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1 General stability of implicit methods

These short notes describe some of the properties of the implicit method used in the
GS2 code. The details of the method are described in Kotschenreuther, Rewoldt,
Tang, Comp. Phys. Comm. 88, 128 (1995), hereafter denoted KRT.

The linearized Vlasov or gyrokinetic equation can be written in the generic form

∂f

∂t
= −iLf

where L is some complicated integro-differential operator, and f(z, v, t) is the dis-
tribution function vs space, velocity, and time. The operator L involves integral
operator terms because the potential Φ depends on a velocity integral of f . In gen-
eral we can just think of L as some huge linear matrix, but we can at first focus on
just one eigenvector at at time so that we can just think of L as some (complex)
number representing a frequency.

Using some of the same notation as the KRT paper, time advancement is done
with the general method

fn+1 − fn

∆t
= −iL(δfn+1 + (1 − δ)fn)

where the superscript n is the time index, such that t = n∆t. Setting the time-
centering parameter δ = 1/2 gives a standard time-centered half-implicit/half-explicit
method (like Crank-Nicholson), δ = 0 gives a simple fully explicit method, and δ =
1 gives a fully (non-time-centered) implicit method. δ = 1/2 gives second order
accuracy. Solving this equation for fn+1 gives

fn+1 =
1 − i(1 − δ)L∆t

1 + iδL∆t
fn

For real L we can multiply this by its complex conjugate to find

|fn+1|2 =
1 + (1 − δ)2(L∆t)2

1 + δ2(L∆t)2
|fn|2
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This demonstrates the well known result that this method is numerically stable for a
centered-implicit method with δ = 1/2, but has some numerical damping if δ > 1/2
and some numerical amplification if δ < 1/2. This damping or amplification is small
if the frequency of interest is well resolved, L∆t � 1. Sometimes the code is run
slightly biased towards future time (δ ≈ 0.6 in the KRT paper) to provide some
damping of unresolved high frequency waves that are being ignored anyway.

?? Might put the general formula here for how the finite-time-step numerical
frequency is related to the exact frequency of a mode.

2 The problem of inverting large matrices

Note that because L depends on the fields Φ, which is found from a velocity integral of
f , in general the L operator couples together the values of f at all grid points and all
velocities. I.e., in general the inverse of (1+iLδ∆t) is a huge (NzNv)×(NzNv) matrix.
[A typical case might involve Nz ∼ 40 and Nv ∼ NEnergyNpitch angles = 10 × 32

and thus about 108 matrix elements.] In ballooning coordinates, the various kθ and
kr modes are independent, so Nz is only the number of grid points along the field
line, but the number of (v⊥, v‖) velocity grid points Nv might be a few hundred, so
this appears to be a time-consuming problem. However, Kotschenreuther’s implicit
method finds a way to exactly factor this problem in such a way that the fields are
solved implictly by inverting just an Nz ×Nz matrix, and f is solved implicitly by an
O(Nz) sweeping solution of a lower-diagonal matrix (since it is a simple convection
equation) for each velocity grid point. See the KRT paper for how this neat inversion
trick is done. I’m not sure, but similar tricks for the fields might have been done in
the past in implicit-particle codes.

3 Discrete analogue of the plasma dispersion func-
tion

Consider the linearized Vlasov equation in a 1-D limit:

∂f

∂t
+ v

∂f

∂z
= − q

m

∂Φ

∂z
vFm (1)

Here we will do a straightforward calculation of the discretized Vlasov/continuum
dispersion relation, similar to Langdon79’s (A.B. Langdon, JCP, 30, 202 (1979))
calculation for a particle simulation (i.e., we will derive the equivalent of Eq.(11b) of
Langdon79). As in Langdon, we will calculate the response to an imposed electric
field of the form Φ(z, t) = Φexp(ikz − iωt), with Imω > 0 to give a growing mode.
This solution of this linear equation in f has a homogeneous part (dependent on the
initial condition for f) and an inhomogenous part (proportional to Φ). Assuming
the homogenous part is stable, or has a growth rate smaller than Imω, then in the
long time limit the homogenous solution is negligible compared to the inhomogeneous
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solution, and we can just focus on the latter. Since we are using an implicit solution,
the homogeneous part of the solution is stable (and thus ignorable) as long as δ ≥ 0.5.

[A digression: in the particle simulation approach, the homogeneous part of the so-
lution is automatically stable. I.e., the homogeneous solution to Eq.(3) of Langdon79
must satisfy:

x
(1)
n+1 − 2x(1)

n + x
(1)
n−1 = 0

Looking for eigenvalue solutions with x
(1)
n+1 = λx(1)

n , we get the quadratic equation
λ − 2 + 1/λ = 0, which has the two roots λ = 1 ± 0, i.e., it is automatically stable.]

So we will focus on (inhomogenous or normal mode) solutions with f ∝ Φ ∝
exp(ikz − iωt). Differencing the spatial derivative in Eq.(1) as was done in Eq.(13)
of KRT,

∂f

∂z
→ δ

fn+1
j+1 − fn+1

j

∆z
+ (1 − δ)

fn
j+1 − fn

j

∆z

(where j is used for the spatial index instead of the i that was used in KRT, to avoid
confusion with my i =

√
−1, n is the time index and δ is the implicitness parameter).

Using the Fourier representation f = exp(ikj∆z − iωn∆t) and carrying out a few
lines of algebra, yields

∂f

∂z
→ fn

j ei(k∆z−ω∆t)/2 [cos(ω∆t/2) + (1 − 2δ)i sin(ω∆t/2)]
i sin(k∆z/2)

∆z/2
.

Differencing the time derivative term in as was done in Eq.(12) of KRT, using the
Fourier representation, and carrying out a few lines of algebra, the time derivative
become

∂f

∂t
→ −fn

j ei(k∆z−ω∆t)/2 i sin(ω∆t/2)

∆t/2
cos(k∆z/2)

Define

k̂ =
sin(k∆z/2)

∆z/2

ω̂ =
sin(ω∆t/2) cos(k∆z/2)

(∆t/2)[cos(ω∆t/2) + (1 − 2δ)i sin(ω∆t/2)]

In the well resolved limits (k∆z/2 � 1) and ω∆t/2 � 1), these formulas simplify to
k̂ = k and ω̂ = ω so that one can think of k̂ and ω̂ as discrete versions of k and ω.
Note that in the centered implicit limit (δ = 0.5), the expression for ω̂ will give a real
result for real ω. The discretized linearized Vlasov equation can then be written as

fn
j = −qΦn

j

T

ik̂v

−iω̂ + ik̂v
fM

and the linearized density response is

ñn
j = −

qΦn
j

T

∫
dv

ik̂v

−iω̂ + ik̂v
fM = −

qΦn
j

T
n0(1 + ζ̂Ẑ(ζ̂)) (2)
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where ζ̂ = ω̂/(k̂vt

√
2), and Ẑ is a discrete approximation to the integration that

defines the plasma dispersion function Z. (GS2 uses high order Gaussian integration
for such integrals.) For comparison, Langdon79’s Eq.(11b) for the dielectric function
can be written in the ∆t → 0 limit as

0 = ε(k, ω) = 1 +
ω2

pe

k2v2
te

(1 + ζZ(ζ))

Thus it would seem that Eq.(2) would be a good approximation to the real plasma
response in the limit ω∆t/2 � 1 (and k∆z/2 � 1). Note that there is no requirement
that fast transit time scales must be resolved. I.e., the Courant condition ∆tv/∆z < 1
can be violated. For certain problems, such as electron Landau damping of ion acous-
tic waves in 1-D or electron resonant destabilization of a drift wave in an unsheared
slab, to accurately get the imaginary part of the Z function corresponding to reso-
nant damping will require a fine velocity space grid to be able to resolve the slow
electrons with v ≈ ω/k ≈ cs � vte that are resonant with the wave. However, for
many problems of fusion interest, the dominant source of non-adiabatic electrons is
the trapped electrons. The trapped electrons give a resonant response when ω is
comparable to their toroidal precession frequency ωd, which doesn’t require such a
fine velocity grid to resolve. The KRT paper describes how the implicit method is
applied in the presence of trapped particles (there is a symmetry boundary condition
imposed at the mirror points.)

Subtleties that I could elaborate on: recurrence phenomena in continuum codes,
Landau damping transfers information to small scales in velocity space (see the pic-
tures of the water-bag simulation of a two-stream instability in Chen’s textbook). As
is well known, a small but finite level of collision will wipe out such small scale effects.

4 Misc.

The algorithm described in the KRT paper uses centered spatial differencing. A
parameter was introduced into the code after the KRT paper was written to allow for
an adjustable amount of upwind differencing. Sometimes the code is run with a slight
upwind bias, which provides some damping for high k‖ modes. A future upgrade might
be to implement higher-order upwind differencing to reduce the artificial damping,
and perhaps to add sub-grid scale models to handle the damping at the smallest scales
in a controlled way. (In a kinetic phase-space code the “Reimann” problem is easy
because the direction of the particle velocity is known—you don’t have to decompose
into multiple waves travelling in various directions—so I think higher-order upwind
methods will be easier to implement.)
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