
G. V. Pereverzev, P. N. Yushmanov

ASTRA
Automated System for TRansport Analysis

IPP 5/98
February 2002

..
MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEl MUNCHEN

ASTRA
Automated System for TRansport Analysis

G. v. Pereverzev and P. N. Yushmanov*

* Aspen Technology, Inc.
12730 High Bluff dr.
San Diego, CA 92130
USA

IPP 5/98 February 2002

Contents

1 Introduction

2 Overview of the Astra code

3 Background equations and formulae

3.1 Coordinate systems, surface averages and fluxes .

3.2 Formulae for plasma current and magnetic field .

3.3 Equilibrium equation .

3.4 Toroidal electric field .

3.5 Joule heating and Ohm's law .

3.6 Transport equations .

3.7 Sources and sinks .

3.8 Initial conditions .

3.9 Boundary conditions for densities and temperatures .

3.10 Boundary condition for the poloidal flux .

3.10.1 Prescribed plasma current .

3.10.2 Prescribed loop voltage .

3.10.3 External circuit equation .

3.11 Closure of the equilibrium and transport equations .

3.11.1 Prescribed plasma boundary. . .

3.11.2 Adjustable boundary .

3.12 Auxiliary transport equations .

3.13 Equation for gas puff neutrals .

3.14 Other Astra compatible packages available by request .

3.14.1 Additional heating and current drive .

3.14.2 Transport coefficients .

3.14.3 Impurity transport and radiation .

3.14.4 Stability analysis .

6

9

15

15

18

21

22

24

25

27

28

30

31

31

31

32

32

33

34

34

35

36

36

37

37

37

ASTRA - Automated System for TRansport Analysis 4

4 Reference guide

4.9 Plug-in subroutines

4.9.1 Ionization particle flux (GNEX, GNXSRC).

4.9.2 Upper and lower function boundaries (MINMAX).

4.9.3 Sawtooth oscillations (internal disruption) (subroutine MIXINT).

4.9.4 Gas puff neutrals (subroutine NEUT).

4.9.5 Density adjustment (SETNAV).

4.9.6 Smoothing a function (subroutine SMEARR). .

4.9.7 Store array / variable value at a given time (STARR / STVAR).

4.9.8 User defined time step control (subroutine TSCTRL).

4.10 Interfaces to additional heating and CD modules.

Units and variables

Built-in functions .

38

38

40

42

43

44

45

45

46

47

49

50

56

61

61

63

65

66

68

73

73

73

73

74

74

75

77

77

78

78

79

List of expressions

Fortran intrinsic functions

Functions for mapping one flux label to another

Radially dependent functions

Types of expressions

Time dependent functions

Astra expressions

Astra variables .

4.3.1 Initial conditions for NE, TE, TI, Fj .

4.3.2 Initial conditions for the poloidal flux 1jJ == FP

Boundary conditions .

4.4.1 Boundary conditions for ne , Te , Ti , fj .

4.4.2 Boundary condition for the poloidal flux 1jJ == FP

Link between the transport and equilibrium parts of Astra

4.7.1

4.7.2

4.6.1 Scalar (time dependent) variables .

4.6.2 Vector (radially and time dependent) variables ..

4.8.1

4.8.2

4.8.3

4.8.4

Transport equations in Astra notations

Initial conditions

4.4

4.5

4.6

4.1

4.2

4.3

4.8

4.7

ASTRA - Automated System for TRansport Analysis 5

4.10.1 General features. 79

4.10.2 NB heating and current drive (subroutine NBI by A. R. Polevoi) . 80

5 User's guide

5.1 General concept. . .

5.2 Setting a model . . .

5.2.1 Model file .

5.2.2 General rules .

5.2.3 Arithmetic expressions .

5.2.4 Connection of plug-in modules. . .

5.2.5 Transport equations .

5.2.6 Radial output .

5.2.7 Time output. .

5.2.8 Advanced options .

5.2.9 Several examples .

5.3 Data setting .

5.3.1 Hierarchy of data initialization. .

5.3.2 Reading from a ".log" file

5.3.3 Input from a data file.

5.3.4 Run time variable setting .

5.4 Data file format .

5.4.1 General requirements .

5.4.2 Reading data from aU-file. . .

5.4.3 Fixed format input .

5.4.4 Free format input. .

5.4.5 Input format for the plasma boundary. . .

5.5 Brief operation guide .

5.5.1 Installing the code .

5.5.2 Starting the code .

5.5.3 Run time control .

5.5.4 Post-run viewer .

86

86

88

88

89

90

92

94

101

104

104

106

116

116

118

118

122

122

123

125

126

129

133

135

135

136

138

143

ASTRA - Automated System for TRansport Analysis

1 Introduction

6

The first transport simulations came up in the late sixties when the problem was formulated

by B. B. Kadomtsev and O. P. Pogutse [1] and one of the first transport codes for a tokamak

was created by Yu. N. Dnestrovski and D. P. Kostomarov [2]. One of the authors (GVP)

of this report was among the users of this first code and is strongly influenced by the ideas

implemented there. Further development of transport codes passed through several stages

implied by developments in plasma theory, tokamak experiments and computing techniques.

In spite of great progress achieved in tokamak physics during years of research, the

transport processes are still far from being really understood. Although theoretically derived

transport models are constantly developing and their predictability improves, today's trans­

port modeling is to a large extent empirical and based on scaling studies and trial-and-error

approach. The latter assumes that a number of calculations should be accomplished until a

reasonable agreement between experimental data and modeling results is achieved.

The transport code used for this goal should be easily tunable and adjustable for

new tasks arising during the study. On the other hand, the set of equations to be solved

numerically is strongly coupled: the same physical quantity appears in many different places

in the code, so that even a minor change can invoke a long chain of related modifications.

This feature suggested the value of an automated code builder, which was implemented in

the first version of the Astra code at the late eighties in Kurchatov Institute in Moscow.

The current version has benefitted from years of experience in transport modeling,

and comprises of the majority of tools which are required for the transport analysis of

tokamak experiments. Nevertheless, the practice of transport modeling shows that new

requirements are continuously arising. Therefore the code is continuously being developed,

and new features are being added increasing its functionality. The ability of Astra to acquire

new features, without modifying the background organization and user interface, has made

it one of the most popular transport simulation tools in the fusion community. The code

is opened for modifications and expansion into new areas. Dozens of people have already

contributed their developments into Astra. The authors are thankful to all Astra users,

and especially those who have contributed useful suggestions and have participated in the

improvement of the code. Particular thanks are due to C. M. Roach, who read the manuscript

and essentially contributed to its improvement.

ASTRA - Automated System for TRansport Analysis 7

The currently supported version 5.3 of the Astra code runs on Sun, IBM, DEC UNIX­

workstations and on IBM PC (under Red Hat Linux). It uses UNIX C shell, Fortran/C

compilers, and the XII graphic libraries, all of which are available on all UNIX systems.

Installation requires about 20 MB of system disk space (this is shared by all users in the

same file system). In addition, the minimum requirement for each user is 10 MB, which can

however be considerably exceeded depending on the size of personal libraries. The code is

freely distributed and requires no special licenses.

The ASTRA (Automatic System for TRansport Analysis) code is more than a trans­

port code in the conventional sense. It is a flexible programming system capable of creating

numerical codes for predictive or interpretative transport modeling, for stability analysis or

for processing experimental data. It is also not restricted to tokamak applications exclusively.

Some features are added to versions 3.0 and onwards which allow for lD stellarator modeling.

The Astra system comprises

- an extensive library of modules describing different physical processes and data treat­

ment

- a supervising shell which keeps track of changes in the libraries, processes user's re­

quests and assembles different modules in a required application

- a graphic interface enabling transparent and user-friendly run control and flexible data

presentation

- an interface to an experimental database

- a help tool with built-in descriptions and a set of examples which facilitate use of the

code.

Transport codes generated by Astra have a modular organization so that each physical

process or derived quantity is called by name which represents an object with encapsulated

implementation. In the majority of cases, the user deals only with the object names and

is not involved in the implementation details. The modular organization allows a variety

of processes easily to be included in the code, achieving different levels of the description

of experimental device required by the problem under consideration. The encapsulated

ASTRA - Automated System for TRansport Analysis 8

implementation of objects also decreases the possibility of errors by ensuring that the same

expression for a physical quantity is used in all places of the transport code.

Another significant feature of the system is that it generates interactive codes. The

user can observe the time evolution of plasma parameters during the program execution,

interrupt it and change data presentation and control parameters influencing the course of

the modeling. This enables the testing of different transport hypotheses at run time, and so

increases the efficiency of the modeling. The code can also run in background mode, which

is useful for routine calculations, or for time consuming cases, e.g. when many additional

heating schemes are involved. All output information is then saved and can be retrieved

afterwards to study the time evolution of the discharge.

The paper is organized as follows. Section 2 provides an extended introduction to the

Astra system: it describes the general structure of the code and gives a bird's eye view of the

code. The main physics background is presented in Section 3, which discusses the geometry

of magnetic surfaces and related coordinate systems, the 2D equilibrium equation and a

system of ID transport equations and their closure (1.5D set of equations), appropriate

boundary and initial conditions, possible energy and particle sources and sinks including

an overview of the main schemes of auxiliary heating and current drive. This section also

contains a number of formulae which are useful for setting transport modeling tasks. While

providing the general background, this section is not directly related to the Astra code, and

presents a reference for the detailed specification of transport problems.

Astra code variables and the adopted system of units are introduced in Section 4 (Astra

Reference Guide), where the internal representation of the system of transport equations is

also formulated. Further discussion in this section is devoted to the generation of user

created transport models. Then different modules of the code which are not directly related

to transport and the corresponding interfaces with the transport core are discussed. Section 5

(Astra User's Guide) describes the Astra modeling language used for the creation of transport

models. This section also includes the description of the Astra experimental database format

and the transfer of database information to simulation run. Starting the code, run-time

operation and control are also discussed there.

ASTRA - Automated System for TRansport Analysis

2 Overview of the Astra code

9

There are several features, which the user has to be aware of, to understand the operation of

Astra. First of all, Astra is not a ready-to-run application, but a tool for building customized

computer codes for the solution of a variety of transport problems in magnetically confined

plasmas. Customization of the code is the reason Astra's for extremely high flexibility

and effectiveness. Such a programming paradigm requires two major steps: specification

of the transport problem, and performing simulations for selected conditions. In addition

simulations may be done in two different ways: depending on the nature of the problem

under consideration, the user may select to run simulations in the active control mode or

the background mode. The description of the user interaction with Astra is shown in the

high level usage diagram.

User Astra

Specifies machine para­
meters and starts run

Controls simulations
at run time

ISpecifies transport task I

1----------------....
1
Builds computer code I

......-----_1

.-----a_c_t_iv_e---< mode >---b_a_ck----"'g:.....-T_o_u_n_d -+i Performs simulations
and saves results

I Views results 1.....·-------------

~---------------~Per~rmssimulations
and displays evolution

1-4-------------l of parameters

__________------...1 Saves and prints data 1

• if requested

Let us now consider each step of operation with Astra in more detail. To set the

ASTRA - Automated System for TRansport Analysis 10

transport task the user basically has to specify how to perform the simulations and what to

display. Some adjustment of these settings may be done through run time control, but the

overall simulation tasks of the generated code are determined during the initial transport

model specification. The following features of Astra are used to specify the model description:

- transport modeling language

- standard expressions for physical quantities

- modules representing physical processes or features of the experimental device.

The modeling language is described in Section 5.2, standard expressions are listed in Sec­

tions 4.7 and 4.8, basic modules are discussed in Section 4.9.

To convert the model description into an executable code, Astra interprets the model

description (source prototype) and compiles the generated source code. The sequence of

operations and Astra objects involved in the whole process of creating the code and obtaining

simulations results are shown in the flow diagram.

ILanguage I 1Expressions I IModules I

STEPl ~ 1 ~
1 User specifies task I

1

STEP 2

STEP 3

IModel description I

ISource prototype I IExpression lib I

~ /
IInterpreter builds sourceI---I Model report I

1
1 Source code I-----------

IBuilt-in modules I IPlug-in module lib I

~ /
1Compiler builds executable I

1

1 Astra language I

ASTRA - Automated System for TRansport Analysis

1
1Executable code I ...·-----------11 Binary II

11

STEP 4

IExperimental data I

~

1 Run-time control lib I

/
ISystem runs simulation task I

1
1Results I

Graphics
ASCII
PostScript

Specifying the simulation task is still a programming job, but it is simplified greatly by

using Astra's high-level transport problem oriented language. To add a specific physical

process to the model description the user has only to call it by name in the proper context.

Analyzing these requests the Astra interpreter creates a source code where the expressions

corresponding to the process names are used in the way specified by the context. These

expressions are stored in the expression library and may be viewed or modified by the

user. Similar things happen with modules describing auxiliary properties of experimental

device such as heating or current-drive systems. Even if these modules involve a lot of

functionality and controls, the user may easily add them to or remove them from his model

description at his own discretion depending on the specifics of the transport task. Due to this

add/remove option these modules are called plug-in. In addition, transport codes generated

by Astra contains a number of built-in modules such as the time evolution driver, a graphical

representation of output, a supervising control shell, and other features of the transport task

which are always included in the simulation model. This part of the code provides the

framework for the operation of the customized part and is hidden from the ordinary user.

Modification of this part is rarely required, and an increased Astra functionality is available

through the use of expression and plug-in module libraries.

A few words have to be said about executable transport codes created by Astra.

Though executable code is customized for each specific task it always has the following

set of standard features:

- it may be run either in the active or background modes, depending on the type of

simulations performed by the user

ASTRA - Automated System for TRansport Analysis 12

- in the active mode, code enables user specified run time control

- the code interfaces with the experimental database which includes discharges from

many machines

- it has a modular organization.

The first three features are represented In the high level usage diagram. They will be

discussed in more detail in Section 5. Modular organization is supported by the method of

the code creation. Each block necessary for simulations is connected to other blocks through

the Astra environment providing uniform control and exchange capability. Plug-in modules

are included and connected through the same mechanism. Modular organization allows easy

modification of the code and provides an efficient tool for building transport codes to any

level of detail. The generated transport code has a transparent image in model description

(prototype) and summarized in the model report, which in a compact form and without any

omissions represents the whole complexity of the executable transport code.

The structure of the Astra code is shown in the module diagram.

Astra environment and internal data storage

7 j j ~
Interface to Built-in Transport Plug-in Data display Output
database modules equations modules and control interface

The other feature of Astra, which has to be discussed, is that Astra is a multi-user

distributed system. Generally, there are the code kernel and several working directories for

each user. The kernel of the code is shared by all users through a set of symbolic links to the

kernel directory. This enables user's access to libraries of expressions, plug-in modules and

object modules. On the other hand, all core parts of the code, such as the model interpreter,

supervising shell, code building tools and built-in modules are present in the kernel only and

consequently cannot be modified by an unauthorized user. This shared configuration saves

disk space and more importantly keeps all users with the most recently updated version of

the kernel while only one version of the kernel needs to be maintained.

The user owns all variable parts of the code such as model descriptions, executable

codes, experimental libraries and the results of modeling. A trickier issue is the ownership

ASTRA - Automated System for TRansport Analysis 13

of the libraries of standard expressions and physical processes. Basically they belong to the

kernel directory and a user has read-only access to the sources files. This allows viewing and

linking standard modules in a user created code but forbids any changes in these modules.

The latter is however not really restrictive since every user can have his own library and

use it together with the common one. Users may also create new modules or expressions

for their own particular needs. In particular, a user can copy a common module to his own

directory with a new name, then include it in his personal library thus acquiring all rights

for subsequent modifications.

Physical locations of different blocks of the Astra system and scheme of their interaction

are shown in the component diagram.

KERNEL DIRECTORY

Common library

j

USER'S ASTRA WORKING DIRECTORY

User library

Code builder
Transport code

prototype

Executable code for
transport data

analysis

1

Graphic
output

Run-time
control

Device parameters
Experimental data
Initial conditions

Interactive
control panel

/

Post-viewer 1·--

Stored output
data

At the code installation, the user's Astra directory structure is created. We denote the root

directory of this structure as Awn (Astra Working Directory). This directory is a current

working directory during the code execution. In the code, relative addresses only are used,

ASTRA - Automated System for TRansport Analysis 14

therefore, AWD can have arbitrary location with respect to user's home directory. Moreover,

the user can simultaneously handle several versions of the Astra code, each linked to different

kernels. However, if another name is not given explicitly then AWD is $HOME/astra . Specific

components are stored in subdirectories which are given in Table 2.1:

Table 2.1: Astra working directory structure

Directory Contents File owner User access
AWD/equ/ Transport code prototypes and *.log files User Allowed
AWD/exp/ Device parameters, experimental data base User Allowed
AWD/udb/ Input and output data in the form of u-files User Allowed
AWD/dat/ Computation results (ASCII) User Allowed
AWD/frnl/ Simple expressions (formulae) Mixed Allowed
AWD/fnc/ Extended expressions (FORTRAN functions) Mixed Allowed
AWD/sbr/ Plug-in modules (FORTRAN subroutines) Mixed Allowed
AWD/trnp/ Included intermediate FORTRAN source files User Restricted
AWD/.res/ Computation results (post-viewer binary files) User Restricted
AWD/.tsk/ Executable transport codes User Restricted
AWD/for/ Service and built-in modules System Not allowed
AWD/.lbr/ Common libraries and executable modules System Not allowed
AWD/.exe/ Core and built-in modules Mixed Not allowed

In most practical work, the user deals mainly with the first 4 directories of this table.

All these directories include user owned files in ASCII format only. The directory AWD/equ/

contains transport code prototypes (in what follows "models") and related files. The syntax

of model files is discussed in Section 5.2. The directories AWD/exp/ and AWD/udb/ comprise

of the experimental data base for interpretative modeling and initial data for predictive

simulations. Astra format for input files is described in Section 5.4. Computation output

files, either in ASCII or in Post Script format, are stored in AWD/dat/. Output data files

have self-evident form and do not require explanations.

More advanced users may also add files to directories AWD/frnl/, AWD/fnc/, AWD/sbr/.

These directories can include both shared (soft links) and personal files. Every new file

appearing in these directories is automatically compiled and added to a user library of

object modules, so that it can then be used in the transport code.

The last six directories in the table are used by the Astra system but the unauthorized

user has no access to change files in these directories. This part of the Astra system and its

kernel are not described in the current report.

ASTRA - Automated System for TRansport Analysis

3 Background equations and formulae

3.1 Coordinate systems, surface averages and fluxes

15

In this section we provide a summary of the main relations used in this paper. Detailed

derivations and discussions can be found in [3]. For the purpose of the geometry description,

we consider the magnetic system as being toroidally symmetric. Small violations of sym­

metry, which are always present in real systems, are neglected in the equilibrium, but may

taken into account in the confinement properties of the plasma.

For the description of tokamak geometry we use two coordinate systems. The first one

is the cylindrical coordinate system {r, cp, z} with the polar axis coinciding with the major

axis of a torus. The second {a, (), (} is related to the magnetic geometry of the tokamak,

and uses a "radial" variable a, which is an arbitrary label of a magnetic flux surface, and a

poloidal angle (), the specification of which does not play any role below. In order to make

both systems right-handed we choose the toroidal angle (as (== -cpo

We denote a flux surface, defined by the equation a == Const ,as Sa and introduce

a volume integral over the interior, V, of this flux surface

a dB a 2 'iT 2 'iT a 2 'iT

V = f dV = fda f IV:I = fda f d(f vgde = 21f fda f vgde
V 0 Sa 0 0 0 0 0

(1)

where g is the determinant of the metric tensor g = (~~~:~: ~D 2 = (VaVeV()-2 and

V is the volume of V. The flux surface average of an arbitrary function f(r) is defined

a a a 2 'iT 2 'iT a 2 'iT

(J) = av f f dV = av f da f d(f vgf de = 21fa~ f vgf de.
V 0 0 0 0

(2)

The symbols for partial derivatives are used here in order to emphasize that all surface

functions (i.e. the functions of single space coordinate a) are also functions of time t.

Equation (2) can equivalently be represented as

(J)=~ffdV==ffdSa =a'IjJff~=ff~/f~, (3)
av IVVI av B pal B pal B pal

V Sa

ASTRA - Automated System for TRansport Analysis 16

where the poloidal flux 1jJ and the poloidal component, B pal , of the magnetic field Bare

determined in the next section. For any axisymmetric function, f == f (a, 0), one also has

(B·VJ) = (div(jB)) = a~ Jdiv(jB)dV= a~ f jB·ds=O. (4)
V Sa

Making use of Eq. (3) we find the area of a magnetic surface

f a! avSa = dSa = av IVVldV = (IVVI) = aa (IVai)·
Sa V

Further useful properties of the averaging procedure are

(5)

(F(a)f(a, B)) == F(a) (f) ,
av 21f

aa = 27r Jvg dB,
o

. a or
(dlVg) = av (g. VV) = avo (6)

The last identity in Eq. (6) shows that the net flux r of the vector g through the whole

magnetic surface is given by

and the flux density

r= JdivgdV= (g·VV) = ~: (g. Va) (7)

r (g . \la)
I = Sa = (IVai) . (8)

Assume now that a function of magnetic surface F(a) describes a quantity which

satisfies the general diffusion equation

of of orat + (divg) = at + av = S(a).

The local flux g can be taken in the form

g(a, B) == F(a)v(a, B) - D(a, O)\lF(a).

On substitution in Eq. (9) one has

This result suggests the introduction of two functions of a single argument a

(9)

(10)

(11)

(\lV . v) (\la· v)
v(a) = (IVVI) = (IVai) . (12)

ASTRA - Automated System for TRansport Analysis 17

These definitions, obviously, do not depend on the particular choice of the magnetic surface

label a. Equation (11) then reads

of == oa ~ [av / (Va)2) (D aF _ (IVai) VF)] + S(a).at oVoa oa\ oa ((\7a)2)
(13)

This presentation of the diffusion equation is employed in the Astra code. The total flux

and the average flux density on a magnetic surface are

(14)

If it is needed to introduce an "effective" diffusion coefficient as implied by experimental

observations then none of Eq. (14) is appropriate. The coefficient can be derived from

Eq. (13) as

Jof dV - JS dV J(a;; -s) ~: da
Deff(a) = at = (15)

((VV)2) of ((Va)2) av of
oV oa oa

which under the additional assumption v == 0 coincides with D(a) as defined by Eq. (12).

The definitions (12) are not unique. For instance, it is possible to write the average

transport equation in the form

of oa a [OV (----OF)]- == -- - (l\7al) D- - vF + S(a)at oVoa oa oa
(16)

rather than Eq. (13) with the argument that ~: (IVai) is the surface area and that the equ­

ation (16) and the flux density r == vF-D of/oa appear in more "cylindrical" form. The

resulting expression for the diffusion coefficient Deff(a) = J(oF/at - S) dV / (Sa aF/aa)

looks simpler and, probably, more natural, but it is dependent on a choice of the magnetic

surface label "a". In the Astra code, the invariant definition (15) is used.

We also introduce a local velocity, U a , of the a(r, z) == Const surface as defined by

the equation

~~If+ U a · Va = O. (17)

The local velocity uf of another flux surface labeled by f (where f == f(a, t)) may be

different from U a but both are obviously related as

ofl ofl- (ua - U f) . \7a == - .
oa t at a

(18)

ASTRA - Automated System for TRansport Analysis 18

(20)

(19)

and integrating over the

(21)

Hence of / atla expresses the relative motion of the flux surface f with respect to the flux

surface a. In other words, a time derivative of a surface function depends on the assumption

which quantity is taken as the 'radial' coordinate and considered to be fixed while computing

a/at.

3.2 Formulae for plasma current and magnetic field

Taking advantage of the toroidal symmetry and making use of the Maxwell equations we

can express two three-dimensional vectors, the magnetic field B and the current density j,

in terms of two scalar functions I(a) and w(a) (81 units are used):

1
B = IV(+ 27r [V\fJ x VeL

. \7(2 . \7w 1 []J == ---r dlV- + - \71 x \7(.
21r /-Lo r2 /-Lo

Taking the scalar product of equations (19) and (20) with \7()

volume within magnetic surface using Eq. (1), we obtain!:

1 J 3 - J'ljJ = - \fJ = 27r B · V0d x = B · dS(},

\1 8e

I == RoBo - /-Lo Jj. VOd3x RoBo - 110 Jj .dSo. (22)
41r2 21r

\1 8e

Here Ro is the distance from the axis of the torus to a fixed point inside the plasma.

Usually, one chooses Ro as the geometric center of the vacuum chamber. Bo is the vacuum

magnetic field at r == Ro . While Ro is constant, the magnetic field at this point may be

a function of the time, Bo == Bo(t) . The additive constants in Eqs. (21), (22) are chosen

so that the function 1jJ == 0 at the magnetic axis and is physically the poloidal magnetic

flux, while the function I is related to the poloidal current inside a magnetic surface. As

long as no current flows outside the plasma, it follows that I RoBo everywhere in space

between the plasma edge and the toroidal field coils. Equations (21) and (22) can be viewed

as definitions for functions 1jJ and I, respectively. We introduce also the dimensionless

quantity

J def _1_. (23)
RoBo

1In what follows we use exclusively the quantity 1/J == - w == -21fTA(with A(being the toroidal
component of the magnetic vector potential.

ASTRA - Automated System for TRansport Analysis 19

As long as poloidal (diamagnetic) plasma current is much smaller than the current in toroidal

field coils, the quantity J is very close to unity inside the plasma and J == 1 outside it.

Both functions defined in Eqs. (21), (22) are so called surface functions that means

that they depend on space coordinates only through the variable a. In evolving plasmas,

all surface functions may depend also on time t, e.g., V == V(a, t) , 1jJ == 1jJ(a, t) . Each

of them can be used as radial coordinates instead of a . It is convenient to introduce two

further surface functions:

def J 1 J 3 1 JI 3<P == B . dS(== - (B . \l() d x == - -d X,
21f 21f r 2

S(V V
(24)

The first of them is the toroidal magnetic flux <P. The second p, has the dimensionality

of length and represents an effective minor radius.

As seen from Eq. (24) the quantities I and <P can be expressed in terms of each

other. On differentiation of Eq. (24) we have

or (25)

which in large aspect ratio (where (R6/r2) ~ 1) and at low plasma pressure (where J ~ 1)

reduces to oV/op ~ 41f2pRa or V ~ 21f2p2Ra showing that the variable p can indeed

be viewed as an effective (cylinder-like) minor radius of a magnetic surface. In what follows,

we use p as the main radial variable and assume that all surface functions are functions of

p and t, i.e. 1jJ == 1jJ(p, t) , V == V(p, t) and so on. It means that time derivatives are

understood as being computed with p kept constant:

of def of(p, t) of I .

at at at
p

(26)

unless declared otherwise. Time derivatives taken at constant <P also playa significant role

and are related to the standard time derivative of Eq. (26) by the following relation:

Ofl
at <I>

of(p(<p,t),t) I == ofl + of opl
at <I> at p op at <I>

of pEa of

at 2Ba op·
(27)

Some flux surface averages are also included in the transport equations and we introduce

the following special notations:

V' = ~~, G1def \ (\1p)2) , G2def :~ ((~p) 2) , G3def (~~) 41f;~~O (28)

ASTRA - Automated System for TRansport Analysis 20

where all G i are dimensionless.

For some applications the poloidal and toroidal components of the magnetic field B

are required. They can be found from Eq. (19)

B _ IVpI81jJ
pol - 2 ;::),1rr up

I
Btor == -.

r
(29)

def 1 o<I>
q = M= 81jJ' (30)

Both components are poloidally dependent. We introduce also the average cylinder-like

poloidal field B p , the rotational transform /-L and the safety factor q as

B def _1_ 81jJ '" def J1 def 81jJ _ 1 81jJ _ BpRo
p 21rRo op' - - o<I> - 21rBop op - Bop'

Averaging Eq. (20) and using Eq. (6) we find the toroidal current density

(31)

(32)

and the parallel current density

j def (j. B) = 27rRoJ2~ (G2 J - 1 81jJ) .
II B o /-Lo V' op op

Integration of Eq. (31) gives different relations for the toroidal current

lIP J PV'
I p1 def I j · dS(= 27r I (j · V() d

3
x = 27rR

o
I V'jtordp = 27rR

o
I J2h dp

S(V 0 0 (33)

and

. oIpl
Jtor = 27rRo 8V '

. 2 0 (I pI) 2 0 IV jtor
JII = 27rRoJ 8V J = J 8V JdV.

o
(34)

(35)

Also the formula for the poloidal field energy, which follows from Eqs. (28)-(29), is useful

WI == I B~ol d3x = _1_ IP

(01jJ) 2 G2dp.
2/-Lo 2/-Lo opV 0

The internal inductance Lr of the plasma current can be found from Eqs. (33), (35) as

Lr == 2WI /I;1 . The frequently used dimensionless quantity which is related to the internal
41r L~ 2L~

inductance per unit length, li , is given by li == 1 - == _1_ . Sometimes the internal
/-Lo 21rR o /-Lo R o

inductance is defined as Lr == [1jJ(a pl) -1jJ(0)]/I pl which is obviously different from Lr .

ASTRA - Automated System for TRansport Analysis

3.3 Equilibrium equation

21

Plasma configuration in a tokamak is determined by the Grad-Shafranov equilibrium equa­

tion
* 2 . \l1jJ 2 (2 op 0J)

~ 'ljJ = r dlV~ = -47r 110r 0'ljJ + J 0'ljJ . (36)

(37)

The first term on the right hand side contains the plasma pressure p == p(p, t) where the

contributions from all plasma species are included. The second term describes the poloidal

diamagnetic current, which can be readily expressed in terms of the average toroidal current

density. Eliminating ~*1jJ from Eqs. (19), (20) and (36) we find

• 2 op 21f oJ
J == -21fT -\l(- --B.

01jJ Moo1jJ

As mentioned above, the transport equations include parallel component of the current

density. So we need to represent the quantity oJ/ 01jJ in terms of the parallel current

density)11 . A scalar product of Eqs. (19) and (37) gives

where

. __ 21f (J op (B
2

) OJ)
)11 - B o 0'ljJ + 110 0'ljJ , (38)

(B 2
) 2 41f

2G2p2M2

B5 = G3 J + V' . (39)

We can now express the right hand side of Eq. (36) in terms of functions which are provided

by the transport equations

(40)

The equilibrium equation (40) depends on t parametrically but not explicitly. Phys­

ically this means that we assume that the plasma is always in equilibrium, and we do not

consider relaxation processes. The justification for this is that the relaxation to equilibrium

is several orders of magnitude faster than all transport processes. We consider the coupling

of this equation to the time-dependent transport equations in Section 3.11.

ASTRA - Automated System for TRansport Analysis

3.4 Toroidal electric field

For the toroidal vortex electric field E we have local (poloidally dependent) relation

E = - ~ oW I V (= ~ a1jJ I \7(.
21f at 21f at

r r

22

(41)

The toroidal loop voltage Utor is usually understood as the quantity measured by a fixed

toroidally symmetric loop of a constant major radius rz == (rz, zz) which is given by

a1jJ1Utor = 21rr (E· rV() = at = - (u1jJ · V1jJ) lrl

rz
(42)

where u7jJ a local velocity of the constant- 1jJ surface (see Eq. (1 7)). Different kinds of

motion contribute to u7jJ and, hence, to Utor .

First of all, we have

a1jJ (il?, t) I == a1jJ I ail? I .
Utor = at at + J1 at

rz <I> rz
(43)

It can be shown [3] that the first term on the right hand side of Eq. (43) is related to an

average longitudinal electric field Ell on the magnetic surface il?

def def 21fRo a1jJ I (a1jJ I 2·)U11 = 21rRoE 11 =~ (E· B) = JG3at 1> = JG3 at p - 1rp J1Bo . (44)

In ideally conducting plasmas Ell == 0 and Eq. (44) describes freezing of the fluxes 1jJ and

il? in one another. Using Eqs. (18), (25) and (42) we rewrite Eq. (43) as

V'
J1 (u1jJ - U1» • V<T> + 4 2R UII = O. (45)

1f oP

We conclude that the poloidal flux 1jJ moves through the toroidal flux il? only in proportion

to its resistive dissipation within the flux surface. The quantity UII (or Ell) is a measure

of such dissipation. It is the quantity UII which directly participates in and is provided by

a transport code. It describes irreversible diffusive flow of the poloidal flux 1jJ through the

toroidal flux il? .

Making use of Eq. (44) we introduce another flux surface quantity, UpI , which is the

voltage as seen in the coordinate system moving together with a p -surface:

(46)

ASTRA - Automated System for TRansport Analysis 23

(48)

where Eq. (18) and the definition Eq. (24) have also been used. The last equality in Eq. (46)

shows that the relative motion of the <1> -surface with respect to the P -surface appears

only due to variation of the external toroidal magnetic field Bo . In most present day

tokamaks the vacuum magnetic field can be viewed as time-independent, Bo == 0, and

both flux surface labels, P and <1>, are physically equivalent. Usually, the coefficient

in front of U
11

in Eq. (46) is close to unity and, when Eo == 0, UpI is close to U
11

•

However, the difference between U
11

and UpI can become significant in a small aspect

ratio tokamak and at high plasma pressure. For practical applications, the quantity UpI

is more convenient than U
11

because, in steady state, UpI does not vary over the minor

radius p:

a;:;! = o. (47)

We consider now the second term on the right hand side of Eq. (43). First of all, we

note that the pressure of the toroidal magnetic field in a tokamak is much higher than the

plasma pressure. For this reason the toroidal flux <1> cannot be changed noticeably by any

internal processes in the plasma. Consequently, the second term on the right hand side of

Eq. (43) can only become appreciable when the external magnetic fields vary. For instance,

varying of the poloidal control field causes plasma movement as a whole (compression in

major radius), while increase of the toroidal field results in compression in minor radius.

When any of these movements is made faster than characteristic transport times then the

plasma is compressed adiabatically. We can further consider the equality

-u -\7 _ apl _ op OVI opl _ op (oVI _OVI)
p p - at rz - av at rz + at v - av at rz at p

relating the "magnetic" variable p to the "geometric" variable V . We conclude that up

comprises the plasma motion in space as a whole and a motion of the p -surface because

of changes in the equilibrium (first and second terms in the brackets on the right hand side

of Eq. (48) , respectively).

In general case, using Eqs. (43)-(48) we can write the toroidal loop voltage as

1 opl 2· 21fPI-LBo OVI
Utor = JG

3
U11 + 2npJ1Bo at v + np J1Bo+ V' at rz· (49)

All terms here have clear physical significance. The left hand side of Eq. (49) is the loop

voltage as measured in an experiment. The first term on the right hand side gives a resistive

ASTRA - Automated System for TRansport Analysis 24

(50)

(51)

component. The second term describes evolution of the plasma surface due to a variation in

plasma para- or dia-magnetism. It is of order df3tor/dt and in a tokamak is usually negligibly

small. The remaining two terms could be associated with the adiabatic compression in minor

and major radii, respectively.

In order to express the measured loop voltage Utor in terms of the calculated quantity

UpI we rewrite Eq. (49) as

aP I 21fpJ-LBo av I
Utor = Upl + 27rPI1Bo at + V' at

v rz

and evaluate it at some point rz == rB assuming that the point rB belongs to the edge

flux surface with a fixed (for instance, due to the boundary conditions) volume V == VB so

that aVB/at == o.

I

apB a~1 apB
UplB = Utor PB = Upl(PB) + 27rBOPBI1(PB)7it = at + 27rBOPBI1(PB)7it.

PB

The last term on the right hand side of Eq. (51) is nonzero (although quite small) because

the toroidal flux inside the plasma changes with any change in the profiles of plasma pressure

or current density which gives rise to PB == PB(t). This term is provided by a solution of

the Grad-Shafranov equation. Evaluation of Utor at arbitrary point rz == (rz, zz) outside

the plasma requires solution of the equilibrium equation in the gap between the plasma

boundary and the position of measurement rz. This problem is not considered here and,

in what follows, we assume that the edge loop voltage is calculated according to Eq. (51).

3.5 Joule heating and Ohm's law

Dissipation of the magnetic field energy within a flux surface is defined by

P

J alpI Bo J () . \l~ 3= Upl op dp - 27r/l PI1 Up' V P dlV~ d x.
o ~oV

The first term on the right hand side of Eq. (52) can be transformed as

p aI pi 1 p 0'ljJ 02 'ljJ loP (a~) 2

QJ = JUpl op dp = IplUpl - 110 Jop atopG2dp = IplUpl - 2110 at J op G2dp
o 0 0

(52)

(53)

ASTRA - Automated System for TRansport Analysis 25

which on account of the definition (35) can be represented as the conservation law for the

energy of the poloidal magnetic field in the coordinate system moving together with a p­

surface
aWl----at = Ip1Up1 - QJ.

Here Ip1Up1 is the Pointing flux relative to the p == Const flux surface.

We can also rewrite Eq. (53) as

thus finding the density of magnetic energy dissipation as

(54)

(55)

(56)

This expression does not take into account the work done by the moving surface against the

plasma pressure gradient described by the second term on the right hand side of Eq. (52). As

discussed in the previous section this contribution is usually small unless the fast processes

as the adiabatic compression are involved [3].

The longitudinal Ohm law is assumed to have the form

(57)

which together with relations Eq. (32) and Eq. (44) gives a transport equation for the poloidal

flux 1jJ considered in the next section. The averages of the bootstrap current density, jBS ,

and the density of the current driven by external sources, jeD , are determined similar to

)11 in Eq. (32)
. 1 I.)

JBS = Eo \JBS · B ,

3.6 Transport equations

. 1 I.)
JCD = Eo \JCD · B . (58)

The tokamak simulation code Astra like other codes comprises of a system of ID diffusion

equations for densities and temperatures of different plasma components, a 2D equilibrium

equation, and, a variety of other modules to describe additional heating, current drive and

other non-diffusive processes in tokamak plasmas. A set of the transport equations for

a tokamak is derived in [3]. In this section, we discuss the set of equations which are

ASTRA - Automated System for TRansport Analysis 26

implemented in the Astra code which differs from that presented in [3] by allowance for

varying toroidal field Bo and, consequently, adiabatic compression in minor radius.

The basic set of transport equations in the Astra code includes equations for the

electron density ne , electron temperature, Te , ion temperature, T i , and the poloidal

flux 1jJ

~ (V,)-5/3 (~ _ A~) [(V')5/3 n T] ~~ (~T r) == P
2 at 2Boap P e e + V' ap qe + 2 e e e,

(59)

If the main ion density ni and its flux r i are not explicitly defined (see Section 4) then

it is assumed that ni == ne/Zi and r i == re/zi. (Note that this approximation neglects

impurities.) In line with the discussion in Section 2.1 all fluxes included in Eq. (59), i.e. the

electron flux r e , the electron heat flux qe and the ion heat flux qi , are considered as

total fluxes through a flux surface p == Canst. In order to close the system of equations the

fluxes should be expressed in terms of thermodynamic forces taken as derivatives with respect

to p. In a simulation, the fluxes as well as the conductivity (TIl and the bootstrap current

density jBS can either be taken from a transport theory or from experimental observations

in a tokamak. Independently of the origin of the formulae used for the representation of the

fluxes, it is assumed in the Astra code that the transport matrix has the following form

r e Dn De D· DE
lane

z ne opne
qe

X~ xi XE
laTe

-- Xe --

neTe
==-V'G1

Te op
(60)qi loTi--

X~ X~ xkniTi Xi --

Ti op

V'G
1

MOJBS
Cn Ce Ci 0 Ell

Bp Bp

ASTRA - Automated System for TRansport Analysis 27

All the coefficients in the upper left third-order minor of the transport matrix have dimen­

sions [m2
/ s] while the right column and the bottom row are dimensionless. The average

poloidal magnetic field Bp is given by Eq. (30).

In practice it is rare to use all the terms on the right hand side of the transport system

of equations Eq. (59) and the full transport matrix Eq. (60) are used in transport modeling.

Moreover, often the transport set of four equations Eq. (59) is excessive. For instance,

computation of electron density n e can often be replaced with experimentally measured

data. The Astra code provides an easy way to retain only those terms and equations of

Eqs. (59), (60) which are necessary for the specific problem under consideration. This is

coded as a set of special instructions and will be discussed further in Section 5.2. On the

other hand, the four transport equations of Eq. (59) can be insufficient for some problems of

interest, such as minority ion heating or helium ash removal. In such cases, the code can be

supplemented with additional diffusion equations as will be described in Section 3.12.

In addition to the main set of the transport equations (Eq. (59)) the Astra code provides

a variety of other modules for the description of different processes in tokamak plasmas and

to compute the transport coefficients in Eqs. (59)-(60). Processes modeled by these modules

include additional heating and current drive, minority species behavior, the plasma periphery

and SOL plasma, MHD stability analysis etc.

3.7 Sources and sinks

The source of electrons Be in the first of Eqs. (59) is

(61)

where N is the density of neutral atoms of the working gas, Srec is the recombination

rate, and s~~~ and s~~n are the rates of the impact ionization by electrons and ions,

respectively. The sources of the electron Pe and of the ion Pi energy are defined as

(62)

include the Ohmic heating POH which was defined in Eq. (56), the power lost as radiation

Pe
RAD , the powers of auxiliary heating of electrons pe

H and ions Pi
H , heat exchange

ASTRA - Automated System for TRansport Analysis

between electron and ion components

and losses due to the atomic processes

p . - 3me n e (T - T·)
ez - e z

mi T e

28

(63)

(64)

where TN is the temperature of the neutral atoms, Sex and Srad are the charge exchange

and radiation rates, respectively, £ion == 13.6 eV, £1 == 10.2 eVe

Although the bootstrap current jBS is expressed by Eq. (60) in terms of thermody­

namic forces, the bootstrap current together with the driven current jeD can also be viewed

as sources of poloidal flux. The driven current density jeD as well as N , TN , pe
H and

Pi
H must be provided by separate modules which are included in the code. Sawtooth

oscillations and plasma behavior in a divertor region are further examples of processes which

require separate treatment. Modules for these processes are also included in the code, but

detailed discussion of all these modules falls outside the scope of this report. Below we

discuss ways of adding new modules or replacing modules which already exist in the code.

To close the system of transport equations Eq. (59) we need, in addition to the sources

and sinks of Eqs. (61)-(62), the transport matrix of Eq. (60), the electrical conductivity (TIl

and the driven current jeD, specify also the surface functions V', I, G1, G2, G3 . Then

with appropriate initial conditions and boundary conditions, we can determine the time

evolution of the radial distributions of the electron density ne , temperatures Te,i and

current density.

3.8 Initial conditions

Initial conditions do not usually playa significant role in tokamak transport modeling, be­

cause normally steady-state discharge conditions are under study. However, for the analysis

of transient processes, such as plasma current ramp-up, initial conditions may play an

essential role. When available, measured experimental quantities may be used to supply

distributions, but these are not always available, especially for the poloidal flux 1jJ and

the corresponding current density. The simulation of some processes can be sensitive to the

ASTRA - Automated System for TRansport Analysis 29

(65)

initial choice of the current density profile, and this choice may require care. It is usually

sufficient to set initial conditions self-consistently, to give smooth plasma evolution during

the initial moments of the run.

For the first three equations in Eq. (59) the natural initial conditions are

ne(p, t) It==o == neo (p),

Te(p, t) It==o == Teo (p),

Ti (p, t) It==o == TiO (p).

A similar initial condition for the poloidal flux would read 1/J(p, t) It==o == 1/Jo (p) . However,

this is of no practical use because it is usually more convenient to prescribe the current

density)11 or the rotational transform /-L, rather than the poloidal flux 1/J itself. Thus,

appropriate initial conditions are alternative

either or /-L(p, t) It==o == p(p). (66)

These conditions involve either the second or the first derivative of the unknown function

1/J(p) , respectively. With either initial condition, 1/J(p) must be determined using either

Eq. (32) or Eq. (30). A further well-defined quantity is the total plasma current I pl , which

is always measured in experiments, while the current distribution during the early phase of

a tokamak discharge is usually not known. Therefore it is reasonable to require that I pl

takes a given value and the normalizations of the current density or rotational transform

profiles are adjusted to be self-consistent using

)11 (p, t) It==o ==)0 (p)

or

PBf J-2 joV'dp = 27rRolpl
o

(67)

(68)

(69)

() I
p(p) /-LoIpl

/-L p, t t==o == --=----() 2 B G () ,/-L PB 1r OPB 2 PB
respectively. The boundary condition J(PB) == 1 is used in Eq. (67).

Also convenient and useful is the initial condition with the plasma current distributed

according to the steady-state condition :t2~ = 0 ::::} ~~ = Upl(p) = Canst. Using the

parallel Ohm's law Eq. (57) and assuming Bo(t == 0) == 0 we re-write the condition as

(jll - jBS - jeD) It=o = 2~;all (p)Upl = CrT~,all(p).

ASTRA - Automated System for TRansport Analysis 30

Similar to Eqs. (67), (68) the factor CrY in Eq. (69) should be found from the condition

that the total current is I p1 . Although the current relaxation time is long in a tokamak,

the stationary initial condition Eq. (69) is widely used when the direct measurements of the

current density are not available. The condition of Eq. (69) is also physically relevant when

non-diffusive processes cause fast current relaxation, or when the preceding long phase of

relaxation is of no interest.

3.9 Boundary conditions for densities and temperatures

The boundary conditions for Eq. (59) at the magnetic axis P == 0 are imposed by the

geometry of problem and the requirement that all fluxes should vanish at P == 0

(70)

Boundary conditions at P == PB for the first three equations of the system Eq. (59)

usually take one of two forms

ne(PB) == neB(t)

Te(PB) == TeB(t)

Ti(PB) == TiB(t)

or

or

or

re(PB) == reB(t),

qe(PB) == qeB(t),

qi (pB) == qiB (t) .

(71)

All the functions on the right hand sides in Eq. (71), besides explicitly depending on time t,

can also depend on all other plasma parameters. The boundary conditions of Eq. (71) can

be imposed in any combination as described in Section 4.4.

It worth noting now that, in general, the question of boundary conditions is not quite

straightforward. Indeed, in the configuration space, the plasma boundary is supposed to

coincide with some flux surface SB. This boundary surface serves as an input to a solver of

the Grad-Shafranov equilibrium equation. The solver returns a position of this surface in flux

coordinate PB. Even in the simplest case, when the plasma boundary SB is fixed in space

and does not move, the corresponding value PB can vary in time depending on the plasma

pressure and current density distributions. Therefore, the plasma boundary PB(t) moves

in the frame of the Lagrangian flux coordinate p. Thus the problem under consideration

is always a moving boundary problem and this is discussed in more detail in Section 3.11.

It is also possible that the required boundary conditions cannot be expressed explicitly

in any of forms given in Eq. (71). This can be the case when more elaborated boundary

ASTRA - Automated System for TRansport Analysis 31

conditions are imposed by considering SOL models. Correct description of these cases could

require the use of MHD or kinetic theory. In the Astra code, these situations are implemented

by calling special subroutines as described in Section 4.

3.10 Boundary condition for the poloidal flux

The left boundary condition for the fourth equation in Eq. (59) is straightforward, ~'ljJ I == o.
P p==o

The boundary condition at P == PB is more complicated. Generally, the condition should

be obtained by solving a magnetostatic problem in the exterior region (with respect to the

plasma) taking into account all poloidal currents with their mutual inductances, magnetiza­

tion of the iron core, currents induced in a vacuum chamber and so on. However, this would

unreasonably complicate the problems under consideration. It is more practical to use one

of the three possibilities described below.

3.10.1 Prescribed plasma current

This is the most frequently used boundary condition for transport modeling. Making use of

Eq. (33) we write the condition as

(72)

where Ip1(t) is the total plasma current with a prescribed time dependence.

3.10.2 Prescribed loop voltage

This is usually not a good choice of boundary condition. For instance, in Ohmic plasmas this

boundary condition gives rise to a thermal instability. On the other hand, this instability is

very slow and can be easily stabilized. Therefore, this condition is also included in the code

as a possible option. In the simplest case where the plasma boundary is fixed (see discussion

in Section 3.4) it reads

81/J1at P=PB = UpIB(t)

with Up1B being the prescribed boundary loop voltage.

(73)

ASTRA - Automated System for TRansport Analysis

3.10.3 External circuit equation

32

This provides a boundary condition which includes the two previous conditions as particular

cases. It uses a simplified description of an external circuit with the single equation

(74)

where L ext is the external inductance of the plasma, and UpIB == UpI (p == PB) is the loop

voltage calculated at the plasma edge Eq. (51). Uext is a given function of time associated

with the voltage produced by the primary coil.

3.11 Closure of the equilibrium and transport equations

The four equations of Eq. (59) do not comprise a closed system, even when all the fluxes

and right hand sides are determined. Indeed, the functions V(p, t), J(p, t), G1,2(P, t)

included in Eq. (59) still remain unknown. Moreover, the independent variable p is also an

unknown function of space coordinates and time: p == p(r, z, t) . It is the solution of the

Grad-Shafranov equation Eq. (36) which gives the instant relations of all flux coordinates,

such as p, V, J, etc., to one another and to the laboratory coordinate system {r, z} .

These relations can vary in time due to time evolution of plasma parameters as described

by Eq. (59). Hence to study the plasma evolution in a tokamak we should solve the set

of one-dimensional transport equations (59), (60) simultaneously with the two-dimensional

equilibrium equation (40). 2

First of all, we limit our consideration to the internal equilibrium problem with a

prescribed plasma boundary. This boundary is not supposed to be fixed in time so that the

entire plasma can move according to a given law. However, we do not consider the external

fields and currents which are required to provide this boundary evolution and the plasma

movement because the solving of external equilibrium problem is beyond the scope of the

Astra code.

The closing procedure can be seen as follows. At each time step, the solution to

the transport equations (59), (60) provides the functions p(p) and)11 (p) on the right

hand side of Eq. (40). These functions are determined on the interval O:S p :S pB . On

2Because of this combination of ID and 2D equations the transport codes are often referred to as 1.5D
codes.

ASTRA - Automated System for TRansport Analysis 33

the other hand, the solution of Eq. (40) is sought within the prescribed plasma boundary

SB. However, the requirement that this boundary SB must coincide with the flux surface

P == PB would overdetermine the problem. According to the particular experimental condi­

tions, it is possible to adopt different ways of treating this contradiction. For instance, the

overdetermination can be removed if the surface SB is given by a set of points {ri, Zi}

while in between it is allowed to be arbitrary. This approach is practically useless because

it suppose a corrugated plasma surface which most probably is not compatible with the

external magnetic system.

More practical would be to consider the whole set of boundary parameters {PB' ri, Zi}

as approximate which has to be fitted with some accuracy. If {ri, Zi} is firmly prescribed

and PB is free then the formulation will be referred as the prescribed plasma boundary.

The case with fixed PB and flexible {ri, Zi} will be called the adjustable plasma boundary.

These two approaches are discussed below.

3.11.1 Prescribed plasma boundary

Presently, the following procedure is implemented in the Astra code. The equilibrium equa­

tion is solved requiring that SB coincides with one of the P -surfaces, say P == PB ,which

can be either external or internal with respect to PB . In the case PB < PB , there is a

gap between the current carrying plasma and the presumed boundary SB . In the case

PB > PB the excessive plasma layer should be scraped off. In both cases, the functions

p(p) and)11 (p) are re-defined on the interval between PBand PB so that in the region

min(PB' PB) :s; P :s; max(PB' PB) : p(p) == P(PB) and)11 (p) == O. In addition, a surface skin

current is added at P == PB in order to keep the total plasma current unchanged. Solving

Eq. (40) is then iteratively repeated until PB remains constant with sufficient accuracy. The

new boundary position is selected as P == PB . The described procedure does not change

when a plasma boundary moves or varies its shape.

In practical calculations, at each time step it is sufficient to use the value of PB

returned by the equilibrium solver after one iteration as a new position of the boundary point

PB . Indeed, as it has already been discussed, modifications in current density, pressure and

the corresponding changes in plasma diamagnetism cause time variation of the plasma size.

Consequently, the time variation of PB(t) is of the order $tor~t and hence is very small.

ASTRA - Automated System for TRansport Analysis

Typically, the relative variation of PB is as small as 10-3 per time step.

3.11.2 Adjustable boundary

34

More relevant would be to consider the prescribed boundary shape as approximate which has

to be fitted with some accuracy. Then the different points on the boundary can be matched

with different admissible errors according to their confidence weight. A trivial example of

such an approach would be to fix the innermost point on the boundary (associated with

internal limiter) and, adjusting the rest of the boundary SB, allow the entire plasma to

shift in order to avoid a contact with a limiter and preserve PB unchanged.

This option assumes that the plasma boundary is given with one free parameter, which

may be the boundary elongation, plasma shift, etc. When plasma is expanding then the

freedom is used in order to fulfill the condition that the plasma remains within the flux

surface PB and thus avoids plasma contact with a limiter. All other features of the code

remain the same as in the case with prescribed boundary shape. This version is easier for

a numerical implementation and, probably, more relevant from the physical point of view.

However, it requires a specification of the admissible freedom. We note in conclusion that all

the details have significance which is more formal than practical, because the real variation

in PB (t) is negligibly small.

3.12 Auxiliary transport equations

Usually, a tokamak plasma contains a variety of different species. These might be hydrogen

isotopes, helium ash, or other impurities. Each of them can be characterized by its own

density and temperature. Non-Maxwellian populations of the main plasma components can

also be treated as independent species. Densities, temperatures, velocities of rotation and

other thermodynamic characteristics of plasmas are believed to obey the law of collisional

diffusion. For treatment of all these processes not included in Eq. (59) the Astra code provides

a set of additional transport equations. The present practice of transport tokamak modeling

never uses the transport matrix of Eq. (60) in full and most present-day tokamaks work with

a time-independent toroidal magnetic field. Therefore, these additional equations have a

truncated form

j == 1,2,3. (75)

ASTRA - Automated System for TRansport Analysis 35

In version 5.0 of the Astra code the number of equations (75) cannot exceed 3, but this

restriction can easily be lifted. The initial and boundary conditions for Eq. (75) are similar

to those for the first three equations in Eq. (59)

(76)

and

(77)

3.13 Equation for gas puff neutrals

The subroutine solves a kinetic equation for a neutral distribution function iN

(78)

where VTi = J2~/mi. The factor J3 is included in Eq. (78) in order to describe isotropic

velocity distribution of the charge exchange neutrals. The equation (78) is solved in a slab

geometry assuming that the plasma slab thickness is equal to twice the minor radius in the

equatorial cross-section 2aB. This approximation is reasonable when the mean free path

of a neutral is much smaller than aB. In present-day tokamaks, the condition is usually

fulfilled with a large margin. As long as the transit time of the neutral atoms is quite small

the problem is treated as steady state.

It is assumed that the incoming neutral particles have a velocity distribution

(79)

with Vl,2 = J2E1,2/mi. Eq. (78) is solved as described in [2] and the neutral density and

temperature are then found as

N(x) = f fN(X, v)dv and (80)

ASTRA - Automated System for TRansport Analysis

3.14 Other Astra compatible packages available by request

36

A number of other modules are incorporated in the Astra code. Some of them are quite

complicated and time consuming. The code is continually supplemented with newer ones.

Only few of these additional packages are included in the standard Astra version. Sometimes

the interfaces only are provided, while the packages can be obtained directly from their

authors. A description of all these modules is out of the scope of this report. Only a list of

the most useful modules with the names of the contact persons is presented here.

3.14.1 Additional heating and current drive

Neutral beam heating and current drive [7]. The NBI Heating and CD package of

the Astra code was developed by A. R. Polevoi (polevoy@nfi.kiae.su). A simplified time

independent version of the package is distributed with the Astra code. It is briefly described

in Section 4.6.2. A more advanced time dependent version is available.

Electron cyclotron heating and current drive [8]. The wave equation for the electro­

magnetic waves in a cold plasma is solved in the Gaussian beam approximation. The wave

absorption at the frequency of the electron cyclotron resonance (ECR) and its harmonics

is calculated for a Maxwellian plasma in the weakly relativistic approximation. The driven

current is estimated using the adjoint technique. This package is developed by E. Poli

(Emanuele.Poli@ipp.mpg.de, see also http://www.aug.ipp.mpg.de/~emp/torbeam.html).

Lower hybrid heating and current drive [9]. The wave equation is solved for the

lower-hybrid frequency range in the cold plasma approximation using the geometric op­

tics technique. The Fokker-Planck equation is solved in the 1D approximation. Ion and

a- particle absorption is also included. (A. N. Saveliev, saveliev@ans.ioffe.rssi.ru).

Ion cyclotron heating [10]. The wave equation for the IC frequency range is solved

in the eikonal approximation. The code takes into account minority and ion cyclotron

harmonic heating, ion-ion hybrid resonance heating and wave absorption due to coupling

to the acoustic and ion-Bernstein waves. The code also includes a module for the antenna­

plasma coupling which provides the boundary conditions for the ray tracing. (M. Brambilla,

Marco.Brambilla@ipp.mpg.de) .

ASTRA - Automated System for TRansport Analysis

3.14.2 Transport coefficients

37

The Astra library includes about one hundred different neoclassical and anomalous transport

coefficients which can be expressed as formulae. Recently, more complicated routines for

evaluation of the transport coefficients were developed. Some of them can be included in the

Astra code as separate modules.

Neoclassical transport NCLASS [11]. A matrix of neoclassical transport coefficients for a

multi-species tokamak plasma is calculated. (W.A. Houlberg, houlbergwa@ornl.gov)

Turbulent transport The following three transport models provide transport matrix due

to toroidal ion temperature gradient (ITG) modes and trapped electron modes (TEM).

- Weiland-Nordman model [12]. (J. Weiland, elfjw@elmagn.chalmers.se).

- IFS/PPPL model [13]. (W. Dorland, bdorland@pppl.gov).

- GLF23 model [14]. (J. Kinsey, kinsey@apollo.gat.com).

3.14.3 Impurity transport and radiation

The subroutine STRAHL [16] describing transport and radiation of impurity ions (R. Dux,

Dux@ipp.mpg.de, http://www.aug.ipp.mpg.de/~Ralph.Dux/home.html)can be linked with

the code Astra. No cross influence of impurities on the main plasma transport is included.

3.14.4 Stability analysis

The code provides interfaces to stability codes as PEST, MAST, CASTOR, GARBO. For this

codes, a special input file is written for specified time slices which can be used for a post-run

stability analysis. In addition, more simplified routines are available for on line evaluation

of instability induced transport.

Sawtooth oscillations (subroutine MIXINT.) Sawtooth description [18] based on the Ka­

domtsev theory for magnetic field line reconnection [17, 18] is included in the standard Astra

distribution.

Tearing modes (subroutine ISLAND.) Simplified ~' analysis for saturated island width

in a cylindrical plasma is provided (A.N.Chudnovskij, chdn@wowa.net.kiae.su).

ASTRA - Automated System for TRansport Analysis

4 Reference guide

4.1 Units and variables

38

The following set of units, based on SI with some exceptions, is adopted in the Astra code.

Table 4.1. System of units

Unit Quantity
m length
m2 area
m3 volume
s time
m/s velocity
m2 /s diffusion
1019m-3 particle density
1019m-3s-1 particle source
1019S-1 particle flux
1019m-2s-1 particle flux density
keY temperature
S-l collision frequency

Units Quantity
MW power, energy flux
MW·m-3 power density
MW·m-2 density of energy flux
MJ energy content
T magnetic induction
Y·s magnetic flux
Y voltage
MA current
MA·m-2 current density
jLHn inductance
(jLOhm·m)-l ==MS/m conductivity
GHz RF frequency

The main set of the simple variables in the Astra code includes

Table 4.2. List of main device and plasma parameters

Quantity Variable name Units Description
Ro RTDR m major radius
aM AB m maximum value of aB allowed
aB ABC m minor radius of LCMS in the mid-plane
~B SHIFT m Shafranov shift of the plasma boundary
AB ELDNG - elongation of the plasma boundary
6 TRIAN - triangularity of the plasma boundary
~z UPDWN m vertical shift of the plasma boundary

PB ROC m effective minor radius
Ailmp AMJ - main ion mass number (mp is the proton mass)

z· ZMJ - electric charge of the main ion speciesz

Bo BTDR T vacuum magnetic field at Ro
I p1 IPL MA total plasma current

The first two quantities in this table cannot depend on time, all others can be time dependent.

Table 4.3 shows the list of main radially and time dependent quantities (arrays) which

are continuously stored in memory at two time slices. Except for ni and V', this list

coincides with the list of unknown quantities in the system of transport equations.

ASTRA - Automated System for TRansport Analysis

Table 4.3. List of radial functions (arrays) stored at two time slices

39

Quantity Code variable at the Code variable at the Description
current time t previous time t - T

n e NE NED electron density
ni NI NIo ion density
Te TE TEO electron temperature
T· TI TID ion temperaturez

1P FP FPo poloidal flux

11 Fi Fio 1st function in Eq. (75)

12 F2 F20 2nd function in Eq. (75)

13 F3 F30 3rd function in Eq. (75)
V' VR VRo volume derivative

All other quantities are available for the current time, t, only. The list of main arrays is

given in Table 4.4.

Table 4.4. Some other radial functions

Quantity Array name Units Description
p RHO m main magnetic surface label
a AMETR m minor radius as in Eq. (88)
~ SHIF m Shafranov shift Eq. (88)
A ELoN - elongation Eq. (88)
6 TRIA - triangularity Eq. (88)

JII CU A/m2 current density

JBS CUBS A/m2 bootstrap current density

JeD CD A/m2 driven current density

(TIl CC (/LOhm·m)-1 conductivity

/L MU - rotational transform

/Lv MV - vacuum rotational transform

1Pv FV Y·s poloidal flux for vacuum magnetic field

EllIBp VP m/s pinch velocity, Ell == UII I (21fRo)
UII ULoN Y longitudinal loop voltage
UpI UPL Y toroidal loop voltage

Zeii ZEF - effective charge
r e QN 1019S-1 particle flux
qe QE MW electron heat flux
qi QI MW ion heat flux
J IPoL - normalized poloidal current

V'G 1 Gii m2 defined in Eq. (28)
ROG21J G22 m defined in Eq. (28)

G3 G33 - defined in Eq. (28)

ASTRA - Automated System for TRansport Analysis 40

The complete list of radially dependent variables includes more than 200 quantities. Most

of them are discussed in Section 4.6.2.

4.2 Transport equations in Astra notations

For convenience in working with the Astra code, we re-write the set of transport equations

(59)-(60) in the newly introduced system of units using Astra variable notation. First, we

define the operators

A def 3 1 (a Eo a) [I 5/3]
DT[J] = "2 (VI)5/3 at - 2Boap P (V) f,

fJ [f] def ~ (~-A~) [V'f]
n V' at 2Boap P ,

Now Eq. (59) takes the form

A a
D n [NE] + av (QN) = SN + SNN * NE,

A a (5)DT [NE *TE] + av 625 * QE + "2*re*TE * QN = 625 * (PE + PET *TE),

A a (5 NI * TI)
DT [NI *TI] + av 625 * QI + "2*ri NE QN = 625 * (PI + PIT *TI),

(81)

(82)

Two additional factors re, ri are introduced in Eq. (82) to allow modification of the con­

tribution of the convective component to the heat flux. The corresponding code variable

names are GN2E == ~re and GN2I == ~ri. When not determined explicitly these factors

take the default values GN2E == GN2I == o. The full energy fluxes through a whole magnetic

surface appear in the form

and

5 -3
Qe == qe + -reTe f e == QE + 1.6 x 10 GN2E * TE * QN

2
(83)

5 -3 NI
Q . == q. + -rv·T·f· == QI + 1.6 x 10 - GN2I * TI * QN (84)

1, 1, 2 /1, 1, 1, NE

where the factor 1.6 x 10-3 == 1/625 emerges because the mixed system of units (keV and

MJ) is adopted.

ASTRA - Automated System for TRansport Analysis 41

The set of equations (75) acquires the form

100
V' at (V'*Fj) + av (QFj) = SFj + SFFj * Fj , (85)

with

QFj = G1h (VFj * Fj - DFj :p (Fj)) .

Here the letter j should be replaced with one of the numbers: 1, 2, 3.

The transport matrix Eq. (60), in the Astra notation, takes the form

(86)

(87)

-1

loNE

NE op

1 oTE

TE op

loTI

TI op

DN HN XN CN

DI HI XI CI

DC HC XC 0

DE HE XE CE

QN - SLAT * GNX

G11 * NE

625 * QE

G11 * NE * TE

625 * QI

G11*NI*TI

0.41f
--*CUBS
Bp

The reason for the additional term -SLAT*GNX in the first row on the left hand side of Eq. (87)

will be discussed in Section 4.9.1. Note also that the last element of the column vector on

the right hand side of Eq. (60) does not correspond to that in Eq. (87): namely, the quantity

" EIIIBp " in Eq. (60) is replaced with "1" in Eq. (87). This allows the inclusion of particle

or energy fluxes which are not necessarily related to the toroidal electric field.

Table 4.5. Notations for transport coefficients in the Astra code

Code variable Units Notations in Eqs. (60),(75)
DN, HN, XN m/s2 Dn, De, D·z
DE, HE, XE m/s2

X~, Xe, xi
DI, HI, XI m/s2 i i XiXn, Xe,
CN, CE, CI m/s Cn, Ce, Ci

DC, HC, XC - DE, X~, xk
DF1, DF2, DF3 m/s2 D I , D 2 , D 3

VF1, VF2, VF3 m/s VI, V2, V3

CC MS/m (TIl

The sources on the right hand side in Eqs. (82) and (85) are split into two parts.

The part which is linear with respect to the unknown variable in each equation is written

ASTRA - Automated System for TRansport Analysis 42

separately, in order to allow the choice of either an implicit or an explicit numerical scheme.

For instance, the same particle source Be can be defined as SN == SionNne or as SNN ==

SionN. In the first case, it would be approximated explicitly using the electron density

ne == NED from the previous time slice, Be == SionN * NED; while, in the second case,

Be == Sion N * NE. We summarize usage of the sources and sinks in Table 4.6.

Table 4.6. Notations for the right hand sides of transport equations

Code variable Units Definition
SN 1019 l(m3 s) Be == SN + SNN * NE
SNN lis
PE, PI, MW/m3 Pe == PE + PET * TE
PET, PIT, MW/(m3 keV) Pi == PI + PIT * TI
SF1, SF2, SF3 [Fj]/S Bj == SFj + SFFj * Fj
SFF1, SFF2, SFF3 lis
CUBS, CD MA/m2 jBS == CUBS, jeD == CD

The transport set of equations will be completely defined if

(1) device and plasma parameters (Table 4.2) are set,

(2) all quantities in Tables 4.5 and 4.6 are determined,

(3) a rule for calculation of metric coefficients is defined and

(4) initial and boundary conditions are prescribed.

Calculation of the metric coefficients is provided by the equilibrium solver, and a link between

transport and equilibrium parts of the code is discussed in Section 4.5. The technical details

for setting initial and boundary conditions in the code are described in Section 5, while in

the following two sections the general logic of the procedure is discussed.

4.3 Initial conditions

In this Section and below we use the following flowchart notation

G)-y-e-s----...

nol
which means a test of whether the quantity QTY is defined in a model or not. If it appears

on the left hand side of any assignment instruction in a model (see Section 5.2) at least once

ASTRA - Automated System for TRansport Analysis

as

43

QTY ~ expression;

then we say that it is defined, the answer to the question is positive and the path labeled

"yes" is taken.

4.3.1 Initial conditions for NE, TE, TI, Fj

Setting of the initial conditions for the electron density is quite straightforward:

~ yes
~ --------+-

no!
ne(p, t) ~ NEX

Firstly, the Astra compiler checks whether the diffusion equation for n e is to be solved or

not. Suppose first that the density evolution will be prescribed, i.e. the particle diffusion

equation is to be suppressed. The Astra compiler continues by checking whether NE is

assigned in the model. If yes, then the density will evolve according to this assignment and

no further checks are made. If NE is not defined in the model, then the next check (not shown

in the diagram) is made as to whether NEX is set in the data file (Section 5.4). If this is the

case, then NE is set to NEX. If it happens that NEX does not appear in the data file either,

then the default setting ne(p, t) ~ 1018 m-3 is applied. The default setting is constant in

time and space, while all other means of setting NE can have arbitrary dependences.

A similar scheme is applied when the density ne(p, t) is to be defined by the transport

equation. The difference is that, in this case, the assignment ne(p, to) ~ . .. is made only

once, and that this is understood as the initial condition. Any time to (code variable

TSTART) can be selected as a starting time for the simulation. The following evolution of

ne at t > to will be defined by the transport equation. Finally, it has to be mentioned

that there is an option (see Section 5.2.5) to assign NE only once at t ~ to ~ TSTART even

if NE or NEX are defined as time dependent.

Initial conditions for Te , Ti and fj are defined in similar ways:

ASTRA - Automated System for TRansport Analysis 44

Table 4.7. Summary of the setting of initial conditions

Variable Name in the code 1st check 2nd check Default value
ne NE NE ==? NEX == ? 1018m-3

Te TE TE ==? TEX == ? 10 eV
T· TI TI ==? TIX == ? 10 eVz

11 F1 F1 ==? F1X == ? 0

12 F2 F2 ==? F2X == ? 0

13 F3 F3 ==? F3X == ? 0

For every quantity in this table, the Astra compiler finds the appropriate mode of calculating

the corresponding variable: via equation, formula or data file.

4.3.2 Initial conditions for the poloidal flux 1jJ == FP

The similar procedure is applied for the poloidal flux. The scheme below can define the

initial conditions only (then the equation for 1jJ is solved), or describe the prescribed time

evolution of 1jJ and all related quantities. Usually, it is more convenient to prescribe the

plasma current density)11 rather than the poloidal flux 1jJ.

)11 == CU ---+ MU ---+ FP ---+ UPL

Additionally, the condition (67) is applied.

yes. J-L == MU ---+ CU ---+ FP ---+ UPL

The condition (67) is not applied.

~ yes
~ --------+-

no!

o
no!

The current distribution is determined
by the steady-state condition (69).

After one of the quantities)11 or J-L is defined, all other quantities in the list)11' J-L, 1jJ, UpI

are calculated using Eqs. (33), (34) and Eq. (57). Note that, in case when an assignment of

MU is active, no normalization is applied although J-L(PB) is consistent with the total plasma

current. That is, in general, J-L(p) has a jump (surface current) at the plasma edge. In all

other cases, the additional normalization condition (67) is applied so that an assignment of

CU is valid within to a multiplicative constant.

ASTRA - Automated System for TRansport Analysis

4.4 Boundary conditions

4.4.1 Boundary conditions for ne , Te , Ti , fj

45

Besides the initial condition, the boundary values ne(PB, t), Te(PB' t), Ti(PB, t), fj(PB' t)

must be prescribed as functions of time. Electron density at the plasma edge ne(p == PB, t)

is defined according to

G)-y-e-s-----..

no]

Prescribed edge density:

ne(PB, t) == NEB(t)

Prescribed electron flux:

r e(PB, t) == QNB(t)

no

yes yes Prescribed electron flux:

r e(PB, t) == QNB(t) +QNNB(t) x ne(PB, t)

Edge density is determined by
a data file as ne(PB, t) == NEXB(to)

It is seen that giving NEB == 1 one obtains the boundary condition ne(PB, t) == l019m-3.

In such a case, the setting of QNB or QNNB does not influence ne(PB, t) . Otherwise, if

the particle flux, rather than the particle density, at the plasma edge is to be prescribed,

then any instructions of the type NEB == · .. must not be present.

Any combination of explicit or implicit approximation for the edge particle flux can

be used. For instance, both instructions QNB == 10 * NE and QNNB == 10 describe the

same boundary condition (to within the numerical accuracy). However, in the first case,

the numerical approximation reads re(PB, t) == lOne(PB, t - ~t), while in the second,

re(PB, t) == lOne(PB, t).

ASTRA - Automated System for TRansport Analysis 46

Other boundary conditions can be defined in a parallel fashion, as illustrated in Ta­

ble 4.8. In addition to this table, we note that if none of the control parameters listed there

Table 4.8. Summary of boundary condition setting

Quantity/Flux Code name Control parameters / Units

ne / r e NE / QN NEB / 1019m-3 QNB / 1019S-1 QNNB / m3/s
Te / qe TE / QE TEB / keY QEB / MJ QETB / MJ/keV
Ti / qe TI / QI TIB / keY QIB / MJ QITB / MJ/keV
11 / r 1 F1 / QF1 F1B / [11] QF1B / [11] m3/s QFF1B / m3/s
12 / r 2 F2 / QF2 F2B / [12] QF2B / [12] m3/s QFF2B / m3/s
13 / r 3 F3 / QF3 F3B / [13] QF3B / [13] m3/s QFF3B / m3/s

appears in a model, then a boundary value from the data file is used. However, there

is a difference between the following two cases: (i) where the assignment NEB == NEXB is

explicitly given in a model, and (ii) where the same assignment is used because none of the

control parameters appears in a model. In the first case, the assignment is considered as

time dependent while in the second case it is executed only at the initial time. Finally, if

a data file does not define the quantity either, then the boundary value is set to one of the

defaults given in Table 4.7.

4.4.2 Boundary condition for the poloidal flux 1jJ == FP

The boundary condition for the poloidal flux is defined according to the following diagram

Prescribed current:

o1jJ I 0.41f ()- == --IPL t
op P==PB G2

External circuit equation is solved:
d
- (LextI) + Up1B == UEXT(t)
dt

yes

yes

yes

no Short-circuited primary coil:
d
dt (LextI) + UplB = 0

ASTRA - Automated System for TRansport Analysis 47

yese
no]

The plasma current I p1 is
prescribed by a data file:

o1jJ I 0.41f- == --IPLX
op P==PB G2

Prescribed loop voltage:

o1jJ1UplB = at = UEXT(t)
P==PB

In the simplified external circuit equation in this diagram Lext == LEXT can be understood

as the external inductance between plasma and primary coil. Note also that in the case of

prescribed loop voltage the parameter UEXT defines a loop voltage at the plasma surface and

coincides with Up1B == UPLB ,whereas in the circuit equation UEXT denotes a voltage provided

by the external source (primary coil). In the code, the circuit equation is represented as

t

LextG2 o1jJ I + n/'I == Jv: dt0.41f 0 If/ PB ext
p PB 0

with Lext measured in JLHn.

4.5 Link between the transport and equilibrium parts of Astra

Two versions of the equilibrium solver are presently provided by the Astra system. The more

simple version [5] solves the equilibrium equation Eq. (40) using 3-moment approach. It is

assumed that the plasma configuration is up-down symmetric and each magnetic surface can

be parameterized as

{
r(a, e) = Ro+ ~(a) + a (cos e- c5(a) sin2 e)
z(a, B) == ~z + a"\(a) sin 0

(88)

where a is a minor radius of every magnetic surface in the equatorial mid-plane. From

now on a will denote this magnetic surface function. ~ is the Shafranov shift, ,,\ is

the elongation and 6 is the triangularity of each flux surface. The parameter ~z is not

included in the equilibrium solver because the problem has translational symmetry in the

z -direction. However, the plasma up- or down-shift may be relevant for the calculation of

heat and particle sources. In this representation the boundary surface SB is specified with

ASTRA - Automated System for TRansport Analysis 48

five parameters: Ro , aB , ~(aB) , '\(aB) , c5(aB) . This is equivalent to a prescription

of four characteristic points on the boundary. These are two points in the mid-plane {r ==

Ro + ~(aB) ± aB, Z == ~z} and the two points most remote from the plane {r == Ro +
~(aB) - aBc5(aB), Z == ~z ± aB'\(aB)} .

A more advanced equilibrium solver called ESC3 (Equilibrium and Stability Code) is

also available [6] which allows for arbitrary shape of the plasma boundary. In this version,

the plasma boundary SB is specified by a set of N B :S 121 points {r i, Zi } while the

configuration is sought in the form
K

r(p, T) == r8(p) + 2 L [rf(p) cos kT + rf(p) sin kT] ,
k==l (89)

Z(p, T) == ~z(p) + p'\(p) sin T.

ESC also provides an analysis of plasma stability with respect to tearing and ballooning

modes.

Now we will describe the interface between the equilibrium and the transport packages

of the code. If the number N B does not exceed 4 and the boundary is up down symmetric

then it is convenient to use shift, elongation and triangularity of the boundary. Two radially

dependent functions on the right hand side of the Grad-Shafranov equation, namely the

pressure and current density distributions, are supplied at a Pj -grid of N E points (variable

name NEQUIL) which is different from the transport grid. In the current version, N E ==

NEQUIL :S 41 and in addition to its main meaning it is also used as a control parameter:

N E < 0 No equilibrium solver is called. Pre-calculated metric
is taken from a data file as described in Section 5.3.2.

No equilibrium solver is called. Parabolic distributions
for ~(p), '\(p), c5(p) are used and a(p) == p/~.

o< NE:s 41 3-moment equilibrium solver is called with NE-point grid.

N E > 41 ESC is called.

Parameter exchange is shown in the following diagram and explained in the table below.

Transport PB, pj(r), I, V', G1 , G2 , G3
Additional output is available

by request

Equilibrium

3http://w3.pppl.gov/topdac/esc.htm

ASTRA - Automated System for TRansport Analysis 49

Input to the equilibrium module Output from the equilibrium module

RoBo boundary value of I PB boundary value of P

N B boundary-grid size (NB :S 12) pj(r) shape of every flux surface

{ri, Zi} boundary shape (1 :S i :S N B) I(pj) poloidal current

N E p-grid size and type of solver V'(Pj) volume derivative

Pj p-grid (1 :S) :S N E) G1 (Pj)

1p(Pj) pressure profile G2 (Pj) metric characteristics

f)11 (Pj) current density profile G3 (Pj)

4.6 Astra variables

In this section, we describe Astra internal variables dividing them into groups according

to their meaning and limiting the discussion to those variables which can be accessed (or

corrupted) by a user of the code. These variables are held in Fortran common blocks and

seen from every part of the code. First of all, there are variables describing different physical

quantities: some of them have to be defined by a user, others are calculated by the code.

The second group consists of control parameters for the numerical schemes used in the

code and for tuning the output. Finally, there is a set of global variables without any

predefined meaning, which are entirely at the disposal of the user. Employing these variables

is recommended if any new quantity is needed in a simulation. Although it is not forbidden

to introduce new variables in a user's model, no check is made for dangerous possible name

conflicts. Therefore, it is supposed that in introducing a new variable (see Section 5.2.8),

the user will check that the variable name does not coincide with any of the Astra global

variables. Complete lists of the Astra global variables can be found in the files: 4

AWD/for/pararneter.inc,

AWD/for/outcrnn.inc,

AWD/for/const.inc,

AWD/trnp/declar.frnl,

AWD/for/status.inc,

AWD/trnp/declar.fnc.

It is obvious that there is a minimal set of variables which must be defined by a user in

order to start an Astra simulation. In the Astra code we have tried to minimize this burden

4We remind that AWD stands here for the Astra working directory which can be different for each
installation.

ASTRA - Automated System for TRansport Analysis 50

on the user by setting as many variables as possible according to common sense. We will

use the following symbols to mark different types of the code variables.

The variable must be defined by a user.

+ The variable can be defined by a user. Otherwise, it takes a default value.

* The variable cannot be defined by a user. It is always defined by the code.

As mentioned, there is an additional type of variables which are exclusively defined by the

user and can be used for exchanging information between user routines.

There are several ways for determining variables in the Astra code and the default

definition is only applied if the variable was not explicitly set by the user. More about possible

ways of setting code variables and about their default values can be found in Section 5.3.

4.6.1 Scalar (time dependent) variables

We start with a set of variables which define the plasma configuration. The five geometrical

variables AB, ELDNM, TRICH and AWALL, RTDR are time independent. The first three of

them are the maximum possible values for the time dependent quantities ABC, ELDNG and

TRIANG , respectively. The variable AWALL is presently used only for a radial grid allocation

Table 4.9. Configuration parameters

Type Variable Units Description, AB m Limiter position in the mid-plane, aB

+ ABC m Transport grid boundary in the variable a

+ AWALL m Wall position in the mid-plane, RTDR m Major radius of the vacuum chamber

+ SHIFT m Horizontal shift of the edge magnetic surface

+ UPDWN m Vertical shift of the edge magnetic surface

+ ELDNG - Elongation of the edge magnetic surface

+ ELDNM - Vacuum chamber elongation (used for drawing)

+ TRIAN - Triangularity of the boundary surface

+ TRICH - Vacuum chamber triangularity

Table 4.10. Main plasma parameters

Type Variable Units Description, BTDR T Vacuum toroidal field at the position RTDR, IPL MA Plasma current

+ AMJ m p Main ion atom mass in units of the proton mass

+ ZMJ ep Main ion charge in units of the proton charge

ASTRA - Automated System for TRansport Analysis 51

and usually it does not require an explicit definition. The major radius RToR corresponds

to the position where the vacuum toroidal magnetic BToR is given. Although RToR cannot

vary in time, plasma motion can be defined by varying SHIFT and UPDWN. The main ion

mass and charge can also be given as radial arrays AMAIN and ZMAIN.

Table 4.11. Other scalar plasma parameters

Type Variable Units Description

+ GN2E - Factor in convective electron heat flux

+ GN2I - Factor in convective ion heat flux

+ AIM1,AIM2,AIM3 m p Impurity species mass in units of the proton mass

+ LEXT JLH External inductance

+ UEXT V External loop voltage

+ WNE, WTE, WTI m Width of exponential decay for ne , Te , Ti at a > aB

* RHoW m Limiter position in the variable p: a(RHoW) == AB

* ROC m PB, grid edge in the variable p: a(RoC) == ABC

* VOLUME m3 Plasma volume inside PB ==RoC

* VSB Vs Poloidal flux at the plasma edge

* VSC Vs Poloidal flux at the magnetic axis

As seen from Table 4.11, up to three different ion impurity species can be defined in

the code by their masses, charges and densities 1. The impurities are not directly included

in the main set of transport equations, but they are required in the NBI heating subroutine,

NCLASS, STRAHL and some other external modules. The parameters WNE, WTE, WTI are

used to describe the plasma parameters NE, TE, TI in the scrape-off-Iayer outside the main

transport grid. In the present version, they do not play any role in the simulation and can

be seen only in a special drawing mode when radial profiles are plotted beyond the transport

boundary.

As long as the memory requirement for the Astra code is quite moderate the code

does not use dynamic memory allocation. All arrays have fixed dimensions and any change

of those requires re-installation of the code. Some of the code constants are given in the

Table 4.12. Normally, an error is reported when any of these array limits is exceeded.

The parameter NRD allocates the maximum possible length of all radial arrays. How­

ever, the parameter which really determines the radial grid size is NB1:S NRD. The transport

core of the code is quite fast so that large values of NB1 do not affect its speed significantly.

1 Unlike the masses, the impurity charges and densities are described by radial arrays Z1M1, Z1M2, Z1M3

and N1Z1,N1Z2,N1Z3 (Section 4.6.2).

ASTRA - Automated System for TRansport Analysis

Table 4.12. Internal constants

Type Constant Value Description

* NRD 501 Maximum size of the radial grid

* NRDX 200 Maximum No. of radial points for input from a data file

* NRW 96 Maximum No. of radial/time curves for output

* NTIMES 1024 Dimension of arrays for output in time modes 6 and 7

* NTVAR 2000 Total No. of time slices for all variables in a data file

* NTARR 5000 Total No. of time slices for all arrays in a data file

* GP 1r

* GP2 21r

52

However, some additional modules which do not use a separate grid can noticeably decelerate

the calculations. The essential feature of the parameter NB1 is that it must be defined at

the earliest phase of the code execution and cannot be redefined later. It means that,

unlike most other parameters in the Astra code which can be set in many different ways,

the only way of defining the grid size NB1 is input from a data file (Section 5.3.1). The

parameter NEQUIL defines a radial grid for the 3-moment equilibrium solver and serves also

as a switch to the ESC solver. In the latter case, a radial grid is selected automatically.

Two parameters XFLAG and NBND define a type of the plasma boundary and a number of

points on it, respectively.

Table 4.13. Parameters for radial grid control

Type Variable Units Description

+ NB1 - No. of points of the main transport grid NB1:S NRD

+ NEQUIL - 3-moment equilibrium solver grid size and control switch

+ NB2EQL - Factor for NB pressure contribution to equilibrium eqn

+ NBND - No. of points on the boundary

+ XFLAG - X-point flag

+ NUF - No. of radial points to be written in aU-file

+ XoUT - Type of abscissa for radial graphic output (modes 1, 2, 4, 5)

+ XINPUT - Type of abscissa for radial profile input

* HRo m Radial grid step in the variable p

* HRoA m Edge step of the radial grid: RHO (NA1) -RHO (NA)

* NA - == NA1-1

* NA1 - Edge grid point number: RoC=RHo (NA1)

* NAB - NAB ~ NA1, AB == AMETR(NAB) ~ ABC == AMETR(NA1)

The parameter NUF defines a number of radial grid points for an output in the format of

U-file. A type of the created U-file depends on the current radial graphic mode (Section 5.5.3)

ASTRA - Automated System for TRansport Analysis 53

- ID (radial coordinate) in graphic modes 1, 2, 3,

- 2D (radial and time coordinates) in the graphic mode 4,

- ID (time coordinate) in the graphic mode 6.

In addition, one should also have in mind that the radial coordinate in the U-file produced,

is the same as for the current graphs on the screen. Therefore, it is controlled by parameter

XOUT which defines an abscissa type for radial profiles in the current plot. If the parameter

XOUT takes values 0 or 1 (default value is 1) then the flux surface label a is used as a

radial coordinate. If XOUT == 2 or 3 then p or 1jJ are used in place of a. The parameter

XINPUT can take the same values, but it defines an abscissa of radial profiles for input in cases

when the radial grid is equidistant but the coordinate is not defined explicitly. The meaning

of these numbers is similar to that for the parameter GRIDTYPE which is explained in more

detail in Section 5.4.4, and summarized in Table 5.5. All other parameters in Table 4.13

cannot be changed by a user. They may be used for output only.

Table 4.14. Parameters for output control

Type Variable Units Description

+ DPOUT s Time interval for profile storing (modes 4, 5 and Review)

+ DROUT s Time interval for profile redrawing (modes 1, 2 and 3)

+ DTOUT s Time step for time curve output (modes 6 and 7)

+ TPAUSE s Time for switching on the "step" mode

+ TEND s End of run time

+ TINIT s Time axis left label (modes 6 and 7)

+ TSCALE s Time axis scale length (modes 6 and 7)

Table 4.14 contains a number of other control parameters for graphic output. All

these parameters are described in Section 5.5.3. They can be set in a model or adjusted

interactively. If the parameters DPOUT, DROUT, DTOUT, TSCALE and also the parameters

TAUMIN, TAUMAX from the Table 4.15 are not given by the user they are set by the code to

be proportional to the plasma volume.

The control parameters given in Table 4.15 define the numerical algorithm used in the

transport part of the code. Usually, the time step is selected automatically by the following

condition. If a maximum relative change in any of variables TE, TI, NE, F1, F2, F3 is

larger than DELVAR then the time step T == TAU is decreased. Otherwise, it is multiplied

by TAUINC which when not defined explicitly is equal to 1.1. However, a user can fix the

ASTRA - Automated System for TRansport Analysis 54

time step by setting TAUMIN == TAUMAX, or modify the algorithm (see Section 4.9.8). An

increase of the parameter ITEREX (default value 1) can sometimes improve the numerical

stability in strongly nonlinear problems. Another iteration parameter ITERIN cannot be

changed by a user. It is selected by the code to ensure that the numerical approximation of

electron-ion heat exchange does not violate energy conservation.

Table 4.15. Parameters for accuracy control

Type Variable Units Description

+ TAUMAX s Maximum time step: T :S TAUMAX

+ TAUMIN s Minimum time step: T 2: TAUMIN

+ TAUINC - Maximum time step increment: TAU(t + T)/TAU(t)

+ DELVAR - Maximum relative change of variables at time step

+ ITEREX - No. of iterations in the external loop

* ITERIN - No. of iterations in the internal loop

* TIME s Current time of the simulation

* TAU s Current time step

Exchange variables. A group of parameters, which are in all respects similar to those

discussed above, is reserved for particular uses in the different external modules rather than in

the Astra core. If, in a particular model, these modules are not involved then the parameters

can be used quite arbitrarily independently of their names and significance. If the modules

are in use, however, then the parameters can only be used in the predefined context.

Table 4.16. Input/output parameters for the subroutine NEUT

Name Units Description
NNCL / NNWM 1019 /m-3 Density of incoming cold / warm neutrals
ENCL / ENWM keY Energy of incoming cold / warm neutrals
NNCX - No. of iterations in the neutral solver
ALBPL - Plasma albedo (Neutral flux outward) / (Neutral flux inward)

The scalar input parameters for the external module NEUT are listed in Table 4.16.

Two pairs {NNCL, ENCL} and {NNWM, ENWM} are available. Each pair describes a density

and energy of one mono-energetic incident neutral component. Although it is not quite

correct, the parameter NNCX can be viewed as a number of charge exchange neutral genera­

tions. The complete list of parameters related to this subroutine which includes also output

is discussed in Section 4.11.

A number of control parameters are used in different heating and current drive modules.

ASTRA - Automated System for TRansport Analysis 55

Most of them are built into the appropriate packages, and can be changed by the user

according to the usual rules. Only a few of them are associated with the total heating power

(QECR, QFW, QICR, QLH, QNBI) and these belong to the list of main Astra parameters.

As already mentioned, the meaning of these parameters is defined inside the corresponding

packages and can even change if one heating module is replaced by another.

All scalar variables discussed so far can be defined with maximum flexibility (except

for those marked with '* '). They can be defined by all the methods described in Section

5.3, i.e. in a model, in a data file (with few exceptions) and interactively. Other scalars

described below have fewer restrictions in their usage, but have less flexibility in how they

are initialized.

Dummy variables. As mentioned in the beginning of this section there are a number

of parameters which are reserved for user's needs and can be used arbitrarily in a model.

All these scalar variables have no predefined meanings and mnemonics of names (if any)

should not be viewed as binding. For instance, CMHD1 need not be associated with MHD

phenomena as well as CIMP1 may have nothing to do with the impurity behavior. They can

be used for communication between different user's subroutines, in intermediate calculations

or for output. Two different groups are described below. Variables in the both groups can

be time dependent but the time dependence is to be set in different ways.

Table 4.17. Parameters for a run control (C-parameters)

CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8
CF9 CF10 CF11 CF12 CF13 CF14 CF15 CF16
CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8
CV9 CV10 CV11 CV12 CV13 CV14 CV15 CV16
CHE1 CHE2 CHE3 CHE4 CHI1 CHI2 CHI3 CHI4
CNB1 CNB2 CNB3 CNB4 CNBI1 CNBI2 CNBI3 CNBI4
CCD1 CCD2 CCD3 CCD4 CRF1 CRF2 CRF3 CRF4
CNEUT1 CNEUT2 CNEUT3 CNEUT4 CPEL1 CPEL2 CPEL3 CPEL4
CBND1 CBND2 CBND3 CBND4 CFUS1 CFUS2 CFUS3 CFUS4
CIMP1 CIMP2 CIMP3 CIMP4 CMHD1 CMHD2 CMHD3 CMHD4
CRAD1 CRAD2 CRAD3 CRAD4 CSOL1 CSOL2 CSOL3 CSOL4

The group of parameters listed in Table 4.17 will be called C-parameters. They can be

used for run control because the C-parameters can be changed interactively during a code

ASTRA - Automated System for TRansport Analysis 56

run. They can also be saved during a run (Section 5.3.2), then the subsequent run will be

started with the recently adjusted values of these control parameters. If the C-parameters

are not determined explicitly in one of the ways described in Section 5.3 then they take

default values which are 0 for the 16 variables starting with CV (from CV1 till CV16) and 1

for all others. A limitation is that the C-parameters cannot be read from a data file.

A second set of dummy parameters given in Table 4.18 can be defined by an input file.

These parameters can be used to input non-standard experimental characteristics for which

Table 4.18. Variables readable from a data file

ZRD1X ZRD2X ZRD3X ZRD4X ZRD5X ZRD6X ZRD7X ZRD8X
ZRD9X ZRD10X ZRD11X ZRD12X ZRD13X ZRD14X ZRD15X ZRD16X
ZRD17X ZRD18X ZRD19X ZRD20X ZRD21X ZRD22X ZRD23X ZRD24X
ZRD25X ZRD26X ZRD27X ZRD28X ZRD29X ZRD30X ZRD31X ZRD32X
ZRD33X ZRD34X ZRD35X ZRD36X ZRD37X ZRD38X ZRD39X ZRD40X
ZRD41X ZRD42X ZRD43X ZRD44X ZRD45X ZRD46X ZRD47X ZRD48X

(unlike BTOR or 1PL) no special variable is allocated. Typical examples are measured q == 2

radius or a diamagnetic signal. Default value for all these parameters is 0 and they cannot

be changed interactively. This set of parameters is coupled with the next set by the rules

Table 4.19. Z-parameters

ZRD1 ZRD2 ZRD3 ZRD4 ZRD5 ZRD6 ZRD7 ZRD8
ZRD9 ZRD10 ZRD11 ZRD12 ZRD13 ZRD14 ZRD15 ZRD16
ZRD17 ZRD18 ZRD19 ZRD20 ZRD21 ZRD22 ZRD23 ZRD24
ZRD25 ZRD26 ZRD27 ZRD28 ZRD29 ZRD30 ZRD31 ZRD32
ZRD33 ZRD34 ZRD35 ZRD36 ZRD37 ZRD38 ZRD39 ZRD40
ZRD41 ZRD42 ZRD43 ZRD44 ZRD45 ZRD46 ZRD47 ZRD48

discussed in Section 5.3.3.

4.6.2 Vector (radially and time dependent) variables

A few hundreds of internal Astra variables describe radially and time dependent quanti­

ties. Here we discuss those which are implemented as Fortran arrays, i.e. those which are

calculated once at each time step at all points on a radial grid. Other radially dependent

quantities will be considered in the next section.

A complete alphabetical list of all Astra arrays is given in the file AWD/for/status. inc.

In this section, for the sake of convenience, the arrays are combined in groups according to

ASTRA - Automated System for TRansport Analysis 57

their physical meaning. A group of vector variables related to the plasma geometry is given

in Table 4.20. The array RHO == Pj == (j - 0.5) HRD, (j == 1,2,3, ... ,NA) is the main radial

Table 4.20. Arrays describing plasma configuration

Type Variable Units Description

* AMETR m a Magnetic surface radius in a mid-plane

* RHO m P Equivalent radius of a magnetic surface

+ SHIF / SHX m ~ Shafranov shift of a magnetic surface

+ SHIV m ~z Vertical shift of a magnetic surface

+ ELDN / ELX A Elongation of a magnetic surface

+ TRIA / TRX 6 Triangularity of a magnetic surface

* SQEPS Vi E == a/R being the inverse aspect ratio

* SLAT m2 Sa Toroidal surface area

* VDLUM m3 V Volume within a magnetic flux surface

* / + VR / VRX m2 V' on the main grid at t

* VRD m2 V' on the main grid at t - T

* VRS m2 V' on the intermediate grid at t

grid used in the transport problem. The main set of unknown functions in Eqs. (59), (75)

ne , Te , Ti , 1jJ, fj and most of other arrays are defined on this grid. Fluxes and other quantities

which are derivatives of quantities defined on the main grid, for instance, the rotational

transform J-L == MU, are defined on the intermediate grid pjUX == j HRD.

Some variable names for arrays have the character 'X' at the end. These X-arrays can

be imported from an input file as described in Section 5.3. For instance, these external data

can be experimentally measured radial profiles, and can be read in for on-line comparison

with the results of simulation during the run. They could also be radial functions, pre­

calculated by stand-alone codes for subsequent usage in the Astra code, e.g., heat deposition

profiles or equilibrium evolution characteristics calculated elsewhere. Although all X-arrays

have names associated with predefined names for some physical quantities, most of them

are independent from their prototypes. However, there are a few situations when some

unexpected side effects are possible. It usually can happen when any explicit definition is

missing and the code uses default assignment as described in Section 5.3.1. For instance, if

the transport equation (85) for F1 is involved but no initial condition for F1 is specified,

then the Astra compiler will use the default assignment F1=F1X. Then F1X can be used in

this sense only. Otherwise, the variable F1X can be used for reading arbitrary radially and

time dependent function from a data file.

ASTRA - Automated System for TRansport Analysis 58

In the next two tables 4.21 and 4.22, the main plasma parameters, corresponding

fluxes and sources are collected. Note that the quantities SNToT, PEToT, PIToT, QN, QE,

QI are calculated by the code. Any user's attempt to define them will be overridden.

Table 4.21. Arrays for the main plasma parameters

Type Variable Units Description

+ / * / + NE / NED / NEX 1019m-3 ne(t) / ne(t - T) / n~XP(t)

+ / * / + NI / NIo / NIX 1019m-3 ni (t) / ni(t - T) / n7XP (t)
+ / * / + TE / TEO / TEX keV Te(t) / Te(t - T) / T:xP(t)

+ / * / + TI / TID / TIX keV Ti(t) / Ti(t - T) / TtXP(t)

+ AMAIN / ZMAIN m p / ep maIn Ion mass / main ion charge

+ ZEF / ZEFX Zeii / Zexpeff

Table 4.22. Fluxes and sources (see also Table 4.6)

Type Variable Units Description

* / + SNToT / SNX 1019m-3s-1 Particle source SNToT == SN + SNN * NE

* / + PEToT / PEX MWm-3 Electron heat source PEToT == PE + PET * TE

* / + PIToT / PIX MWm-3 Ion heat source PIToT == PI + PIT * TI

* / + GN / GNX 1019m-2s-1 GN == QN/G11, GNX is usually defined in GNXSRC

* / + QN / QNX 1019S-1 Electron flux through the entire magnetic surface

* / * QE / QI MW Electron heat flux / Ion heat flux

Table 4.23 describes quantities related to the diffusion of the poloidal field. The

quantities FV, MV, CV are introduced for simulation of a stellarator. For tokamak modelling

Table 4.23. Poloidal flux and related quantities

Type

+ / *
+
+
+
+
+
+
+
+
+
+

Variable
FP / FPo
MU / MUX
CU / CUX
CD
CUBS
CUToR
ULoN
UPL
FV
MV / MVX
CV

Units
Vs

MAm-2

MAm-2

MAm-2

MAm-2

V
V
Vs

Description
Poloidal flux: 1jJ (t) / 1jJ (t - T)
Inverse safety factor (J-L == ~ == 1/q)
jll' longitudinal current density, Eq. (32)
JCD, driven current, Eq. (58)
jBS, bootstrap current, Eq. (58)
jtor, toroidal current density, Eq. (31)
U

II
, parallel loop voltage, Eq. (44)

UpI , toroidal loop voltage, Eq. (46)
Vacuum poloidal flux created by external coils
Vacuum rotational transform for a stellarator (iota)
Current density equivalent to MV

they are not needed. If MV (or CV) is set then the external (vacuum) poloidal field is added

ASTRA - Automated System for TRansport Analysis 59

to the field of the plasma current. In this case, the latter can also be zero. All current

densities in Tables 4.23 and 4.24 one are assumed to be parallel to the magnetic field B

Table 4.24. Right hand sides of transport equations

Type Variable Units Description

+ CUBM MAm-2 NB driven current

+ CUECR MAm-2 EC driven current

+ CUFI MAm-2 Fast ion current

+ CUFW MAm-2 FW driven current

+ CUICR MAm-2 IC driven current

+ CULH MAm-2 LH driven current

+ PRAD / PRADX MWm-3 Radiation power

+ PEECR MWm-3 Electron heating due to ECR

+ PEFW MWm-3 Electron heating due to FW

+ PEICR MWm-3 Electron heating due to ICR

+ PELH MWm-3 Electron heating due to LHCD

+ PIFW MWm-3 Ion heating due to FW

+ PIICR MWm-3 Ion heating due to ICR

+ PBEAM MWm-3 Total beam power source

+ SCUBM kg m/s'2lm3 Toroidal momentum source due to NB

+ SNEBM 1019 m-3 S-l Electron source due to NB

+ SNNBM 1019 m-3 S-l Warm neutral source due to NB

+ SNIBMj 1019 m-3 S-l Source of ions with the energy EBEAM/ j , j=1,2,3

because they are supposed to be used in the parallel Ohm law Eq. (57). The only exception

IS CUTDR which participates in the Joule heating term Eq. (55).

Some frequently used quantities are given in Table 4.25. Density and temperature

distributions of the 'cold' neutral atoms are calculated by the subroutine NEUT as described

Table 4.25. Auxiliary plasma parameters

Type Variable Units Description

* VP m/s U
"
/(d1/Jldp) == E"IBp , pinch velocity

* VPFP m/s 0.5pBIB, flux surface velocity

+ ER Vim Radial electric field

+ VPDL / VPDLX m/s Poloidal rotation velocity

+ VTDR / VTDRX m/s Toroidal rotation velocity

+ NN - Relative neutral density, N(p)IN(PB)
+ TN keY Neutral temperature, TN(p)

+ PBLDN 1019 keY1m3 Longitudinal pressure of fast ions

+ PBPER 1019 keY1m3 Perpendicular pressure of fast ions

+ PELON 1019 keY1m3 Longitudinal electron pressure

+ PEPER 1019 keY1m3 Perpendicular electron pressure

ASTRA - Automated System for TRansport Analysis 60

in Section 4.11.

Table 4.26 contains parameters characterizing the tokamak magnetic configuration.

The quantities EQFF and EQPF give the right hand side of the Grad-Shafranov equation

Eq. (36). All others are obtained as a result of solving this equation. Different average mag­

netic field characteristics are used in transport coefficients while purely geometric quantities

are included in the transport set of equations as metric coefficients.

Table 4.26. Geometric and magnetic field characteristics

Type Variable Units Description

+ EQFF / EQPF MAm-2 j((r, z) == Ralr * EQFF + r I Ra * EQPF
+ BMAXT / BM1NT T Maximum I minimum B field on a surface

+ BODB2 / BDB02 < B51B2 > / < B21B5 >
+ BDBO < BIBa >
+ FOFB < B5/B2 (1. - Jl- B/Bmax (1 + .5B/Bmax) >
+ GRADRO < 1\7pi >, lateral area Sa ==VR*GRADRO
+ DRODA / DRODAX dplda

+ G11 / G11X m2 < (\7p)2 > V'

+ G22 / G22X m V'Ra/(41r2J) < (\7(p)lr)2 >
+ G33 / G33X < R61r2 >
+ 1POL / 1POLX J, Normalized poloidal current Eq. (23)

The next group of parameters (Table 4.27) describes plasma isotope composition and

impurity species. These quantities are used in subroutines NCLASS, NB1, STRAHL and in

many other code modules dealing with the transport properties, additional heating and so

on.

Table 4.27. Plasma isotope and impurity composition

Type Variable Units Description

+ NHYDR NDEUT NTR1T 1019m-3 Hydrogen isotope density

+ NHE3 NALF 1019m-3 Helium isotope density

+ N1Z1 N1Z2 N1Z3 1019m-3 Impurity species density

+ Z1M1 Z1M2 Z1M3 ep Impurity species charge

+ ZEF1 ZEF2 ZEF3 Impurity contribution to Zeii

+ D1MP1 D1MP2 D1MP3 m2 /s Diffusion coefficient

+ V1MP1 V1MP2 V1MP3 m/s Impurity pinch velocity

+ PBOL1 PBOL2 PBOL3 MWm-3 Contribution to bolometric power

+ PSXR1 PSXR2 PSXR3 MWm-3 Contribution to soft X-ray radiation

The group of variables used in the additional transport equations (85), (86) is given in

ASTRA - Automated System for TRansport Analysis 61

Table 4.28. They are analogous to the variables used for the main plasma parameters such

as NE or TE.

Table 4.28. Arrays associated with dummy unknowns F1, F2, F3

Type Variable Units Description

+ F1 F10 F1X [11] Il(t) / Il(t-T) / I~xp (t)

+ F2 F20 F2X [12] I2(t) / I2(t - T) / I;xp (t)

+ F3 F30 F3X [13] I3(t) / I3(t - T) / I%XP (t)
+ DF1 DF2 DF3 m2/s Diffusion for the variable Ij
+ VF1 VF2 VF3 m/s Pinch velocity for the variable Ij
+ QF1 QF2 QF3 [Ij]m3/s Entire flux for the variable Ij
+ SF1 SF2 SF3 [Ij]/s Explicit rhs for the variable Ij
+ SFF1 SFF2 SFF3 l/s Implicit rhs for the variable Ij
+ SF1TOT SF2TOT SF3TOT [Ij]/s Total source for the variable Ij

Finally, two groups of vector variables without predetermined meanings are defined.

All can be used similarly to the scalar variables listed in Table 4.17. Additionally, those

of them with an 'X' at the end can be read in from the data file (see Section 5.3).

Table 4.29. Dummy arrays

CAR1 CAR2 CAR3 CAR4 CAR5 CAR6 CAR7 CAR8
CAR9 CAR10 CAR11 CAR12 CAR13 CAR14 CAR15 CAR16
CAR17 CAR18 CAR19 CAR20 CAR21 CAR22 CAR23 CAR24
CAR25 CAR26 CAR27 CAR28 CAR29 CAR30 CAR31 CAR32
CAR1X CAR2X CAR3X CAR4X CAR5X CAR6X CAR7X CAR8X
CAR9X CAR10X CAR11X CAR12X CAR13X CAR14X CAR15X CAR16X

4.7 Astra expressions

4.7.1 Types of expressions

Astra expressions provide a convenient notation for defining physical quantities or discharge

characteristics which can be expressed by a formula. Each formula/expression can be referred

to by a name and used in other expressions as described in Section 5.2. Typical examples are

transport coefficients, power and particle sources and sinks, cross-sections of atomic processes

and so on. Once these expressions are programmed they are stored in an object library or as

Fortran text files. The Astra compiler then ensures the appropriate treatment of all modules

and includes them into the resulting code according to their meaning, implementation and

application. The whole concept is rather flexible: the expressions can be radially and/or

ASTRA - Automated System for TRansport Analysis 62

time dependent, they can include integrals and derivatives, depend on other expressions and

plasma parameters. In many cases, the Astra expressions are self-documented because they

contain comments, examples of usage in the code, and references to papers from which they

originate.

On the one hand, the number of Astra expreSSIons IS continuously increasing, on

the other hand, some which have become obsolete are retained for backward compatibility.

Therefore, instead of comprehensively describing all Astra expressions, the goal of this section

is to give a general representation of the Astra expression library, to describe its structure,

and to demonstrate how to find out more.

Astra supports two different kinds of expressions: formulae and functions. A beginning

user of the code does not need to discriminate between functions and formulae and can treat

them as identical. Moreover, the names of Astra expressions can coincide with the names

of the vector variables described in the previous section. The only essential difference for a

user is that, unlike arrays, expressions can be modified and new ones can be added. A user

can delete any formula (including those in the Astra kernel) and replace it with his own.

A function provided with the code cannot be deleted, however, this is not very restrictive

because a user can always create his own function with a new name. Although no detailed

explanation of the expression syntax is provided here, a number of expressions in the code

can be used as templates for designing new ones.

The actual difference formulae and functions is that the formulae are included in a

source code with the INCLUDE statement, while functions are conventional Fortran func­

tions. Although there is no clear distinction, functions tend to be used for programming more

complicated expressions than formulae.! Nevertheless, many expressions are represented

both by functions and by formulae. Usage of formulae is preferable because it does not require

rebuilding libraries and usually results in a faster executable code than using functions. As

already mentioned, the proper usage is handled by the Astra compiler so that a user need

not go into these details.

In this description, only the overview and usage of Astra expressions are presented.

Usually, a name of variable/expression has a mnemonic meaning related to its use in the

code. So the expressions supposed to be used as the matrix elements or the right hand sides

IThis sequence can be continued by the Astra subroutines which are described in Section 4.9 and related
to the processes described by equations rather than by expressions.

ASTRA - Automated System for TRansport Analysis 63

in Eqs. (82)-(87) start with the same letters as the corresponding terms of the equations.

With a few exceptions the first letter of an expression name has the following meaning

B - contributions to /3's,

C - conductivity,

D - diffusivity,

F - predefined radial functions,

H or X - heat conductivity, (' H' is used for electron, 'X' for ion heat conductivity),

I - surface integral (applied for current density),

L or R - plasma inductance or characteristic length,

N - plasma collision frequencies,

P - heat source or sink,

Q or W - volume integral of a source or of energy content, respectively,

S - particle source,

SV - < av > for collision processes,

V - velocity.

More detailed information about every particular expression can be found in its source file.

The source files for Astra formulae are placed in the directory AWD/frnl/ , functions in the

directory AWD/fnc/ , arrays are listed in the file AWD/for/status. inc.

4.7.2 List of expressions

In an Astra model (see Section 5.2) both upper- and lowercase letters can be used. Below

we write all Astra expressions in uppercase but emphasize that all file names for Astra

expressions consist of lowercase letters only. For instance, a source file for the expression

QDT appears as AWD/frnl/qdt (formula) and as AWD/fnc/qdt . f (function). Other expres­

sions can be presented either by a formula or by a function only. A user should also be

aware that all variables associated with Astra expressions are interpreted by the Astra code

as Fortran real variables independently of the first letter of the name.

Conductivity and CD efficiency

I CCSP CCSPX CNHH CNHR CCNEU CCNEU CHOTF EFLHN EFLHW I

ASTRA - Automated System for TRansport Analysis

Bootstrap current density

64

DCHA
DCKIM

HCHA
HCKIM

XCHA
XCKIM

DCHH
DCKM1

HCHH
HCKM1

XCHH
XCKM1

DCHR
DHKIM

HCHR XCHR

Transport coefficients

CERL DBoHM DNDIF DNEXP ENHHO ENHH1 ENHH2 FoWC HAALC
HABM HABMS HABoM HACTE HAED HAETI HAETS HAGB HAGBS
HAGBS1 HAITF HAITR HAMM HANAG HANAL HAPA HAPUE HAPYU
HAQ1 HAQ1C HARL HARLS HARNQ HARPL HASCL HATL HATLI
HATLS HBJET HCHII HCHGP HEEFF HEGN HETAI HETIS HEXP
HGBEJ HGBIJ HIT89 HNCHI HNGSB HNGSE HNGSI HNGSP HNPSI
TECRL XCH86 XCHR XEXP XIGN XIEFF XIRL

Power sources and sinks

PAIoN PBDHE PBEIE PBICX PBRAD PDT PEDT PEDT1 PEGN
PEHCL PEl PEICL PEIGN PENEU PENLI PETSL PHICL PICX
PIDT PIDT1 PIGN PINEU PIoNZ PIREC PITCX PITSL PJoUL
PoH PRCAR PRFER PRNEo PRNIT PRoXI PROXY PRWoL PSYNC

Particle sources and sinks

I SNNEU SNNIE SNNII SNNR

Volume integrals of power and particle sources

QBREM QDT QEDT QEGN QEICL QEIGN QENEU QEToT QEX
QIDT QIGN QINEU QIToT QIX QJoUL QNToT QNX QoH
QRAD QRADX QSYNC QToT QBToT QEDWT QIDWT QNDNT

Volume average quantities

NEAV NEXAV TEAV TEXAV TIAV TIXAV TENDN TINDN
WALF WBPoL WE WEX WI WIX WToT WToTX ZNDN

Confinement times

I TAUE TAUEE TAUEI TAUG TAUNA TAUP TAU89 TITER I

A veraged cross-sections of atomic and nuclear processes

SVCX SVCXX SVD1 SVD2 SVDBH SVDHE SVDT SVIE
SVIEP SVIEX SVII SVREC SVRECX

Collisions

I CoULG NUE NUEE NUES NUl NUIS NUPP

ASTRA - Automated System for TRansport Analysis 65

Velocities

I CS VDIA VSI VTE VTI

Pressure and f3 's

BETE BETI BETPL BETR BETAJ BETBM BETT
ALMHD PRESE PRESI PREST

Integrals of current density

IBM IBS ICD IOHM ITOT IX
IECR IFI IFW IICR ILH

Properties of the current profile

I LICD LINT QBM QBS QCD QNIND QMIN SHEAR XQMIN I

Characteristic lengths and derived quantities

LNE LNI LNZ1 LTE LTI ETAN ETAE ETAI
RLTCR RLTCZ RLTWN RLI RLS

Average Z in coronal approximation

I ZICAR ZIFER ZINEO ZINIT ZIOXI ZIWOL I

Other plasma parameters

EPAR EPL EDR D2TI SQZ DIDT FTE FTLLM TPF
ROTSH NECH NELA CCMHD CUOHM HMHD1 HMHD2 XMHD1 XMHD2

Radial functions (See Section 4.8.3)

I FA FLIN FPA FPR FR FRS FX

4.8 Built-in functions

Below we list some of the modules (Fortran subroutines and functions) incorporated in the

package. Headers of each module are equipped with a brief description and examples of their

usage. Fortran sources for most of the functions discussed in this section are available in the

file AWD/for/intern.f. 5 The general rules of calling Astra subroutines and functions are

described in Section 5.2.

5 Changes in this file are not allowed for a non-authorized user.

ASTRA - Automated System for TRansport Analysis 66

The following notations for the arguments of Astra functions and subroutines are

adopted below:

R is a vector variable, R == R(p, t),

S is a scalar variable or an Astra vector at a given radius, S == S(t),

G is a generic name for both, R(p, t) and S(t) ,

to is the initial time of the simulation run,

t is the current time, t 2: to,

t 1 is arbitrary time.

In the case where a built-in function allows a generic argument G the result has the same

type as the argument. As a rule, only Astra variables (scalars and vectors) can be used as

arguments of Astra built-in functions. To overcome this restriction one has to perform two

steps as in the following example:

CAR1=WTOT; CAR2=TIMDER(CAR1)

Because WTOT is an Astra formula, rather than an array, it cannot be directly used as an

argument of the built-in function TIMDER (time derivative). Therefore, the first statement

assigns the kinetic energy density Wkin (p) to the vector variable CAR1, then the second

computes the energy derivative as the vector CAR2:

[MW].
awkOCAR2 == Inat[MJ],CAR1 = WTOT = Wkin = 0.0024 laP (neTe + niTi) V'dp

In the next example

CV1=TIMDER(IPL); CV2=TIMINT(QNB)

both results are scalars, where CV1 == dIpl / dt is the plasma current ramp rate and CV2 ==

Jt~ QN(PB' t)dt is the total particle flux through the outermost magnetic surface.

The rule restricting the argument type has two exceptions. First, the functions CUT,

STEP (see the end of Section 4.8.2) and Fortran intrinsic functions (Section 4.8.3) allow

arbitrary expressions as arguments. Secondly, the values of Astra arrays at fixed radii (e.g.

QNB in the example above) can also be arguments of the built-in functions.

4.8.1 Time dependent functions

Time derivative (function TIMDER).

(~Gt) I
p

.TIMDER(G) = u

ASTRA - Automated System for TRansport Analysis

Time integral (function TIMINT).

t

TIMINT(G) = f G([p,] t)dt.
to

67

Usage of functions TIMDER and TIMINT has an additional limitation. They can only be used

in an Astra model on the right hand side of an assignment statement. This means that the

constructions

CV1=TIMDER(VOLUME);

and

CAR1=TIMDER(FP);

are correct while the result of dVdt_TIMDER (VOLUME) will be wrong.

Heaviside function of time (function FJUMP).

if t < t 1

if t 1 < t.

Linear ramp in time (function FRAMP).

Storing of a variable value at a given time (function FIXVAL).

if t < t 1

if t 1 < t.

Sliding time average. Function of two parameters FTAV (G, ~t) provides smoothing of

the variable G(t) over the time interval ~t so that

FTAV(G,~t)It = FTAV(G,~t) It-T exp (- ~t) + G(t) [1 - exp (- ~t)] ,

with T being the time step. In particular,

{
FTAV(t) ~ G (t),
FTAV(t) ~ FTAV(t - T),

if T» ~t

if T« ~t.

ASTRA - Automated System for TRansport Analysis

Minimum/maximum value in time of a function G (FTMIN, FTMAX).

68

FTMIN(G) == min [G(O)] ,
to~()~t

FTMAX(G) == max [G(O)].
to~()~t

Here to == TSTART is the initial time and t == TIME is the current time of the run.

Examples:

FJUMP (1 .) provides a time dependent function with the unity step at the time t == 1 s.

The actual width of the transition phase is no less than the current time step T == TAU.

FRAMP (1. , 1.01) extends the transition phase up to 10 ms (provided T < 10 ms, other­

wise T).

MU - FIXVAL(MU, 1.) returns the finite difference ~J-L(p, t) == J-L(p, t)-J-L(p, 1.), if t > 1 s,

and 0 otherwise.

FTAV(UPL, .01) returns a vector variable which is the loop voltage Up1(p, t) averaged

over the recent 10 ms (assuming that the time step T« 10 ms).

FTAV(UPLB, .01) is a scalar giving the average edge loop voltage Up1(PB, t).

FTMIN (MU) and FTMAX (MU) give a range of variation of MU == 1/q during a run.

FTAV(HEXP, .01) this usage is forbidden because HEXP is not an Astra array. Two state­

ments CAR1=HEXP; CAR2=FTAV(CAR1,. 01) should be used instead.

TIMINT (UPL) is a vector variable which gives the poloidal flux 1/J(p, t)

Jt~ Up1(p, t)dt up to an additive constant.

1/J(p, to) +

TIMDER(FPB) is a scalar variable and within numerical errors coincides with Up1(PB, t).

4.8.2 Radially dependent functions

Linear radial functions (FA, FX, FLIN, FR, FRS).

All functions listed above are implemented as Astra formulae. The function FR (array

synonym RHO) gives the nodes of the main transport radial grid Pj

. _ { h(j - 0.5), if 1 ~ j < NA1
PJ - ·f· A1PB, 1 J == N .

ASTRA - Automated System for TRansport Analysis 69

Similarly, FA (array synonym AMETR) gives values of the variable a, i.e. aj == a(pj) on

this grid. Most frequently used functions are defined on this grid. Functions FX and FLIN

both return the normalized radius Pj/PB which can also be obtained as RHO/ROC.

The intermediate grid in P is given by the function FRS == j h. The functions listed

in Table 4.5, all fluxes and some others are defined on this latter grid.

Parabolic profiles (FPR, FPA). The Astra formulae

and

describe parabolic profiles in variables P and a, respectively.

Gaussian distribution (subroutine FGAUSS, function GAUSS).

The subroutine FGAUSS (Po, ~P' R) returns a radial Gaussian profile in the variable P

[()2]Pi - Po
Ri = N exp - I::1

p
,

where the factor N (of dimension m-3) is determined by the normalization condition

{PB
Jo R(p)dV = 1.

This means that the statement "FGAUSS (. 5, . 2 ,PEX) : ; " defines the vector variable PEX as

a Gaussian profile, centered in Po == 0.5 m with the width ~P == 0.2 m. If the quantity

PEX is defined as a power, then the total power deposited would be 1 MW.

The function GAUSS (Po, ~p) can be used similarly: PEX == GAUSS(0.5, 0.2), however, "

the function GAUSS can be called in a model only once.

Minimum/maximum value of a vector variable R(p) (FRMIN, FRMAX).

FRMIN(R) == min [R(p)] ,
O~P~PB

FRMAX(R) == max [R(p)].
O~P~PB

Position of minimum/maximum of a vector variable R(p) (RFMIN, RFMAX).

The functions RFMIN, RFMAX return

RFMIN(R) == Pmin,

RFMAX(R) == Pmax,

where R(Pmin) == min [R(p)] ,
O~P~PB

where R(Pmax) == max [R(p)].
O~P~PB

ASTRA - Automated System for TRansport Analysis 70

Root of the algebraic equation R(p) == Ro (RFVAL).

RFVAL(R, Ro) == Po, where R(p == Po) == Ro·

Maximum of all possible solutions is returned, Po == 0 if no root found.

Root of the algebraic equation R(a) == Ro (AFVAL).

AFVAL(R, Ro) == ao, where R(a == ao) == Ro.

Maximum of all solutions is returned, 0 if no root found.

Gradient of a function R(p) (GRAD).

GRAD(R) = fJ~~) .

One should beware of the approximate character of this operation. The function GRAD is

intended for auxiliary purposes such as graphical presentation or estimates only. For instance,

it makes no distinction between the main and intermediate radial grids. Therefore, the safety

factor q calculated as GP2*BTOR*RHO/GRAD (FP) shows significant deviation from the exact

(in a finite difference sense) quantity q == 21rBop op/o1jJ == 1/tL == 1/MU at the plasma centre.

Even the improved evaluation GP2 * BTOR * FRS/GRAD(FP) is not everywhere exact because

it does not take into account the centering of different grid variables appropriately.

Volume integral of a function R(p) (VINT).

P

VINT(R) = JR(p)V'dp.
o

In Astra models the function VINT can be used in several different ways:

CAR1 == VINT(NE); CV1 == VINT(NEB); CF1 == VINT(NE, 0.5);

The first statement in this example produces a vector, others scalar output. Note that the

'0.5' as the second argument of VINT (in the 3rd statement) refers to the minor radius a

measured in meters and introduced by Eq. (88). Therefore, this gives the following results:

P

CAR1 = JNE(p)V'dp,
o

aB PB

CV1 = JNE(a)dV = JNE(p)V'dp,
o 0

O.5m

CF1 = JNE(a)dV.
o

ASTRA - Automated System for TRansport Analysis 71

For instance, the density averaged over a volume inside the current radius P can be

submitted to the radial graphics output by the two instructions:

CAR1 == 1; < ne > \ VINT(NE) /VINT(CAR1);

In the last example, VINT(CAR1) is equivalent to VOLUM. Moreover, the entire expression

for < n e > can be obtained making use of already defined Astra function NEAV.

Exactly the same rules are applicable to the next Astra function lINT which also cal­

culates an integral over the poloidal cross-section rather then over the volume of a magnetic

surface.

Surface integral of a function R(p) in a poloidal plane (I INT).

J P V'
IINT(R) = 27rR

o
f R(p) pdp.
o

This function is used for integration of the longitudinal current density (see Eq. (33)). Similar

to VINT it allows expressions like lINT (CUECR) , lINT (CUECRB) and IINT(CUECR,O.2).

As a general remark, we note that constructions involving VINT (or lINT) are rarely

needed because Astra expressions are available for most physical quantities relevant to trans­

port analysis. We also remind the reader that VINT (1) or VINT (NE*TE) are not allowed

because the argument should be a radial array (Astra vector variable).

Heaviside function of the radial variable a (ASTEP).

ASTEP(ao) == H(a - ao)

Heaviside function of the radial variable p (RSTEP).

RSTEP(po) == H(p - Po)

Heaviside function of the radial variable x == p/PB (XSTEP).

XSTEP(xo) == H(p/ PB - xo)

ASTRA - Automated System for TRansport Analysis

Heaviside function of any dimensionless argument A (STEP).

72

STEP(A) = H(A) = { ~: if A ~ 0,
if A < o.

An argument A of the function STEP can be any expression allowed by the Astra rules.

The same is valid also for the next function.

Cut-off function (CUT). Sometimes, a function for the graphic output varies by many

order of magnitude. Because of a very limited word length (1 byte) of the data stored in

an Astra post-view file (Section 5.5.4) essential information can be lost and saved data will

have very low resolution. To avoid this one can cut off too large values of no interest:

Examples:

{

-ao,
CUT(ao, A) == A,

ao,

if
if
if

A :S -ao,
-ao :S A :S ao,

ao :S A.

RSTEP (.5) can also be obtained as STEP (RHO-. 5), XSTEP (.2) as STEP (RHO/ROC-. 2) ,

ASTEP (.1) is equivalent to STEP (AMETR-. 1) . Note that the numerical argument of

XSTEP (0.2 in this example) is dimensionless, all others are measured in meters.

CUT (100. ,NUES) can be useful for drawing a radial profile of the collision frequency which

can be very large near the magnetic axis and at the plasma edge. The same effect can

be achieved in a more complicated way as 100-(100-NUES)*STEP(100-NUES).

STEP (SIN (GP2*100*TIME) -0.5) shows another example of allowed usage for this func­

tion which gives a time dependent square-wave signal with a period 0.01 s (frequency

f == 100 Hz) and a duty factor (1f/2 - arcsin(0.5))/1f == 33% .

FRMAX(MU) returns the minimum value of the safety factor q(p) == l/tt(p) == 1/MU,

RFMAX (MU) returns the p - position of this minimum,

RFVAL(MU,0.5) returns the position of the q == 2 resonance surface in the coordinate p,

AFVAL(MU,0.5) returns the position of the same surface with respect to the coordinate a.

The last result can also be obtained as AMETR(RFVAL (MU, 0.5)) .

ASTRA - Automated System for TRansport Analysis

4.8.3 Functions for mapping one flux label to another

73

Several Astra functions are available for recalculating one 'radial' coordinate to another:

RFA, XFA, AFR, AFX, RFAN, XFAN . The function RFA (0.5) returns a value of the coordinate

p (in meters) at the magnetic surface labeled by the mid-plane radius a == 0.5 m (see

Eq. (88)). The function XFA(a) is equivalent to RFA(a)/RoC and returns the normalized

value of the flux label x(a) == p(a)1PB. The functions AFR and AFX are inverses of RFA and

XFA, respectively. Finally, RFAN (0.5) gives p as a function of the dimensionless argument

aN == alaB == 0.5, similarly, XFAN(aN) == RFAN(aN)lpB.

Vector variable at the given radius can be computed using one of the two functions ATX

and ATR. The difference between both is that the first one refers to the normalized radius

piPB and the second to the dimensional radius p. For instance, ATX (TI, 0.5) returns

a value of the ion temperature at p == 0.5pB while ATR(TI, 0.5) at p == 0.5 m. Other

options are discussed in Section 5.2.3.

4.8.4 Fortran intrinsic functions

In addition to special functions described above one can use also the standard set of Fortran

functions: SIN, COS, TAN, ASIN, ATAN, EXP, ABS, MIN, MAX, SQRT, ALoG, ALoGiO, ANINT,

REAL and SIGN. The type of the argument can be anything. In turn, it defines a type of the

result so that SIN(CVi) is a scalar, while SQRT(NE*TE) and ALoG(LTE) are vectors.

4.9 Plug-in subroutines

All subroutines described in this section can be found under the name Awn/ sbr/ xxx. f where

'xxx' should be replaced by a name referred below in the lowercase. As a matter of fact,

the directory Awn/ sbr/ includes many more subroutines which can be useful in different

applications. We describe here only few of those.

4.9.1 Ionization particle flux (GNEX, GNXSRC).

Both subroutines have no parameters and communicate with the Astra core through common

blocks. The subroutine GNEX calculates the particle flux GNX caused by ionization of neutral

ASTRA - Automated System for TRansport Analysis

atoms in the plasma volume and also due to evolution of the electron density

1 JP (, aV1ne)
GNX = Sa V Se - -----at dp,

o

74

where the toroidal surface area Sa == SLAT is defined by Eq. (5). It is assumed that the

density of wall neutrals NN and a source due to the beam neutrals SNEBM are calculated

independently (for instance, by calling subroutines NEUT and NBI). GNXSRC gives the same

quantity but without allowance for the neutrals from NBI.

The quantity GNX is always included in Eq. (82). It can be useful when the particle

diffusion equation is switched off and the density evolution is taken from an experiment

and is a prescribed function of time and radius. Then the 'experimental' particle flux

QN=SLAT*GNX will be included in the power balance in accordance with Eq. (82),(87) unless

re == ri == o. On the other hand, the user should be aware that calling any of the subroutines

GNEX or GNXSRC together with solving the diffusion equation will cause a side effect and

include the same particle flux twice.

4.9.2 Upper and lower function boundaries (MINMAX).

A call to the subroutine MINMAX(R, Rmin , Rmax) returns two quantities

and

Although the same result can be obtained by calling the two functions FTMIN and FTMAX

using MINMAX is more flexible because it finds maxima and minima in a prescribed time

interval t 1 < t < t2 . So the statement

MINMAX(CU,CAR1,CAR2): :0.5:0.6

gives range of variation of the current density for 100 ms inside the time interval 0.5 s <

t < 0.6 s.

4.9.3 Sawtooth oscillations (internal disruption) (subroutine MIXINT).

This subroutine models profile evolution of Te , Ti , ne , ni')II' f-L, 1jJ in the process of magnetic

field line reconnection according to Kadomtsev's theory of sawtooth oscillations [17]. The

current version of the code allows for the internal reconnection at the resonance q == m / n == 1

only. In a process of the full reconnection final distributions of all plasma parameters

ASTRA - Automated System for TRansport Analysis 75

are uniquely determined by the conservation laws and by the initial distributions. The

only physical characteristic missing in this theory is the trigger of the internal disruption.

Therefore, the subroutine MIXINT requires one physical input parameter which can be

either the sawtooth period or the reconnection radius. Additionally, it is possible to use

a disruption condition based on the double-tearing-mode reconnection model [18]. In this

case no additional parameters are required. A statement calling the subroutine reads

MIXINT(OPTION,RECON):

Both input parameters must be given as real Fortran variables or constants and have the

following significance:

OPTION == 0: if a reconnection takes place at t == t l then the next one occurs not earlier

than at t == t l + RECON and as soon as the resonance surface q == 1 is found,

OPTION == 1: a reconnection occurs as soon as the radius PI of the resonance surface

q == 1 satisfies the condition PI/PB > RECON,

OPTION == 2: a reconnection occurs according to the model of [18]. The second parameter

RECON is ignored.

The header of the subroutine MIXINT describes other options which provide extended infor­

mation about every sawtooth event.

Reconnection mixes up all plasma parameters, however, in the code, only those quan­

tities are redistributed which evolution is described by a transport equation. For instance,

if the equation for NE is not solved then the profiles of NE and NI do not change in the

course of the reconnection described by MIXINT. Similarly FP, MU, CU do not change if

the current density distribution is prescribed.

4.9.4 Gas puff neutrals (subroutine NEUT).

The subroutine NEUT solves an equation for the distribution of 'cold' (to distinguish from

'fast' neutral particles from NBI) neutral atoms in the plasma volume. The solution method

first replaces the differential kinetic equation (78) with an integral equation [2] then the

integral equation is solved iteratively. The parameter input/output for the subroutine can

ASTRA - Automated System for TRansport Analysis

be schematically depicted as

76

Transport NEUT

Most of the exchange parameters were already discussed. Those which are directly related

to the neutral atom distribution are listed in the following table.

Parameter Code name Units Description
N1 NNCL 1019m-3 Density of incoming neutrals (1st component)
N 2 NNWM 1019m-3 Density of incoming neutrals (2nd component)
E1 ENCL keY Energy of incoming neutrals (1st component)
E 2 ENWM keY Energy of incoming neutrals (2nd component)

Niter NNCX Number of iterations in NEUT

N(p) NN*(NNCL+NNWM) 1019m-3 Density of neutral particles
TN(p) TN keY Temperature of neutral particles
apl ALBPL Plasma albedo

The subroutine allows for two mono-energetic components of incoming neutral particles

which are characterized with their densities N 1 , N 2 and energies E 1 , E 2 (NNCL, NNWM and

ENCL, ENWM), respectively. It is assumed that the neutral mass coincides with a mass of

the working gas given by the variable AMJ. A control parameter NNCX (default value 20)

describes a number of iterations for solving the integral equation.

Output of the subroutine NEUT provides the normalized neutral density NN and the

temperature TN distributions of the neutral particles in plasma and, additionally, the plasma

albedo ALBPL. Optionally, it is also possible to calculate a distribution function of the

outgoing neutral particles. The quantity NN is normalized in such a way that, at the plasma

edge, the density of incoming neutrals is N1 + N 2 == NNCL + NNWM and the density of

outgoing neutrals is NB - N1 - N 2 == (NNCL + NNWM) * (NNB - 1), where NB == N(PB) and

NNB == NN(PB). Consequently, the average energy of incoming neutrals is

B _ N1E1 + N 2E2 _ NNCL *ENCL + NNWM *ENWM
In - N1 + N 2 - NNCL + NNWM

and outgoing

NNB * TNB - NNCL * ENCL - NNWM * ENWM

(NNCL + NNWM) * (NNB - 1)

ASTRA - Automated System for TRansport Analysis

Finally, the inward flux is given by

24 (N l VE; +N2~)
r in = 4.44 X 10 ~ ,

A·z
and the outward flux by

rout == ap1rin .

4.9.5 Density adjustment (SETNAV).

77

This subroutine adjusts the density of incoming cold neutrals in order to provide a required

volume average electron density. The following algorithm is adopted. At each time step

the particle confinement time Tn is evaluated Tn == < ne >/(S - d < ne >/dt). Then the

density of the cold neutrals (parameter NNCL) is scaled in order to provide Sreq ==< ne,req >

/Tn . The resulting density evolution is approximately described by the OD equation

d < ne > _ < ne,req > - < ne > S _ S
dt - Tn + req,

where Sreq, Tn and < ne,req > are taken from the previous time step. If initially the

actual density < n e > is far from the requested value < ne,req > the described procedure

can give an unreasonably large neutral influx which subsequently crashes the code. In order

to avoid this, an additional control parameter TN is introduced which restricts the rate

of variation NNCL == N1 by the condition N1/(N1/dt) < TN. This parameter should be

selected as TN 2: Tn. As another option, TN can be set negative. Then an automatic

adjustment will be enabled which works reasonably if the difference I < ne,req > - < n e > I

is not too large.

Example:

The part of the model related to SETNAV reads:

CF1=5+5*FRAMP(.5,1); Prescribed volume average density

SETNAV(CF1,.01):; TN == 0.01 s

This will result in a ramp of the electron density as prescribed by the first statement.

4.9.6 Smoothing a function (subroutine SMEARR).

The subroutine SMEARR(a, R in , Rout) finds a vector function Rout(p) as an extremum of

the functional

ASTRA - Automated System for TRansport Analysis 78

with the boundary conditions

oRout
I == 0 () ()f} ,Rout PB = R in PB

p p==o

where Rin (Pj) is a given grid function, a is a control parameter and Rout is the output

function. Reasonable values of the control parameter a should be around 0.001. The value

a == 0.01 results in a very strong smoothing of the result.

Example:

CAR1=HEEFF; SMEARR(O.002,CAR1,CAR2):;

This gives a radially smoothed effective electron heat conductivity

Xe,e!! == J (Pe - aWe/at) dV/V' < (\7p)2 > ne .

4.9.7 Store array / variable value at a given time (STARR / STVAR).

The subroutine STARR(R, t l , R l) (STVAR(5, t l , 51)) stores a vector (simple) variable at a

given time t l :

Note that in recent versions of the code both subroutines can be replaced by the function

FIXVAL.

4.9.8 User defined time step control (subroutine TSCTRL).

The standard procedure of automatic time step control implemented In the Astra code

restricts the one-time-step variation in the main unknowns TE, TI, NE, Fj . In some cases,

for instance for stiff transport models, more strict control is required.

Such a control can be achieved by calling the subroutine TSCTRL(R l , R2 , R3 , ~max).

First, a variation in every vector input quantity R i , where i == 1,2,3,

;\ _ IRi(P,t)-Ri(P,t-T)1
URi - max

p Ri(p,t)

is evaluated. Then the time step T is multiplied by max (~max/~Ri, Tine). The quantity

Tine == TAUINC is described in Table 4.15 and ~max is the real input parameter which can

vary between 0.1 and 10. depending on the controlled quantities R i . In all cases, the time

step T is bounded by TAUMIN < T < TAUMAX.

A limitation is that the subroutine TSCTRL can be called from a model only once.

To monitor several array parameters it allows up to three different vector arguments.

ASTRA - Automated System for TRansport Analysis

Examples:

79

1) In a stiff transport model small variation in gradient can cause huge variation in flux.

Therefore, plasma parameters like density or temperatures cannot provide reliable time

step control. More appropriate regulation can be provided by

TSCTRL(QI,QE,QN,1.):;

2) Another way to achieve a similar result is

TSCTRL(XI,XI,XI,CF1):;

Here variation of a single quantity XI is checked. The strength of the control can be

adjusted interactively by changing CF1.

4.10 Interfaces to additional heating and CD modules

4.10.1 General features.

The Astra system provides additional subroutines developed by different authors for the

main methods of additional plasma heating in tokamaks. Each of the subroutines is, in fact,

a large package and we do not pretend to describe them in this report. We discuss here the

main features of the interfaces only, referring to the original descriptions for more detail.

Input. The following set of input data is usually required for additional heating and current

drive modules:

Configuration: Ro (RToR), aB (AB or ABC), a(p) (AMETR), ~(p) (SHIF),

A(p) (ELoN), 6(p) (TRIA), metric coefficients.

Plasma parameters: Aj (AMJ or AMAIN), Zeff(P) (ZEF), Zj (ZMJ or ZMAIN,

ZIM1, ZIM2, ZIM3), ne,j(p) (NE, NI, NHYDR, NDEUT, ...

NIZ1, NIZ2, NIZ3), Te,j (p) (TE, TI). Here index]

extends over all ion species.

Current and magnetic field: I p1 (IPL), Bo (BToR), J-L(p) (MU) ,]11 (p) (CU).

Launcher or neutral beam parameters.

Control parameters for the numerical algorithm.

ASTRA - Automated System for TRansport Analysis 80

Output. All modules return power deposition profiles, Pe~(P), for electron and ion,

plasma components and, when applicable, driven current profile, jeD. Many other char-

acteristics as injected momentum, distribution functions, antenna coupling or shine through

and so on are usually also available.

The set of input parameters can be split into two groups. The first one includes those

parameters, which are time-dependent or can change from shot to shot. The second group

describes construction characteristics of a particular tokamak or its heating system. In most

cases these parameters do not often change and only require be set once. It is natural

to exclude these parameters from the Astra core and localize them inside the modules for

additional heating. The input parameters of the first group and the main output parameters

are treated as standard Astra control parameters which means that they are accessible from

the Astra code, can be defined, changed, plotted using the standard Astra service as described

in Sections 5.2 and 5.3.

Different heating and current drive packages briefly described in Section 3.14.1 can be

obtained by special request. The only exception is the NBI package which is always included

in the Astra code. For this reason the interface to the NB heating package is described in

more detail in the next Section.

4.10.2 NB heating and current drive (subroutine NBI by A. R. Polevoi)

A neutral beam installation is represented in the NBI package by a set of "pencil beams".

Each pencil beam is characterized by its geometry and the power distribution across the

beam axis which in turn is described by a number of thin parallel beams. Presently, up to

16 pencil beams (or beam sources with the different geometry) is allowed.

The NBI package considers (i) attenuation of the neutral beam during its passage

through a plasma due to ionization and charge-exchange, (ii) capture and losses (including

ripple losses) of the new-born ions by analysis of the ion drift trajectories, (iii) thermal­

ization of the supra-thermal ions and their contribution to plasma heating, current drive

and toroidal rotation. The latter problem requires solving the Fokker-Planck equation. In

the fast standard version, an analytic solution of the steady-state equation is used. A time

dependent version is also available.

Interface between the Astra core and the neutral beam package is provided by the

ASTRA - Automated System for TRansport Analysis 81

subroutine AWn/sbr/nbi .f. As all other Astra plug-in modules this subroutine can be

modified by the user and, therefore, the description below should be viewed as a framework

providing rather guidelines than a comprehensive manual.

The usual set of general discharge and device parameters (see Section 4.10.1) are trans­

ferred to the subroutine NBI through common blocks and is not discussed here. Additionally,

a number of specific parameters describe the properties of the NBI solver and the geometric

characteristics of every pencil beam. First of all, 8 control parameters

Table 4.30. Control parameters for the subroutine NBI

Name
CNB1

CNB2

CNB3

CNB4

CNBI1

CNBI2

CNBI3

CNBI4

Description
A number of NBI sources (a number of pencil beams)
Explicit (==1) or implicit (==0) account for the charge exchange losses
Space grid for NBI routine N1= (NA1-1) /CNB3+1

Steady state (==1) or time dependent (==2) Fokker-Planck solver
Fast ion charge exchange losses due to cold neutrals
Fast ion charge exchange losses due to NBI neutrals
FP solver time step: TNBI == CNBI2 * TAU

FP solver velocity grid size: IV1=80/CNBI4+1

are used to set different features of the NBI solver. The control parameters are described

in the Table 4.30 as they are used in the subroutine AWn/sbr/nbi . f although, in general,

every C-parameter (see Table 4.17) can be used to perform every control function.

The parameter CNB1 gives a number of pencil beams which have to be taken into

account. It can also take negative values which invoke an interactive mode for modifying

the beam geometry and will be discussed later.

The parameter CNB2 defines a way of describing the ion thermal losses due to the

charge exchange between the beam neutrals and plasma ions. These losses can be computed

with the formula PBICX=-O. 0024*SNNBM*TI where the source of thermal neutrals SNNBM is

calculated by the NBI package. The corresponding losses can either be included into the

ion heating source PIBM or calculated elsewhere. If the parameter CNB2 is positive then

the quantity PBICX is subtracted from the ion heating source PIBM. Otherwise, the losses

should be taken into account in a model as shown below

Model 1 (recommended)
CNB2=O

PI=PIBM+ ...

PIT=-O.0024*SNNBM+ ...

Model 2
CNB2=O

PI=PIBM-PBICX+ ...

Model 3
CNB2=1

PI=PIBM+ ...

ASTRA - Automated System for TRansport Analysis 82

Models 2 and 3 in this example are fully equivalent, however, the ion heating term PIBM is

different in these two cases. The model 1 enables implicit treatment of the charge exchange

losses which can result in more stable numerical scheme when these losses are high enough.

The parameter CNB3 allows to run NBI routine on the reduced radial grid in order

to save computing time. This is reasonable when the fast ion drift trajectories are wide

and spread over many Astra radial grid steps. Finally, the parameter CNB4 defines a type

of the Fokker-Planck solver to be used. The C-parameters CNBI1 -;- CNBI4 are effective if

CNB4=2 only. Otherwise they can be anything.

As mentioned every beam source is represented by a pencil beam. A sort of neutral

atoms in the beam, their energy composition and power distribution across the beam,

geometry and some other characteristics (altogether about 20 parameters) should be set

separately for every pencil beam. These parameter are stored in an NBI configuration file

which can be either attributed to every input data file (Section 5.1) or to every experimental

setup. It is done in the following way. Assume that the Astra code is started with the

data input file aug10000. When the NBI routine is called the code checks whether the file

AWD/exp/aug10000. nbi exists. If yes, then this file, otherwise, the default configuration

file AWD/exp/aug.nbi will be used. The latter can also serve as a template for creating new

configuration files.

The NBI configuration file can start with arbitrary number of comment lines. A

comment line is a line with the sign '!' in the first column. The comment lines are allowed

in the beginning of the configuration file only. A meaningful part of the file consists of

CNB1 groups, one group for every pencil beam. Each group consists of 21 fields. Each field

occupies 12 positions and can be filled either with a name of C-parameter (Table 4.17) or

Z-parameter (Tables 4.18 and 4.19) or with a number in the free format as shown in the

example below:

1
ZRD1

5.0000E-01
-1.9570E-01

1.0000E+OO

O.OOOOE+OO
3.0000E-01
6.5000E-01
2.0000E+OO

2.0000E+OO
2.0000E-01
4.0000E-01
1.0000E+OO

1.0000E+OO
1.0000E+OO
8.5500E-02
2.0000E+OO

6.0000E+01
CF1

1.0000E+OO
O.OOOOE+OO

(90)

The first line in every group is also ignored by the code. It gives the ordinal number of the

group (or of the corresponding pencil beam) and is useful for manual creating or editing the

ASTRA - Automated System for TRansport Analysis

configuration file only. The other parameters have the following significance

Table 4.31. Parameters describing each pencil beam

83

No. Units
1 [MW]
2 -

3 -

4 -

5 -

6 -

7 -

8 -

9 -

10 -

11 [m]
12 [m]
13 [m]
14 -

15 -

16 -

17 -

18 -

19 -

20 -

Description
Pencil beam power
Counter injection fraction (0 for co-, 1 for counter-injection)
Mass of the beam ions in the proton mass (can be 1,2,3)
Charge of the beam ions in the proton charge units
Maximum beam energy
Power fraction of the full (maximum) energy component
Power fraction of the one half energy component
Power fraction of the one third energy component
Type of averaging over the fast ion orbits
Number of thin beams in the horizontal plane
Vertical shift in the beam footprint centre
Maximum major radius in the beam footprint
Minimum major radius in the beam footprint
tan CY, CY being the angle between the beam axis and the midplane
Footprint aspect ratio
These 4 parameters prescribe the beam power distribution across the
pencil beam. The parameters are transferred to the user defined functions
NBFHZ and NBFRY (see the file AWD/sbr/nbuser . f) under the names
CVER1, CVER2, CHoR1, CHoR2, respectively
Unused parameter

The first parameter gives the power injected by each beam source. This quantity is usually

time dependent, therefore, it is convenient to set it as a variable rather than as a number. In

the example (90), this variable is ZRD1 ZRD1X and its time evolution can be prescribed

in the data file (Section 5.3.3). Similarly, the number of partial thin beams6 which represent

the pencil beam is an adjustable parameter that can be varied interactively (CF1 in example

(90)) .

The 9-th parameter in Table 4.31 also requires more explanations. This parameter

defines how the power of a fast ion is deposited in the plasma:

== 0 no averaging (deposition at the birth point),

== 1 averaging with a finite orbit width,

== 2 averaging with zero orbit width.

6The parameter No. 10 in Table 4.31 gives the number of beams in the horizontal direction, N h . The
total number of constituent thin beams is evaluated as N tot == NhNv while N v is calculated by the code
as a number of flux surfaces in the vertical aperture of each pencil beam in the footprint crossection.

ASTRA - Automated System for TRansport Analysis 84

The last 10 parameters in Table 4.31 define the geometry of every pencil beam. The

neutral beam is characterized, first of all, by its "footprint" , i.e. the cross-section of the beam

with the plane including the major torus axis and orthogonal to the beam axis projection onto

the midplane. In turn, the footprint represented as a rectangle is given by four parameters:

the rectangle center (parameter No. 11), major radii of two vertical sides (parameters 12

and 13) and by the aspect ratio that is defined as ratio of the rectangle height to its width.

Secondly, by the inclination of the beam axis with respect to the midplane (parameter

No. 14), and, thirdly,7 by the power distribution across the beam axis. The power distribution

is described by two Fortran functions, NBFHZ and NBFRY, in the vertical and in the horizontal

cross-sections, respectively. Each function has two free parameters which are the first four

parameters in the last line of example (90) (or parameters 16, 17, 18, 19 in Table 4.31). Both

functions are included in the file AWD/ sbr/nbuser . f and can be arbitrarily modified by the

user to prescribe any power distribution required.

The NBI configuration file can either be created by the user from scratch or adjusted

by editing one of the files of this type provided with the code. Another option is interactive

creating/modification during the Astra run. The code enters in the interactive regime

whenever

- the NBI configuration file does not exist,

- the parameter CNB1 takes a negative value,

- the parameter CNB1 changes its value during the run.

In all cases, a dialog window pops up and the user can adjust all input parameters for all

beam sources. As before, assume that the input data file is aug10000, (the full name of

the file being AWD/exp/aug10000). If neither aug10000.nbi nor aug.nbi exist in the

directory AWD/exp/ then a new file AWD/exp/aug10000.nbi will be created on exit from

the dialog window. The new (or modified) data file will then be used in the subsequent

simulations. The total number of sources is defined as the absolute value I CNB11. Note

also that if the actual number of records in the file is larger than expected due to I CNB1 I

then the excessive records are ignored. The opposite case and CNB1 == 0 are treated as an

error.

7In the current version of the code, the beam divergence is not taken into account.

ASTRA - Automated System for TRansport Analysis

The NBI routine provides the following output.

Table 4.32. Output from NBI routine

Parameter Units Description
CUBM [MAm-2] NB driven current
CUFI [MAm-2] Current of the fast ions
NIBM [1019m-3] Density of the suprathermal ions
NNBM1 [1019m-3] Density of neutrals with the full energy EBEAM
NNBM2 [1019m-3] Density of neutrals with the half energy EBEAM/2
NNBM3 [1019m-3] Density of neutrals with the energy EBEAM/3
PBEAM [MWm-3] Total beam power absorbed
PBLON [1019keVm-3] Longitudinal pressure due to fast ions
PBPER [1019keVm-3] Perpendicular pressure due to fast ions
PEBM [MWm-3] Beam power absorbed by electrons
PIBM [MWm-3] Beam power absorbed by ions
SCUBM [kg S-2m-2] Source of the toroidal momentum
SNEBM [1019m-3s-1] Source of electrons due to NBI
SNIBM1 [1019m-3s-1] Birth rate for ions with the energy EBEAM
SNIBM2 [1019m-3s-1] Birth rate for ions with the energy EBEAM/2
SNIBM3 [1019m-3s-1] Birth rate for ions with the energy EBEAM/3
SNNBM [1019m-3s-1] Source of thermal neutrals

85

More detailed description of the algorithm and a way of calculating all quantities in Table 4.32

are described in [7].

ASTRA - Automated System for TRansport Analysis

5 User's guide

5.1 General concept

86

As discussed in Section 3 the set of transport equations for a tokamak varies depending on

a problem to be solved. The system Eq. (59) can be either shortened or appended with

additional equations. Right hand sides of the system can also have quite different forms for

different applications. However, the uncertainty in the transport matrix Eq. (60) is incom­

parably higher. It would not be an overstatement to say that there are hundreds of choices

for transport coefficients in the matrix Eq. (60). Therefore, to be efficient the transport

simulation of a tokamak requires a convenient and flexible tool for creating numerical codes

based on different transport models. The programming system Astra was designed for this

purpose.

Proceeding from this requirement the Astra code considers the set Eqs. (59)-(60) as

a pattern which can be filled in or left empty according to user's request. Astra is not

a numerical program in the conventional sense. A pre-determined program exists for the

service parts of the Astra system only. The transport kernel of the code is created every

time by a code builder and includes only those equations, transport coefficients, sources,

sinks and additional modules that were explicitly requested by the user in the description of

transport task. It does not mean, however, that any change requires re-building the program.

On the contrary, the code is designed for an interactive work and provides a lot of techniques

for computation control and correction. In particular, the interactive mode of operation is

convenient for an interpretative modeling or for analysis of experimental data.

Developing the concept of the code we tried to meet two contradictory requirements.

The first one is minimizing user's efforts for learning the code and for starting any reasonable

simulation. This implies that the user has to take only those decisions and supply only this

information which cannot be obtained elsewhere. For instance, the type of device (tokamak

or stellarator), its geometrical size, magnetic field, plasma current have to be specified by

the user. It is also exclusively left at user's discretion to select a way of data treatment and

data presentation. The second requirement is to avoid any hidden assumptions which can

result in unexpected or difficult for understanding results and thus make usage of the code

even more complicated if possible at all. As a compromise, we adopted a number of default

ASTRA - Automated System for TRansport Analysis

transformations which are in effect only if no explicit request is provided by the user.

The following questions should be answered before creating any transport code:

1. What subset of Eqs. (40), (59), (75) is to be solved?

2. What boundary conditions should be imposed?

3. What quantities and in which form should appear as an output?

87

4. What parameters (major and minor radii of a torus, magnetic field, plasma current,

etc.) and what initial conditions should be used?

In the Astra system the fourth question is separated from the others. It is reasonable because

the first three items specify the simulation model, i.e. a set of equations to be solved and a

form of presentation of the results, whereas the forth specifies where to apply the simulation

model. By providing the answers to the first three questions the user completely defines how

he wants to perform a simulation. Then Astra automatically builds the source code for the

specified transport problem, compiles and loads it. We will call the generated program code

a transport model or simply a model.

The answer to the fourth question fills a model with machine and shot specific contents.

Although the machine and plasma parameters can also be included in a model it is reasonable

not to do this. Then the same simulation model can be applied to different devices and

different parameters that are read from a data file when the program starts execution. In

addition to the global device parameters and the initial data for transport simulation, this file

can also contain the full available information of plasma parameters, e.g. the time evolution

of plasma current, plasma density ne , the electron Te and ion Ti temperatures, plasma

position, Zeii , impurity densities, radiated power, auxiliary heating power, driven current

and many others. Essentially, it stores the whole set of experimental data for a specific shot.

In addition, database shot record may include results of calculation from other codes thus

providing implicit link between Astra and other codes, when external calculations may be

made in advance. All this informations along with specifying discharge parameters can be

used in the interpretative transport modeling for comparison with the simulation results in

order to refine and develop the transport model. In the analysis mode, the experimental

information is used for different kinds of data analysis and processing.

ASTRA - Automated System for TRansport Analysis 88

Thus, the model is a transport code created for the system of transport equations

Eq. (59) with specified transport coefficients Eq. (60), initial and boundary conditions. It can

include also a variety of other equations (e.g. different current drive and heating schemes,

cold neutrals, SOL model, impurity diffusion), formulae and all possible combinations and

processing the obtained data. In addition to the transport analysis, the Astra system

provides a powerful apparatus for data processing and presentation.

The data file is a set of time and radially dependent data related to a specific shot

In a given device and containing available information about the shot. The data from

the record are read by a model and can be used as the initial and boundary conditions,

for comparison of stored experimental data with the results of simulation, for different

treatments of experimental data and all other types of data analysis.

A number of different models and data records exist in the Astra system independently.

The rules for the creation of a model are described in Section 5.2 The data file format is

described in Section 5.4.

5.2 Setting a model

5.2.1 Model file

The main step in creation of a simulation code within the Astra system is a formulation of

the transport problem to be solved and selection of the form for presentation of the results.

This formulation is put into a special file where all requests for transport simulation, data

manipulation and result presentation are specified using Astra model description language.

After the code starts the file is submitted to the Astra compiler which processes all the

instructions contained in the file and creates first a Fortran/C program and then the exe­

cutable transport code. In most cases, these steps remain hidden for the Astra user who

deals exclusively with the model or prototype file. In what follows, we will not make a

distinction between the transport code as such and the prototype file. Moreover, for brevity

the prototype file will be also called a model file or just a model.

Each model file contains a comprehensive and compact (typical length is 3 kB) In­

formation about a corresponding transport code (approximate length of all source files 3

MB, binary executable 10 MB) created by the Astra system. Because the model file is a

unique image of the transport code, only these files need to be retained in order to repeat

ASTRA - Automated System for TRansport Analysis 89

any simulation when such a necessity arises. All later Astra versions maintain compatibility

with model files of preceding versions. The user can have simultaneously a number of model

files which are all stored in the directory AWD/equ/. 8 Few syntax rules are adopted in order

to present user's request for a transport code in the most clear, visible and concise form.

5.2.2 General rules

A model file is a text (ASCII) file. Although a length of this file is restricted the restriction

practically never occurs. All instructions in a model are case insensitive. Maximal length

of each line in the file is 132 symbols including spaces and tabulations which, however, are

ignored and can be used to make a file more readable. The last line in the file should have

a symbol <CR> (carriage return) on the end otherwise it is ignored during processing.

Now we define a set of symbols, which have a special meaning and serve to describe

Astra instructions or commands. Those are

\ (91)

Every line in a model is considered as a command if anyone of the four first symbols in

Eq. (91), i.e. ':', '=', '\', '_' is present in this line. Several commands can be joined

in one line if they are separated from one another with a semicolon ' ; , .

All other lines are ignored by the Astra compiler and, therefore, they can be used as

commentaries. A command line can also be converted to a comment if the first symbol in

it is an exclamation sign ' ! '. In other words, the sign ' !' switches off all special symbols

on the right of itself until the end of line «CR» or the nearest ' ; '. Additionally, if the 1-st

symbol in a line is ' !' then the whole line is ignored.

Example:

Boundary condition for the density

!NEB=NEX; QNB=100;

u! NEB=3; QNB=500;

QNNB=30; This line is switched off by the leading'!'

!QNNB=700; Here the second instruction is effective

This example contains only one command: QNB=500. All other instructions are suppressed.

8See footnote in the page 49.

ASTRA - Automated System for TRansport Analysis 90

Order of operators. When creating an executable code the Astra compiler analyzes each

command in a model file and then creates a sequence of corresponding Fortran operators.

(Sometimes, several operators correspond to one command in a model file.) During a com­

pilation all commands are split in classes. The first class consists of assignment statements

(Section 5.2.3) which have a scalar variable on the left hand side. The second class includes

assignments of vector variables. Finally, the third class is composed of external modules

(plug-in modules, Section 5.2.4) and transport equations (Section 5.2.5). These three classes

are treated after one another. With a few exceptions, an order of operators in each class is

retained the same as in the original model file.

5.2.3 Arithmetic expressions

Arithmetic expressions in the Astra code basically obey the Fortran syntax. Operands of an

expression can be constants, scalar and vector variables, Astra formulae and functions. All

arithmetic operations and Fortran intrinsic functions can be used in the expressions.

As in Fortran, arithmetic expressions appear mainly in assignment statements i.e.

those command lines which include the sign '='. On the left of assignment statements can

be the Astra scalars and vectors only. If the left hand side of the assignment statement is a

scalar than the right hand side of it must be a scalar otherwise an error is reported. If the

left hand side is a vector than the right hand side can be either a scalar or a vector.

Examples:

Power source of 1 MW with the Gaussian distribution in radius

CAR1=exp(((RHO/ROC-O.5)/O.1)**2); CF1=VINT(CAR1B);

and a rectangular modulation in time (100Hz)

QECR=anint(.1*sin(100*GP2*TIME)+.5); PEX=QECR*CAR1/CF1;

This example illustrates using expressions in a model. Argument of the exponent in the first

command shows that constants, scalars and vectors can be used on the right of assignment

statement. The result is a vector. The second command calculates the scalar CF1 so that

CAR1/CF1 is normalized to 1 MW. The third command uses two intrinsic Fortran functions

and, finally, the forth one assigns the vector variable PEX that later can be used as heating

source in a transport equation.

ASTRA - Automated System for TRansport Analysis 91

The next example shows that predefined Astra expressions can be used in a model to

construct quite complicated quantities.

Simplified critical gradient model

CAR1=RTOR*grad(TI)/TI-RLTCR;

CAR1=CAR1-CV1*ROTSH/GITGO;

CAR1=sqrt(step(CAR1)*CAR1);

XI=HNCHI+CHE1*step(CAR1)*CAR1;

Here the following model for the ion heat conductivity is implemented

,ITG = max (0, 'OVTJi - TJi,cr) , X !TG == Xa max (0 !\JITG - W)z , I ExB ,
fa

and the following quantities from the Astra library (Astra formulae) are involved

RLTCR 1]i cr == (RoT~Ti) , critical ion temperature gradient (ITG),
, B~(E c)r,

ROTSH WExB == B~ B; , rotational shear,

GITGO == fa is related to the linear increment of the ITG instability fITG ,

HNCHI X[S + xieo is the neoclassical heat conductivity [19].

Two free parameters are included in the model: the stiffness Xa == CHE1 that characterizes

transport properties of the nonlinear phase of the instability and the parameter CV1 which

enables switching on and off transport (or instability) suppression due to the plasma rotation.

To summarize the interpretation rules for Astra expressions we say that a type of the

result is determined by the left hand side of the assignment statement. An assignment of a

scalar to a vector variable is not considered as an error so that the vector on the left retaining

its type is viewed as radially independent. If a vector is attempted to be assigned to a scalar

then a warning message is reported although the error is not considered as severe.

Vector variables at given radii. As discussed, the Astra compiler discriminates different

types of variables and allows using them in common context without explicit indication

of the variable type. However, sometimes a need arises to evaluate vector quantities at

given radial positions. This can be done in the conventional way. For instance, TE(O)

will be understood as the electron temperature at the magnetic axis Te (0), TE (ABC) as

the electron temperature at the plasma edge and TE(O.3) as the electron temperature at

the radius a == 0.3 m. More complicated constructions are also allowed. For instance,

TE(AFVAL(MU,O.5)) gives a value of Te at the resonance surface q == 2.

ASTRA - Automated System for TRansport Analysis 92

A reference to the coordinate a is selected as most convenient for associating it with

the laboratory reference frame because this coordinate can be thought of as the minor radius

in the mid-plane (see Eq. (88)). However, Astra vectors can be calculated also as functions of

other flux coordinates using auxiliary functions described in Section 4.8.3. SO NI (AFR(O. 3))

gives the ion density ni(p == 0.3m), and NI(AFX(O.3)) at PN == plpB == 0.3. One can

also use NI(O.3*ABC) to obtain ni at aN == alaB == 0.3 or, what is the same, at

a == 0.3 aB == 0.3 * ABC.

Shortcuts are provided for vector quantities evaluated at the magnetic axis and at

the plasma edge. Namely, adding C to a vector variable name one obtains its value at

the centre and adding B at the edge 9. It means that TEC stands for TE (0), MUC for

MU(O) , TEB for TEla==aB == TElp==PB == TE(ROC), MUB for MU(ROC) and so on.

Astra expressions which are implemented as functions (but not as formulae) can also

be calculated at given radii according to the same syntax rules. Thus NEAVB yields the

electron density averaged over the whole plasma volume while NECHC gives the line averaged

density along the central chord. Finally, one can use two Astra functions ATR and ATX (see

Section 4.8.3) in order to evaluate Astra vectors as functions of the variables P and PN,

respectively.

5.2.4 Connection of plug-in modules

The next subject to be discussed is a connection of auxiliary packages to the Astra code.

On one hand, development of external packages provides the most powerful way to include

various physical processes in the code. In this way the user can also get an access to almost

any part of the code and make nearly any changes and additions to the resulting simulation

model. On the other hand, it is completely at user's discretion to trace possible consequences

of such an interference in the code flow. Many plug-in modules are already available and

were discussed in the previous section. Others can be developed using one or few of the

existing modules as templates.

Front end of any plug-in module is a subroutine called by Astra. Their inclusion in a

gOne exception of this rule is discussed at the end of Section 5.2.5

ASTRA - Automated System for TRansport Analysis

simulation model is implemented through the instruction of the type10
.

Name (Argument list) :{~t : tstart : tend : Letter}

93

(92)

Only the first colon ':' is required in this line all others can be omitted together with

the corresponding control parameters. However, if the i -th (i == 1,2,3,4) parameter is

present it should be preceded with i colons. This command results in calling a subroutine

with the name "Name". An argument list of the subroutine (if present) is directly converted

into a Fortran line without any transformations which are normally performed with the

Astra expressions. Therefore, the actual arguments can be constants, variable names, or

expressions including constants and scalar variables only. For instance, the instruction

NEUT: ;

corresponds to the Fortran statement

call NEUT

which calls the subroutine NEUT calculating the neutral density NN and temperature TN (see

Section 4.9.4).

In the last example, the subroutine will be called at each time step of the simulation

run. This can be changed by involving control parameters in the command line Eq. (92).

They have the following meaning

Parameter Significance Default value
f1t Time interval between calls a

tstart First time of calling -00

tend Last time of calling 00

Letter Control key None

If f1t is not specified a subroutine is called at each time step. Parameters tstart and

tend define start and end time when the module is activated. No calls are made beyond

the specified time interval tstart :S t :S tend . If one of these parameters is not specified

then corresponding conditions do not apply. Parameter Letter is used to provide manual

activation of the module in the interactive mode of operation. So, the instruction

NEUT:O.1:: :N;

results in calling NEUT every 100 ms and additionally each time when the key combination

< Ctrl > N is pressed. The control key Letter can acquire any capital alphabetic value

except for 'M'.

lOHere and below the braces {... } in a command description enclose an optional part of the command.

ASTRA - Automated System for TRansport Analysis

5.2.5 Transport equations

94

As described in Section 4, the Astra code can solve up to seven transport equations for plasma

density, electron and ion temperatures, current density and three unspecified functions. Each

equation can be involved by an explicit request only. Alternatively, a rule can be provided

for calculating any of those quantities as functions of radius and time. A type of evolution

of a variable is specified by the instruction of the form

Name:{Type}{[Tag,Expr1]}{:Expr2} (93)

where every term after the first ':' can be omitted.

Name is one of the variables on the list: NE, TE, TI, CU, F1, F2, F3.

Type is one of the two qualifiers Equation or Assignment (each can be truncated up to

one letter), default value is Type=Equation.

[Tag,Expr1] Not applicable if Name=CU. Otherwise, Expr1 defines the right boundary of

the interval where the transport equation will be solved. An integer Tag specifies a

type of the radial coordinate defined by the expression Expr1

Tag=O dimensional coordinate a (may be omitted),

Tag=1 dimensionless coordinate alaB,

Tag=2 dimensionless coordinate PN == piPB·

Expr2 is another expression that can be used if Name is one of TE or TI only. The expression

then determines re or ri in Eq. (82). By default, re == ri == o.

If the qualifier Type is omitted then it is assumed to take the value Type=Equation. In case

Type=Assignment, the rest of the command string is ignored. The new feature introduced

in the version 5.3 is a possibility to set the different right boundaries for different transport

equations. However, some restrictions are imposed.

1. If the right boundary is not given then it is set to PB == ROC (or aB == ABC). This

maintains compatibility with the previous versions.

2. For the poloidal flux (i.e. for Name=CU) the right hand boundary cannot be shifted and

is always PB.

3. For all other equations it cannot exceed the value PB.

ASTRA - Automated System for TRansport Analysis 95

4. Unlike the outermost boundary position, PB, which can be located arbitrary (contin­

uously varying) on the difference grid, all "internal" boundaries are attributed to the

nearest grid point in P (jumping).

When a model is converted into a Fortran code, the transport equations and the plug-in

modules are put in the same order as they are requested in the model. Exception is made

for the subroutines MIXINT and TSCTRL which are always placed after all transport equations.

Although, in most cases, the order of transport equations is not essential, sometimes, one

has to take this convention into account.

The following example shows setting transport equation for the plasma density

NEUT: ;

DN=1+FPR**2;
NE:Equation;

CN=-DN*FX;
NE=10*sqrt(FPR)+3;

SNN=SNNEU (94)

The first line calls the subroutine NEUT at each time step. The second line defines the

diffusion coefficient DN as a parabolic function, the pinch velocity CN as a product of this

parabola and a linear function (the minus sign corresponds to the inward pinch). The source

term SNN describes the ionization and recombination processes making use of the formula

SNNEU. We remind that the same source term could be defined as SN=SNNEU*NE. The only

difference between these two representations is in the numerical implementation, implicit or

explicit, respectively. If there is no particular requirement then the implicit approximation

is preferable. Finally, the third line says that the diffusion equation for NE should be solved

with the initial condition defined by the last command. The boundary condition is not set

here explicitly and, therefore, the value assigned by the initial condition at the point PB

will be used. Effectively, it means that the boundary condition NEB=3 is applied. Other

options for the boundary condition with a prescribed particle flux or more complicated are

shown in the example in Section 5.2.2.

Exactly the same result can be obtained by means of any auxiliary transport equation

Eq. (85).

NEUT: ;

DF1=1+FPR**2;
F1:Equation;

VF1=-DF1*FX;
F1=10*sqrt(FPR)+3;

SFF1=SNNEU

ASTRA - Automated System for TRansport Analysis 96

Here a diffusion equation is constructed for the dummy variable F1 which in all details

reproduces the diffusion equation for NE created by the model Eq. (94). This example shows

how the transport equations for the variables F1, F2, F3 can be used for a description of

multi-species plasma.

Consider now five different models

Model 1 Model 2
TE:As

Model 3
TE=TEX

Model 4
TE=TEX

TE:As

Model 5
TE=TEX

TE:Eq

(95)

and assume that a time evolving electron temperature TEX is stored in a data file which will

be used together with each of these models. The model 1 is empty. Nevertheless, nonempty

executable code will be created for this model which makes a number of assignments including

those described in Section 5.3.1. In particular, the electron temperature will be defined as

TE(p) == TEX(p, tstart) where tstart is the initial time of simulation. The model 2 produces

the same effect. The model 3 makes the assignment TE(p, t) == TEX(p, t) at each time so

that the complete time evolution of TEX will be stored in TE. A result of the model 4 is exactly

the same as for the model 3. In the model 5, solving the transport equation is requested,

however, neither transport coefficients nor the power sources are defined. For this model,

Astra will build a code where the first line TE=TEX is interpreted as the initial condition

TE(p) == TEX(p, tstart) and the equation aTe/at == 0 will be solved (we assume here that

the magnetic field Bo, the plasma density n e and the plasma size do not change in time).

Thus, a result of the model 5 will coincide with that of the models 1 and 2.

One can conclude from this example, that the instruction of the type Name: As is

inessential. It is really so in most cases, although a formal difference can appear between

model 3 and model 4 if other commands of the type (93) are present. Namely, with explicit

instructions of the type Name: As, order of assignment operators in a code is the same as

in a model. If all these instructions are implicit then the assignment operators will follow

one another as in the sequence NE, TE, TI, CU, F1, F2, F3. The logic discussed implies

that if the Type of evolution is set to Assignment then an assignment expression for this

variable is expected. Although an absence of such an assignment is not considered as an

error, a warning message is printed for models like the model 2. Another case when the

explicit request CU: A is necessary is discussed below in the example (96).

ASTRA - Automated System for TRansport Analysis 97

The format of equation command line is modified in the most recent version 5.3 in comparison to the
previous versions of the code. The old form was

Name:Type{:Expr2}

which can be compared with (93). The qualifier Type is here obligatory. In all other respects the model
generated by the old-type equation command line fully coincides with that generated by the new one.
However, there is a difference in treatment when an equation command line is absent. Namely, in old
versions, an assignment of time evolution to all main variables NE, TE, TI, . .. is activated only if the
equation command line with Type=Assignment is present. Coming back to the example (95) it means that
the models 1, 2, 3 and 5 give the same result while only the model 4 gives the time evolving temperature
TE == TEX(p, t).

The next example sets a transport equation for the poloidal flux

Current diffusion equation

MU=.2;

1PL=0.2+0.8*FRAMP(0.,1.);

CU: ;

CC=CCHR;

DC=DCHR;

CD=CUX;

CU=1;

UEXT=0.2;

HC=HCHR; XC=XCHR;

!Equation

!Conductivity [20J

!Bootstrap current [21J

!Pre-calculated driven current

!1nitial distribution

!Boundary condition

The first line in this model requests the current diffusion equation to be solved by the code.

The second line specifies the conductivity [20] by making use of the formula CCHR. The third

line defines the bootstrap current in a similar way. The driven current density is supposed to

be stored in a data file under the name CUX. The assignment command CU=1 is understood

as the initial condition. It sets the flat current distribution normalized to the total current

1PL. The second command in this line contradicts to the first one. Therefore, according to

the diagram in Section 4.3.2 it is ignored. The last line includes two contradicting boundary

conditions for the poloidal flux. According to the priority rule of Section 4.4.2 the second

one for the total plasma current 1PL is applied and no notice of UEXT=O. 2 is taken here.

We discuss now different ways of setting the current density profile in case when the

current diffusion equation is switched off.

Model 1
CU:AS
CU=FPR

Model 2
CU=FPR

Model 3
CU:As
MU=MUX

Model 4
CU:A (96)

The first model prescribes parabolic current density and is fully equivalent to the second

model. In other words, the command CU: AS can be omitted without changing the result.

ASTRA - Automated System for TRansport Analysis 98

The same is also applicable to the third model. This model prescribes a rotational transform

profile as stored in a data file. All these three models can also describe time dependent

profiles. The last model 4 gives the current density profile which at every time step is

defined by the steady state condition Eq. (69) as if the current penetration time (skin time)

is much shorter than all the other characteristic times. In this case, the command CU: A

cannot be omitted.

We remind (see Section 4.3.2) that there is one essential difference in a way of defining

initial current density profile between Modell and Model 3. In both cases, the initial setting

must be consistent with the total plasma current. But, in the first case, the entire current

density profile is adjusted, in the second case, the boundary value of /-L(PB) at the edge

only. In other words, the current density in Model 1 is continuous, in Model 2, it has a

surface skin current.

Initial conditions. As follows from the examples considered above, assignment statements

are used for setting initial conditions. This implies that an assignment instruction is treated

differently depending on the context. Namely, if the left hand side of an instruction is one

of main variables {NE, TE, TI, CU, F1, F2, F3} and the corresponding equation is absent then

the assignment is processed as all other assignment statements with a vector variable on the

left hand side.

Otherwise, if the corresponding equation is present then the time evolution of the

quantity is defined by the equation while the assignment statement is executed only once

at the start of simulation. Moreover, all main variables and few others (see Section 5.3.1)

are defined even if they do not appear in any assignment statement in a model. In the

last-mentioned case, data stored in the start file are used. If no appropriate data are stored

there and no assignment is made then the code results are not relevant. In all cases, when

an implicit assignment is involved it is applied just once for the initial time only.

In addition, the initial conditions can be set by a user developed subroutine. In this

case, one should beware that an explicit definition in a model has higher priority than that

in a subroutine. In other words, if two contradicting settings in a subroutine and in a model

are present then the latter will be used by the code.

ASTRA - Automated System for TRansport Analysis 99

Boundary conditions. A similar rule is applied to the boundary conditions. The bound­

ary condition can be set by an explicit assignment command or by an implicit (Section 4.4)

definition. As in the case of initial conditions, an explicit assignment can be time dependent

while an implicit one is always time independent and assigns a boundary value at the initial

time of the simulation only. Once assigned this value does not change afterwards.

This property can be used for more complicated boundary conditions that cannot be

expressed by a simple formula. Suppose that a subroutine SOLAY calculates the electron

density at the edge NE (NA1) taking the particle flux at the same point QN (NA1) as an input.

This can be implemented in a model as the boundary condition

NEUT: ;

DN=.1;

NE: ;

SOLAY(QN(NA1),NE(NA1)):

CN=-VP*VRHH; SNN=SNNEU

NE=NEX;

(97)

This model describes a time evolution of the plasma density profile assuming a constant

diffusion and the neoclassical Ware pinch. Note that the argument list of a subroutine is not

processed by the Astra compiler. Therefore, the abbreviated notations QNB and NEB can not

be used as arguments of the subroutine. If an additional instruction like NEB=NEXB is present

in the model (97) then it will override the edge density defined in the subroutine SOLAY.

Shifted boundary conditions. Additional possibility for setting boundary conditions

is provided by the term in square brackets in (93). It enables solving different transport

equations on different radial intervals. This option can be useful when the core and periphery

transport have different physical nature and shifting the boundary condition inside allows

to exclude the periphery transport out of consideration. It can also be useful when the

plasma parameters are not known at the plasma edge and the boundary condition is set at

the outermost measured point.

According to the syntax of the command (93) the all three instructions

TI : [0. 8*ABCJ TI: [1,0.8J TI: [2,XFAN(0.8)J

are equivalent and require solving the heat conductivity equation for Ti on the interval

o< a < 0.8aB == 0.8 * ABC. Similarly, the instructions

TI: [2, 0. 8J TI: [AFX(0.8)J TI: [1,AFX(0.8)/ABCJ

ASTRA - Automated System for TRansport Analysis

require solving the same equation on the interval 0 < p < 0.8pB.

The next model

IFSPPL(CAR1,CAR2,CAR3,CAR4,CAR5,CAR6) :

XI=HNCHI+CAR5; PI=PEICL+PIX

TI:Eq[1,O.9J; TI=TIX

100

(98)

produces a transport code solving the heat conductivity equation for Ti on the interval

o :S a :S 0.9aB. Here the ion heat conductivity Xi == XI is defined as a sum of neoclassical

and anomalous terms where the latter (along with many other quantities) is calculated by

the subroutine IFSPPL. The heating source PI includes the electron-ion heat exchange

PEICL and the auxiliary heating PIX defined in a data file.

The command TI=TIX bears here a double meaning. Firstly, it defines the ion tempera­

ture Ti(a, to) == Ti,exp(a, to) at the initial time to on the whole radial interval O:S a :S aBo

The subsequent time evolution of Ti(a, t > to) on the partial interval 0 < a < 0.9aB is

defined by the heat conductivity equation. Thus, on the segment O:S a :S 0.9aB' the

command TI=TIX provides the initial and the boundary condition!! for the corresponding

transport equation. Secondly, it defines the time evolution of the ion temperature Ti (a, t)

on the interval 0.9aB < a :S aB for t > to that is not covered by the transport equation.

Therefore, the command TI: [1, 0. 9J in the last line of the model (98) can be thought of

as if it combines the definition of Type=Equation for the interval 0 < a < 0.9aB and of

Type=Assignrnent outside it.

Similarly to the case of non-shifted boundary conditions, the boundary value Ti(0.9ab)

implicitly imposed by the command TI=... is time independent. In order to set a time

dependent boundary condition one has either to use an explicit assignment statement in any

of the forms

TIB= ... QIB= ... QITB= ...

or to implement an implicit boundary setting with an external subroutine similar to that of

the example (97).

It is significant to note that, in the particular case of the shifted boundary conditions,

the abbreviation TIB is interpreted distinctively depending of the context. Namely, whenever

11 Like in the case of non-shifted boundary, this assignment is made only once at the start time t == to.
Moreover, it applies only when no explicit boundary setting is provided.

ASTRA - Automated System for TRansport Analysis 101

TIB appears on the right hand side of any expression, it is replaced by the Astra code

compiler with TI (NAi) which is equivalent to Ti(aB). However, if (and only if) any of the

notations NEB, QNB, QNNB, TEB and so on12 stands on the left hand side of an assignment

command then this command is interpreted as the boundary condition assignment and it is

attributed to the boundary point declared by a corresponding equation instruction of the

type (93).

For instance, if the command TIB=TIXB is used in the model (98) it will result in the

Fortran statement TI (NAil) =TIX (NAi) , where the array index NAil points to the grid node

nearest to 0.9 aB while the index NAi to the edge grid point aB == ABC. Most probably,

it is not the result expected by the user. The correct assignment can be implemented as

TIB=TIX(O.9*ABC).

5.2.6 Radial output

First of all we note that there is no default output in Astra and therefore quantities of

interest must be explicitly specified in the model definition. Request for a radial output has

the form

Name\{Expression}{\\Xdata}{\Scale} (99)

Here Name specifies a legend (a string with a length up to 4 characters) associated with the

radial profile given by any regular arithmetic Expression. Every part of this command

shown in braces is optional and can be omitted, the group preceded by \ \ can either be

omitted or repeated several times.

Up to 96 commands of the type (99) can be present in a model and, consequently, up

to 96 radial profiles can be plotted (or stored) in a simulation. Each radial profile defined by

the corresponding Expression together with its Name and Scale will appear in a graphic

window when the code starts execution. The code provides a few different graphic modes

which allow combination of several curves in one box and several boxes in one window. The

curves are sequentially placed in boxes in the same order as the curve descriptions (99)

appear in the model. If a number of curves is larger than the number of boxes then the

next curve is again put in the first box, then in the second and so on until all boxes in

the current window acquire the maximal for this mode number of curves. Then the next

12The complete list is given in Table 4.8.

ASTRA - Automated System for TRansport Analysis 102

(hidden) window is filled and the process continues until the list of the curves submitted to

output is exhausted.

In other words, one can say that each radial profile defined with (99) receIves its

sequence number which is an ordinal number of the output command as they appear in the

model. The curves are placed in graphic windows according to their sequence numbers.

Because the position of the curves on the display it is essential for the convenience of

viewing results, it is important to pay attention to the sequence of the output commands.

Nevertheless, the user can change the sequence numbers and other curve attributes interac­

tively during the code execution. More detailed description of this feature will be given in

Section 5.5.3.

The parameter Scale defines the scale for plotting the curve given by Expression.

If Scale is zero or absent then the scale of the output profile is automatically selected by

the code. If Scale is given as a positive number then this number specifies the actual scale

for the corresponding radial profile. Negative integer value of Scale allows setting the same

automatic scale for all profiles in the group with the same negative scale value. It is useful

for representation of several different curves of the same meaning, e.g. the input powers of

different heating methods.

There is one more peculiarity in setting automatic group format. Normally auto-scale

is selected based on the maximum absolute value in the entire group. But the user can

enforce the code to make automatic scale basing upon a single specified profile in the group.

It happens if the absolute value of the negative scale coincides with the sequence number of

the output. We illustrate the discussed rules for radial output with an example:

Example:

Te\TE\-9; Ti\TI\-9; j\CU\-2; Utor\UPL\-1;

ne\NE\10; \; jOhrn\CUOHM\-2; iota\MU;

Texp\TEX\-9; Tixp\TIX\-9; jBS\CUBS\-2; Ulng\ULON\-1;

nexp\NEX\10; \; sigrn\CC; q\1/MU;

Assume that this set of data is presented in the default radial output mode which allows up

to 16 curves in a window. The window includes 8 boxes placed in two rows and four columns

with two curves in a box as schematically shown in this sketch.

ASTRA - Automated System for TRansport Analysis

1 2 3 4
1 & 9 2 & 10 3 & 11 4 & 12
5 6 7 8
5 & 13 6 & 14 7 & 15 8 & 16

103

Hear the large digits in the left upper corner of each box show the box numbers and the

curve sequence number are shown in ordinary type. Then the first eight profiles will be

shown in red and the next eight in blue so that each box will contain one red and one blue

curve. Consequently, the first and the third lines in the example enter in the first row of

boxes while the second and the forth lines occupy the second row. The empty instructions

\; are used in this example in order to skip the sixth box and put all quantities related to

the current density one over or under another for a more convenient comparison.

Thus the first box contains calculated and experimentally measured electron temper­

atures, TE and TEX, respectively. The former is labeled on the plot as Te and the latter

as Texp. Both will have the same scale defined by the data TEX (sequence number 9).

Similarly, the next box contains two ion temperatures with the same scale. The third box

includes the total current density CU and the bootstrap current density CUBS each with a

common scale. The last box in the first row encloses the toroidal UPL and the longitudinal

ULON loop voltages in the same scale defined by the largest of the two. The fifth box shows

two density profiles with the prescribed scale. The next box (No.6) is empty. The seventh

box shows the Ohmic current density and conductivity profiles (which must be proportional

in the steady state). Finally, the last in this mode, eighth box presents the rotational

transform MU and the safety factor.

Presentation of experimental data. So far we discussed the output of radial profiles

presented as curves. In the example above, even so called "experimental" data as TEX or

NEX are smoothed and transferred to the fine transport grid with a typical size of 100 nodes.

Transferring input experimental data to a radial grid of the transport code is a problem which

has no universal solution. Although the Astra code provides a way of doing this transfer

it could be unsatisfactory in some cases, for instance, it destroys a significant information

while smoothing data or, in opposite, add artificial features while extrapolation. In order

to provide a way of visual control of data treatment the Astra code enables displaying the

original input data as the radial plots.

ASTRA - Automated System for TRansport Analysis 104

Such a plot can be requested by a command line of the format (99) making use of the

control group "\\". A quantity Xdata will be shown on a plot as it is stored in the input

file (Section 5.4). To be interpreted properly, the control word Xdata must be one of the

array names given in Table 5.4. For instance, the instruction

Tex\TEX\\TEX\10

plots the electron temperature TEX, firstly, as a smoothed curve, secondly, by dots as the

original data are stored in the input file. The curve and the dots will appear in the same

box with the same scale 10 keV. One can plot the dots only

Tex\\TEX

or combine several measurements in one plot

Tex\TEX\\TEX\\CAR1X

The latter command plots TEX as a curve together with two sets of data stored in the input

file under the names TEX (e.g. Thomson scattering) and CAR1X (e.g. EeE data). The data

for TEX and CAR1X will be shown by different symbols.

5.2.7 Time output

Radial and time output commands have a similar format. The difference is that the backslash

symbol "\" is replaced by the underscore "_". This format reads

{Narne}_{Expression}{_Scale} (100)

Similar to the radial output, any allowed arithmetic expression can be used for output.

However, a natural restriction is applied that only scalar (radially independent) expressions

may be used in the time output instructions. The user can prescribe an output scale, ask

for a common scale for several plots or take advantage of automatic scale adjustment. Up

to 96 time dependences can be processed by the current version of the code.

5.2.8 Advanced options

User defined variables. Variables used in a transport model basically belong to the Astra

internal variable list which includes (a) a set of physically meaningful predefined variables

and (b) a set of holder scalar and vector variables without specific meaning. It is not

considered as an error if the user employs his own scalar variables in a model. Though there

ASTRA - Automated System for TRansport Analysis 105

is no support for this variables and they are not defined in most of Astra modules except for

if explicitly passed to a corresponding subroutine.

For instance, one can define a time dependent scalar quantity

STAIRS=FJUMP(O.1)+FJUMP(O.2)+FJUMP(O.3)+FJUMP(O.4)+FJUMP(O.5)

and later use it as a part of another assignment statement or as a parameter of a subroutine,

however, the quantity STAIRS cannot be plotted with the standard time output instruc­

tion (100) because it is not available in the module concerned with the output. In order to

overcome this limitation the user has two options. The standard and recommended way is

to replace the name STAIR with one of the C-parameters (Table 4.17). Another option is

to describe the variable STAIRS in a common block inside the file 13

AWD/trnp/declar.usr

This file is included by the Fortran statement INCLUDE in all model dependent modules of

the Astra kernel.

Verbatim reproduction. Processing a model file the Astra compiler transforms it into

a Fortran source code according to some rules. However, sometimes these rules are too

restrictive because they are invented exclusively for dealing with Astra variables. There is

a possibility to override these rules, switch off all transformations and require a verbatim

record into a source code. It can be done by quoting the appropriate string. For instance,

the expression

rhNA_"RHO(NA)II

yields a value of the NA-th element of the radial grid array RHO, l.e. the position of the grid

point adjacent to the edge one PB == RHO(NA1). Similarly, the instruction

wrk3\IWORK(j,3)"

allows to plot the data stored in the 3rd column of the two-dimensional array WORK.

It is not out of place to stress here that a care should be taken when using this feature.

The user should beware that the Astra compiler can put the quoted string in unexpected

place of the code or even being placed in a proper position the string can get in conflict with

Fortran rules. Therefore, it is recommended to check if the effect of such a nonstandard

operation provides the desired result.

13See footnote on the page 49.

ASTRA - Automated System for TRansport Analysis 106

In addition we add a remark concerning the two working arrays WORK and WORK1.

Both arrays are described as real two-dimensional arrays and placed in a common block14

COMMON /WORKAR/ WORK1(NRD,2*NRD+7), WORK(NRD,2*NRD)

in the file AWD/for/status. inc so that they can be used in every module including this

file. The arrays are not being used by any routine of the Astra kernel. It is supposed that

the first array WORK1 is used as a working area for plug-in subroutines without any usage

outside these subroutines. Another array WORK may be used either as a working area or

as a tool for data exchange between user's subroutine and other parts of the code. In the

second case, it remains at user's discretion to trace possible conflicts between different user

developed modules.

Post-compiler editing. A possibility to interfere in the pre-defined sequence of Astra

operations is given by the command

> Astra -t

This suspends the code execution after the second step (see the flow diagram at page 10).

At this point, the user can introduce any changes into the changeable part of the code. This

part consists of intermediate Fortran source files located in the directory AWD/trnp/ . When

the appropriate adjustments are performed the code execution will be resumed with account

for all recent modifications.

5.2.9 Several examples

In this section we consider several examples of building different models in the Astra system.

We assume that all models discussed below are run with an appropriate input file that

provides all data required by a model. Therefore, some properties of data setting are used

already in this section although they are first introduced in Section 5.3.

We start with a discussion of simple plasma characteristics which can be calculated on

the basis of measured plasma density and temperature profiles.

Wth\WTOT;

tauE\TAUE;

LTi\LTI;

LTic\RLTCR;

Heff\HEEFF;

Hiff\XIEFF;

Vpol\VPSWW;

rhos\RLS;

As a result of this model the following quantities will be plotted one under another (in the 1st

14In the standard installation NRD == 501.

ASTRA - Automated System for TRansport Analysis 107

mode, their placement on a screen is the same as in the printout above): the plasma thermal

energy content (possible contribution from fast particles is not included) and the energy

confinement time; inverse normalized length of the ion temperature mapped to the mid­

plane, Ro/ LTi == RoloTi/oal/Ti ; and a critical value for the same quantity with respect

to the ion temperature gradient instability; effective (i.e. experimentally measured) heat

conductivities for the electron and ion thermal components; and, finally, the neo-classical

poloidal rotation velocity and Ps = JTe/mi. All they will be plotted as radial functions.

This code will also work if some quantities needed for calculations are not defined,

however, then the results can be irrelevant. For instance, if the heating power is not defined

then the heat conductivities and the confinement time will be negative. In order to get

appropriate values for these quantities one has to define the input heating power in any

allowed way, e.g. as PE=POH; PI=PIX.

Another essential remark is that the radial functions plotted by this model are time

independent even if the correspondent data file contains time dependent data. This happens

in line with the syntax rules described in Section 5.2.2. Indeed, without the explicit definition

the assignment as TE=TEX and similar are fulfilled only once at t == to, consequently, all

quantities calculated on the basis of ne , Te and so on are time independent. One can view

the difference running the model

Tex\TEX\\TEX\-9;

Te\TE\-9;

2\; 3\; 4\; 5\; 6\; 7\; 8\;

Two graphs will show the quantities TE (in blue) and TEX (in red) as smoothed curves in

the same scale in the upper left box. Additionally, the original data for TEX will be shown

with red crosses. The curve for TEX will evolve as it is written in the data file, while TE will

coincide with TEX at the first instant only.

In order to remove all differences, one has to include in the model the explicit definitions

of main plasma parameters.

NE=NEX; TE=TEX; TI=TIX; NEQUIL=41;

Here the command NEQUIL=41 requires that the Astra built-in 3-moment equilibrium solver

is employed for the equilibrium reconstruction. I5

15We remind that, if not defined explicitly, the current density distribution is calculated from the steady

ASTRA - Automated System for TRansport Analysis

As an example of the time output consider

ABC_ABC; kapp_ELDNG; delt_TRIAN;

TexO_TEXC; TixO_TIXC; Ipl_IPL;

Wth_WTDTB; pk1_NEC/NEAVB; pk2_NEC/NECHC;

qO_1/MUC_5; qa_1/MUB_5; qmin_QMINB_5;

Xmin_XQMINB_1; q2a_AFVAL(MU, .5)/ABC_1;

108

shif_SHIFT;

Btor_BTDR;

H-89_TAUEB/(TITER+1.e-6);

qmin_1/FRMAX(MU)_5;

q3a_AFVAL(MU,.333)/ABC_1;

The first line shows the geometrical parameters of the outermost magnetic surface: the minor

radius ABC, elongation ELDNG, triangularity TRIAN and shift with respect to the major

radius RTDR. The second line gives the central values of electron and ion temperatures then

the plasma current and magnetic field. After that follow: the total plasma energy content,

the density peaking factor calculated as the central value divided by the volume averaged and

by the chord averaged densities, enhancement factor with respect to the ITER-89 scaling.

The next two lines show different quantities characterizing the safety factor q distribution.

The first of them yields the central q(O) and the edge q(aB) values, then the minimum

qmin value calculated in two different ways. Finally, the last line gives the radial positions

(in the normalized coordinate x == alaB) of the points where q(x) reaches its minimum

value, where q(x) == 2 and q(x) == 3.

Unlike the radial output most of the time dependencies above are plotted as they are

stored in the data file, i.e. if a time dependence of any Astra simple variable (e.g. ABC,

IPL, BTDR, ...) is written in the data file then it will be shown as time varying also in the

Astra output. This can be not the case for the derived quantities. For instance, NEC and

NEAVB are calculated making use of NE, therefore, for those quantities, the same rules are

applicable as for NE.

The next example shows a model which reads in the experimental data for ne , Te , Ti

and calculates the current density evolution assuming the neoclassical conductivity and

bootstrap current.

NE=NEX; TE=TEX; TI=TIX; measured plasma parameters

AMAIN=2; ZMAIN=1; mass & charge of the main ion species

AIM1=12; ZIM1=6; mass & charge of the main impurity

state condition Eq. (47).

ASTRA - Automated System for TRansport Analysis 109

NIZ1=NE*(ZEF-1)/(ZIM1-1)/ZIM1;

NI=NE*(ZIM1-ZEF+1)/ZIM1;

NDEUT=NI-NIZ1;

NEQUIL=41;

MU=.33*FPR+.33;

CC=CNHR; CD=CUBM;

MIXINT(CV1,CF1):;

HC=HCKIM;

CU:EQ;

NBI: ;

DC=DCKIM;

NEUT: ;

XC=XCKIM; !

density of the impurity

total density of all plasma ions

density of deuterium plasma ions

3-moment equilibrium solver

Bootstrap due to Kim [22J

current density Eq & initial condition

conductivity [20J & NB driven current

Kadomtsev reconnect ion

NB injection and cold neutrals

Tex\TEX\\TEX;

nex\NEX\\NEX;

Tix\TIX\\TIX;

Zeff\ZEFX\\ZEFX;

Radial output

q\1./MU\10; jtot\CU\2;

cneo\CC; jNB\CUBM\2;

iota\MU; jOH\CUOHM\2;

cSp\CCSP; jBS\CUBS\2;

Time output

Upl\UPL;

shir\SHEAR;

ULON\ULON;

psiN\(FP-FPC)/(FPB-FPC);

Upl_UPLB_2;

Ipl_IPL_2;

betj_BETAJB;

Ibs_IBSB_2;

bett_BETTB;

Iohm_IOHMB_2;

li_LINTB*RTOR/(RTOR+SHIFT)_1;

Inb_IBMB_2;

This model can be used for simulating NBI assisted current ramp-up phase in a tokamak.

Therefore, most of output quantities are related to the current density distribution. In

particular, the radial output shows the neoclassical and Spitzer conductivities (6th box), the

third column (3rd and 7th boxes) includes different contributions to the current density, the

forth box exhibits a difference between the toroidal and longitudinal loop voltages, the shear

and the normalized poloidal flux are displayed in the 8th box. The time output presents the

edge loop (toroidal) voltage, poloidal and toroidal betas, internal inductance per unit length,

the total plasma current as comprised of the bootstrap, Ohmic and beam driven currents.

The next example illustrates simulation of a plasma density build-up.

Equilibrium, electron, ion temperatures and poloidal flux

NEQUIL=41; TE=2*FPR**2+.1; TI=TE/2; CC=CCSP;

Particle source (wall neutrals + pellets)

NEUT: ; SNN=SNNEU; Gas puffing

ASTRA - Automated System for TRansport Analysis

CV1=anint(.1*sin(100*GP2*TIME)+.405);

SN=CF3*30000*CV1*GAUSS(.7,.1);

Square wave-form oscillator

Pellet evaporation profile

110

Density eqn with initial and boundary conditions

QNNB=CF2*10000;NE:EQ; NE=10*FPR;

CAR1=CF1*(1+3*FX**2);

DN=CAR1*(1-XSTEP(.85))+.5*XSTEP(.85);

CN=-VP*VRHH;

TAUMAX=.0001;

Auxiliary quantities

CV16=VINT(SNTOTB);

CV15=TIMINT(CV16);

CV14=NEAVB;

CV13=-TIMDER(CV14);

CV2=TIMINT(CV1);

Radial output

D\DN; gn\GN; flux\QN;

ne\NE; NN\NN\1; nue*\NUES\1;

Vin\-CN; V/D\-CN/DN; I(S)\QNTOT;

Stot\SNTOT; TN\TN; Ware\VP*VRHH;

Time output

Prescribed function

Diffusion coefficient

Neoclassical pinch

Time step limitation: < 1 ms

The same as QNTOTB

Total particle source integral

Volume average density <ne>

d<ne>/dt

Total evaporation time

etai\LNE/LTI\100;

Spuf\SNN*NE;

Lne\LNE;

Spel\SN;

n(O)_NEC; tauP_TAUPB_.1; nlin_NECHC; Gin_CV16;

n(a)_NEB; tau_CV14/CV13_.1; <ne>_CV14; Gout_QNB;

<n>G_2.7*IPL/ABC**2; NNCL_NNCL; ntot_VOLUME*CV14; NNWM_NNWM;

Sinp_CV15; albe_ALBPL; 1orO_CV1; duty_CV2/TIME;

Only the density diffusion equation is solved in this model. The pinch is assumed to be

neoclassical while the particle diffusion is taken as a parabolic function inside p < 0.85pB

(plasma core) and as a constant 0.5 m2Is outside this region (pedestal zone). The boundary

condition for the density is given by the requirement that the total particle flux through the

plasma boundary is Qn == V < ne > ITp == QNNB*ne(a). For ASDEX-Upgrade parameters

this gives Qn ~ 3 X 1022 S-l.

ASTRA - Automated System for TRansport Analysis III

The particle source consists of two comparable parts: gas puffing and pellet injection.

The former is described in Section 4.9.4. The latter is assumed to be periodic (liT ==

100 Hz) with evaporation time ~t ~ 1 ms. The pellet ablation profile is represented by

a Gaussian function with the prescribed width ~p == O.lpB and the maximum position

Po == 0.7PB . The amplitude of this source (3 x 1023
S-l in our example) can be evaluated

as QnTI~t. Note that no interaction between the wall and pellet neutrals is taken into

account in this simplified model.

The radial output in this model gives only the quantities related to the particle behav­

ior. It shows the diffusion coefficient DN, the pinch velocity CN (positive sign means outward

flux), the total particles source SNTOT and the partial sources due to pellets SN and cold

neutrals SNN*NE. The quantity v; == NUES which characterize collisions is shown together

with the Ware pinch velocity VP*VRHH. Also of interest could be a comparison of the two

quantities QN, collisional particle flux, and QNTOT, ionization particle source. In the steady

state, this two quantities must coincide. In this simulation, they are always strongly different.

The time output shows central, edge, volume and line average densities. The particle

confinement time is calculated in two different ways. The Greenwald limiting density is shown

under the name <n>G. The two components of incoming cold neutrals are characterized by

the parameters NNCL and NNWM.

We conclude this section with a simulation model for electron and ion power balance

based on the IFS IPPPL transport model [13]. For more convenient discussion we split the

model in two pieces.

1=============== ITG instability based transport model (part 1) =========

NEQUIL=41; 3-moment solver for the Grad-Shafranov equation

mass & charge of main ion species

mass & charge of 1st impurity

1st impurity contribution to Zeff

density of 1st impurity

density of all ions

density of deuterium plasma ions

!-------------------- Electron and ion densities ------------------------

NE:AS; NE=NEX; ZEF=ZEFX;

AMAIN=AMJ; ZMAIN=ZMJ;

AIM1=12.; ZIM1=6.;

ZEF1=ZIM1*(ZEF-1.)/(ZIM1-1.);

NIZ1=NE*(ZEF-1.)/(ZIM1-1.)/ZIM1;

NI=NE*(ZIM1-ZEF+1.)/ZIM1;

NDEUT=NI-NIZ1-NIBM;

ASTRA - Automated System for TRansport Analysis 112

Space and time

averaging

Heat conductivity

CD=CUBM;

!-------------------- Auxiliary heating ---------------------------------

NBI:O.01; ! Neutral beam injection

!-------------------- Plasma rotation -----------------------------------

VTDR=VTDRX; VPDL=VPSWW; VTDR from exp., VPDL from neocl.

ER=BTDR*(FRS*MU*VTDR/RTDR+VDIA-VPDL); Radial electric field

!-------------------- ISF/PPPL transport model -------------------------­

Output of IFSPPL:

(1) R/L_Tcrit for ITG mode, (2) R/L_Tcrit for C branch, (3) not used,

(4) Mode increment, (5) CAR24=chi_i, (6) CAR23=chi_e

IFSPPL(CAR19,CAR20,CAR21,CAR22,CAR24,CAR23): ;

SMEARR(CV1,CAR23,CAR25):; CAR17=FTAV(CAR25,CV2);

SMEARR(CV1,CAR24,CAR26):; CAR18=FTAV(CAR26,CV2);

HE=CAR17+HNGSE; XI=CAR18+FDWC*HNCHI;

!-------------------- Heat transport equations

PET=-PEI; PE=PDH+PEBM-PET*TI-PRADX;

PIT=-PEI; PI=PIBM-PIT*TE;

TE :EQ ; TE=TEX ; TEB=TEXB ;

TI:EQ; TI=TIX; TIB=TIXB;

!-------------------- Poloidal field equation

HC=HCKIM; DC=DCKIM; XC=XCKIM;

CU: EQ ; CU=FPR; CC=CNHR;

!-------------------- Additional time step control ----------------------

CAR27=RTDR/LTI-CAR19; TSCTRL(CAR27,CAR23,CAR24,CF4):;

!=============== ITG transport model (end of the 1st part) ==============

The beginning of the model is similar to already discussed. It prescribes different density

components and additional NBI heating. Then the radial electric field is calculated which

will be later used for computing shear of the plasma rotation velocity RDTSH. Two velocity

components are calculated by the model. These are the diamagnetic velocity VDIA and the

poloidal velocity VPDL taken from the neoclassical theory [23]. The toroidal velocity VTDR is

assumed to be measured in the experiment and stored in the data file as VTDRX. Note,

however, that if the data for VTDRX are absent the code will work substituting VTDR with

ASTRA - Automated System for TRansport Analysis 113

zero. The rotational shear ROTSH is believed to reduce the effective increment of the ITG

instability and, consequently, the anomalous transport. This effect is taken into account

inside the calling subroutine IFSPPL.

Because of very "stiff" character of the IFS/PPPL model a special care should be

taken to obtain a stable solution. This is implemented in two lines after the subroutine

call. The subroutine returns electron and ion heat conductivities in two Astra vectors

CAR23 and CAR24 , respectively. These two vectors are then successively processed with

two subroutines SMOOTH and FTAV performing space and time averaging, respectively, and

yielding two smoothed vectors CAR17 and CAR18. As will be seen from the second part

of the model, the radial output allows to view both original (i.e. calculated by IFSPPL)

and smoothed quantities in the same plot and thus to control the quality of the procedure

applied. Adjusting the two control parameters CV1 and CV2 the user can regulate each type

of averaging and achieve nearly the complete coincidence between the original and smoothed

heat conductivities in the steady state.

On the other hand, a caution should be made against uSIng this scheme for fast

processes such as the heat wave propagation. If any of the characteristic length (for the

space smoothing) or time (for the time averaging) is larger than the wavelength or the

period of the heat wave under consideration then an essential physic information can be lost

in course of averaging and the applicability of results should be additionally inspected.

Another possibility of the accuracy control is provided by the Astra subroutine TSCTRL

(time step control). This subroutine checks if a relative variation in any of three quantities

CAR27 being a difference between the instability threshold and the actual gradient,

CAR23 == X~TG being the electron heat conductivity as output from IFSPPL,

CAR24 == xfTG being the ion heat conductivity as output from IFSPPL,

exceeds a confidence level given by the parameter CF4. If yes, then the time step is au­

tomatically reduced. Finally, the user can reduce the time step manually until a very low

value when no numerical instability takes place and check which of the described procedures

is most suitable in every particular case16
. To conclude this discussion we note that this

numerical instability is not very dangerous and the simulation can safely continue also when

16However, we have to warn the user that this check is possible only when the code is installed in double
precision version. Otherwise, the time step cannot be reduced below a certain value which is limited due to
truncation errors in Upl == a7jJ / at.

ASTRA - Automated System for TRansport Analysis 114

a developed instability is clearly seen as oscillations in X~~G. Even then the electron and,

ion temperatures show quite quiet behavior being hardly affected by a noise in the heat

conductivity.

Other terms of heat conductivity equations and the equation for the poloidal field do

not have any special features, therefore, we consider now the rest of this model.

!=============== ITG instability based transport model (cont.) ==========

!-------------------- Auxiliary quantities

CV5=O.8E-3*VINT(PBLONB); Parallel and perpendicular

CV6=1.6E-3*VINT(PBPERB); energy contents in the fast ions

CAR28=BTOR*FRS*MU*VTOR/RTOR;

CAR29=HEXP; SMEARR(CV3,CAR29,CAR30):;

CAR31=XEXP; SMEARR(CV3,CAR31,CAR32):;

!====================== Profile output ==================================

Tex\TEX\\TEX\-5;

Tix\TIX\\TIX\-3;

Te\TE\-5;

Ti\TI\-3;

RLTi\RTOR/LTI\-6;

RLTi\RTOR/LTI\-2;

RLTC\CAR20\-6;

RLTD\CAR19\-2;

Contributions to Er

Hex\HEXP\5;

KDes\CAR17\5;

ke\HE\5;

KDe\CAR23\5;

Hix\XEXP\5;

KDis\CAR18\5;

ki\XI\5;

KDi\CAR24\5;

ErVd\BTOR*VDIA\-1; gamm\CAR22\-8;

Er\ER\-1; Pecr\PEECR;

ErVp\-VPOL*BTOR\-1;wExB\ROTSH\-8;

ErVt\CAR28\-1; betj\BETAJ;

Current density

Er\ER;

Pe\PETOT;

shat\SHEAR;

Pi\PITOT;

vpol\VPOL;

PNBe\PEBM;

vtor\VTOR\\VTORX;

PNBi\PIBM;

j\CU\-4; jIC\CUICR; nuis\NUIS; Vtor\UPL;

jNB\CUBM\-4; Zeff\ZEF\\ZEFX; tpf\TPF; mu\MU\1;

joh\CUOHM\-4; jEC\CUECR; nues\NUES; VII \ULON;

jBS\CUBS\-4; sigm\CC; betj\BETAJ; q\1./MU\5;

Heat conductivity

ncCH\HNCHI\10; GSba\HNGSB\10; grVt\grad(VTORX); Hex\HEXP\10;

ncPS\HNPSI\10; KDes\CAR17\10; KDis\CAR18\10; prad\PRADX;

ncGS\HNGSI\10; GSpl\HNGSP\10; HeGS\HNGSE; Hix\CAR32\10;

ASTRA - Automated System for TRansport Analysis

ncfw\FOWC*HNCHI\10; KDe\CAR23\10; KDi\CAR24\10;

Other quantities

PN\PENEU-PINEU;

115

ne\NE\-11;

pNBl\PBLON;

ni\NI\-11;

pNBp\PBPER;

dLT1\CAR27;

RLNI\RTOR/LNI;

shat\SHEAR\2. ;

RLNE\RTOR/LNE;

RLT\RTOR/LTI\-2;

RLT\RTOR/LTI\-6;

RLTD\CAR19\-2;

RLTC\CAR20\-6;

nB\NIBM\-11

nB1\NNBM1

nD\NDEUT\-11

Zeff\ZEF\\ZEFX

!====================== Time output =====================================

<ne>_NEAVB; Wtot_WTOTB+CV5+CV6;

ZefO_ZEFC; Wequ_WTOTB+O.75*CV6+1.5*CV5

iter_TITER; INB_IBMB;

tauE_TAUEB; IBS_IBSB;

Pe_QETOTB; PNBA_QBTOTB;

shin_QNBI-QBTOTB; Prad_QRADB;

TixO_TIXC_-2; Ipl_IPL;

TiO_TIC_-2; PNBI_QNBI;

neO_NEC; Wthm_WTOTB;

nlc_NECHC; betp_BETAJB;

TiB_TIB; Ipl_IPL;

TeB_TEB; Ulc_UPLB;

Ptot_QTOTB; POH_QOHB;

Pi_QITOTB; PNB_QNBI;

TexO_TEXC_-1;

TeO_TEC_-1;

<Te>_TEAVB;

<Ti>_TIAVB;

!======================== ITG model end =================================

After calculation of few auxiliary quantities which are used for output only the model

defines 80 vector and 32 scalar output signals. The signals are ordered in a way that groups

of associated quantities are placed as far as possible in the same box and on the same screen.

Some of signals are repeated that allows to present them in appropriate context.

Measurable quantities (as Te or Ti) are plotted in the same box with the calculated

ones. If corresponding experimental data are not available it is not considered as an error

in a command like Tex\TEX\ \TEX. However, Astra vectors XEXP and HEXP which show

"effective" heat conductivities include gradients of measured quantities in a denominator

that can cause division by zero.

The second group of 16 radial curves includes information concerning the plasma

rotation. The second box here plots the ITG instability increment CAR22 together with the

rotational shear ROTSH (see page 91). Other radial output screens present current related

quantities, different contributions to the heat conductivity, density distributions and some

gradients of plasma parameters which are essential for the ITG stability.

ASTRA - Automated System for TRansport Analysis 116

Different local and global quantities are shown as time dependent signals. One can see

here central and edge temperatures, energy contents calculated in three different ways, line

and volume averaged densities, energy confinement time, partial components of the total

current and, finally, volume integrated power sources and sinks.

5.3 Data setting

5.3.1 Hierarchy of data initialization

A chain of initialization procedures is invoked each time when the code is started. First

of all, all variables with very few exceptions have pre-defined (default) values. The default

value of a variable is used only if the variable is not defined explicitly in any other way. The

most straightforward and natural way of data assignment is using a start (or data) file. A

name of this file is given by the user as a second parameter in the Astra command line (see

Section 5.5.2). Another possibility is assignment instruction in a model as described in the

previous section. One more option is an interactive change during the run time. A sequence

of assignments for different types of variables is shown in the following table.

Table 5.1. Order of variable setting

Variable type Default .log file Data file Model Run time
Device/ plasma parameters + + + + +
Adjustable (dummy) variables + + - + ±
Grid/ time/ accuracy control + + - + +
Color control + + - - +

Every assignment type overrides all others which have more left position in this table. For

instance, if a quantity is redefined in the run time then every other definitions are disabled.

The symbol " - " means that this type of variable cannot be assigned in this way. The

marking ± will be discussed in Section 5.3.4.

There are few exceptions from the table above. Namely the following quantities are

used for the radial grid allocation and, therefore, they have to be defined at earlier phase of

AB (none)

RTDR (none)

ELDNM (1)

TRIeR (0)

maximum minor radius in a horizontal plane,

major radius at the same plane,

maximum elongation,

chamber triangularity (used for drawing only),

ASTRA - Automated System for TRansport Analysis 117

AWALL

NB1

(AB)

(41)

p -grid size is Pw == 1.1*AWALL*Vmax (ELDNM,ELDNG),

p -grid step is h == Pw/(NB1- 0.5)

the code execution and cannot be redefined later. It means that these six quantities can be

defined either by a ' .log' file (see Section 5.3.2) or by a data file and they cannot be set in

a model or changed during the run. This limitation seems to be not very restrictive while it

arises quite naturally from the requirement that these basic variables describing geometry of

a particular device cannot depend on time. When applicable, the quantities acquire default

values which are shown in brackets. However, it is recommended that the first four of these

quantities are defined explicitly. In opposite, the default definition for AWALL is in most cases

well sufficient, therefore, it should be defined by the user only if Astra provides a diagnostic

that the default value is not appropriate. When setting the grid size NB1, the user should

take into account that the grid size (variable NA1 which will be automatically selected by

the code) actually used in a simulation is usually a fraction (2: 80%) of NB1. The rest of

the radial grid is reserved for a description of the scrape-off layer and for a possible increase

of the Lagrangian variable PB == RHD(NA1) < Pw.

We continue a list of variables which should be defined by the user. In addition

to already mentioned AB, RTDR, ELDNM, TRICH, those are (default values are shown in

parentheses)

ABC(AB), SHIFT(O) , ELDNG(ELDNM), TRIAN(O) , BTDR(none) , ZMJ(1), AMJ(2).

Finally, at least one of the three quantities

IPL(none) , UEXT(none) , LEXT(none)

also must be defined in order to avoid a possible crash during the code start-up. However,

all these quantities can be defined by every method listed in the first line of Table 5.1.

Default array setting. Unlike simple variables arrays can be defined either via a data

file or in a model. Following is the list of vector variables (arrays) which can aquire default

definitions

NE(p) == NEX(p),

TE(p) == TEX(p),

TI(p) == TIX(p),

F1(p) == F1X(p),

F2(p) == F2X(p),

F3(p) == F3X(p),

AMAIN(p) == AMJ,

ZMAIN(p) == ZMJ,

NI(p) == NE(p)/ZMJ,

CC(p) == CCSP(p),

CU(p) oc CC(p),

ZEF(p) == max(l.,ZEFX(p)).

ASTRA - Automated System for TRansport Analysis 118

These definitions are effective only if the left hand sides are not defined explicitly in a model.

For instance, if NE appears on the left hand side in an assignment instruction in a model then

the default definition NE=NEX is not involved. On the other hand, if any of the quantities

NE, TE, TI is not assigned in a model then it must be defined in the data file. Otherwise, a

run time error could be encountered. This requirement is not applied to the quantities F1,

F2, F3. Because their usage is optional they need not be defined unless they are directly

used in a model.

5.3.2 Reading from a ".log" file

Usually a large amount of tuning parameters participate in a transport modelling. Often

these parameters are not known in advance, therefore, an adjustment in course of simulation

is a most reasonable way for finding appropriate values. The Astra code provides a possibility

to store all internal variables adjusted during the current run. This happens when user selects

the option "Save const" (or the hot key 'I') from the run time menu (Section 5.5.3). The

current values of adjustable variables are saved in a file which is read each time when the

code starts up so that all variable values tailored and saved in a previous simulation will be

used in the subsequent one. A name of the file is composed by adding the extension" .log"

to a name of the running model. This convention implies that only one .log file, and,

consequently, one set of stored values corresponds to each model file. These files can also be

edited manually.

5.3.3 Input from a data file

Unlike the ".log" file which belongs to a corresponding model there can be an arbitrary

number of input files which describe an experimental setup and are not related to any

particular model. Reading input data from a file is a conventional way of data definition.

The name of this file is specified as a first parameter in a command line starting execution

of the Astra code. The format of this file is described in Section 5.4. Here we discuss only

the main principles of data input by making use of the data file.

First of all, note that starting from this level of data initialization (see Table 5.1)

every scalar or vector variable can be defined not only as a time constant but also as a time

dependent function. On one hand, this adds a flexibility to the data setting. On the other

ASTRA - Automated System for TRansport Analysis 119

hand, it results in a restriction that only a limited number of specially treated variables can

be read from a data file.

Scalar variables readable from a data file. We start with a note that in future versions

of the Astra code the set simple variables readable from a data file may be changed but the

updated list (except for the group ZRD1, ZRD2, ... and the three variables NB1, TSTART,

TEND) can always be viewed during the code run by pressing the key 'V' or by clicking mouse

in the field "Variables". In the version 5.3 of the code this set comprises

Table 5.2. List of Astra scalars definable by a data file

AB ABC AIM1 AIM2 AIM3 AMJ AWALL BTDR
ELDNG ELDNM ENCL ENWM FECR FFW FICR FLH
GN2E GN21 IPL LEXT NNCL NNWM QECR QFW
QICR QLH QNBI RTDR SHIFT TRIAN TRICH UEXT
UPDWN WNE WTE WTI ZMJ NB1 TSTART TEND
ZRD1 ZRD2 ZRD3 ZRD4 ZRD5 ZRD6 ZRD7 ZRD8
ZRD9 ZRD10 ZRD11 ZRD12 ZRD13 ZRD14 ZRD15 ZRD16
ZRD17 ZRD18 ZRD19 ZRD20 ZRD21 ZRD22 ZRD23 ZRD24
ZRD25 ZRD26 ZRD27 ZRD28 ZRD29 ZRD30 ZRD31 ZRD32
ZRD33 ZRD34 ZRD35 ZRD36 ZRD37 ZRD38 ZRD39 ZRD40
ZRD41 ZRD42 ZRD43 ZRD44 ZRD45 ZRD46 ZRD47 ZRD48

Each variable from this list is mirrored with another variable with a similar name but with

trailing "X" (which stands for eXperimental), X-scalars.

Table 5.3. List of X-scalars readable from a data file

ABX ABCX AIM1X AIM2X AIM3X AMJX AWALLX BTDRX
ELDNGX ELDNMX ENCLX ENWMX FECRX FFWX FICRX FLHX
GN2EX GN2IX IPLX LEXTX NNCLX NNWMX QECRX QFWX
QICRX QLHX QNBIX RTDRX SHIFTX TRIANX TRICHX UEXTX
UPDWNX WNEX WTEX WTIX ZMJX
ZRD1X ZRD2X ZRD3X ZRD4X ZRD5X ZRD6X ZRD7X ZRD8X
ZRD9X ZRD10X ZRD11X ZRD12X ZRD13X ZRD14X ZRD15X ZRD16X
ZRD17X ZRD18X ZRD19X ZRD20X ZRD21X ZRD22X ZRD23X ZRD24X
ZRD25X ZRD26X ZRD27X ZRD28X ZRD29X ZRD30X ZRD31X ZRD32X
ZRD33X ZRD34X ZRD35X ZRD36X ZRD37X ZRD38X ZRD39X ZRD40X
ZRD41X ZRD42X ZRD43X ZRD44X ZRD45X ZRD46X ZRD47X ZRD48X

In particular, it means that there are couples of independent variables, AB and ABX, ABC and

ABCX and so on, which can be defined and used quite independently with one significant

ASTRA - Automated System for TRansport Analysis 120

exception. Namely, if any of quantities from the second list is not defined explicitly in a model

then, by default, it takes value of its experimental prototype. For a practical work it means

that if the quantity IPLX is defined by a data file and the quantity IPL is not mentioned

in a model then there is no difference between both. In this case, the resulting code is fully

equivalent to the code obtained with the explicit instruction IPL=IPLX. However, if the

quantity IPL is defined in some independent way (for instance, by the boundary condition

UEXT=O) then IPLX and IPL are fully independent.

At first sight, this convention could seem too complicated but it works so that a novice

user of the code need not know anything about two different sets of data. This allows to

omit in a model multiple instructions of type ABC=ABCX. However, an advanced user can

take advantage of that keeping trace on IPLX as defined by experimental measurements and

comparing it with IPL calculated in the code. Note also, that if more complicated condition

for IPL is used, for instance, if IPL is calculated inside user's subroutine then the Astra code

builder cannot recognize this hidden definition and will try to set IPL=IPLX in conflict with

user's intention. A simple way to overcome this contradiction is using a dummy instruction

IPL= IPL in a model.

Three Astra control variables NB1, TSTART and TEND are used for influencing a sim­

ulation flow. They have no X-counterpart, nevertheless, it is often useful to define these

quantities by a data file. Therefore they are added to the list of variable in Table 5.2.

Vector variables readable from a data file. Only a limited number of basic vector

variables (X-vectors) can be defined by an input file.

Table 5.4. List of X-vectors readable from a data file

TEX TIX NEX NIX CUX ZEFX VPDLX VTDRX
MUX MVX GNX SNX PEX PIX PRADX IPDLX
SHX ELX TRX VRX G11X G22X G33X DRDDAX
F1X F2X F3X CAR1X CAR2X CAR3X CAR4X CAR5X
CAR6X CAR7X CAR8X CAR9X CAR10X CAR11X CAR12X CAR13X
CAR14X CAR15X CAR16X

The list includes

- the main plasma characteristics which can be measured in an experiment (e.g. electron

temperature TEX, density NEX, effective charge ZEFX and so on),

ASTRA - Automated System for TRansport Analysis 121

- calculated by external codes (e.g. quantities supplied by equilibrium, heating and current

drive codes),

a set of 19 dummy arrays (F1X, F2X, F3X, CAR1X, ... , CAR16X) which can acquire

any meaning depending on user's will.

Any array of Table 5.4 will be defined if its name appears in a data file according to the

rules discussed in Section 5.4.3 and this data file is used for the current run.

As already discussed in Section 5.3.1, a default definition of the type NE(p) == NEX(p)

IS applied to the following seven X-arrays NEX, TEX, TIX, F1X, F2X, F3X, ZEFX only.

The reason is that undefined NE, TE, TI, ZEF can cause a simulation crash and F1, F2,

F3 are added in order to keep similarity between the main and auxiliary transport equations,

Eq. (59) and Eq. (75), respectively.

Usually, the default assignments are effective in absence of corresponding explicit

definition only. However, there is one exception. If the equilibrium control parameter

NEQUIL (default value 0) is set as

NEQUIL=-1

then it is assumed that all the geometry and configuration related quantities are defined by

means of a data file. In this case, nine X-arrays SNX, ELX, TRX, VRX, DRODAX, IPOLX,

G11X, G22X, G33X must be pre-calculated and stored in the data file. These nine quantities

will then be used to calculate the corresponding set of Astra vector variables as

SHIF(p) == SHIFT * SHX(p), ELON(p) == ELONG * ELX(p), TRIA(p) == TRIAN * TRX*(p/ Pa)2,

VR(p) == 47[2 P*RTOR * VRX(p), DRODA(p) == DRODAX(p), IPOL(p) == IPOLX(p),

G11(p) == VRX(p)*G11X(p), G22(p) == p*G22X(p), G33(p) == G33X(p).

As one can see, these X-arrays are selected in such a way that for concentric non-shifted

circle magnetic surfaces they all are unitary. These assignments are always operative when

NEQUIL == -1 and cannot be overwritten by any assignments in a model. On the contrary,

when NEQUIL i- -1 these nine X-arrays have nothing to do with the corresponding left

hand sides and can be used for any other goals.

Similarly, all other X-arrays have no pre-defined meaning and can be used for input

of any radial profile. For instance, if the vacuum rotational transform MV should be taken

from a data file then the assignment MV=MVX has to be made explicitly in a model. Without

ASTRA - Automated System for TRansport Analysis 122

this assignment MVX can be anything. The X-arrays can be used in expressions according to

usual rules

PE=PEX-PRADX+POH-PEICL

or appear on the left hand side of an assignment command, e.g., CAR1X=FPR**1.5. However,

the latter construction is not recommended because if the same array CAR1X is occasionally

defined in a data file then a result is unpredictable.

5.3.4 Run time variable setting

At the run time most of variables are accessible for a direct control by the user. There are

two ways of doing this. First of all, it can be done interactively by pressing keys 'A', 'C', 'D'

and 'V' or by mouse selecting proper fields from the run time menu. Another way is defining

some quantities in user's subroutine. This method can be used when a quantity has to be

calculated on a basis of complicated formula or equation.

As follows from Table 5.1, definition of any quantity during the code execution has

the highest priority and overrides any other definitions. In particular, once any plasma or

device parameter is interactively changed by the user its previous assignments in a data file

or in a model are discarded.

Unfortunately, it is more difficult to fulfill the same property for a C-parameter. One

should beware that a result of interactive setting C-parameter can be guaranteed only if it is

not assigned in a model. If, nevertheless, a C-parameter is defined in the model by a time­

independent instruction like CV1=2 then a run-time modification will work properly, however,

it will not in case of more complicated time-dependent assignment as CV1=FJUMP (0.1).

A similar difficulty arises when a variable or C-parameter is defined in a user sub­

routine. If it is simultaneously defined in a model or changed interactively then a result

is unpredictable. Therefore, it is recommended to avoid any conflicting definitions of those

types.

5.4 Data file format

During installation of the Astra system the user is supplied with sample data files. New

data files can be obtained by editing the original files retaining their structure. Therefore,

ASTRA - Automated System for TRansport Analysis 123

this section can be omitted during the first reading. For more elaborated data setting we

describe syntax of a data file in this section.

5.4.1 General requirements

In what follows we will distinguish between input of simple variables and vectors. The former

means that a scalar function of time will be defined by the input. The latter defines a time

dependent vector function of a magnetic surface while the "radial" coordinate can be selected

by the user from a wide set of different options. It is also possible to define this function

using two spatial coordinates (r, z) in the poloidal plane. This 2D function is then mapped

to a 1D function of magnetic surfaces using the time dependent magnetic configuration of

the particular Astra run.

The first two lines in a data file are reserved for a commentary. They are not used by

the code itself but the first 16 positions of the first line appear in the output graphic window

during the Astra run. For instance, they can be used for displaying a device name and a

shot number under consideration. A length of meaningful string in a data file cannot exceed

132 characters. There is no limit for a length of commentary string.

During reading a data file each string is checked whether its first 6 characters match

one of keywords. The keywords are all the names listed in Tables 5.3 or 5.4 and, additionally,

the following seven control words:

NAMEXP, NTIMES(1) , FACTOR(1), FILTER(O.001), GRIDTYPE, POINTS, END.

A variable corresponds to each of the first 6 control words. An input value of this variable

should follow after the control word. Once defined these values are valid until they are

redefined by another control string. The control variables FACTOR (being the unit conversion

factor), NTIMES (number of time slices) and FILTER (defining a transformation rule), if not

defined explicitly are set to a default value shown in parentheses. When the control word

END is found then reading the data file is ceased, otherwise, it is continued until the file

end. A meaning of other variables will be discussed later. All names and control words can

appear in low or upper case.

If a string is started with one of the control words it is treated as a control string.

When a control string is encountered it is parsed and an interpretation regime for a group

of several subsequent lines is set. When the group is exhausted then the following string is

ASTRA - Automated System for TRansport Analysis 124

again checked against the matching condition. If first 6 characters of the string do not match

any of the keywords then the string is skipped and the next string is processed similarly.

For instance, any non-alphabetic symbol in the first position of a parsed string results in

ignoring the string by the code. This property can be used for writing commentaries in the

input file.

For a sake of brevity the character 'X' on the end of every name in the data file can

be omitted. Then the 'X' is added by the code so that presence or absence of 'X' in a

name does not change the result. For instance, there is no matter whether a name from

Table 5.3 or Table 5.2 is used. But in any case, a data file defines a variable from Table 5.3

(or 5.4) only. Whether the corresponding variable without the trailing 'X' is defined or not

depends on the contents of a model file and interpretation rules discussed in the previous

section.

When reading input data is started the code is in a scalar input mode. It means

that at first all scalar variables should be defined. After one of the control words POINTS,

GRIDTYPE, FILTER is encountered the code is switched to the vector input mode. Now the

vector variables (Table 5.4) have to be defined. If a simple variable appears on the input

now it will be ignored.

There are several different ways of data input in the Astra system. It can be either a

direct reading data from a start file or redirecting input to so called "U-file" where the data

are represented in a U-file standard developed in PPPL for storage of experimental data.

The U-file standard is used also for the ITER data base. This standard is not described

in this paper but it is quite transparent and can be easily understood from few examples

attached to the Astra code.

Different input formats can be combined in one input file. Moreover, mixing different

formats is permitted for different time slices of the same input quantity. Definition of a time

dependent scalar or vector can consist of several subsequent groups for different time slices.

However, one restriction should be mentioned here. These groups can use different grids but

the subsequent times should be given in the increasing order and all groups related to the

same variable should be contiguous. In other words, when a time evolution for one variable

is defined and the input sequence is switched to another variable then return to the first one

is forbidden.

ASTRA - Automated System for TRansport Analysis

5.4.2 Reading data from a V-file.

125

First of all, the first 6 characters of every line are considered. If they are recognized as a

name of variable then the next word in the string is analyzed. If this word is IIU-f ile II (case

insensitive) then the string is interpreted as a reference (pointer) to a U-file where a data

set for the current variable is stored. The name of the U-file should be separated from the

word U-file with a colon ':'. Optionally, a multiplicative factor can be given after the

second ':'.

The following 5 lines show different allowed formats of a pointer to U-file:

1PL ----+1 U-file ----+1 : ----+1 AOOOOO. aaa ----+1 Factor: ----+10.000001

1PL ----+1 u-file ----+1 : AOOOOO. aaa ----+1 factor: 1. E-6

1PLX ----+1 U-F1LE ----+1 : AOOOOO. aaa ----+1 : 1. E-6

iplx ----+IU-File ----+1 :AOOOOO.aaa:1.E-6

ipl ----+lu-file:AOOOOO.aaa:1.E-6

All these lines have the same effect and mean that the variable describing the plasma current,

1PLX, should be taken from the U-file AWD/udb/AOOOOO. aaa (' AWD' denotes the Astra

working directory) where it is stored in amperes and multiplied by 10-6 because the Astra

code employs MA as a current unit. The word "Factor" can be omitted. The symbol

----+1 shows a delimiter, i.e. any combination of spaces and horizontal tabulations.

Note that for this input format

- only a U-file name is case sensitive,

- only one line is allowed for every variable,

- the word "factor" and the factor value can be omitted,

- if the factor value is omitted it is set to 1,

- a delimiter " ----+1" is required only

- between a name of variable and the word "U-file",

- between a name of U-file and the word "factor" if the latter is present.

The U-file name should be given with a path relative to the directory AWD/udb/. For

instance, if the name is .. / exp/AOOOOO. aaa then the U-file containing data should be in

the subdirectory AWD/exp/ . Every permissible U-file name is allowed but the file must exist

and contain data. For input of a scalar variable it should be a OD or 1D U-file. Moreover,

ASTRA - Automated System for TRansport Analysis 126

in the latter case it should have time as independent variable. For input of a radial array it

should be 1D or 2D U-file.

In the ITER data base every U-file consists of a number of merged separate U-files

for different signals. In order to select an appropriate record one can use a specifier '<' as

shown below

IPL U-file:JET/jet_40847_1D < IP :1.E-6

ABC U-file:JET/jet_40847_1D < AMIN:1.E-6

BTOR U-file:JET/jet_40847_1D < BT :1.E-6

ZRD1 U-file:JET/jet_40847_1D < LI :1.E-6

In this example, all four Astra variables IPLX, ABCX, BTORX and ZRD1X are read from the

same U-file AWD/udb/JET/jet_40847 where they are stored under the names IP, AMIN,

BT and LI, respectively.

We also remind that, first of all, scalar variables have to be defined and then the input

mode can be switched to the vector input. Thus, the group

IPL ~lu-file:AOOOOO.aaa:1.E-6

FILTER ~I 0 .002

TEX ~lu-file:BOOOOO.bbb:factor ~I 1.E-3

MV ~lu-file:COOOOO.ccc

first defines the simple variable IPLX as discussed before. Then the control word FILTER

switches the input regime to the vector mode. (It could also be the words POINTS or

GRIDTYPE but these two words do not affect the input from a U-file.) Then the radial array

TEX is taken from the U-file AWD/udb/BOOOOO. bbb and all array values are multiplied by

the factor 10-3 . Finally, the array MVX will be defined.

5.4.3 Fixed format input

If the first word in a string is recognized as a name from Table 5.3 or Table 5.4 and the

second word is not "U-f ile" then the rest of the string will be parsed in positional or

fixed format mode because all symbols will be interpreted according to their positions in

the string. This format was used in old versions (before 3.0) of the Astra code. Although it

is quite restrictive, for compatibility it is also supported in more recent versions.

ASTRA - Automated System for TRansport Analysis 127

Fixed format for a scalar input. In the scalar input mode all positions in a string have

the meaning specified by the table:

Field position
Field meaning

1-6
NAME

9-14
Time

17-22
Value

NAME is one of the names listed in Table 5.2 (or Table 5.3). "Time" and "Value" are numbers

which obey Fortran rules for integer or real constants and cannot use a place beyond the

reserved fields of 6 positions. Non-used positions (except for those on the end of a string)

within the reserved fields and the positions 7, 8, 15 and 16 should be filled with spaces. In

the fixed format, the tabulations cannot be used as a separator between meaningful fields.

For a time-independent variable the second field "Time" can be skipped (filled with spaces).

For instance, the string (spaces are shown with a symbol' _')

BTOR 3.5

is equivalent to the Fortran statement

BTORX=3.5

A variable evolving in time can be given as

Narne Tirne Value

123456 __901234 __789012

IPL .0 .1

IPL 1. 1

IPL 2 1.0

IPL 2.5 2.E-1

The first two lines will be interpreted by the Astra code as comment strings. The whole

group determines the internal variable IPLX as a function of time

0.1 if t:SO
0.1 + 0.9t if 0:St:S1

IPLX (t) == 1 if 1<t<2 (101)
1 - 0.8(t - 2) if 2 :S t :S 2.5
0.2 if t ~ 2.5

As can be easily seen the time evolution IS obtained by a linear interpolation between

subsequent times. Outside the specified time interval the quantity is extended as a constant.

Fixed format for arrays. As already mentioned, the Astra code starts reading data file

being in the scalar input mode. In order to invoke vector mode the variable POINTS must

ASTRA - Automated System for TRansport Analysis

be defined. It can be done by a line as

POINTS ---+1 20

128

This line switches the input mode to reading vector variables and additionally declares that

the vector dimensionality is 20. Then the first 6 characters in a line will be compared with

array names of Table 5.4. If it fits one of those name and the next word is not "U-f ile" then

the string should have the following fixed format:

Field position 1-6 7-11 12-16 17-21 .. . 7+5*j-11+5*j ...
Field meaning NAME Time Value Value .. . Value ...

All positions which are not used must be filled with spaces. On the other hand, no spaces

is required between the different fields. The total number of fields in a line is POINTS + 2

and 1:S; j :s; POINTS.

As in the case of scalar variables the first two fields in the line give a variable name

and a time value. If the variable is time independent then the second field can be empty

(filled with spaces). Remaining fields define radial dependence of the vector assuming that

its values are given on the equidistant grid in a radial variable. By default this radial variable

is O:S; a :s; aB == ABC. This default convention can be changed by redetermining variable

XINPUT (see Section 4.6.1).

A time dependent vector can be defined similar to a time dependent scalar. In the

example below, the time evolving density NEX is determined.

POINTS ---+110

123456789012345678901234567890123456789012345678901234567890

Narne __Tirne_ValueValueValueValueValueValueValueValueValueValue

NE .0 2.30_2.27_2.23_2.15_2.02_1.8 __ 1.49_1.13_0.8 __ .522

NE 0.2002.3842.4302.4562.4102.3022.1281.9031.6471.3601.150

NE .4 2.66_2.77_2.85_2.86_2.76_2.58_2.33_2.03_1.68_1.43

TE ---+IU-file:T12345.ECE: .001

TI 3.22_3.14_3.07_2.64_2.07_1.57_1.14_0.71 __ .25 __ .12

END

The first line in this example sets value POINTS=10 for all subsequent lines until it will be

changed by another command line. The second and third lines label positions. As long as

ASTRA - Automated System for TRansport Analysis 129

they include no valid name in the first six positions they are ignored by the code. As shown

in the second line for" NEX" no delimiter is required between the different fields. Note that

aU-file T12345. ECE can have a number of radial points different from 10 but it will not

affect the current value of POINTS. Because the length of every input line is limited by 132

positions no more than 24 array elements can be used in this format.

5.4.4 Free format input.

The control words NAMEXP, NTIMES, FACTOR can be used for input both scalar and vector

variables. Moreover, any of the control words POINTS, GRIDTYPE, FILTER switches the

input regime from scalar to the vector mode. An order and case of the control words in a

line are inessential. Once defined, each control variable value is valid until it is redefined

by another control string. If the six leading characters in an input string match any of the

control words then the following rules are applied:

- an order of control words in a control line is arbitrary.

- the word NAMEXP must be present in the line, and followed by a name from Table 5.2 or

5.4,

- the words NTIMES, GRIDTYPE and POINTS (if present) should be followed by an integer

number,

- the words FACTOR and FILTER (if present) should be followed by a real number,

- the words NTIMES, FACTOR and FILTER can be omitted, then they acquire default values

1, 1. and 0.001, respectively.

A number after the word NTIMES defines the number of time slices in the input. These time

values should always follow the control line. A real number after the word FACTOR defines

the multiplication (e.g. unit conversion) factor between the input data and in the Astra

variable. In the free format, no restrictions apart from those required by the Fortran syntax

are imposed.

Free format for reading scalars. In the scalar variable input mode each control line

should be followed by a group of 2*NTIMES real numbers. First NTIMES of them give time

and the rest give variable values. For instance, the previous example Eq. (101) can be written

ASTRA - Automated System for TRansport Analysis 130

as

FACTOR 1.E-6

2.5

2.E5

NTIMES 4

2

1.E6

1.

1.E+6

NAMEXP IPL

.0

.1e6

The next example sets a box-like time dependence for the quantity QECRX

NTIMES 4 NAMEXP QECR

0.299 0.3 1.5 1.501

0.0 1.0 1.0 0.0

It switches on from zero to 1 MW at t == 0.3 s and switches off at t == 1.5 s.

Free format for reading vector variables. The control words POINTS, GRIDTYPE,

FILTER switching the input regime to the vector mode have the following meaning

POINTS is a dimension of the input vector,

GRIDTYPE is an integer number specifying the radial variable,

FILTER is a real number determining a method of data transfer.

All control variables can be redefined after any input group as many times as needed.

Otherwise they extend their meaning to all subsequent groups with one exception. The

grid type and size, as determined by the variables GRIDTYPE and POINTS, are not applied

to the input from a U-file. The reason is that the input grid is defined independently in

each U-file and this definition is effective inside this U-file only. When processing the U-file

is over the variables GRIDTYPE and POINTS retrieve their values. The action of the variable

FILTER is extended to all input formats. The control words NAMEXP, NTIMES, FACTOR and

their values have the same significance and obey the same rules as for simple variables. Input

data should be split in strings no longer than 132 character each.

The variable POINTS has no pre-defined value. It must appear in a control string at

least once. It sets the number of grid points to be used in the subsequent input group.

This grid has nothing to do with the grid used in the transport equation solver. Therefore,

a rule for data transfer from one grid to another is required. Variables GRIDTYPE and

FILTER define these rules.

ASTRA - Automated System for TRansport Analysis 131

The quantity GRIDTYPE defines the radial variable and a type of the input grid. In

the current version of the code it can take the following values.

Table 5.5: Types of radial grid for input arrays

Value Radial coordinate Type of the grid Units Comment
0 aj == AB*l1:j Equidistant [m]
1 aj == ABC*l1:j Equidistant [m] Default input mode
2 PN,j == I1:j Equidistant [d/l]
3 P1/J,j == I1:j Equidistant [d/l]
4 PV,j Equidistant [m] Unimplemented
5 1jJN,j Equidistant [d/l] Unimplemented
6 <1>. Equidistant [Wb] UnimplementedJ

10 aj E [0, AB] Arbitrary [m]
11 aj E [0, ABC] Arbitrary [m]
12 PN,j E [0,1] Arbitrary [d/l]
13 P1/J,j E [0,1] Arbitrary [d/l]
14 PV,j Arbitrary [m]
15 1jJN,j] Arbitrary [d/l]
16 <1>. Arbitrary [Wb]J

18 {rj, zo} Arbitrary [m] Vertical chord
19 {ro,zj} Arbitrary [m] Horizontal chord
20 {rj, Zj} Arbitrary [m] 2D grid

where
j -1

11:. - ----
J - POINTS - 1 '

1 :s; j :s; POINTS and

P
PN ==-,

PB
Pv ==

V(p) - V(O)
V(PB)

P1/1 = ;;;;;.

When GRIDTYPE < 10, an equidistant grid is selected with respect to the radial coordinate

used. Note that equidistant grids on different radial variables do not coincide with one

another.

When GRIDTYPE 2: 10, the grid is arbitrary and is expected to be supplied by the

user. In this case, the grid can be extended also beyond the interval specified by the second

column in Table 5.5 but all data beyond this interval will be ignored. If the innermost point

of the input grid does not coincide with the magnetic axis P == 0 then the input quantity

at P == 0 is set to the nearest value provided. The same is done for the outer side. In other

words, every quantity is extended by a constant outside the region where it is set by the

input data if this region is smaller than the region of definition.

ASTRA - Automated System for TRansport Analysis 132

After that the input grid is mapped to the Astra transport grid by the quadratic

interpolation while the data are transferred to the transport grid making use of the procedure

described in Section 4.9.6 where a == FILTER.

We consider now few examples. The first one reads:

NAMEXP PRAD NTIMES 2 POINTS 10 GRIDTYPE 1

O. 0.03

1.683E-02 1.835E-02 2.118E-02 2.511E-02 3.063E-02

3.730E-02 4.366E-02 4.700E-02 4.493E-02 3.684E-02

1.10 0.95 0.78 0.63 0.51 0.45 0.37 0.25 0.13 0.04

.45 .5

2.118123E-2

4.493699E-2

POINTS 11 GRIDTYPE 10 NAMEXP PRAD

.2

.0 .05 .1 .15 .2 .25 .3 .35 .4

1.613903E-2 1.683072E-2 1.835108E-2

3.730636E-2 4.366064E-2 4.700778E-2

0.02511 3.063486E-2

3. 684750E-2

Here stars separate successive input groups and are ignored by the code. The first control

line declares that the input data should be written in the array with the name PRADX on

the radial grid of 10 points which is equidistant in the variable a on the segment [0, ABC].

Two time slices (t == 0 sand t == 0.03 s) given in the next line are followed with 20

numbers which give the function values. The second control line says that the input should

be continued using a new grid of 11 nodes. Then the time t == 0.2 s is given, then 11 data

for {aj} and 11 values of the function. Note that although the control pair "NTIMES 1" is

omitted the corresponding time data must be present.

The second example:

********************************* CAR3X *********************************
»» Data are given along a vertical chord

POINTS 10 GRIDTYPE 18 NAMEXP CAR3

0.3

1.5

ASTRA - Automated System for TRansport Analysis

-0.81 -0.64 -0.47 -0.30 -0.13 0.04 0.21 0.38 0.55 0.72

0.04 0.31 0.56 0.78 0.93 0.96 0.87 0.68 0.44 0.17

133

********************************* CAR1X *********************************
»» Data are given along a downshifted horizontal chord

POINTS 11 GRIDTYPE 19 NAMEXP CAR1

0.3

-0.25

1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10

-0.09 0.26 0.53 0.72 0.83 0.87 0.83 0.72 0.53 0.26 -0.09

********************************* CAR2X *********************************
»» Data are given along an inclined chord

NAMEXP CAR2X GRIDTYPE 20

0.3

1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10

-0.30 -0.28 -0.27 -0.25 -0.24 -0.23 -0.21 -0.20 -0.18 -0.17 -0.15

-0.12 0.24 0.51 0.72 0.84 0.89 0.87 0.76 0.58 0.31 -0.03

defines three different quantities at the same time t == 0.3 s which is specified by the first

number after each control line. In the first input group, GRIDTYPE=18, therefore the time is

followed by the distance to the torus axis ro == 1.5 m, then {Zj} (also in meters) and {fj}

are given, where 1:S j :S 10. The second control line switches the name, the grid type and

size. It determines the horizontal chord with Zo == -0.25 m, {rj} (in meters) and then

gives the function values {fj} for 1:S j :S 11. The third group inherits PoINTS=11 and

after the time value gives 33 numbers for {rj}, {Zj} and {fj}, with 1:S j :S 11.

5.4.5 Input format for the plasma boundary.

When the three-moment equilibrium solver (NEQUIL:S 41) is used the plasma bound­

ary should be described by a set of scalar variables RToR, ABC, SHIFT, ELoNG, TRIANG,

UPDWN. This boundary setting can also be used for more complicated equilibrium solvers,

however, in the latter case, a more complicated boundary shape is usually necessary.

A special input format is provided for setting the plasma boundary of arbitrary shape.

ASTRA - Automated System for TRansport Analysis 134

The format is similar to the free format discussed above. A new keyword BND (or BNDX) is

introduced which declares that the subsequent group of numbers will describe the plasma

boundary. One should beware that the boundary input switches the input mode from scalar

to vector type.

Plasma boundary input is illustrated with an example:

NAMEXP BND NTIMES 2 POINTS 8

0.263 0.313

2.7750 2.7000 1.7631 1.7695

2.6283 2.6371 -1.5053 -1.5104

3.8605 3.8605 0.2516 0.2516

1.9041 1.9167 0.2516 0.2516

3.3000 3.2250 1.5363 1.5932

2.2748 2.2500 1.5172 1.5014

2.2515 2.2604 -1.0141 -1.0141

3.0728 3.0750 -1.1406 -1.1526

Here the time evolving plasma boundary is given by pairs of coordinates {rj, Zj} where

1 :S j :S POINTS == 8. First two time values t 1 == 0.263 sand t2 == 0.313 s are given. Then

follow 2 x NTIMES x POINTS coordinates rl(t1), rl(t2), Zl(t1), Zl(t2), r2(t1), r2(t2), ... ,

r8(t1), r8(t2), Z8(t1), Z8(t2). It is understood that the boundary coordinates are linearly

interpolated if t 1 < t < t2 and do not evolve otherwise.

In the current version of the code all data for the boundary input should be given in

one group (multiple appearance of the combination "NAMEXP BND" is not allowed) and the

the total number of data in this group (2 x POINTS + 1) x NTIMES cannot exceed 25000.

In conclusion, we outline a few common rules for a data file:

- The first two lines should be used for a device/shot identification and cannot contain a

variable input.

- No meaningful (non-commentary) lines can use more than 132 positions.

- If different time slices for the same quantity follow one another then the time sequence

should be put in increasing order.

ASTRA - Automated System for TRansport Analysis 135

A sequence of records for every input quantity should be contiguous, i.e. records for one

quantity cannot alternate with records for another.

At first, all simple variables should be determined.

A control line containing one of the words POINTS, GRIDTYPE, FILTER switches the

input to the vector mode. After such a line radial profiles can be defined only.

A total number of input values for all simple variables and all time slices cannot exceed

a value of the parameter NTVAR which is set during the code installation. An actual

value of the parameter is defined in the file AWD/for/parameter. inc (by default

NTVAR=2000). For radial profiles the same limitation is given by the parameter

NTARR (default value 5000).

If the control word END is encountered then the subsequent contents of the data file is

ignored. Otherwise, all records until the end of the file will be processed.

5.5 Brief operation guide

5.5.1 Installing the code

To install the Astra code the user is supplied with two files. One of them is an archived file

containing all source files for the code. Another is a script file "InstallAstra". Both files

should be put in the same directory and then the code is installed by running the script file.

The script provides many options and can accept several control parameters. For instance,

there are options to install the code for multiple users with a shared kernel, options which

specify names for the directory to put the code in and for the kernel to be linked to. Only

a simplest option is considered here.

Running the script

InstallAstra

without any control parameters should install the Astra kernel with the name "Astra" and

the Astra user directory with the name "astra". However, for an unknown platform some

additional adjustments could be requested. If an error is encountered a message is printed.

Then after a correction InstallAstra should be run repeatedly. Usually, after the Astra

code is successfully installed it offers to set two aliases

Astra == AWD/.exe/astra

ASTRA - Automated System for TRansport Analysis

and

136

Review == AWD/.exe/view

where AWD is replaced by the actual Astra working directory name. Both alias names are

arbitrary but for convenience these shorthands will be used in what follows.

5.5.2 Starting the code

After the Astra code is installed a syntax of the starting command and the main contents

of this section can be displayed by the command

Astra help

or

Astra -h

The code is started by the command

Astra [data_file_name] [model_name] [start_time] [end_time]

[post_view_file_name] [test]

which can take up to 6 parameters separated by spaces. Any of them is optional and can be

omitted. However, a meaning of every parameter is determined by its ordinal position in the

command line, therefore, if the dropped parameter is not the last one in the line it should

be replaced with a comma. Significance of the parameters should be obvious:

data_file_name is the data file name in the directory AWD/exp/ ,

model_name is the model name in the directory AWD/equ/ ,

start_time is the initial time of the simulation.

If one of these parameters is not defined then the value from the previous run is used. For

instance, the command

Astra readme showdata

starts Astra run of a model described by the file showdata (full name AWD/equ/showdata)

with initial data from readme and initial time to == 0 (default value). To repeat the same

run one needs to enter just

Astra

The command

Astra , analysis

can then be used to run the model analysis with the same data file readme.

ASTRA - Automated System for TRansport Analysis 137

Remaining parameters:

end_time is the time when the simulation has to be stopped,

post_view_file_name is the name for a file where the results will be saved.

These two parameters are of use when interactive control is not required and the code is run

in the background. Then the 5-th parameter can be used for a post-run viewing the results

of modelling as described in Section 5.5.4. Normally, Astra writes all results of calculations

in a file so that, after the run, one can inspect the results of simulation as if they are

watched interactively. These results are stored in a special post-view file and each new run

destroys the previous one. Moreover, if several Astra processes run simultaneously they all

will write into the same file and corrupt it. In order to avoid this corruption during few

simultaneous Astra runs the user has to employ the 5-th input parameter and submit the

output of different Astra processes to different files.

Finally, if the 6-th parameter "test" or "TEST" is set, then the code execution is

suspended after the all Fortran source files are created (after Step 2 in the flow diagram on

page 10). At this moment, the user can manually introduce any code modifications which

are not foreseen in the Astra compiler and resume execution of the modified code.

A superseding version of this command reads

Astra [-htVM] [-v data_file_name] [-m model_name] [-s start_time]

[-e end_time] [-r post_view_file_name]

The command

Astra -t

is equivalent to

Astra , , , , , test

The commands

Astra -V

and

Astra -M

list all available data files and models, respectively.

ASTRA - Automated System for TRansport Analysis

5.5.3 Run time control

138

When the Astra code is started it sets up an interactive mode. In this mode, the user can

control the simulation flow using menu boxes displayed in the main window. If a menu box

is selected with a mouse (any button) then either a message is printed about the fulfilled

action or the run is suspended and a dialog window appears. After carrying out required

changes and exiting the dialog window the run continues.

The key <Esc> always means exit from the active window. For a dialog window

pressing <Esc> applies all changes, closes the dialog window and returns cursor and focus

to the main window. When pressed in the main window <Esc> stops the code. A dialog

window displays a set of boxes containing numbers and words. Only one box shown in bold

(highlighted) is active at a time. The user can select a box either with the mouse or with the

keyboard arrows. Data in the selected box can be modified in order to change the run flow

as required. In a dialog window, useful is the key '?' which prints an information about

the quantity in the highlighted box.

All menu options of the main window are duplicated by keyboard keys (letters are case

insensitive). Most of menu items do not require much explanations therefore we restrict this

section to description of the main features of interactive control. Instead of boring reading

we encourage the user to test different options and find the most suitable mode of operation.

On-line help and information. The list of operational keys can be obtained by pressing

'H' or '?' or by selecting the menu box "Help". The key 'L' types the results of model

analysis by the Astra compiler. The current radial grid is explained by 'X' . Correspondence

between the menu options and the hot keys of this group is shown in the table below.

Menu option Help Type model What X-axis?
Hot key H or ? L X

Execution control is performed by using the following menu options:

Menu option Variables Constants
Hot key V C

Grids
D

Save tuning
I

The keys 'V', 'D' and 'c' invoke dialog windows which allow to change Astra variables

listed in Tables 4.9-4.11, 4.13-4.16 and 4.17, respectively. The key 'I' stores the current

values of all these variables in a file with the extension .log as described in Section 5.3.2.

ASTRA - Automated System for TRansport Analysis 139

The set of variables accessible via a key 'D' includes also a set of control parameters

defined by the command line Eq. (92). In this dialog window, one can change the control

times for calling every subroutine. There is an operation which can be done by the keyboard

only. It is usage of a control key as described in Section 5.24. Pressing <Ctrl> together

with the predefined in the model key one can call the corresponding subroutine out of order.

If such a combination matching one of the subroutine calling symbols is pressed when code

is in waiting mode the one time step is made.

Waiting and run modes are two alternative states of the code. Two keys <Space> and

<Return> are reciprocal and set the code in waiting and run modes, respectively.

Menu option Run Step Quit Calling subroutine
Hot key <Return> <Space> <Esc> <Ctrl><Letter>

The run mode is the default one when the calculations are performed and the results pre­

sented on the screen are periodically renewed. In the waiting mode, code does nothing

although all keys are operable as in the run mode. In this mode, it is possible to advance

calculation step by step pressing <Space> repeatedly. Additionally, this mode can be

used for mapping different radial coordinates to one another because the cursor position

is digitized and displayed showing several flux labels simultaneously.

Presentation control. Numerous keys are available for changing presentation of simu­

lation results. First of all, we will distinguish 9 different presentation modes. Every of

them can be set up pressing the corresponding digit-key. The first three modes plot radially

dependent functions:

Menu option
Hot key 1

8*f(psi)
3

In the first line, the number in front of * shows a number of curves plotted simultaneously

at one screen. Instead of the mark # in the symbolic notation above the Astra code shows

the actual radial coordinate which is defined by the parameter XOUT of Table 4.13 and can

be one of:

- a introduced by Eq. (88), XOUT == 0 or XOUT == 1,

- p introduced by Eq. (24), XOUT == 2,

- 1jJ introduced by Eq. (21), XOUT == 3.

ASTRA - Automated System for TRansport Analysis 140

The parameter XOUT appears in the dialog window 'D' under the name Xaxis. It can be

changed at any time and stored by pressing 'I' .

The first (default) mode which simultaneously presents 16 radial functions was briefly

considered in Section 5.2.6 and depicted there schematically as

1 2 3 4
1 & 9 2 & 10 3 & 11 4 & 12
5 6 7 8
5 & 13 6 & 14 7 & 15 8 & 16

where the large numbers numerate boxes containing two radial profiles each. The small

digits are the sequence numbers of these radial profiles as they appear in a model file. If the

key 'N' is pressed then the next 16 curves will be displayed as shown below.

9 10 11 12
17 & 25 18 & 26 19 & 27 20 & 28
13 14 15 16
21 & 29 22 & 30 23 & 31 24 & 32

If 'N' is pressed several times so that the list of profiles requested for the radial output

is exhausted then the first screen appears again. The scan back can be carried out by

pressing 'B'.

Menu option Colors Backward Next Refresh Appearance
Hot key A B N R

These keys operate similarly in all graphic modes. Colors can be changed in a dialog window

opened by pressing 'A'. The key 'R' redraws the current screen if it was corrupted for

any reason. The hot key '.' (dot) is especially useful for black and white monitors or for

plotting data on black and white printers. It changes appearance of the curves either making

them dashed or marking them with different symbols.

There are few other possibilities to change the appearance of curves.

Menu option Select Scales Windows V-shift
Hot key M S W Y

The user can change scales for every curve'S', Y-offsets 'Y' and also redirect any curve in

another box 'W'. The key 'M' (option "Select") in modes 1, 2, 3, 6, 7 combines actions

of all three keys'S', 'Y' and 'W'.

ASTRA - Automated System for TRansport Analysis 141

The second mode (hot key '2') shows the same profiles in larger scale. Repeated

pressing of the key '2' switches between two different frames for the curves. In one case,

the zero-ordinate line is in the bottom of a window, in another, in the middle of it. 17 This

can be used for plotting curves with alternating sign. Schematically the second mode can

be shown as
1 2

1 & 5 & 9 & 13 2 & 6 & 10 & 14

It is obtained if the lower row of boxes of the first mode is overlapped with the upper row.

Consequently, the screen obtained by pressing 'N' can be represented as

3 4

3 & 7 & 11 & 15 4 & 8 & 12 & 16

In other respects, the mode 2 is similar to the mode 1.

The mode 3 is obsolete because it always uses the coordinate 1jJ for the X-axis and,

therefore, it is a particular case of the mode 2. It will be removed in future versions.

The next three modes allow to plot time dependences

Menu option 2*f(a,t) 2*f(R,t) 8*f(t)
Hot key 4 5 6

The mode 6 shows eight time dependent curves placed as

1

1 & 3 & 5 & 7
2

2 & 4 & 6 & 8

The time aXIS IS defined by two parameters TINIT and TSCALE included in the dialog

window 'D' . The first parameter defines position of the origin and the second one the total

length of the scale. If in process of long simulation the current time t becomes greater

than TINIT +TSCALE then the current evolution of parameters is not seen any more. In

17A similar feature is also available for modes 3, 4, 5 and 6.

ASTRA - Automated System for TRansport Analysis 142

this situation, one can interactively change the parameters TINIT or TSCALE and make

the evolution visible again but most probably it will require a new correction quite soon.

Sometimes, a better solution would be to set TSCALE negative. Then abs (TSCALE) will have

the same sense as before but the t -axis will become floating. In other words, TINIT will

be ignored and alignment of graphs will be performed with respect to their right rather than

left edge.

If the key '6' is pressed in the sixth mode once more then the frame will be changed

to four boxes with two curves in each box

1
1 & 5
2
2 & 6

3
3 & 7

4
4 & 8

The next pressing '6' will put all eight curves in one box and, finally, the forth pressing

, 6' returns the drawing into the original state.

The modes 4 and 5 are similar and differ by the X-axis only. Both show two radial

profiles as functions of a coordinate in the mid-plane. In the mode 4, this coordinate is a

(which is close to the minor radius), in the mode 5, it is the major radius R. In these two

modes the radial profiles can be plotted for several time slices simultaneously. When the

mode is switched on all available radial profiles are shown with shadow color. Pressing the

key 'M' one can select those profiles which should be plotted and remove others. In other

respects, these two modes are similar to the mode 2.

The mode 7 can also be attributed to modes plotting time dependences. It shows

the same quantities as the mode 6 but as function one another. In other words, it gives

simulation trajectory in a phase space.

Menu option Phase space Equilibrium User graph No graphics
Hot key 7 8 9 0

The mode 8 presents the plasma configuration (as a result of the equilibrium solver) and

some other informations as NBI geometry or resonance position and so on. The mode '9'

is reserved for plotting user's graphs. It calls the subroutine AWn/sbr/mydraw . f which can

ASTRA - Automated System for TRansport Analysis 143

be edited by the user and include any graphics not foreseen in the Astra code. The key '0'

suppresses the graphic output.

Output files. The user can save the figure which is currently on the screen as a PostScript

file either in portrait ('G') or in landscape ('Q') orientation. The data can also be saved

in three different text formats. So the keys 'F' and 'P' results in writing ASCII files

which include either all radial profiles (if any of modes 1, 2, 3, 4 or 5 is active) or all time

dependences (in mode 6). PostScript and ASCII files are written into directory AWn/dat/ .

Their names are generated automatically and reported in the command window. The same

data as are stored in a file by pressing 'F' can be typed to the screen with the key 'T'.

Menu option Port_PS Land_PS Write data Type data U-files
Hot key G Q F & P T U

It is also possible to save data in the U-file format. When the key 'u' is pressed a

dialog window is opened where a name of the U-file to be stored should be given. Note that

a type of the U-file depends on the current mode of data presentation. In the radial modes

1, 2 and 3, 1D U-files are created with the radial variable which is currently on the screen.

Similarly, in the time mode 6, time dependent 1D U-files are written. Finally, in the mode

4, a 2D U-file with both radial and time dependences is created.

5.5.4 Post-run viewer

Although the Astra code is basically designed for interactive work it can also be run in

background and the results may be inspected afterwards. To enable this option the Astra

code always saves the main results of every run in a (post-view) file and provides a tool for

its viewing. A typical length of this file is few MB, therefore, if the file has not been saved

by an explicit command it will be overwritten by the next run and lost. Therefore, the user

should take care and issue the appropriate command if results of the run should be saved.

We remind that the simulation results can be submitted to a named file directly by the Astra

starting command (Section 5.5.1).

Review command syntax. The corresponding command in the full format reads

Review [-hI] [-d file_name] [-s file_name] [-r file_name] [file_name]

ASTRA - Automated System for TRansport Analysis 144

The command

Review -h or Review help

prints the short description of the Astra post-run viewer. When called without parameters

Review

the command retrieves the most recent Astra run. A name of the post-view file to be

inspected can be given explicitly

Review file_name

A list of all available post-view files can be obtained by

Review -1 or Review @

The saving command is

Review -s file_name or Review file_name save

An existing post-view file can be removed with the command

Review -d file_name or Review file name del[eteJ

Operation control. The Review command opens a graphic window which is very similar

in image and operation to the Astra run window. Similar to the run mode, there is a selection

of menu boxes duplicated with control keys which mostly coincide in both modes. Moreover,

some additional keys (arrows and <Horne>, <End>, <PgUp>, <PgDn» are enabled. These

keys serve to change the current viewing time (shown in the right upper corner) thus selecting

appropriate time slices for radial profile plotting. The arrows advance the current time either

in small (+- and ---+) or in large (t and -t-) steps scanning the simulation time up and

down, respectively. <Horne> «End» moves the viewing time to the beginning (end) of the

record. Two additional keys <PgUp> and <PgDn> can be used if the review file is too long

and can be loaded by parts only.

On the other hand, some limitations for changing control parameters are added because

no calculation is made in the view mode. For instance, the keys 'v' and 'c' can be used

for inspecting the current values of control or plasma parameters which cannot be changed

in the view mode. The full list of active keys is printed when the key 'H' is pressed.

Model retrieval. Transport modelling is controlled by a huge amount of plasma and

tuning parameters. Tracking all changes in these parameters which are continuously varying

is not easy. Therefore, a problem of reproducing a simulation run performed a while ago

ASTRA - Automated System for TRansport Analysis 145

could be quite messy. To this end, Astra review file includes also a complete information

about the model and tuning parameters for every saved run.

The model file and the corresponding start (.10g) file can be recovered with the

command

Review -r file_name

Here file_name is the post-view file name. The retrieved model and .log files will be

created in the Astra working directory AWn/ under the names model. tmp and model. log ,

respectively. Then the user will be prompted to save these files under unique names in order

not to destroy them by the subsequent operations.

Note, however, that the initial data file is not stored. Therefore, if it was changed

in the meantime then the exact reproduction could be not possible. A similar problem

arises if the tuning parameters have been modified during the run. Although the history of

parameter variation can be restored by a careful examination of the post-view file there is

no automatic procedure for doing this. Moreover, this history is stored in a post-view file

with some discreteness, therefore, this information still is incomplete.

References

[1] B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma Physics ed. by M. A. Leon­

tovich, Vol. 5, Consultants Bureau, NY-London, 1963, p.249.

[2] Yu. N. Dnestrovski and D. P. Kostomarov, International Conference on Plasma Con­

finement in Closed Systems, Dubna, 1969, Abstracts of Contributed Papers, Moscow,

1969, p.41.

[3] F. L. Hinton and R. D. Hazeltine, Reviews of Modern Physics, 48, No.2, Part I, April

1978 (239-308).

[4] G. V. Pereverzev, P. N. Yushmanov, A. Yu. Dnestrovskii, A. R. Polevoi, K. N. Tarasjan,

L. E. Zakharov, ASTRA, An Automatic System for Transport Analysis in a Tokamak,

Report IPP 5/42, August 1991.

[5] L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics ed. by M. A. Leon­

tovich, Vol. 11, Consultants Bureau, NY-London, 1986, p. 153.

ASTRA - Automated System for TRansport Analysis 146

[6] L. E. Zakharov and A. Pletzer, Phys. Plasmas, 6, No. 12, December 1999, (4693-4704).

[7] A. Polevoi, H. Shirai and T. Takizuka, JAERI-Data/Code 97-014, March 1997.

[8] E. Poli, A. G. Peeters, G. V. Pereverzev, Computer Physics Communications, 136, 2001

(90-104).

[9] A. Esterkin, A. D. Piliya, Nuclear Fusion, 36, No. 11, p.1501-1512, (1996). A. D. Piliya,

A. N. Saveliev, JET-R(98)01, preprint JET, February 1998.

[10] M. Brambilla, RAYIC, a numerical code for the study of IC heating of large tokamak

plasmas, Report IPP 4/216, Februar 1984

[11] W. A. Houlberg, K. C. Shaing, S. P. Hirshman, M. C. Zarnstorff, Phys. Plasmas 4,1997

(3230-3242) .

[12] H. Nordman, J. Weiland, A. Jarmen, Nuclear Fusion 30, No.6, 1990 (983-996).

[13] M. Kotschenreuther, W. Dorland, M. A. Beer and G. W. Hammet, Phys. Plasmas 2,

(1995) 2381-2389.

[14] R. E. Waltz, G.M.Staebler, W. Dorland, G. W. Hammet, M. Kotschenreuther and

J. A. Konings, Phys. Plasmas 4, No.7, July 1997 (2482-2496).

[15] S.-I. Itoh, K. Itoh, M. Yagi and A. Fukuyama, Plasma Phys. Contr. Fusion 38, 1996

(1743-1762).

[16] K. Behringer, Description of the Impurity Transport Code STRAHL, JET, 1987, Report

JET-R(87)08.

[17] B. B. Kadomtsev, SOy. Journ. of Plasma Physics, 1, 1975, p. 710.

[18] V. V. Parail, G. V. Pereverzev, SOy. Journ. of Plasma Physics, 6, 1980, p. 27.

[19] C. S. Chang and F. L. Hinton, Phys. Fluids, 29, (1986) 3314.

[20] S. P. Hirshman, R. J. Hawryluk, B. Birge, Nuclear Fusion 17, No.3 (1977) 611.

[21] S. P. Hirshman, Phys. Fluids, 31 (1988) 3150.

ASTRA - Automated System for TRansport Analysis 147

[22] Y. B. Kim, Phys. Fluids, V.B3, (1991) 32050.

[23] G. M. Staebler, R. E. Waltz, J. C. Wiley, Nuclear Fusion 37, No.3, (1997) pp.287-291.

	Astra_Page_001
	Astra_Page_002
	Astra_Page_003
	Astra_Page_004
	Astra_Page_005
	Astra_Page_006
	Astra_Page_007
	Astra_Page_008
	Astra_Page_009
	Astra_Page_010
	Astra_Page_011
	Astra_Page_012
	Astra_Page_013
	Astra_Page_014
	Astra_Page_015
	Astra_Page_016
	Astra_Page_017
	Astra_Page_018
	Astra_Page_019
	Astra_Page_020
	Astra_Page_021
	Astra_Page_022
	Astra_Page_023
	Astra_Page_024
	Astra_Page_025
	Astra_Page_026
	Astra_Page_027
	Astra_Page_028
	Astra_Page_029
	Astra_Page_030
	Astra_Page_031
	Astra_Page_032
	Astra_Page_033
	Astra_Page_034
	Astra_Page_035
	Astra_Page_036
	Astra_Page_037
	Astra_Page_038
	Astra_Page_039
	Astra_Page_040
	Astra_Page_041
	Astra_Page_042
	Astra_Page_043
	Astra_Page_044
	Astra_Page_045
	Astra_Page_046
	Astra_Page_047
	Astra_Page_048
	Astra_Page_049
	Astra_Page_050
	Astra_Page_051
	Astra_Page_052
	Astra_Page_053
	Astra_Page_054
	Astra_Page_055
	Astra_Page_056
	Astra_Page_057
	Astra_Page_058
	Astra_Page_059
	Astra_Page_060
	Astra_Page_061
	Astra_Page_062
	Astra_Page_063
	Astra_Page_064
	Astra_Page_065
	Astra_Page_066
	Astra_Page_067
	Astra_Page_068
	Astra_Page_069
	Astra_Page_070
	Astra_Page_071
	Astra_Page_072
	Astra_Page_073
	Astra_Page_074
	Astra_Page_075
	Astra_Page_076
	Astra_Page_077
	Astra_Page_078
	Astra_Page_079
	Astra_Page_080
	Astra_Page_081
	Astra_Page_082
	Astra_Page_083
	Astra_Page_084
	Astra_Page_085
	Astra_Page_086
	Astra_Page_087
	Astra_Page_088
	Astra_Page_089
	Astra_Page_090
	Astra_Page_091
	Astra_Page_092
	Astra_Page_093
	Astra_Page_094
	Astra_Page_095
	Astra_Page_096
	Astra_Page_097
	Astra_Page_098
	Astra_Page_099
	Astra_Page_100
	Astra_Page_101
	Astra_Page_102
	Astra_Page_103
	Astra_Page_104
	Astra_Page_105
	Astra_Page_106
	Astra_Page_107
	Astra_Page_108
	Astra_Page_109
	Astra_Page_110
	Astra_Page_111
	Astra_Page_112
	Astra_Page_113
	Astra_Page_114
	Astra_Page_115
	Astra_Page_116
	Astra_Page_117
	Astra_Page_118
	Astra_Page_119
	Astra_Page_120
	Astra_Page_121
	Astra_Page_122
	Astra_Page_123
	Astra_Page_124
	Astra_Page_125
	Astra_Page_126
	Astra_Page_127
	Astra_Page_128
	Astra_Page_129
	Astra_Page_130
	Astra_Page_131
	Astra_Page_132
	Astra_Page_133
	Astra_Page_134
	Astra_Page_135
	Astra_Page_136
	Astra_Page_137
	Astra_Page_138
	Astra_Page_139
	Astra_Page_140
	Astra_Page_141
	Astra_Page_142
	Astra_Page_143
	Astra_Page_144
	Astra_Page_145
	Astra_Page_146
	Astra_Page_147

