is almost always by a divisor of an input or output term numerator (or 10 if output is decimal digits) and can be facilitated by keeping cetain of the integer variables around modulo these quantities.

ITEM 101C (Gosper):
Problem: Given an interval, find in it the rational number with smallest numerator and denominator. Solution: Express the endpoints as continued fractions. Find the first term where they differ and add 1 to the lesser term, unless it's last. Discard the terms to the right. What's left is the continued fraction for the "smallest" rational in the interval. (If one fraction terminates but matches the other as far as it goes, append an infinity and proceed as above.)

GROUP THEORY

ITEM 102 (Schroeppel):
As opposed to the usual formulation of a group, where you are given
1 there exists an I such that $A * I=I * A=A$, and 2 for all A, B and $C,(A * B) * C=A *(B * C)$, and 3 for each A there exists an \bar{A} such that
$A * \mathbb{A}=\mathbb{A} * A=I$, and
4 sometimes you are given that I and \bar{A} are unique. If instead you are given $A * I=A$ and $A * \bar{A}=I$, then the above rules can be derived. But if you are given A * $I=A$ and $\bar{A} * A=I$, then something very much like a group, but not necessarily a group, results. For example, every element is duplicated.

ITEM 103 (Gosper):
The Hamiltonian paths through the N ! permutations of N objects using only SWAP (swap any specific pair) and ROTATE (l position) are as follows:
N PATHS + DISTINCT REVERSES
$22+0$, namely: S, R
$3 \quad 2$ + 1, namely: SRRSR, RRSRR
4 3 + 3, namely:
SRR RSR SRR RSR RRS RSR RSR RR
RSR SRR RSR RRS RSR RRS RSR RR
SRR RSR RRS RRS RSR RRS RRR SR
PROBLEM: A questionable program said there are none for $N=5$; is this so?

ITEM 104 (Schroeppel):
Any permutation on 72 bits can be coded with a routine containing only the PDP-6/10 instructions "ROT" and "ROTC".

SET THEORY

ITEM 105 (Komolgoroff, maybe?):
Given a set of real numbers, how many sets can you get using only closure and complement? Answer: 14.

QUATERNIONS

ITEM 107 (Salamin):
A quaternion is a 4-tuple which can be regarded as a scalar plus a vector. Quaternions add linearly and multiply (non-commutatively) by
$(S 1+V 1)(S 2+V 2)=S 1 S 2-V 1 . V 2+S 1 V 2+V 1 S 2+V 1 \times V 2$ where
$S=s c a l a r$ part, $V=v e c t o r$ part, $\quad=d o t$ product, $x=c r o s s$ product. If $Q=S+V=(Q 0, Q 1, Q 2, Q 3)$, then $S=Q 0, V=(Q 1, Q 2, Q 3)$. Define conjugation by $(S+V)^{*}=S-V$. The (absolute value) ${ }^{2}$ of a quaternion is $Q 0^{2}+Q 1^{2}+Q 2^{2}+Q 3^{2}=Q Q^{*}=Q^{*} Q$.

The non-zero quaternions form a group under multiplication with $(1,0,0,0)=1$ as identity and $1 / Q=Q^{*} /\left(Q^{*} Q\right)$. The unit quaternions, which lie on a 3-sphere embedded in 4-space, form a subgroup. The mapping $F(Q)=P Q(P$ a unit quaternion) is a rigid rotation in 4-space. This can be verified by expressing $P Q$ as a 4×4 matrix times the $4-v e c t o r ~ Q$, and then noting that the matrix is orthogonal. $F(Q)$ restricted to the unit quaternions is a rigid rotation of the 3 -sphere, and because this mapping is a group translation, it has no fixed point.

We can define a dot product of quaternions as the dot product of 4-vectors. Then $Q 1 . Q 2=0$ iff $Q 1$ is perpendicular to Q2. Let N be a unit vector. To each unit quaternion $Q=S+V$, attach the quaternion $N Q=-N . V+N S+N \times V$. Then it is seen that ($N Q$). ($N Q$) $=N . N=1$ and ($N Q$) $Q=0$. Geometrically this means that $N Q$ is a continuous unit 4-vector field tangent to the 3-sphere. No such tangent vector field exists for the ordinary 2-sphere. Clearly the l-sphere has such a vector field. PROBLEM: For which N-spheres does a continuous unit tangent vector field exist?

Let W be a vector (quaternion with zero scalar part) and $Q=S+V$. Then $Q W Q^{*}=\left(S^{2}+V . V\right) W+2 S V \times W+2 V(V, W)$. Let N be a unit vector and Q the unit quaternion $Q= \pm(\cos (\theta / 2)+N \sin (\theta / 2))$. Then
Q W Q* $=(\cos \theta) W+(\sin \theta)(N \times W)+(1-\cos \theta) N(N . W)$, which is W rotated thru angle θ about N. If Q thus induces rotation R, then Q1 Q2 induces rotation R1 R2. So the projective 3-sphere ($+Q$ and $-Q$ identified) is isomorphic to the rotation group (3×3 orthogonal matrices). Projectiveness is unavoidable since a 2π rotation about any axis changes $Q=1$ continuously into $Q=-1$.

Let U be a neighborhood of the identity in the rotation group (ordinary 3 dimensional rotations) and Ul the corresponding set of unit quaternions in the neighborhood of l. If a rotation
 Ul into Ul'. But quaternion multiplication is a rigid rotation of the 3 -sphere, so Ul and Ul' have equal volume. This shows that in the quaternion representation of the rotation group, the llaar measure is the Lebesgue measure on the $3-s p h e r e$.

Every rotation is a rotation by some angle θ about some axis. If rotations are chosen "uniformly", what is the probability distribution of θ ? By the above, we choose points uniformly on the 3 -sphere (or hemisphere since it is really projective). Going into polar coordinates, one finds $\mathrm{P}(\theta)=(2 / \pi)(\sin \theta / 2)^{2}, 0<\theta<\pi$.
In particular, the expected value of θ is $\pi / 2+2 / \pi$.
Quaternions form a convenient 4-parameter representation of rotations, since composition of rotations is done by quaternion multiplication. In contrast, 3-parameter representations like Euler angles or (roll, pitch, yaw) require trigonometry for composition, and orthogonal matrices are 9-parameter. In space guidance systems under development at D-lab, the attitude of the spacecraft is stored in the guidance computer as a quaternion.

POLYOMINOS, ETC.

ITEM 108:
See the PROPOSED COMPUTER PROGRAMS section for counts of polyominos of orders <19.

ITEM 109 (Schroeppe1):
Tessellating the plane with polyominos:
Through all hexominos, the plane can be tessellated with each piece (without even flipping any over). All but the four heptominos below can tessellate the plane, again without being fiipped over. Thus, flipping does not buy you anything through order 7. (There are 108 heptominos).

H $\quad 11 \quad 11 H H \quad H \quad H$
HHHHH H II IHHHH HHHH

HH	H	H
	H	H

ITEM 110 (Schroeppe1):
PROBLEM: What rectangles are coverable by various polyominos? For example,
$X X \quad$ can cover rectangles which are $3 N \times M$, $X \quad$ except if $N=1$, then M must be even.

YYYY can be shown by coloring to cover only rectangles having at least one side divisible by four.

ITEM 111 (Schroeppel):
PROBLEM: Find a necessary and sufficient condition for an arbitrary shape in the plane to be domino coverable.

ITEM 112 (Beeler):
"I amonds" are made of equilateral triangles, like diamonds. " (Poly-) ominos" are made of squares, like dominos.
"Hexafrobs" are made of hexagons.
"Soma-like" pieces are made of cubes.
See also "Polyiamonds," Math. Games, Sci. Am., December 1964. Left and right 3-dimensional forms are counted as distinct. ORDER IAMONDS OMINOS HEXA'S SOMA-LIKE

1	1
2	1
3	1
4	3
5	4
6	12
7	24
8	66
9	160
10	448

Polyominos of order 1, 2 and 3 cannot form a rectangle. Orders 4 and 6 can be shown to form no rectangles by a checkerboard coloring. Order 5 has several boards and its solutions are documented (Communications of the ACM, October 1965): BOARD DISTINCT SOLUTIONS
$3 \times 20 \quad 2$
4×15368
5×121010
6×102339 (verified)
two $5 \times 6-2$
8×8 with 2×2 hole in center -- 65
CONJECTURE (Schroeppel): If the ominos of a given order form rectangles of different shapes, the rectangle which is more nearly square will have more solutions.
Order-4 hexafrob boards and solution counts:
side 7 triangle -- no solutions
parallelogram, base 7, side 4 -- 9 distinct solutions
e.g., A A A A B C C

DEBBCFC
DEEBFGG
D D E F F G G
Order-6 iamond boards and solution counts (see illustration): side 9 triangle with inverted side 3 triangle
in center removed -- no solutions
trapezoid, side 6, bases 3 and $3+6$-- no solutions
two triangles of side 6 -- no solutions
trapezoid, side 4, bases 7 and $7+4$
-- 76 distinct solutions
parallelogram, base 6, side 6 -- 156 distinct solutions parallelogram, base 4, side 9-- 37 distinct solutions parallelogram, base 3 , side 12 -- no solutions triangle of side 9 with triangles of side 1,2 and 2 removed from its corners (a commercial puzzle) -- 5885 distinct solutions
With Soma-like pieces, orders 1,2 and 3 do not have interesting boxes. Order 4 has 1390 distinct solutions for a $2 \times 4 \times 4$ box. 1124 of these have the four-in-a-row on an edge; the remaining 266 have that piece internal. 320 solutions are due to variations of ten distinct solutions decomposable into two $2 \times 2 \times 4$ boxes. A Soma-like $2 \times 4 \times 4$ solution:

AAAA BBHH
BCCC BHHC
DDDE FGGE
FDGE FFGE
The commercial Soma has 240 distinct solutions; the booklet which comes with it says this was found years ago on a 7094. Verified by both Beeler and Clements.

Figure 5. Some hexiamond solutions.

ITEM 113:
Although not new (cf Coxeter, Introduction to Geometry, lst ed. p393), the following coloring number (chromatic number) may be useful to have around:

$$
N=[[(7+\sqrt{48 \|+I}) / 2]]
$$

where N is the number of colors required to color any map on an object which has H holes (note: proof not valid for $H=0$).
For example:
A donut (holes $=1$) requires 7 colors to color maps on it.
A 17-hole frob requires 17 colors.
An 18-hole frob requires 18 colors.
ITEM 114 (Schroeppel):
A most regular 7 -coloring of the torus can be made by tiling the plane with the following repeating pattern of hexagons of 7 colors:

ITEM 115 (Gosper):
A spacefilling curve is a continuous map $T \rightarrow X(T), Y(T)$, usually from the unit interval onto the unit square, often presented as the limit of a sequence of curves made by iteratively quadrisecting the unit square. Each member of the sequence is then 4 copies of its predecessor, connected in the shape of an inverted V, with the first member being a V which connects 0,0 to 1,0 . The limiting map, $X(T)$ and $Y(T)$, can be computed instead by a simple, finitestate machine having 4 inputs (digits of T base 4), 4 outputs (one bit of X and one bit of Y), and 4 states (2 bits) of memory (the number modulo 2 of O's and 3's seen in T).

Let T, X, and Y be written in binary as:

ALGORITHM S:

GO S 1

0 L		NEW						
c	C	A	B	X	Y	C	C	
0	1	I	I	I	I	0	1	
0	0	0	0	0	0	1	0	
0	0	0	1	0	1	0	0	
0	0	1	0	1	1	0	0	
0	0	1	1	1	0	0	1	
0	1	0	0	1	1	1	1	
0	1	0	1	0	1	0	1	This is the complete
0	1	1	0	0	0	0	1	state transition table.
0	1	1	1	1	0	0	0	
1	0	0	0	0	0	0	0	
1	0	0	1	1	0	1	0	
1	0	1	0	1	1	1	0	
1	0	1	1	0	1	1	1	
1	1	0	0	1	1	0	1	
1	1	0	1	1	0	1	1	
1	1	1	0	0	0	1	1	
1	1	1	1	0	1	1	0	

To carry out either the forward or reverse map, label a set of columns as in the table above. Fill in whichever you know of $A B$ or XY, with consecutive rows corresponding to consecutive I's. Put 00 in the top position of the OLD CC column. Exactly one row of the above table will match the row you have written so far. Fill in the rest of the row. Copy the NEW CC entry to the OLD CC column in the next row. Again, only one row of the state table will match, and so forth. For example, the map $5 / 6 \rightarrow(1 / 2,1 / 2)($ really .11010101... $\rightarrow(.1000 \ldots . .0111 \ldots)):$

0	0	1	1	1	0	0	1
0	1	0	1	0	1	0	1
0	1	0	1	0	1	0	1
0	1	0	1	0	1	0	1
\cdot	\cdot	.		\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	$5 / 6$	$1 / 2$	$1 / 2$			

We note that since this is a one-to-one map on bit strings, it is not a one-to-one map on real numbers. For instance, there are 2 ways to write $1 / 2, .1000 \ldots$ and . $0111 \ldots$ and thus 4 ways to write ($1 / 2,1 / 2$), giving 3 distinct inverses, $1 / 6,1 / 2$, and $5 / 6$. Since the algorithm is finite state, X and Y are rational iff T is, e.g., $898 / 4369 \rightarrow(1 / 5,1 / 3)$. The parity number, (see SERIES section) and l-(parity number) are the only reals satisfying $X(T)=T, Y(T)=1$. This is related to the fact that they have no $0^{\prime} s$ and $3^{\prime \prime}$ s base 4 , and along with $0,1 / 2$, and $1=.111 \ldots$ are the only numbers preserved by the deletion of their even numbered bit positions.

ITEM 116 (Schroeppel \& Gosper):
$\sum_{N=0}^{\infty} \frac{N!N!}{(2 N)!}=\frac{4}{3}+\frac{2 \pi}{9 \sqrt{3}}$. PROBLEM: Evaluate in closed form
$\sum_{N=0}^{\infty} \frac{N!N I N!}{(3 N)!}$, which $=\int_{0}^{1}(P+Q \arccos (R)) d T$, where
$P=\frac{2\left(8+7 T^{2}-7 T^{3}\right)}{\left(4 T^{2}+T^{3}\right)^{2}}$
and

and
$R=1-\frac{T^{2}-T^{3}}{2}$.
ITEM 117 (llenry Cohen):
$y=-\ln x+x-\frac{x^{2}}{2 * 2!}+\frac{x^{3}}{3 * 3!}-\frac{x^{4}}{4 * 4!} \ldots+$ ERROR
Where $E R R O R$ is of the order of $\left(e^{-X}\right) / X$.
ITEM 118 (Schroeppel): -Y
Differentiate $Y e=X$ to get $Y+Y^{\prime \prime} Y^{\prime}-X Y^{\prime}=0 . \quad$ Substitute for Y a power series in X with coefficients to be determined.
One observes the curious identity:
$N \quad \mathrm{~J}-1 \quad \mathrm{~N}-\mathrm{J} N$
\sum (BINOMIAL N J)J $\quad(N-J) \quad=N \quad\left(0^{0}=1\right)$
$\mathrm{J}=1 \quad \mathrm{~N}-1 \mathrm{~N}$
and thus $Y(X)=\sum N \quad X / N!$

$$
N=1
$$

ITEM 119 (Schroeppel):

ITEM 120 (Euler):
The series accelerating transformation
(Abramowitz \& Stegun, sec. 3.6.27)
K K K+1

$K \quad K \quad K-M$
(where (\triangle AO) $=\Sigma(-) \quad(B I N O M I A L K M) A M=K t h$
$\mathrm{M}=0$
forward difference on $A O$) when applied to
$\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\ldots \operatorname{gives} \frac{\pi}{4}=\sum \frac{2^{N-1} N!^{2}}{(2 N+1)!}$:
Applied to the formula for γ in Amer. Math. Monthly
$T[\log 2 T]$
(vol. 76, \#3, Mar69 p273) $=\Sigma(-)$
([] mean integer part of) we get
T
$\sum_{K=1}^{\infty} 2^{-(K+1)} \sum_{J=0}^{K-1} 1 /\left(\right.$ BINOMIAL $\left.2^{I}+J J\right)$
(Gosper) which converges fast enough for a few hundred digits. The array of reciprocals of the terms follows, with powers of 2 factored out to the left from all members of each row.
41
8
$16 \quad 1 \quad 5 \quad 6$
$32 \quad 1 \quad 9 \quad 15 \quad 10$
$\begin{array}{llllll}64 & 1 & 17 & 45 & 35 & 15\end{array}$
$128 \quad 1 \quad 33153165 \quad 70 \quad 21$
$\begin{array}{lllllll}256 & 1 & 65 & 561 & 969 & 495 & 126\end{array} 28$
The next to left diagonal is 2^{N+1}; the perpendicular one 3 rd from the right is $1, * 9 / 1=9, * 10 / 2=45, * 11 / 3=165, * 12 / 4=495$.

ITEM 121 (Gosper):
Consider the triangular array:
1
11
141

This bears an interesting relationship to Pascal's triangle. The 302 in the 4 th southeast diagonal and the 3 rd southwest one $=4 * 26+3 * 66$. Note that rows then sum to factorials rather than powers of 2. If the nth row of the triangle is dotted with any n consecutive elements of (cither) $n+1 s t$ diagonal of pascal's triangle, we get the nth Bernoulli polynomial: for $n=5$, $1(6, i)+26(6, i+1)+66(6, i+2)+26(6, i+3)+1(6, i+4)=$ sum of 5 th powers of 1 thru $i+5$, where $(j, i)=$ BINOMIAL ($j+i \quad j)$.

ITEM 122 (Schroeppel, Gosper):

$$
\text { The "parity number" }=-\frac{1}{2} \sum_{N=0}^{\infty}(\text { parity of } N) * 2^{-N}
$$

where the parity of N is the sum of the bits of N mod 2 . The parity number's value is . $4124540336401075977 \ldots$ or, for hexadecimal freaks, . $6996966996696996 \ldots$. It can be written (base 2) in stages by taking the previous stage, complementing, and appending to the previous stage:
. 0 .01
.0110
.01101001
.0110100110010110
$.01101001100101101001 \ldots$ radix 2
i.e., \quad stage $0=0 \quad$ stage $N+\left(1-2^{\left.-2^{N}-\operatorname{stage} N\right) / 2^{-2} .}\right.$

If \quad NUM $0=0$, DEN $0=2$ $N \cup M N+1=((N U M N)+1) *((\operatorname{DEN} N)-1)$ $\mathrm{N}+1$

DEN $N+1=(\operatorname{DEN} N)=2$
then $\frac{\text { NUM } i+1}{\text { DEN } N+1}=$ stage $N+1=\left(\right.$ stage $\left.N+2^{-2^{N}}\right) *\left(1-2^{-2^{N}}\right)$.
Or, faster, by substituting in the string at any stage:
the string itself for zeros, and
the complement of the string for ones.
It is claimed (perhaps proven by Thue?)
that the parity number is transcendental.

$\begin{array}{lllllllllllllllllllllllllllllllll}5 & 44 & 1 & 4 & 1 & 2 & 4 & 1 & 1 & 1 & 5 & 14 & 1 & 50 & 1 & 5 & 5 & 1 & 1 & 1 & 4 & 2 & 1 & 4 & 1 & 4 & 3 & 1 & 4 & 1 & 2 & 1\end{array}$

 to continue with sporadic large terms in suspicious patterns. A non-regular fraction is
$1 /(3-1 /(2-1 /(4-3 /(16-15 /(256-255 /(65536-65535)$
22
(...2-(2-1)/(...

This fraction converges much more rapidly than the regular one, I+NUM N
its N th approximant being $\overline{1+D E N N}$, which is, in fact, an approximant of the regular fraction, roughly the 2 th.

$$
\text { In addition, } 4^{*}(\text { parity number }) ~=~\left(\frac{3}{2}-\frac{15}{4} * \frac{255}{16} * \frac{65535}{256} * \ldots\right.
$$

This gives still another non-regular fraction per the product conversion item in the CONTINUED FRACTION section.

For another property of the parity number, see the spacefilling curve item in the TOPOLOGY section.

ITEM 123 (Schroeppel, Gosper, Salamin):
Consider the image of the circle $|z|=1$ under the function n
2
$f(z)=\Sigma Z^{2}$. This is physically analogous to a series of n^{n}
clock hands placed end to end. The first hand rotates around the center (0,0) at some rate. The next hand is half as long and rotates around the end of the first hand at twice this rate. The third hand rotates around the end of the second at four times this rate; etc. It would seem that the end of the "last" hand (really there are infinitely many) would sweep through space very fast, tracing out an (infinitely) long curve in the time the first hand rotates once. The hands shrink, however, because of
n
the 2 in the denominator. Thus it is unclear whether the speed of the "last" hand is really infinite; or, whether the curve's arc length is really infinite.
n!
Also, it is a visually interesting curve, as are $f(2)=\Sigma \frac{2}{n!}$, and $f(z)=\sum \frac{z}{\text { FIB(} n)}$. Gosper has programmed the one mentioned first, which makes an intriguing display pattern. See following illustrations. If you write a program to display this, be sure to allow easy changing of:
(1) z and \bar{z} on alternate terms (alternate hands rotate in opposite directions),
(2) negation of alternate terms (alternate hands initially point in opposite directions), and
(3) how many terms are used in the computation,
since these cause fascinating variations in the resulting curve.

Figure $6(a)$. Image of circles $|2|=1 / 2,3 / 4,7 / 8$, 1 under the function $f(2)=\Sigma \frac{z^{n}}{n!}$.

Figure $6(b)$. Image of circles $|z|=1 / 8,2 / 8, \ldots, 8 / 8$ under the function $f(z)=\sum_{2^{2}}^{n}$. Both plots by Salami on the RLE PDP-1.

ITEM 124 (Schroeppel):
page 60
Consider

$$
\frac{1}{N^{2}}=\sum\left[\frac{1}{N-1 / 2}-\frac{1}{N+1 / 2}\right]+\sum\left[\frac{1}{N^{2}}-\frac{1}{N^{2}-1 / 4}\right]=2-\Sigma \frac{1}{\left(4 N^{2}-1\right)^{*} N^{2}}
$$

Take the last sum and re-apply this transformation.
This may be a winner for computing the original sum. For example, the next iteration gives

$$
\begin{aligned}
& \frac{31}{18}-\sum \frac{9}{N^{2}\left(4 N^{2}-1\right)\left(25 N^{4}+5 N^{2}+9\right)} \\
& \text { where the denominator also }= \\
& N^{2}(2 N+1)(2 N-1)\left(5 N^{2}+5 N+3\right)\left(5 N^{2}-5 N+3\right)
\end{aligned}
$$

ITEM 125 (Polya):
CONJECTURE: If a function has a power series with integer coefficients and radius of convergence l, then either the function is rational or the unit circle is a natural boundary. Reference: Polya, Mathematics and Plausible Reasoning, volume 2, page 46.

FLOWS AND ITERATED FUNCTIONS

ITEM 126 (Schroeppel):
An analytic flow for Newton's method square root: $x^{2}+K$
Define $F(X)$ by ; then

which $=\sqrt{K}(\operatorname{coth} 2(\operatorname{arccoth} X / \sqrt{K}))$
ITEM 127 (Schroeppel):
P and Q are polynomials in X; when does $P(Q(X))=Q(P(X))$?
(That is, P composed with $Q=Q$ composed with P.
Known solutions are:
1 Various linear things.
2 X to different powers, sometimes multiplied by roots of 1.
$3 P$ and Q are each another polynomial R composed
with itself different numbers of times.
4 Solutions arising out of the flow of $X^{2}-2$, as follows:
suppose $X=Y+1 / Y$
then Y + Y can be written as a polynomial in X for example, $P=$ the expression for squares $=x^{2}-2(N=2)$ and $Q=$ the expression for cubes $=X^{3}-3 X(N=3)$
5 Replace X by $Y-A$, then add A to the original constants in both P and Q. For example, $P=X^{2}$ and $Q=X^{3}$, then $P=1+(Y-1)^{2}=Y^{2}-2 Y+2$ and $Q=1+(Y-1)^{3}$. then $P(Q)=1+(Y-1)^{6}=Q(P)$. Similarly, replacing X with $A Y+B$ works.
6 There are no more through degrees 3 and 4 (checked with Mathlab); but are there any more at all?

Figure 7. ITEM 128 (Schroeppel):
A map of the process $n \rightarrow$ binary string \rightarrow interpret as radix -2 , iterated. To convert a number to base -2: $(\mathrm{n}+\ldots \mathrm{D} 01010)$ XOR (...101010) (reversible).

ITEM 129 (Schroeppel):
PROBLEM: Given $F(X)$ as a power series in X
with constant term $=0$, write the flow power series.
FLOW sub ZERO $=X$
FLOW sub ONE $=F(X)$
FLOW sub TWO $=F(F(X))$
ctc.
NOTE (Gosper): If we remove the restriction that fas a power series, the functions that satisfy an equation of the form $F(F(X))=s i n X$ can be put into one-to-one correspondence with the set of all functions.

ITEM 130 (Salamin): P
$N \quad N$

P

If $F(X)=X$, the $P-t h$ flow is X, which has a branch point if N is non-integer. Under the hypotheses of the previous problem, it is possible to find the power series coefficients for p rational, but there is no guarantee the series will converge. PROBLEM: Is the flow interpolation unique? If it is not, what extra conditions are necessary to make it unique for natural i
cases like X ?

ITEM 131 (Schroeppel):
laking any two numbers A and B, finding their arithmetic mean and their geometric mean, and using these means as a new A and B, this process, when repeated, will approach a limit which can be expressed in terms of elliptic integrals. (See PI section.)

ITEM 132 (Gosper): LOOP DETECTOR
page 64
If a function F maps a finite set into itsclf, then its flow must always be cyclic. If F is one step, of a pseudorandom number generator, or the CDR operation on a self referent list, or any function where it is easy to supply former values as arguments. then there arceasy ways to detect looping of the flow (Knuth, The Art of Computer Programming, volume 2, Seminumerical Algorithms, sec. 3.1, prob. 7, page 7). If, however, the process of iterated application of the function is inexorable, (i.c., there is no casy way to switch arguments to the function), then the following algorithm will detect repctition before the third occurrence of any value.

Set aside a table $\mathrm{TAB}(J), 0 \leq J \leq 10 \mathrm{~g} 2$ (largest possible period). Let $C=$ the number of times F has been applied, initially 0 . Compare each new value of for equality with those table entries which contain old values of F. These will be the first entries, where S is the number of times C can be right shifted beforc becoming 0. No match means forn't been looping very long, so increment C and store this latest value of F into TAB(J), where J is the number of trailing zero bits in the binary of C. (The first. 16 values of J are: $0,1,0,2,0,1,0,3,0$, $1,0,2,0,1,0,4, \ldots$ Eric Jensen calls this the RULER function.) A match with entry E means the loop length is l more $E+1$
than the low $E+2$ bits of $C-2$.
ITEM 133 (Schroeppel, Gosper, IIenneman \& Banks) (from Dana Scott?): The " $3 N+1$ problem" is iteratively replacing N by $N / 2$ if N is even or by $3 N+1$ if N is odd. Known loops for N to fall into are:
1 the zero loop, $0 \rightarrow 0$
2 a positive loop, $4 \rightarrow 2 \rightarrow 1 \rightarrow 4$
3 three negative loops
(cquivalent to the $3 N-1$ problem with positive N) $-2 \rightarrow-1 \rightarrow-2$ $-5 \rightarrow-7 \rightarrow-10 \rightarrow-5$ $-17 \rightarrow-25 \rightarrow-37 \rightarrow-55 \rightarrow-82 \rightarrow-41 \rightarrow$
 Are there any other loops? Does N ever diverge to infinity?

ITEM 134 (Schroeppel, Gosper):
Let N be iteratively replaced by (FLATSIZE (LONGHAND N)),
the number of letters in N written longhand
(c.g., $69 \rightarrow$ SIXTY NINE $\rightarrow 9$ (10 counting blanks)).

The process invariably loops at $4=F O U R$.

ITEM 135 (Gosper):
page 65
The "C" Curve
A brilliant archeologist is photographing a strange drawing on the wall of a cave. He holds the camera upright for some shots, moves it, and turns it 90 degrees for the rest. When he sees his prints he is amazed to find one of them apparently taken with the camera turned 45 degrees. After a moment's reflection, he correctly concludes that it is merely a double exposure. What was the drawing?

Answer: It is a cousin to both the dragon and snowflake curves (and arose as a bug in a spacefilling curve). It can be constructed as follows. Start with a line segment. Replace it with the two legs of the isosceles right triangle of which it is hypotenuse. Repeat this for the two new segments, always bulging outward in the same direction. We now have four segments forming half a square, with the middle two segments collinear. Replacing these four segments with eight and then sixteen, we find the middle two segments superimposed. As the process continues, the curve crosses itself more and more often, eventually taking on the shape of a wildy curly letter C which forms the envelope of a myriad of epicyclic octagons.

A faster way to approach the same limiting curve is to substitute n 2
the curve itself for each of its 2 segments, starting with a 90 degree "<".

Yet another way to construct it is to iteratively connect opposite ends of two copies at a 90 degree angle. (The archeologist did this with his double exposure.) If we reduce the scale by $\sqrt{2}$ each time, the distance between the endpoints stays the same. If the initial line segment is red and there is some other blue shape elsewhere in the picture, the iteration will simultaneously proliferate and shrink the blue shapes, until they are all piled up along the red "C". Thus, no matter what you start with, you eventually get something that looks like the "C" curve.

There are other pictures besides the C curve which are preserved by this process, but they are of infinite size. You can get them by starting with anything and running the iteration backwards as well as forwards, superimposing all the results. A backward step consists of rotating the two copies in directions opposite those in the forward step and stretching by $\sqrt{2}$ instead of shrinking. David Silver has sketched an arrangement of mirrors which might do this to a real scene.

Figure 8. Two orders of the "C" curve.

ITEM 136: GAUSSIAN INTEGERS (For use by next item.) Reference: Hardy and Wright, Theory of Numbers. The Gaussian integers are $x+i y$ where x and y are integers. Unique factorization holds, except for powers of i, and the Gaussian primes are (1) $a+b i$ if $a^{2}+b^{2}$ is prime and (2) integer primes that $=3$ mod 4. If $N(x+i y)=x^{2}+y^{2}$, then $N(u v)=N(u) N(v)$. If p is prime and not= 3 mod 4 , then $p=a^{2}+b^{2}$ has exactly one solution. If $n=3$ mod 4 , then $n=a^{2}+b^{2}$ has no solution. To factor $x+i y$ into Gaussian primes, first factor $N(x+i y)$.
(A) If 2 divides $N(x+i y)$, then $1+i$ and $1-i$ divide $x+i y$. Either factor may be used since $i(i-1)=i+1$.
(B) If $p=3$ mod 4 divides $N(x+i y)$, then p divides $x+i y$.
(C) If $p=1 \bmod 4$ divides $N(x+i y)$ and $p=a^{2}+b^{2}$. then $a+i b$ or $b+i a=i(a-i b)$ divides $x+i y$. If both do, then p divides $x+i y$.

ITEM 137 (Salamin): GENERATION OF ARCTANGENT FORMULAS FOR π nl atan $(y 1 / x 1)+n 2$ atan $(y 2 / x 2)+\ldots$ $=n 1 \arg (x 1+i y 1)+n 2 \arg (x 2+i y 2)+\ldots$ If each $x+i y$ is factored and the n's chosen so all prime factors except $1+i$ cancel out, the right hand side is a multiple K of $\pi / 4$. Some care is needed because of the multiple valuedness of arg. Then, if $K=0$, we get an arctangent identity, otherwise we get a π formula. In the special case of atan(l/x), factorization of $x+i$ is needed. Then case (B) above can't occur, and in case (C), $a+i b$ and $a-i b$ can't both divide $x+i$. Example:

$$
\begin{aligned}
8^{2}+1 & =13 \times 5 \\
18^{2}+1 & =13 \times 5^{2} \\
57^{2}+1 & =13 \times 5^{3} \times 2
\end{aligned}
$$

From this we get the factorization

$$
8+i=(3+2 i)(2-i)
$$

$$
18+i=(3-2 i)(2-i)^{2} i
$$

$$
57+i=(3-2 i)(2+i)^{3}(1-i)
$$

Since we only care about the phase, multiplication by a positive real number may be ignored below.

$$
\begin{aligned}
& (8+i)^{a}(18+i)^{b}(57+i)^{c}= \\
& (3+2 i)^{a-b-c}(2+i)^{-a-2 b+3 c}(1-i)^{c} i^{b}
\end{aligned}
$$

We require $a-b-c=0$ and $-a-2 b+3 c=0$, which has the minimal non-trivial solution $a=5, b=2, c=3$. Then we have
$(8+i)^{5}(18+i)^{2}(57+i)^{3}=(1-i)^{3} i^{2}$
Taking the phase of both sides, we get
$5 \operatorname{atan}(1 / 8)+2 \operatorname{atan}(1 / 18)+3 \operatorname{atan}(1 / 57)=\pi / 4$.
π formulas:
page 68

```
\pi/4=atan(1/2)+atan(1/3)
    \pi/4=2atan(1/3)+atan(1/7)
    \pi/4=4 atan(1/5) - atan(1/239)
    \pi/4=2 atan(1/4) + atan(1/7) + 2 atan(1/13)
    \pi/4=3 atan(1/4)+\operatorname{atan}(1/13)-\operatorname{atan}(1/38)
    \pi/4=4 atan(1/5)-atan(1/70) + atan(1/99)
    \pi/4=5 atan(1/8)+2 atan(1/18) + 3 atan(1/57)
    \pi/2=7 atan(1/4)-5atan(1/32)+3 atan(1/132)-4 atan(1/378)
```

This last angle has been measured against the International Standard Platinum-Iridium Right Angle and certified adequate for any purpose of the U. S. Government, when used in conjunction with a conscientiously applied program of oral hygiene and regular professional care.

$$
\begin{aligned}
& \pi / 4=7 \operatorname{atan}(1 / 9)+\operatorname{atan}(1 / 32)-2 \operatorname{atan}(1 / 132)-2 \operatorname{atan}(1 / 378) \\
& \pi / 4=7 \operatorname{atan}(1 / 13)+8 \operatorname{atan}(1 / 32)-2 \operatorname{atan}(1 / 132)+5 \operatorname{atan}(1 / 378)
\end{aligned}
$$

There are many easily found arctangent identities. Some are:
$\operatorname{atan}(1 / 31)=\operatorname{atan}(1 / 57)+\operatorname{atan}(1 / 68)$
$=\operatorname{atan}(1 / 44)+\operatorname{atan}(1 / 105)$
$\operatorname{atan}(1 / 50)=\operatorname{atan}(1 / 91)+\operatorname{atan}(1 / 111)$
$\operatorname{atan}(1 / 239)=\operatorname{atan}(1 / 70)-\operatorname{atan}(1 / 99)$
$=\operatorname{atan}(1 / 408)+\operatorname{atan}(1 / 577)$
$\operatorname{atan}(1 / 2441)=\operatorname{atan}(1 / 1164)-\operatorname{atan}(1 / 2225)$
$=\operatorname{atan}(1 / 4774)+\operatorname{atan}(1 / 4995)$
$\operatorname{atan}(1 / 32)=\operatorname{atan}(1 / 38)+\operatorname{atan}(1 / 132)-\operatorname{atan}(1 / 378)$
$=2 \operatorname{atan}(1 / 73)+\operatorname{atan}(1 / 239)-\operatorname{atan}(1 / 2943)$
Infinite sets of arctangent identities: $\operatorname{atan}(1 / n)-\operatorname{atan}(1 /(n+1))=\operatorname{atan}\left(1 /\left(n^{2}+n+1\right)\right)$

x_{n} / y_{n} are the continued fraction approximants to $\sqrt{2}$.
$\operatorname{atan}\left(1 / y_{2 n}\right)+\operatorname{atan}\left(1 / x_{2 n}\right)=\operatorname{atan}\left(1 / x_{2 n-1}\right)$
$\operatorname{atan}\left(1 / y_{2 n}\right)-\operatorname{atan}\left(1 / x_{2 n}\right)=\operatorname{atan}\left(1 / x_{2 n+1}\right)$
ITEM 138 (Gosper):
$\pi=28$ arctan $(3 / 79)+20 \arctan (29 / 278)$
$\pi=48 \arctan (3 / 79)+20 \arctan (1457 / 22049)$
Which isn't too interesting except that it means that
$(79+3 i)^{48}(22049+1457 i)^{20}$ is a negative real number.

ITEM 139 (Ramanujan):
$4 / \pi=$
N
$\sum_{N=0}^{\infty} \frac{(-1)(1123+21460 N)(1 * 3 * 5 * \ldots *(2 N-1))(1 * 3 * 5 * \ldots *(4 N-1))}{\left(882^{2 N+1}\right)\left(32^{N}\right)(N!)^{3}}$

This series gives about 6 decimal places accuracy per term.
$\frac{1}{\sqrt{8} \pi}=\sum_{N=0}^{\infty} \frac{(1103+26390 N)(1 * 3 * 5 * \ldots *(2 N-1))(1 * 3 * 5 * \ldots *(4 N-1))}{(99(4 N+2, N}$

This series gives about 8 decimal places accuracy per term. For other π series, see Ramanujan's paper "Modular Equations and Approximations to Pi" in Quarterly Journal of Pure and Applied Mathematics, vol. 45, page 350 (1914). For more goodies, see "Collected Papers of Srinivasa Ramanujan", Cambridge U. Press (1927) 。

ITEM 140:
Counting the initial 3 as the zeroth, the $431 s t$ denominator in the regular continued fraction for π is 20776. (Choong, Daykin \& Rathbone, Math. of Computation 25 (1971) p. 387). (Gosper) In the first 26491 terms of π, the only other 5 digit terms are the $15543 \mathrm{rd}=19055$ and the $23398 t h=19308$. (Computed from 35570 terms of the (nonregular) fraction for 4 arctan 1.)

ITEM 141:
The fraction part of $10^{760} \pi$ begins: . 49999998. .
ITEM 142 (Salamin):
Some super-fast convergents to π if one already has a super-fast computation of trig functions.
X approx $\pi: \quad X+X+\sin X, \varepsilon \leftarrow \varepsilon^{3} / 6$
$X \leftarrow X-\tan X, \varepsilon \leftarrow-\varepsilon^{3} / 3$
X approx $\pi / 2: X \leftarrow X+\cos X, \varepsilon \leftarrow \varepsilon^{3} / 6$
$X \leftarrow X+\cot X, \varepsilon \leftarrow-\varepsilon^{3} / 3$

ITEM 143 (Salamin):
Computation of elliptic integrals, log, and π. REFERENCES:
Whittaker \& Watson, Modern Analysis, chap. 22 Abramowitz $\&$ Stegun, Handbook of Mathematical Functions, sect. 17.3, 17.6,

1. ELLIPTIC INTEGRALS

Define elliptic integrals:

$$
\begin{aligned}
& K(m)=\int_{0}^{1} 1 / \sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)} d t \\
& K^{\prime}(m)=K(1-m) .
\end{aligned}
$$

If A_{0} and B_{0} are given, and
$A_{n+1}=\operatorname{arithmetic}$ mean of A_{n} and B_{n}
$B \quad=$ geometric mean of A and B $n+1 \quad n \quad n$
then define

$$
\underset{0}{\operatorname{AGM}\left(A_{0}, B_{n}\right)=\lim A}=\lim B_{n}
$$

This is called the arithmetic-geometric mean. Quadratic convergence rate:

$$
A_{n+1}-B_{n+1}={\underset{n}{n}}_{\left(A_{n}-B_{n+1}\right)^{2} / 8 A_{n}}
$$

It is known that

$$
K^{\prime}\left(x^{2}\right) \operatorname{AGM}(1, x)=\pi / 2 \quad[\text { see } A G S] .
$$

This gives a super fast method of computing elliptic integrals. It is easy to compute $\operatorname{AGM}(1, x)$ for x in the complex plane cut from zero to infinity along the negative real axis. So $\mathrm{K}^{\prime}(\mathrm{m})$ can be computed for $-2 \pi<\arg (m)<2 \pi$, which covers the complex
 permit exploration of more of the Riemann surface.

For small m,

$$
\begin{aligned}
& K(m)=(\pi / 2)\left(1+m / 4+O\left(m^{2}\right)\right) \\
& e^{-\pi\left(K^{\prime}(m) / K(m)\right)}=(m / 16)\left(1+m / 2+O\left(m^{2}\right)\right)
\end{aligned}
$$

Solve for $K^{\prime}(m)$ and let $m=16 / x^{2}$,

$$
K^{\prime}\left(16 / x^{2}\right)=\log x+\left(4 / x^{2}\right)(\log x-1)+0\left(\log x / x^{4}\right)
$$

For x sufficiently large,

$$
\log x=K^{\prime}\left(16 / x^{2}\right)=\pi /(2 \operatorname{AGM}(1,4 / x))
$$

Requiring a given number of bits accuracy in log x is equivalent to requiring

$$
\left|\left(K^{\prime}\left(16 / x^{2}\right)-\log x\right) / \log x\right|<\varepsilon
$$

this becomes

$$
\begin{aligned}
& \left|\left(4 / x^{2}\right)(1-1 / \log x)\right|<\left|4 / x^{2}\right|<\varepsilon \\
& |x|>2 / \sqrt{\varepsilon} .
\end{aligned}
$$

x can be complex. If $|x|$ is not too close to 1 , x can be brought into range by reciprocating or repeated squaring.
3. PI Let $x=e^{n}$, then

$$
\pi=2 n \operatorname{AGM}\left(1,4 e^{-n}\right)
$$

Suppose $\varepsilon=10$ to the minus a billion.
Then the above equation for π is valid when $n>1.15$ billion.
e^{-n} is calculated by starting with $1 / e$ and squaring k times.
Thus $n=2^{k} .2^{30}=1.07$ billion and $2^{31}=2.15$ billion, so $k=30$ gives 0.93 billion places accuracy and $k=31$ gives 1.86 billion places.

ITEM 144 (Schroeppel):
In the above, instead of $x=e^{n}$, use $x=2^{n}$ and $x=e^{n}$. Then simultaneous equations can be solved to give both π and $\log 2$. This avoids having to square e, but requires two AGM's, and therefore takes longer.

PROGRAMMING HACKS
**

WARNING: Numbers in this section are octal
(and occasionally binary) unless followed by a decimal point. 105=69.. (And 105. =69 hexadecimal.)

ITEM 145 (Gosper):
Proving that short programs are neither trivial nor exhausted yet, there is the following:
$0 /$ TLCA 1,1 (1)
1/ see below
2/ ROT 1,9
3/ JRST 0
This is a display hack (that is, it makes pretty patterns) with the low 9 bits $=Y$ and the 9 next higher $=X ;$ also, it makes interesting, related noises with a stereo amplifier hooked to the X and Y signals. Recommended variations include:

CHANGE: GOOD INITIAL CONTENTS OF 1 :
none
TLC 1,2(1)
377767,,377767; 757777,,757757; etc.
373777,.0; 300000,,0
TLC 1,3(1) -2,,-2; -5,,-1; -6,,-1
ROT 1,1 7, 7; AOOOOB, AOOOOB
ROTC l,ll \quad Can't use TLCA over data.
AOJA 1,0
ITEM 146:
Another simple display program: ("munching squares")
It is thought that this was discovered by
Jackson Wright on the RLE PDP-1 circa 1962.
DATAI 2
ADDB 1,2
ROTC 2,-22
XOR 1,2
JRST .-4
$2=x, \quad 3=Y$. Try things like 1001002 in data switches. This also does interesting things with operations other than $X O R$, and rotations other than -22. (Try IOR; AND; TSC; FADR; FDV(!); ROT -14, -9, -20, ...)

ITEM 147 (Schroeppel):
Munching squares is just views of the graph $Y=X$ XOR T for consecutive values of T time.

ITEM 148 (Cohen, Beeler):
A modification to munching squares which reveals them in frozen states through opening and closing curtains: insert FADR 2,1 before the XOR. Try data switches =
4000,.4 1000,,2002 2000,.4 0,.1002
(Notation: <left half>,,<right half>)
Also try the FADR after the XOR, switches = 1001,.,

ITEM 149 (Minsky):
Here is an elegant way to draw almost circles on
a point-plotting display. CIRCLE ALGORITHM:
NEW X $=$ OLD X - ε * OLD Y
NEW $Y=$ OLD $Y+\varepsilon$ * NEW(!) X
This makes a very round ellipse centered at the origin with its size determined by the initial point. ε determines the angular velocity of the circulating point, and slightly affects the eccentricity. If ε is a power of 2 , then we don't even need multiplication, let alone square roots, sines, and cosines! The "circle" will be perfectly stable because the points soon become periodic.

The circle algorithm was invented by mistake when 1 tried to save one register in a display hack! Ben Gurley had an amazing display hack using only about six or seven instructions, and it was a great wonder. But it was basically line-oriented. It occurred to me that it would be exciting to have curves, and I was trying to get a curve display hack with minimal instructions.

ITEM 150 (Schroeppel):
PROBLEM: Although the reason for the circle algorithm's stability is unclear, what is the number of distinct sets of radii? (Note: algorithm is invertible, so all points have predecessors.)

ITEM 151 (Gosper):
Scparating X from Y in the above recurrence,

$$
\begin{aligned}
& X(N+1)=\left(2-\varepsilon^{2}\right) * X(N)-X(N-1) \\
& Y(N+1)=\left(2-\varepsilon^{2}\right) * Y(N)-Y(N-1) .
\end{aligned}
$$

These are just the Chebychev recurrence with cos θ (the angular increment $=1-\varepsilon^{2} / 2$. Thus $X(N)$ and $Y(N)$ are expressible in the form $R \cos (N \theta+\phi)$. The ϕ 's and R for $X(N)$ and $Y(N)$ can be found from $N=0,1$. The ϕ 's will differ by less than $\pi / 2$ so that the curve is not really a circle. The algorithm is useful nevertheless, because it needs no sine or square root function, even to get started.
$X(N)$ and $Y(N)$ are also expressible in closed form in the algebra of ordered pairs described under linear recurrences. but they lack the remarkable numerical stability of the "simultaneous" form of the recurrence.

ITEM 152 (Salamin):
With exact arithmetic, the circle algorithm is stable iff $|\varepsilon|<2$. In this case all points lie on the ellipse
$X^{2}-\varepsilon X Y+Y^{2}=$ constant,
where the constant is determined by the initial point. This ellipschas its major axis at 45 degrees (if $\varepsilon>0$) or 135 degrees (if $\varepsilon<0$) and has eccentricity

$$
\sqrt{\varepsilon /(1+\varepsilon / 2)} .
$$

ITEM 153 (Minsky):
page 74
To portray a 3-dimensional solid on a 2-dimensional display, we can use a single circle algorithm to compute orbits for the corners to follow. The (positive or negative) radius of each orbit is detcrmined by the distance (forward or backward) from some origin to that corner. The solid will appear to wobble rigidly about the origin, instead of simply rotating.

ITEM 154 (Gosper):
The myth that any given programming language is machine independent is easily exploded by computing the sum of powers of 2 .
If the result loops with period $=1$ with sign + , you are on a sign-magnitude machine.
If the result loops with period $=1$ at -1 , you are on a twos-complement machine.
If the result loops with period >1, including the beginning, you are on a ones-complement machine.
If the result loops with period >1, not including the beginning, your machine isn't binary -- the pattern should tell you the base.
If you run out of memory, you are on a string or Bignum system.
If arithmetic overflow is a fatal error, some fascist pig with a read-only mind is trying to enforce machine independence. But the very ability to trap overflow is machine dependent.
By this strategy, consider the universe, or, more precisely, algebra:
let $X=$ the sum of many powers of two $=$...111111
now add X to itself; $X+X=\ldots . .111110$
thus, $2 X=X-1$ so $X=-1$
therefore algebra is run on machine (the universe)
which is twos-complement.
ITEM 155 (Liknaitzky):
To subtract the right half of an accumulator from the left (as in restarting an AOBJN counter): IMUL A, [377777, ,1]

ITEM 156 (Mitchell):
To make an AOBJN pointer when the origin is fixed
and the length is a variable in A :
HRLOI A,-1 (A)
EQVI A,ORIGIN
ITEM 157 (Freiberg):
If instead, A is a pointer to the last word HRLOI A, -ORIGIN(A) EQVI A,ORIGIN
Slightly faster: change the URLOIs to MOVSIs and the EQVI addresses to -ORIGIN-1. These two routines are clearly adjustable for BLKOs and other fenceposts.

ITEM 158 (Gosper, Salamin, Schroeppel):
page 75
A miniature (recursive) sine and cosine routine follows.
COS: FADR A,[1.57079632679] ; $\pi / 2$
SIN: MOVM B,A ;argument in A
CAMG $B,[.00017] ; \leq \sqrt[3]{3} / 2^{13}$
POPJ P, ;sin $X=X$, within 27. bits
FDVRI A, (-3.0)
PUSHJ P,SIN ;sin -X/3
FMPR B,B
FSC B, 2
FADRI B, (-3.0)
FMPRB $A, B \quad ; \sin X=4(\sin -X / 3)^{\mathbf{3}}-3(\sin -X / 3)$
POPJ P, $\quad ; \sin$ in A, \sin or $|\sin | i n B$
; \mid sin| in B occurs when angle is smaller than end test
Changing both -3.0's to +3.0's gives sinh:
$\sinh x=3 \sinh x / 3+4(\sinh x / 3)^{3}$.
Changing the first -3.0 to a +9.0 , then inserting PUSHJ $P, .+1$
after PUSHJ P,SIN gains about 20\% in speed and uses half the pushdown space (< 5 levels in the first 4 quadrants). PUSHJ P,.+l is a nice way to have something happen twice. Other useful angle multiplying formulas are $\tanh x=(2 \tanh x / 2) /\left(1+(\tanh x / 2)^{2}\right)$
$\tan X=(2 \tan X / 2) /\left(1-(\tan X / 2)^{2}\right)$, ifinfinity is handled correctly. For cos and cosh, one can use $\cos X=1-2(\sin X / 2)^{2}, \cosh x=1+2(\sinh X / 2)^{2}$.

X

In general, to compute functions like e cos X, elliptic functions, etc. by iterated application of double and triple argument formulas, it is necessary to subtract out the constant in the Taylor series and transform the range reduction formula accordingly. Thus:

$$
\begin{array}{lll}
G(X)=\cos (X)-1 & F(2 X)=2 F *(F+2) & F(\varepsilon)=-\varepsilon^{2} / 2 \\
G(X)=e^{-1} & G(2 X)=G^{*}(G+2) & G(\varepsilon)=\varepsilon
\end{array}
$$

This is to prevent the destruction of the information in the range-reduced argument by the addition of a quantity near l upon the success of the ε test. The addition of such a quantity in the actual recurrences is OK since the information is restored by the multiply. In fact, a cheap and dirty test for $F(E)$ sufficiently small is to see if the addition step has no effect. People lucky enough to have a square root instruction can get natural \log by iterating $X \leftarrow X /(\sqrt{1+X}+1)$ until $1+X=1$.
(number of iterations)
Then multiply by 2 would work.

```
ITEM 159 (Gosper, Schroeppel):
                                    page 76
(Numbers herein are decimal.)
The correct epsilon test in such functions as the foregoing
SIN are generally the largest argument for which addition of
the second term has no effect on the first. In SIN, the
first term is x and the second is - x / 6, so the answer is
roughly the x which makes the ratio of those terms 1/2 27;
so x = \sqrt{}{3}/ 2 '13. But this is not exact, since the precise
cutoff is where the neglected term is the power of 2 whose l bit
coincides with the first neglected (28th) bit of the fraction.
Thus, }\mp@subsup{x}{}{3}/6=1/\mp@subsup{2}{}{27}*1/\mp@subsup{2}{}{13},\mathrm{ so }x=\sqrt{3}{3}/\mp@subsup{2}{}{13}\mathrm{ .
ITEM 160 (Gosper):
Here is a way to get log base 2. A and B are consecutive.
Call by PUSHJ P,LOG2 with a floating point argument in A.
LOG2: LSHC A,-33
    MOVSI C,-201(A)
    TLC C,211000 ;Speciner's bum
    HOVEI A,200 ; exponent and sign sentinel
LOGL: LSH B,-9
REPEAT 7, FMPR B,B ;moby flunderflo
    LSH B, 2
    LSHC A,7
    SOJG A,LOGL ;fails on 4th try
    LSH A,-1
    FADR A,C
    POPJ P, ;answer in A
Basically, you just square seven times and use the low seven bits of the exponent as the next seven bits of the log.
```

To swap the contents of two locations in memory:
EXCH A,LOC1
EXCH A,LOC2
EXCH A,LOCI
Note: LOC1 must not equal LOC2! If this can happen, use MOVE-EXCH-MOVEM, clobbering A.

ITEM 162 (Gosper):
To swap two bits in an accumulator:
TRCE A,BITS
TRCE A,BITS
TRCE A,BITS
Note (Nelson): last TRCE never skips, and used to be a TRC, but TRCE is less forgettable. Also, use TLCE or TDCE if the bits are not in the right half.

ITEM 163 (Sussman):
To exchange two variables in LISP without using a third variable:
(SETQ X (PROG2 0 Y (SETQ Y X)))
ITEM 164 (Samson):
To take MAX in A of two byte pointers
(where A and B are consecutive accumulators):
ROTC A, 6
CAMG A,B
EXCH A, B
ROTC A,-6
ITEM 165 (Freiberg):
A byte pointer can be converted to a character address < 2^{16} by
MULI A,<\# bytes/word> followed by SUBI B,l-<" b/w>(A).
To get full word character address, use SUB into a magic table.
ITEM 166 (Gosper, Liknaitzky):
To rotate three consecutive accumulators N < 37. places:
ROTC A,N
ROT B, -N
ROTC B,N
Thus M AC's can be ROTC'ed in $2 \mathrm{M}-3$ instructions. (Stallman): For 73. $>\mathrm{N}>35$. :

ROTC A,N-36.
EXCH A,C
ROT B, 36. -N
ROTC A,N-72.

```
ITEM 167 (Gosper, Freiberg): page 78
;B gets 7 bit character in A with even parity
    IMUL A,[2010040201] ;5 adjacent copies
    AND A,[21042104377] ;every 4th bit of left 4 copies + right copy
    IDIVI A, 17ヶ7 ;casting out l5.'s in hexadecimal shifted 7
;odd parity on 7 bits (Schroeppel)
    IMUL A,[10040201] ;4 adjacent copies
    IOR A,[7555555400] ;leaves every 3rd bit+offset+right copy
    IDIVI A,9<7 ;powcrs of 2'3}\mathrm{ are tl mod 9
;changing 7555555400 to 27555555400 gives even parity
;if A is a 9 bit quantity, B gets number of l's (Schroeppel)
    IMUL A,[1001001001] ;4 copics
    AND A,[42104210421] ;every 4th bit
    IDIVI A,l7 ;casting out l5.'s in hexadecimal
;if A is 6 bit quantity, B gets 6 bits reversed (Schroeppel)
    IMUL A,[2020202] ;4 copies shifted
    AND A,[104422010]
    IDIVI A,377
    ; where bits coincide with reverse repeated base 2 }\mp@subsup{}{}{8
    ;casting out 2 - - 's
; reverse 7 bits (Schroeppel)
    IMUL A,[10004002001]
    AND A,[210210210010]
    IDIVI A,377
    ;4 copies sep by 000's base 2 (may set arith. o'flow)
    ; where bits coincide with reverse repeated base 2 }\mp@subsup{}{}{8
    ;casting out 377's
; reverse 8 bits (Schroeppel)
    MUL A,[100200401002] ;5 copies in A and B
    AND B,[20420420020]
    ANDI A,41
    DIVI A,1777 ;casting out 210}-1'
    MUL A,[100200401002] ;5 copies in A and B
    ;where bits coincide with reverse repeated base 210
    ;"
```

```
ITEM 168 (PDP-1 hackers):
                                    page 79
foo, lat /DATAI switches
    adm a /ADDB
    and (707070
    adm b
    iot l4 /output AC sign bit to a music flip-flop
    jmp foo
Makes startling chords, arpeggios, and slides, with just the
sign of the AC. This translates to the PDP-G (roughly) as:
FOO: DATAI 2
    ADDB 1,2
    AND 2,[707070707070] ;or 171717171717, 363636363636,454545454545, ...
    ADDB 2,3
    LDB 0,[360600,,2]
    JRST FOO
Listen to the square waves from the low bits of 0.
ITEM 169 (in order of one-ups-manship: Gosper, Mann, Lenard, [Root and Mann]):
To count the ones in a PDP-6/10 word:
    LDB B,[014300,,A] ;or MOVE B,A then LSH B,-1
    AND B,[333333,,333333]
    SUB A,B
    LSH B,-1
    AND B,[333333,,333333]
    SUBB A,B ;each octal digit is replaced by number of l's in it
    LSH B,,-3
    ADD A,B
    AND A,[070707,,070707]
    IDIVI A,77 ;casting out 63.'s
These ten instructions, with constants extended, would work
on word lengths up to 62.; cleven suffice up to 254..
```

ITEM 170 (Jensen):
page
Useful strings of non-digits and zeros can arise when carefully chosen negative numbers are fed to unsuspecting decimal print routines. Different sets arise from different methods of character-to-digit conversion. Example (Gosper):

DPT: IDIVI F, 12
HRLM G, (P) ;tuck remainder on pushdown list SKIPE F PUSHJ P,DPT LDB $G,[220600$, (P)] ; retrieve low 6 bits of remainder TRCE G,"0 ; convert digit to character SETOM CCT ; that was no digit!

TYO: . IOT TYOCHN,G ; or DATAO or IDPB ...
AOS G,CCT
POPJ P,
This is the standard recursive decimal print of the positive number in F, but with a LDB instead of a HLRZ. It falls into the typeout routine which returns in G the number of characters since the last carriage return. When called with a-36., DPT types carriage return, line feed, and resets CCT, the character position counter.

ITEM 171 (Gosper):
Since integer division can never produce a larger quotient than dividend, doubling the dividend and divisor beforehand will distinguish division by zero from division by 1 or anything else, in situations where division by zero does nothing.

ITEM 172 (Gosper):
The fundamental operation for building list structure, called CONS, is defined to: find a free cell in memory, store the argument in it, remove it from the set of free cells, return a pointer to it, and call the garbage collector when the set is empty. This can be done in two instructions:

CONS: EXCH A,[EXCH A,[..[[PUSHJ P,GC]...]]
EXCII A,CONS
Of course, the address-linked chain of EXCH's indicated by the nested brackets is concocted by the garbage collector. This method has the additional advantage of not constraining an accumulator for the free storage pointer.

UNCONS: HRLI A, (EXCH A,)
EXCH A, CONS
EXCH A,@CONS
Returns cell addressed by A to free storage list; returns former cell contents in A.

ITEM 173 (Gosper):
The incantation to fix a floating number is usually
MULI A,400 ;exponent to A, fraction to $A+1$
TSC A,A ;l's complement magnitude of excess 200 exponent
ASII $A+1,-200-27 .-8(A) \quad ; a n s w e r$ in $A+1$
If number is known positive, you can omit the TSC.
On the PDP-10
UFA $A,[\pm 233000, \ldots] \quad$; not in PDP-6 repertoire
TLC $A+1,233000$;if those bits really bother you
When you know the sign of A, and $|A|<2^{26}$, you can FAD $A,[\pm 233400,$,$] \quad ;or FADR for rounded fix!$ TLC A, 233400 ;if those bits are relevant
where the sign of the constant must match A's.
This works on both machines and doesn't involve A+l. On the 10, FADRI saves a cycle and a constant, and rounds.

ITEM 174 (Gosper, Nelson):
21963283741. = 243507216435 is a fixed point of the float function on the PDP-6/10, i.e., it is the only positive number whose floating point representation equals its fixed.

ITEM 175 (Gosper):
To get the next higher number (in A) with the same number of 1 bits: (A, B, C, D do not have to be consecutive)

MOVE B,A
MOVN C,B
AND C,B
ADD A, C
MOVE D,A
XOR D, B
LSII D,-2
IDIVM D,C
IOR A,C

ITEM 176 (Gosper):
The "banana phenomenon" was encountered when processing a character string by taking the last 3 letters typed out, searching for a random occurrence of that sequence in the text, taking the letter following that occurrence, typing it out, and iterating. This ensures that every 4-letter string output occurs in the original. The program typed BANANANANANANANA.... We note an ambiguity in the phrase, "the Nth occurrence of." In one sense, there are five 00's in 0000000000; in another, there are nine. The editing program TECO finds five. Thus it finds only the first ANA in BANANA, and is thus obligated to type N next. By Murphy's Law, there is but one NAN, thus forcing A, and thus a loop. An option to find overlapped instances would be useful, although it would require backing up $N-1$ characters before seeking the next N character string.

ITEM 177 (Gosper): DRAWING CURVES INCREMENTALLY
Certain plotters and displays are constrained to approximate curves by a sequence of king-moves hetween points on a lattice.

Many curves and contours are definable by $F(X, Y)=0$ with F changing sign on opposite sides of the curve. The following algorithm will draw most such curves more accurately than polygonal approximations and more easily than techniques which search for a "next" X and Y just one move away.

We observe that a good choice of lattice points is just those for which F, when evaluated on one of them, has opposite sign and smaller magnitude than on one or more of its four immediate neighbors.t This tends to choose the nearer endpoint of each graph paper line segment which the curve crosses, if near the curve F is monotone with distance from the curve.

First, divide the curve into arcs within which the curve's tangent lies within one 45 degree semiquadrant. We can show that for reasonable F, only two different increments (say north and northwest) are needed to visit the desired points.

Thus, we will be changing one coordinate (incrementing Y) every step, and we have only to check whether changing the other (decrementing X) will reduce the magnitude of F. (If F increases with $Y, F(X, Y+1)>-F(X-1, Y+1)$ means decrement X.) F can often be manipulated so that the inequality simplifies and so that F is easily computed incrementally from X and Y.
the following computes the first semiquadrant of the circle

$$
F=X^{2}+Y^{2}-R^{2}=0
$$

$\mathrm{CO}: \quad \mathrm{F} \leftarrow 0, \mathrm{Y} \leftarrow 0, \mathrm{X} \leftarrow \mathrm{R}$
C1: $\quad F \leftarrow F+2 Y+1, Y \leftarrow Y+1$
C2: \quad ift $F \geq X, F \leftarrow F-2 X+1, X \not C X-1$
C3: \quad if $Y<X-1$, go to C1
C4: (Link to next arc) if $Y=X-1, Y \leftarrow Y+1, X \leftarrow X-1$
This can be bummed by maintaining $Z=2 Y+1$ instead of Y. Symmetry may be used to compute all eight semiquadrants at once, or the loop may be closed at C2 and C3 with two PUSHJ's to provide the palindrome of decisions for the first quadrant. There is an expression for the number of steps per quadrant, but it has a threenay conditional dependent upon the midpoint geometry. Knowing this value, however, we can replace C3 and C4 with a simple loop count and an odd-even test for C4.

The loop must be top-tested (C3 before Cl) if the "circle" $R=1$, with four diagonal segments, is possible.

All this suggests that displays might be designed with an increment mode which accepts bit strings along with declarations of the form: "O means north, 1 means northwest". 1100 (or 0011) will not occur with a curve of limited curvature; thus, it could be used as an escape code, but this would be an annoying restriction.

See the following illustration of circles drawn this way.
t In case of a tie, i.e., Fhas equal magnitudes with opposite signs on adjacent points, do not choose both points but rather have some arbitrary yet consistent preference for, say, the outer one. The problem can't arise for C 2 in the example because the inequality $F \geq X$ is really $F>-(F-2 X+1)$ or $F>X-.5$.

ITEM 178 (Schroeppel, Salamin):
page 85
Suppose Y satisfies a differential equation of the form $P(X) Y(N t h$ derivative $)+\ldots .+\quad+(X)=R(X)$
where $P, \ldots . Q Q$, and R are polynomials in X
(for example, Bessel's equation, $X^{2} Y^{\prime}+X^{\prime}+\left(X^{2}-N^{2}\right) Y=0$)
and A is an algebraic number. Then $Y(A)$ can be evaluated to
N places in time proportional to $N(\ln N)^{3}$.
X
Further, c and $\ln X$ or any clementary function can be evaluated to N places in $N(\ln N)^{2}$ for X a real number. If $F(X)$ can be evaluated in such time, so can the inverse of $F(X)$ (by Newton's method), and the first derivative of $F(X)$. Also, $\zeta(3)$ and γ can be done in $N(\ln N)^{3}$.

ITEM 179 (Gosper):
A program which searches a character string for a given substring can always be written by iterating the sequence fetch-compare-transfer (ILDB-CAIE-JRST on the PDP6/10) once for each character in the sought string. The destinations of the transfers (address fields of the JRST's) must, however, be computed as functions of the sought string. Let

0	1	2	3	4	
	S	A	S	S	Y
0	1	0	2	2	

stand for the program
T0: \quad ILDB C, A \quad C gets next char from pointer in Λ
T1: CAIEC,"S ;skipifit's an S JRST TO ;loop back on failure ILDB C, A ;next
T2: CAIE C,"A ;skip if A JRST Ti ;could be an S

T3: CAIE C,"S JRST TO ; S, A, non S, so start over ILDB C,A ;next
T4: CAIE C,"S
; could be SAS.ASSY
ILDB C, A
CAIE C,"Y
JRST T2 ;could be SASS.ASSY
; found SASSY
In other words, a number >0 in the top row is a location in the program where the corresponding letter of the middle row is compared with a character of the input string. If it differs, the number in the bottom row indicates the location where comparison is to resume. If it matches, the next character of the middle row is compared with the next character of the input string.

Let J be a number in the top row and K be the number below J, so that $T K$ is the address field of the Jth JRST.
For each $J=1,2$, ... we compute $K(J)$ as follows:
$K(1)=0$. Let P be a counter, initially 0 .
For each succeeding J, increment P. If the P th letter $=t h e J t h$, $K(J)=K(P)$. Otherwise, $K(J)=P$, and P is reset to 0. ($\mathrm{P}(J)$ is the largest number such that the first p characters match the last P characters in the first J characters of the sought string.)

To generalize this method to search for N strings at once, we produce a program of ILDB-CAIE-JRST's for each of the sought strings, omitting the initial lLDB from all but the first. We must compute the destination of the Jth JRST in the Ith program, TKM(I, J), which is the location of the Kth compare in the Mth program.

It might be reasonable to compile such an instruction sequence whenever a search is initiated, since alternative schemes usually require saving or backing up the character pointer.

ITEM 180 (Gosper):
A problem which may arise in machine processing of visual information is the identification of corners on a noisy boundary of a polygon. Assume you have a broken line. If it is a closed loop, find the vertex furthest from the centroid (or any place). Open the loop by making this place both endpoints and calling it a corner. We define the corner of a broken line segment to be the point the sum of whose distances from the endpoints is maximal. This will divide the segment in two, allowing us to proceed recursively, until our corner isn't much cornerier than the others along the line.

The perpendicular distance which the vector C lies from the line connecting vectors A and B is just

$$
\frac{(C-A) \times(B-A)}{2|A-B|}
$$

but maximizing this can lose on very pointy $V^{\prime} s$. The distance sum hack can lose on very squashed $Z^{\prime} s^{\prime}$.

ITEM 181 (Gosper):
A bug you might try to avoid when designing floating point hardware, relating to excess-200, l's complement exponent, 2's complement fraction convention:

1) An advantage is that negation and numerical comparison can be accomplished with the same instructions for both fixed and floating point numbers.
2) A disadvantage is that the termination of the normalization process is ambiguous. Normally, when the sign bit unequals the highest bit of fraction, the number is normalized. A special case arises with
negated powers of two. (That is, $-\left(\begin{array}{l}2) \\ \text {), not (2) .) }\end{array}\right.$ Then the fraction is 400,0 and the sign is - also.

This means it is necessary to check whether shifting left one more bit will bring in a one:
if it brings in a zero, you will over-normalize
if it brings in a one, you should do it
If you should but don't, rounding will un-normalize, and when you then re-normalize, the normalizing amount will be doubled, so you will be off by 2 smidgens (that is, the next to low order bit). Note that rounding can over-normalize as well as un-normalize, so you can't just stop normalization after rounding.

You might check this in your PDP-6/10. For example, combine 201400, $0+\delta$ with minus 200777, $777777+2 \delta$. For $0 \leq \delta \leq 7777$, the correct FMP result is minus 200777, 777776 , and the correct FMPR result is minus 200777, 777777 .

Over-normalized negative powers of 2 work in compares and most floating arithmetic. They lose with MOVN and as dividends. Unnormalized floating operands win completely on the PDP-10, except as divisors and dividends, the latter suffering truncation error.

ITEM 182 (Roe): VOLTAGE RLGULATORS
Fairchild is now supplying positive voltage regulators costing about 2 dollars in lots of 1 (for example, the uA7805 for +5 volts).

ITEM 183 (Roe): CURRENT MIRRORS
The CA3083 (and CA3084) transistor arrays can be used to make neat current mirrors. (A current mirror supplies a current on one wire equal to that drawn from a second wire.)

ITEM 184 (Roc): ONE-SHOT
A dual MOS D-type flip-flop (such as the CD4013AE) can be used to make a one-shot as follows:

ITEM 185 (ROC): OSCILLATORS
Evryone has their own favorite oscillator circuits; here are some we like.
I crystal, overtone, transistor
II crystal, fundamental, transistor (drives at least lTL load) III crystal, fundamental, CMOS, low frequency (drives l TTL load; at 5.4 volts and no load, draws 330 microamperes; with a 165 KHz , 32 pf crystal, varies about 10 Hz per volt of Vcc)
IV crystal, fundamental, IC (a favorite of Nelson's, but be careful and lucky or it may oscillate at a frequency determined by the crystal holder capacitance and not by the crystal; note similarity to non-crystal oscillator V) V not crystal controlled; for comparison with IV VI The following blocking oscillator is quite uncritical of component values, with the exception that the turns ratio be such that -Vb (see graph) not exceed BVebo (about 5 volts for silicon transistors).

IV

ITEM 186 (Roe): FM RADIO LINK
In work on education at our lab, we built a motorized "turtle" controlled by computer commands in the childoriented language "Logo." The following is a transmitter designed as a radio link between the computer and turtle. Input (modulation) is either 0 or +12 volts; output is about 88 MHz . Use a commercial FM tuner as receiver. Note: this transmitter is ILLEGAL no matter what; part 15 low power rule only allows if duty is less than about 1 second per 15 minutes. Don't worry about it unless you interfere with broadcast stations.

ITEM 187 (Roe): PHONE LINE XMTR, RCVR
page 91
When the chess program written at our lab is playing in a chess tournament, a human attendant at the tournament moves the pieces, punches the clock, and communicates with the program via a portable terminal coupled to a telephone line. It is desirable that the program know when its chess clock is running, even though the attendant may not notice immediately that the opponent has made his move and punched the clock. Therefore we built a clock holder with a microswitch to sense the clock state. The following is a 10 mw transmitter whose input is the microswitch and whose output goes onto the phone line. It switches between two frequencies, about 320 and 470 IIz . Also shown is the receiver. Input should be at least 100 mv rms (threshold is 20 mv and overload is above 68 volts) with peak to peak signal to noise ratio greater than 4: . As we all know, connections to phone lines are illegal unless made through a data coupler supplied by TPC (The Phone Company).

ITEM 188 (Roe): DC MOTOR VELOCITY SERVO
page 92
One version of the "turtle" mentioned above (see RADIO LINK) uses a DC motor to drive each of its two powered wheels. Since its path is to be as straight as possible, a triangular pulse is generated (to represent one "step" of the motor) and the motor's velocity servoed to this analog command. An additional digital command enables foreward or reverse motion. Diagram I shows a simplified velocity servoing circuit. It has the disadvantage that only half the maximum voltage available ($-V$ to $+V$) can be applied across the motor at any one time. Diagram II shows the actual circuit used in the turtle.

ITEM 189 (Roe): OPTICAL COUPLER
page 93
When two circuits are at potentials differing by a few hundred volts but wish to communicate with each other, one solution is to use an optical coupler. These employ a light-emitting device placed close to a light-sensitive device. Diodes make very fast-responding sensors, but the signal from a light-sensitive transistor is much stronger. Shown is a compromise, using a transistor as a diode, with associated cleverness to get the delay (from input to output) down from 10 microseconds to 1.

ITEM 190 (Roc): PHOTOCATHODE CURRENT OSCILLATOR In our fourth computer-interfaced image sensing device, TVD (really a vidissector, not a TV), the photocathode sits at several thousand volts negative. Nevertheless, one wishes to sense the current it draws, since overcurrent should shut down the photocathode voltage to avoid danage to the photocathode. The following circuit draws no more than 400 microamperes at 10 volts (at 20 KHz out; about 200 microamperes at 10 KHz) and couples the current information out as the frequency sent to $T 2$. whose coils are wound on opposite sides of a ceramic ferrite.

ITEM 191 (ROE): DEFLECTION AMPLIFIER
page 94
TVD, mentioned above, uses a very carefully designed printed circuit amplifier to supply current to its magnetic deflection coils. Except for the notes with the diagram, we submit it without further explanation or cautions.

Notes:
1 Except where noted, resistors 10%, $1 / 4$ watt.
2 Capacitances in microfarads/volts; electrolytics aluminum.
3 viodes $1 N 4727$, $1 N 4154,1 N 4009$ etc.; stored charge no more than 80 picocoulombs at 1 milliampere foreward current.
$410103=G E$ thermistor mounted at center of main heat sink.
$5220 J=$ Nnalog Devices chopper amplifier.
$6^{*}=$ temperature protection circuit (overtemperature cutout).
$7 \mathrm{Q} 2, \mathrm{Q} 3, \mathrm{Q} 4, \mathrm{Q}, \mathrm{Q}, \mathrm{Q}, \mathrm{Q}, \mathrm{Q} 13, \mathrm{Q} 14, \mathrm{Q} 15, \mathrm{Q} 16$ mounted on one lentigrade degree per watt heat sink (e.g. Wakefield $621 K 1 / 2$ inch in front of Rotron Muffin fan). Case temperature about 70 degrees C max. Ground heat sink and insulate transistors.
8 All transistors Motorola.
9 All zeners 1 watt.
10 VE $48 \mathrm{X}=$ Varo; could be two 2 A 50 PIV fast recovery.
11 Output capacitance about 800 pf; damping R about 150 ohms for critical damping.
12 Slews from + (or -) 2 人 to - (or +) 2 A in 4 microseconds; de/dt at hot side of deflection coil is about a billion v/sec.
13 Layout is critical, as with most fast high-gain circuits.
A By-passing and lead inductance: Short wide strips (or, better, a ground plane) should be used for ground bus, and ceramic capacitors with leads as short as practicable used for bypassing. Best bypass capacitor is Allen-Bradley CL series.
B Ground loops: reference ground (triangles) and power ground must be interconnected only at the cold side of the sense resistor; take care to avoid stray current through the cold side of the signal input.
C In general, the device should be constructed like a 144 MHz transmitter to avoid its becomming one.
14 The 100 pf stabilizing capacitor may want to be higher to decrease hunting and ringing, which could improve setting time nore than the reduced gain-bandwidth would increase it.

Q1,	Q12,	$Q 13$	MPS-U01
Q11,	Q2,	Q 3	MPS-U51
Q4,	Q5,	Q6	2N5194
Q14,	Q15,	Q16	2N5191
Q7			MPS-U02
Q17			MPS-U52
Q8,	Q19		2N3906
Q9,	Q18		2N 3904

INDEX

\{cross reference\} (explanation)

Compiled by Rich Schroeppel and Hilarie Orman.

0 \{zero\} 4368	1883	algebraic
. 845345	20-omino 77	functions 101
1 \{one\} 2257107	2363	number 32101178
$\begin{array}{lllll}125 & 158 & 159 & 167\end{array}$	2861	algorithm 17101115
$\begin{array}{llll}169 & 171 & 173 & 175\end{array}$	3012	$132149-153$
177181	3468	176-180 fig9
1st 4966062115132	4047	alternating series
159	6351	120
1 st order 615	72 bits 25104	amazing 149
1:2 80	12060	ambiguity 176181
2 \{two\} 14233132	13050	American Math.
$\begin{array}{lllllllllllllllll}35 & 43 & 45 & 47 & 48 & 57\end{array}$	22062	Monthly 48120
$606397120-123$	23963	amicable number 61
137144149152	25682	62
154159160	28462	analysis 25143
2-dimensional 153	292101	analytic function 11
2-NOTS 19	355101	126
n	67260	analyze game 6874
2 20 2464	109345	878894
3 \{three\} 354968	351145	AND 17-19 222343
97107116127	7094112	115
3 rd 123132163	23000 41	angle 45107137158
3-dimensional 112	21841	angular velocity 149
153	$2^{86} 57$	151
3-space 77	Abramowitz 120143	annoying 177
$3 N+1 \quad 133$	accelerating 120124	answer 4557105
45475089829115	accumulator 155162	AOBJN 155156
127134136	164166172	appear 39153
four-in-a-row 112	Adams, Clifford 49	append 101122
4 th power 61463	add $18 \quad 40 \quad 4350$	Applied
4-1etter 176	addl 64	Combinatorial
4-space 107	addition 101158159	Math. 7786
4-vector 107	chain 12	approximant,
4.86\% 29	additional 172	continued
$\begin{array}{lllllll}5 & 47 & 51 & 57 & 61 & 78\end{array}$	address 157165172	fraction 63101
8190103	179	122137
five-in-a-row 91	adjacent 68167177	approximation 101
5th power 63121	advantage 101172	arbitrary 19111177
$6 \quad 7383141$	181	arc 123177
$\begin{array}{llllll}7 & 31 & 82 & 97 & 113 & 114\end{array}$	AGM 131143144	arccos 1415116
160	aleph-two 129	arccoth 126
7-coloring 114	algebra 13151154	arcerf 45
$9 \quad 72141$		archaeologist 135
14105		arcsin 10

arctan 1663101137 138140
area 114
arg, complex number 137
argument 132 158-160 172
arithmetic 101
expression 101
-geometric mean
mean 131143
series 143599 101
arpeggios 168
array $18 \quad 38 \quad 120 \quad 121$
Art of Computer
Programming \{Knuth \}
aspect ratio 80112
associative 12
asymptotic 7786
automatic 101
axis 3107143152
backing up 176179
banananana 176
Banks, Roger 20133
base \{radix\}
basis vector 1314
Berlekamp, Elwyn 69
Bernoulli 12121
Bessel functons 99
101178
best 1772
bignum 101154
billion 143
binary $1222 \quad 60 \quad 63$ 115122128 fig7 132145154
binomial 384243 $\begin{array}{llll}116 & 118 & 120 & 121\end{array}$
bisector 3
bishop 7078
bit 22253755 figla figlb fig2 101104115122 128 fig7 132143 145159160162 $\begin{array}{llll}167 & 168 & 170 & 173\end{array}$ 175177181
black 70848889
black box 19
blackout 68
board 68767884
90-92 94 112
Boolean 17-24
boundary 20125180
bounded 454777
box 112
bracket 30
branch point 130143
bridge 46
Brillhart, John 28 65
broken line 180
Brown, Steve 75
bug 45135181
bum 160177
byte 164165
C curve 135 fig8
calculate 2668143
carriage return 170
carry 43115
casting out 167169
CDR 132
center $51 \quad 68 \quad 76112$ 114123149
-symmetrically 74
centroid 180
certified 137
changing 123158167
character 21134165
$\begin{array}{llll}167 & 170 & 176 & 179\end{array}$
cheap 158
Chebychev $14 \quad 15 \quad 151$
checkerboard 84112
checkers 93
chess $\begin{array}{llllll}70 & 78 & 87 & 88 & 95\end{array}$
Chess for Fun and Chess for Blood 70
Chinese remainder theorem 48
Choong 140
chord 168
chromatic number 113
circle $20 \quad 32 \quad 83 \quad 123$ fig6a fig6b 125 149-153177 fig9
circumscribing 20
claim 65122
Clements, Robert 112
clever 71
clock 123 fig6a fig6b
closed form 1014
$\begin{array}{llll}116 & 118 & 131 & 151\end{array}$
177180
closest 315
closure 105
clue 19101
cluster point 32
code 25
coefficient 131443
44101118125
130
Cohen, Joe 117148
coin 67
color 7173 110-114
common divisor 53
Communications of the ACM 112
commutative 101127
comparison 101181
compile 179
complement 75105
122173181
complex number 1455
figla figlb fig2
123 fig6a fig6b 136-138143
complicate 101
composition of
functions 101107 127
computation 12-14 65 $\begin{array}{lllll}68 & 83 & 101 & 115 & 123\end{array}$
$140 \quad 142153154$ 158177179
Computers in Number Theory 77
concurrences 2
condition 11101111 130
conformal map 11
conjecture \{problem\} 331556101112 125
conjugate $\begin{array}{llll} & 107 & 123\end{array}$
conjunction 137
connected 5073114
115180
CONS 172
consecutive 25121 160164166175
constant 145051 $\begin{array}{llll}127 & 129 & 152158\end{array}$ 169173
constrain 101172
177
construct 394580 135
continued fraction 97-101 122137 140
arithmetic 101
continuous 107115
contours 177
converge 312120 122124125130 142143
convergent 101
convex 2024
coordinate 4852107 177
copy 2435115122 167
corner 485068112 153180
corollary 51
correct 159
correction 101
cosh 158
cosine 141526107 142149151158
cotangent 142
coth 126
count 1829778182 108112115169 177
counter 64155170 179
counter (token) 90
counterexample 12
counterintuitive 75
cover 21507286 110111
Coxeter 113
cross product 107 180
cube (box) 71112 (power) 6455863 magic 5051 root 8159
cubic equation 810 partition 18 polynomial 127
curious 5977118
curtains 148
curve 55 figla figlb fig2 66115122 123135 fig8 149 151177 fig9
cycle 47132173
data 297577
Daykin 140
decimal 33363756 57101139145 159170
decomposable 112
decrease 1956
degree (polynomial) $\begin{array}{llll}5 & 13 & 15 & 127\end{array}$
(angle) 152177
delta 120181
denominator 124554 101 122-124 140
dense set 3
density 35
dependent 13
derivative 178
determinant 5101
determine 394247
118149152153
deuce rule 42
diagonal 2506890 120121177
diamonds 112
dice 6772
difference 14
forward 3738120
differential equation 178
differentiate 118
digit 3337394356 5772101115120 140141169170
dimension
two 48107153
three 18107112 153
four 107
n 7783
of vector space 1
direction 45123
dirty 158
disadvantage 181
discover 18496471 146149
discriminant 45
disordered 46
display 123145146 149153177
dissection 85 fig 4
distance 153177180
distinct 22566871 103112115150 171
distribution 2632 4046107
diverge 133
divide into parts 177180
division 101181
by zero 3171
divisor 435360101 110136
domino 86111112
don't care 17
dot product 107121
dots 6973
double 144578158 171181
dragon curve 135
draw (game) 7394
(picture) 55 figla figlb fig2 114 149177 fig9
dual 75
e 1237101117118 143144158178
edge 50112
egest 101
elegant 149
element 82102121
elementary function 178
ellipse 149152
elliptic function 10 131143158
empirically 101
empty 5278101172
endpoint 101177180
energy 46
epsilon 149152159
equal 132161174
equation 389178
equilateral 112
equivalence class 75
error 345101117 154181
bounds 101
escalation 88
escape code 177
estimates 8293101
Euler 107120
evaluate $13 \quad 14 \quad 68$ 116177178
even $54 \quad 115 \quad 133167$ 177
exact \{closed form\} 102641159
arithmetic 3152
example $61 \quad 687685$ 86101102110 $\begin{array}{llll}113 & 124 & 127 & 137\end{array}$ $\begin{array}{lllll}170 & 177 & 178 & 181\end{array}$
exception 324547 138181
excess-200 173181
exchange 163
exciting 149
Execuport 21
exist $11 \begin{array}{lllll}14 & 18 & 39 & 48\end{array}$ $\begin{array}{llll}76 & 97 & 102107\end{array}$
expected value 29 107
exponent 43160173 181
express $1 \quad 13 \quad 34 \quad 47$ 63131
expression 143643 57127177
extend 77
extra move 94
factor 28294547 $\begin{array}{lllll}52 & 61 & 63 & 120 & 136\end{array}$ 137
factorial $1 \quad 31 \quad 34 \quad 43$ $\begin{array}{llll}98 & 103 & 116 & 117\end{array}$ 121123139
fascinating 123
fascist 154
fast $120 \quad 142143$
fatal error 154
favorite 25
feedback 17101
fencepost 157
Fermat 106
fetch 179
Fibonacci 121447 123
field 13107
find $212231 \quad 6880$ 86111
fine structure constant 101
finite 3339132
finite-state 115
fit $\mathbf{8 3}$
fixed point
$\begin{array}{llll}\text { number } & 173 & 174 & 181\end{array}$
of a function 174
flatsize 134
flip-fiop 168
floating point 3101 $160 \quad 173174181$
flow 25126127129 130132
FMP 181
foo 168
forced win 94
form \{closed\} 3847 $\begin{array}{lllll}56 & 73 & 112 & 114 & 178\end{array}$
formula 1121418 $\begin{array}{lllll}77 & 86 & 120 & 137 & 158\end{array}$
forward difference $\begin{array}{lll}37 & 38 & 120\end{array}$
found 4961112137 179
fraction \{continued\} $\begin{array}{lll}32 & 122159173\end{array}$ 181
fractional fibonacci 12
fractional part 55 fig2 141
Fredkin, Edward 38 58
free 172
Freiberg, Jerry 157 165167
frob 113
FSC 158
function 5-7 10-12 $\begin{array}{lllll}15 & 17-19 & 25 & 68 & 83\end{array}$ $98 \quad 99118123$ fig6a fig6b 125 129131132142 143151158159 $\begin{array}{lll}174 & 178 & 179\end{array}$
future 25
game 42 46 67-76 78 $\begin{array}{lll}84 & 87-96112\end{array}$
gamma 117120178
gaps 83
garbage collector 172
Gardner, Martin 49 80 fig3a 112
gates 17
Gaussian
distribution 26
2740

Gaussian integer 55
figla figlb 136 137
GCD 52101
generalize 141821 47
generate $1126 \quad 2764$ 101137
generating function
$\begin{array}{lll}715 & 18\end{array}$
geometric
dissections 85
geometric mean 131 143
geometric series 38
geometry 2177
Geometry,
Introduction to 113
gigantic 101
giveaway chess 87
Go 96
golden ratio 1232
goodies 139
government 137
graph 147177
greater 175
greatest integer . 34
101120
group 5682 102-104 107
grow 101
gruesome 73
guidance 107
Gurley, Ben 149
hack 145149180
hackers 168
hairy 6797
half 32123
half-line 18
halfword 148155162
Hamiltonian path 103
hand 4694123 fig6a
fig6b
Handbook of Math.
Functions 143
handicap 42
hardware 181-191
Hardy, G. H. 136
hemisphere 107
Henneman, Bill 133
heptahedron 114
heptomino 109
heuristic 75 176-180
hex 94
hexadecimal 122145 167
hexafrobs 112
hexagon 4985 fig4 112114
hexiamond 112 fig5
hexomino 109
Hi-Q 76
high order bit 181
hole 77112113
homographic 101
how many? 395777
how much? 42
Hurwitz numbers 101
iamonds 112 fig5
identify 101
identity (equation)
42101118137
identity (group) 12 101102107
illustration 55
figla figlb fig2
80 fig3a fig3b 85
fig4 112 fig5 123 fig6a fig6b 128 fig7 135 fig8 177 fig 9
image 19123 fig6a fig6b
imaginary axis 3
impossible 495064 72112
imprecise 101
increase $18 \quad 56 \quad 68 \quad 99$
increment 132151 177 fig9 179
independent variables 2629 40101
independent vectors 14
independently 6471 77
indicator 68
induction 3275
inexorable 132
infinite $\begin{array}{llll}35 & 39 & 91\end{array}$ 101123135
infinity 83133
information $158 \quad 180$
input 1764101115 170179
Instant Insanity 71
instruction 64104
$\begin{array}{llll}149 & 158 & 166 & 169\end{array}$
172179181
integer $18 \quad 32 \quad 3440$
$4752 \quad 60 \quad 83101$
120125130136 171
integral $116 \quad 143$
interesting 112121
123138145146
interexpressible 1
international 137
interpolation 130
interval 15101115
intriguing 123
Introduction to
Geometry 113
invariant 101
inverse 12-14 25112
$\begin{array}{llll}115 & 118 & 150 & 178\end{array}$
invisible 48
iridium 137
irrational 45101
irreducible 13
isomorphic 107
isosceles triangle 135
iterate 12142556
6172115124 132-135 158176 179
itself 122132
Jensen, Eric 132170
joys 63
jump 6476
$\begin{array}{llllll}\text { king } & 70 & 78 & 87 & 88 & 89\end{array}$
king-moves 177
knight 387078
known 3945616364 80 fig3a 8586 127133143173
Knuth, Donald 2955 fig2 101132
Kok, Jan 2
Komolgoroff 105
L 68
language 80 fig3b 154
large 3294122
larger 62171
largest $14 \quad 29 \quad 43 \quad 72$ 132159179
Lasker, Edward 70
last 106123157176 179
last digit 57
last move 6884
lattice 485268177
least common multiple 47
left 112181
Legendre 29
lemma 1950
Lenard, Jud 169
length 27394749 $\begin{array}{lllll}56 & 57 & 61 & 68 & 123\end{array}$ 132156169
lexicographic 75
Liknaitzky, Rici 64 155166
limit $35 \quad 77 \quad 115 \quad 131$ 142143
Lindgreen, llarry 85
line 1838687393 170177180
line-oriented 149
linear 101
linear combination $\begin{array}{lll}13 & 127151\end{array}$
linked 172177
Lisp 163
list $\begin{array}{lllll}68 & 82 & 132 & 170\end{array}$ 172
listen 168
location, memory 161 172179
locus 45
log 12-14 $26 \quad 2935$ $\begin{array}{llll}117 & 143 & 144 & 158\end{array}$ 160178
$\log 2 \quad 120 \quad 132160$
logic 17-24
long 68123132
longest 33
longhand 134
loop $325 \quad 576162$ 101 132-134 154 $\begin{array}{llll}176 & 177 & 179 & 180\end{array}$
lose 180181
10w 2225145160 168170181
lowest 546
lowest terms 101
LSH 25158
machine $25 \quad 64 \quad 66101$ 115180
machine independent 154
magic 49-51 81 165
magnitude 123154
$\begin{array}{lll}173 & 177 & 180\end{array}$
majority 17
Mann, Bill 169
$\begin{array}{lllll}\text { map } & 11 & 18 & 107 & 113\end{array}$
115128 fig7 132
mask 22
match 101115132
173179
Math. and Plausible Reasoning 125
Math. of Computation 140
Mathlab 4127
matrix 14107
maximum $35 \quad 39 \quad 56 \quad 63$ $\begin{array}{llll}67 & 68 & 164 & 180\end{array}$
mean 131143
measure $45 \quad 107137$
member $4761 \quad 62115$ 120
memory 115154161 172
Mersenne 2863
$\begin{array}{llllll}\text { method } & 3 & 12 & 21 & 26 & 29\end{array}$ $\begin{array}{llll}42 & 126 & 143 & 170\end{array}$ $\begin{array}{lll}172 & 178 & 179\end{array}$
metric 101
midpoint 177
minichess 78
minimal 12212285 137149
minimal
representation 101
minimum $17 \quad 21 \quad 62 \quad 73$ 98
Minsky, Marvin 64 149153
mirror 135
mistake 149
Mitchel1, George 156 mode 177
modern analysis 143
modular function, elliptic 10139
modulus 12134345 $\begin{array}{lllll}47 & 86 & 101 & 122136\end{array}$ 167
monotonic $18 \quad 101 \quad 177$

Montroll, E. W. 86 more 37112122
most 46 fig3b 95114 move \{game\} 25

MOVN 181

Mozart, Wolfgang 63 multinomial
coefficient 4344
multiple 4557
multiple valued 137
multiplication 12
101107137149
multiplication
formula 14158
multiply perfect
number 60
multiprecison
\{bignum\}
munching squares
146-148
Murphy 176
music 168
myth 154
n-space 1127
n-sphere 11107
narrowness 101
natural boundary 125 130
nearer 177
nearest integer 101
necessary 111130
negation $101 \quad 123181$
negative 133138143
153170
negative radix 128 fig 7
neglected term 159
neighborhood 107177
Nelson, Stuart 162 174
never 94162171
new 149
Newton's method 312 126178
next $120 \quad 123160$
Nim 6874
no $185051 \quad 6376$
107112127132
noise 145180
non-commutatively 107
non-digits 170
non-exponential 68
non-integer 130
non-regular
continued
fraction 122140
non-trivial 28137
145
non-uniform
distribution 32
nonlinear recurrence 15
nonzero $13 \quad 57107$
norm 136
normalize 27181
not $17 \quad 19 \quad 68113115$ 161172
noted 56
$\begin{array}{lllllll}\text { nth } & 5 & 7 & 14 & 15 & 37 & 38\end{array}$
4357101115120
121130176
numerators 101
$\begin{array}{llll}\text { numerical } & 22 & 151 & 181\end{array}$
representations 101
n
n 118
occurrence 62
octagons 135
octal 145169
octant 18
odd $45 \quad 68 \quad 133167$
odd-even 177
offset 167
omino \{polyomino\}
one $\{1\} 67101122$
169181
one-digit 56
one-to-one 11101 115
one-ups-manship 169
ones-complement 154
only 4547576364
7176174
onto mapping 11115
opening 148
operand 101181
operation 1134101
132146172
opponent 7888
optimal 6772
option 176
OR $1819 \quad 23 \quad 25$
orbit 153
orchestras 63
order 1214155051 $\begin{array}{llll}77 & 81 & 94 & 108 \\ 112\end{array}$ 117169181
ordered pairs 12151
ordering, partial 18
origin 52149153 156
original 22124
orthogonal matrix 107
outer 177
output 25101115 168176
overflow 154167
overlap 84176
packed 71
pair 126162101 103151
palindrome 177
parallel 50
parallelogram 112 114
parameter 107
parity 115122167
partition 18
Pascal's triangle 121
Paterson, Mike 71
path 19103
pattern 114122123 145154
pawn 70788789
PDP-1 7475123
fig6a fig6b 146 168
PDP-6/10 104168
$\begin{array}{llll}169 & 173 & 174179\end{array}$ 181
peg solitaire 7576 pentagon 85
pentomino 84
perfect number 60-62
period 68101132 154
periodic 45101149
permutation 225675 103104
perpendicular 3107 120180
Perron 100
phase 137143
phenomenon 176
phi function 45
phrase 176
physically 123
pi $45 \quad 525563101$ 107116119120 124 137-139 143
pi(x) 65
pingpong 42
pitch 107
PL(n) 18
place 139166178 180
placing 688490
planar partition 18
plane 52109111114 143
platinum 137
player 42 67-69
72-74 84 87 88 90 9294
plotter 123 fig6a fig6b 149177
Plumer, Dave 71
plus 2375
point 32424852 107123130145 149150152160 174177180181
pointer 156157164 165172179
poker dice 67
polar 107
pole 101
Polya, George 125
polygon 220180
polygonal 177
polyiamond 112 fig 5
polynomial $\left\{x^{2}\right\} 512$
 178
polyomino 77 108-110 112
position 22687693 9596103115170
positive 3498133 137153170173 174
possible 6872130 132
$\begin{array}{lllllll}\text { power } & 12 & 14 & 32 & 37 & 38\end{array}$ 4347535763 101118120121 125127129130 149154159167 181
power, large 32
precision 101
predecessor 115150
prediction 252947
preempt 101
preserve 22115
previous 122130
prime $172930 \quad 33 \quad 35$
414345474852
$62 \quad 65136 \quad 137$
primitive root 57
print, decimal 170
probability 293742
52-54 57 107
probable, most 46
probably $\begin{array}{llll}32 & 35 & 83 & 85\end{array}$
$\begin{array}{llllll}\text { problem } & 1 & 2 & 11 & 17 & 19\end{array}$
$\begin{array}{llllll}21 & 22 & 27 & 31 & 32 & 34\end{array}$ $\begin{array}{llll}36 & 3942474968\end{array}$ $\begin{array}{llll}70 & 73 & 101 & 103107\end{array}$ 110111116119 123127129130 133150177180
procedurally 101
procedure 13
product 13454756 107122
PROG2 163
program 57616475
77-96 101103123
137145-180
progression 3599
project 11
projective 107
promoted pawn 87
proof 1318325052 9497106113
propoganda 101
prove 89
proved 31354764 85122
pseudorandom 132
pushdown 158170
PUSHJ 158177
puzzle (games) 5671 79112
puzzle (question) 18
Pythagoras, Joe 58
quadrant 18158177
quadratic 3143
quadrillion 30
quadrisecting 115
Quarterly Journal of Pure and Applied Math. 139
quartic equation 49 quaternary 37
quaternion 107
queens 87
question 57114
quintic equation 10
quotient 99171
radius 83125150 153
radix $\{$ binary,
ternary, quarternary, octal, decimal. hexadecimal. negative, complex\} 333743 55 figla figlb fig2 63101115 122128 fig7 154
Ramanujan 31139
random number generator 25132
random number 25-27 $\begin{array}{llllll}29 & 32 & 37 & 52 & 54 & 57\end{array}$
random variable 40
random vector 27
range 4083101133 158
range-reduced 143 158
rapidly 14122
raster 21
rate 14143
Rathbone 140
ratio $38 \quad 80 \quad 101159$
rational function 12 101125
rational number 38 $45 \quad 54101130$
Rayfield, Malcolm 135
re-normalize 181
reactionary 101
read-only 154
real number 33245 $\begin{array}{llll}105 & 115 & 137 & 138\end{array}$ 143178
recant 101
reciprocal 101120
recognize 101
rectangle 6880
fig3b $86 \quad 110112$
recurrence 12-1644 151158
recursive 158170
rediscovered 64
redouble 45
reduce 101
references $48 \quad 4956$
$\begin{array}{llllll}70 & 77 & 79 & 80 & 85 & 86\end{array}$
100105112113
$120 \quad 125 \quad 136 \quad 139$
140143
reflection 181
region 22024
register 25149
regular 101
Rektorys 12
related $45 \quad 63145$
relation 1314121
relatively prime 48 52
relevant 173
remarkable 151
remove digits 33
repeated $12 \quad 67131$
132143167
repeating pattern 114
replace 127133134 169177
representation 107
representing 20
required 37113
restored 158
reverse bits 167
reverse paths 103
Riemann surface 143
right angle 137
rightmost digit 14 33
rigid rotation 107
roll 72107
rook 78
root $3 \quad 5 \quad 8 \quad 9 \quad 1214$
$\begin{array}{lllll}34 & 57 & 77 & 101 & 126\end{array}$
127143149151 158
Root, Steve 61169
ROT 104
rotate 11103107
123135153166
rotation 81107146
roundoff 3101173 181
row $5078 \quad 90 \quad 91 \quad 112$ $\begin{array}{llll}115 & 120 & 121 & 179\end{array}$
$\begin{array}{llllll}\text { rule } & 12 & 42 & 67 & 84 & 102\end{array}$
ruler function 132
salvaged 45
Samson, Peter fighb 164
satisfying $9 \quad 45 \quad 115$ 129178
scalar 12107
scale \{stretch\}
Scarne, John 90
Schutzenberger, Marco 39
Scientific American $49 \quad 79 \quad 80 \quad 85$ fig4 112
Scientific American Book of Puzzles 80 fig3a
score 426772
Scott, Dana 133
search 3161176177 179
seems 4768
segment $39 \quad 177 \quad 180$
self, map into 132
self-referent list 132
semigroups 82
semiquadrant 177
sentinel 160
separating 151
separation, minimal 62
sequence 143839 $\begin{array}{llll}115 & 176 & 177 & 179\end{array}$
series 1247 115-125 129130139158
set $317 \quad 354548 \quad 52$
84105107115 $132137150 \quad 170$ 172
SETQ 163
Shanks, Daniel 65
shape 2048111112 115
shift $25 \quad 132 \quad 167181$
short program 101 145
show 4272107110 112
shrink 20101123 135
side 2049687678
80 fig3b 869495 110112114137 177
sigma 116118120 123124
sign 154160168173 177181
sign-magnitude 154
signals 145
Silver, David 135
Silver, Rollo 25
Sim 73
similar 516897
similarity 127
simple 1897115146
simplify 177
simultaneous 68144 151
sine 1026101107
129142149151
158159
single 153
sinh 158
size 29149
skip 83162179
sliding block puzzle 79
slope 38
small 80101106158
smaller 62158
smallest 486880 fig3a
smidgen 45181
snowflake curve 135
solid 153
solitaire 76
solution 8-10 2127
31354971112
$\begin{array}{llll}\text { fig5 } & 127136137\end{array}$
solve 1021687178 7984 90-96 143 144
Soma 112
soma-like 77112
space 11192777
107123158
spacecraft 107
spacefilling curve 66115122135
spacewar 114
special $64 \quad 137181$
Speciner, Michael 18 62160
speed 123158
speed of light 101
sphere 1127107
sporadic 122
square (rectangle) 48686980 fig3a fig3b 85 fig4 86 90112115
square root 93497 101126137143 152158159
sqrt(2) 32
sqrt(3) 116
square (exponent) 5 61214313645 47596380119 124127144169
square, magic 50147
square, munching 146 148
square waves 168
squashed 180
stability 150151
stable 149152
stalemate 73
Stallman, Richard 166
standard form 101
starting 76
state 2546115148
Stegun 120143
step 135
step function 83
step (walk) 45
step (number required) 1214
stereo 145
stereographically 11
stopl 19
stopped 57
store 132172
straight 38
strategy 677273 154
stretch 1152135 127
string 183739122 128 fig7 154170 176177179
String fig3b
sub-cycles 47
sub-problem 39
subexpression 101
subgroup 107
subroutine 101
substitute 101122
substring 179
subtract 64101155 158
succesive
appoximations 101
successor 68
suit 46
sum 2943506061
7276 121-124
fig6a fig6b 154 180
super-fast 142143
superimposing 20135
surface 143
Survey of Applicable Math. 12
susceptibility 25
suspicious 32122
Sussman, Gerald 163
swap 103161162
sweep 123
switch 132146148 168
symbolic functions 101
symmetric function 5-7
symmetry figlb 101
synthesize 1719
system 107154
table 115132165
tabulated 72
Tactix 74
take-away games 68
tangent 16107142
158177
tanh 101158
Taylor series 158
Technology Review 56
Teco 176
Teeko 90
term $14 \begin{array}{llll}34 & 101 & 120\end{array}$ 122123129139 140159
term, last 101
terminate 101
termination 181
ternary 3637
tessellating 109
tesseract 51
test 47158159177
text 176
$\begin{array}{lllll}\text { theorem } & 29 & 38 & 48 & 85\end{array}$ 106
theory 6877
Theory of Numbers 136
thermodynamic 46
three $\{3\} 6070166$
Thue 122
tic-tac-toe 9192 112
Tiger Puzzle 79
time $\begin{array}{llllll}28 & 65 & 68 & 93 & 123\end{array}$ $\begin{array}{llll}144 & 147 & 160 & 178\end{array}$
top-tested 177
toroidal space 101 114
total 2572
tracing 123
trailing 132
transcendental functions 101
transcendental number 101122
transfer \{jump\} 179
transform 12158
transformation 120 124
translate 11107127 168
trap 154
trapezoid 112
TRCE 162
tree search 75
triangle 737585 112
triangle, Pascal's 121
trick 101
trillion 2930
trinomial coefficient 116
triple 1488158
truncation error 101 181
twice $39 \quad 50 \quad 86 \quad 123$ 158
twin primes 30
two \{2\} $525761 \quad 62$ $\begin{array}{llllll}68 & 72 & 73 & 84 & 89 & 90\end{array}$ $\begin{array}{llll}162 & 163 & 172 & 177\end{array}$ 180181
two counter 64
two-dimensional 18
two-member 6162
twos-complement 154 181
typeout 170
typical 77
typo 10101
unclear 123150
underflow 160
unequal $46 \quad 52 \quad 80 \quad 181$
unfeasible 93
uniform $26 \quad 2732$
uniformly 3240107
union 52101
unique 134955
figla figlb fig2
101102130136
unit \{sphere, interval, circle, quaternion, cell. square\} 273283 107114115123
universal 64
universe 154
unknown 101
unnormalized 181
unproven 92
unstable 3
upward 19
useful 151176
valid 113143
value $1317 \quad 25 \quad 29 \quad 50$
$99 \quad 107 \quad 122 \quad 132$ 147177
variable $6717-20$ 40156163
variance 40
variations 112123 145
vector $1213 \quad 27107$ 180
velocity 149

Venn diagram 2024
verboten 88
verified 77107112
verify 2885
vertex 180
views 147
visible 48
visual information 180
volume 107
Waltz, Dave 21
Watson 143
waves 168
white \{chess, *
checkers\} 7084 8889
Whittaker 12143
win 42 67-69 72-75 $\begin{array}{lllll}84 & 87 & 89 & 90 & 92 \\ 94\end{array}$
window-dice 72
wobble 153
wonder, great 149
word (computer) 25 157165169
Wright, E. M. 136
Wright, Jackson 146
$x^{2}-2 \quad 127$
$x^{2}-x-1 \quad 12$
$\begin{array}{llllll}\text { XOR } & 17 & 23 & 25 & 68 & 115\end{array}$
147
Yao, Frances 64
yaw 107
year 93
zero digit 183657 $122 \quad 132 \quad 170 \quad 181$
zero element 1347 107
zero loop 133
zero of polynomial 5
zero (number) 3235 4564101143
zero, division by 3 171
zeroless 57
zeta function 53119 124178

