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Abstract. A concise review is given of an experimental project to study magnetorotational in-
stability (MRI) in a short Couette geometry using liquid gallium. Motivated by the astrophysical
importance and lack of direct observation of MRI in nature and in the laboratory, a theoretical
stability analysis was performed to predict the required experimental parameters. Despite the long-
wavelength nature of MRI, local analysis agrees excellently with global eigenmode calculations
when periodic boundary conditions are used in the axial direction. To explore the effects of rigidly
rotating vertical boundaries (endcaps), a prototype water experiment was conducted using dimen-
sions and rotation rates favored by the above analysis. Significant deviations from the expected
Couette flow profiles were found. The cause of the discrepancy was investigated by nonlinear hydro-
dynamic simulations using realistic boundary conditions. It was found that Ekman circulation driven
by the endcaps transports angular momentum and qualitatively modifies the azimuthal flow. Based
on this new understanding, a new design was made to incorporate two independently driven rings at
each endcap. Simulations were used to optimize the design by minimizing Ekman circulation while
remaining within engineering capabilities. The new apparatus, which has been constructed and as-
sembled, is currently being tested with water and will be ready for the MRI experiment with gallium
soon. This development process illustrates the value of interplay between experiment, simulation,
and analytic insight.

INTRODUCTION

Accretion disks are the most efficient energy source known to astrophysics. Whereas
hydrogen fusion has a maximum efficiency for converting rest-mass to radiation of
∼ 1%, accretion onto a black hole or neutron star can have an efficiency of∼ 5−
40%. Accretion disks are thought to power many of the most luminous and violent
astrophysical sources, including X-ray binaries, quasars, and perhaps gamma-ray bursts.
Protostellar accretion disks, though energetically much less efficient, are nevertheless of
great interest as sites of planet formation.

Magnetorotational instability (MRI), although originally discovered by Velikhov [1]
and Chandrasekhar [2], did not come to the attention of the astrophysical community
until rediscovered by Balbus & Hawley [3] and verified numerically [4, 5, 6]. Now it has
become widely accepted that MRI-driven magnetohydrodynamic (MHD) turbulence, or
its variations, is the main cause of rapid accretion and fast angular momentum transport
in accretion disks that are warm enough to be partially ionized [7]. We note that some
astrophysicists argue from laboratory evidence that purely hydrodynamic turbulence can



account for the inferred accretion especially in cold disks [8, 9] (see below).
In ideal MHD, MRI occurs when the radial gradients of angular velocity,Ω, and

specific angular momentum,j = r2Ω, are oppositely directed:∂Ω2/∂ r < 0,∂ j2/∂ r > 0.
This is the case for most accretion disks, since the angular velocity profile is expected to
be close to keplerian,Ω ∝ r−3/2. As a fluid elementgains angular momentum, it migrates
to a larger radius andlower angular velocity. This produces a runaway instability
when two elements are connected by a weak magnetic tension that exchanges angular
momentum between them. Stability prevails if the field is too strong to be stretched, or if
resistive diffusion straightens the lines faster than the flow distorts them. Typical growth
rates are rapid,∼Ω.

Linear MRI is simple, generic, and robust. However, whereas many of the important
hydrodynamic and MHD instabilities of fundamental importance to astrophysics are ob-
served on the Earth (e.g.the Rayleigh-Taylor, Kelvin-Helmholtz, and kink instabilities)
or perhaps on the Sun (Parker instability), MRI has never been conclusively observed.
We have therefore proposed [10, 11] an experimental study of MRI using a magnetized
Couette flow: that is, a conducting liquid (gallium) bounded by concentric differentially
rotating cylinders and subject to an axial magnetic field. Despite the fact that confine-
ment of the liquid is provided by the outer cylinder rather than by gravity, as in accretion
disks, the underlying mechanism and effect of MRI is essentially the same,viz. the tur-
bulent outward transport of angular momentum. Magnetized-Couette-flow experiments
have been performed [12, 13, 14, 15], but they have not studied the MRI. They studied
magnetic modifications of Rayleigh’s centrifugal instability, which requires∂ j2/∂ r < 0,
a condition not normally satisfied in accretion disks.

This contribution is intended to provide a concise review of the ongoing gallium
project, which involves a constant interplay between experiment, simulation, and theory.
We begin with a summary of the theoretical analysis, followed by results from our pro-
totype water experiment and hydrodynamic simulations. We describe a new optimized
design and apparatus with maximum possible external controls of boundary conditions,
followed by a brief discussion of ongoing efforts by other groups.

THEORETICAL STABILITY ANALYSIS

Local analysis of linear stability

Couette flow involves a liquid confined between rotating coaxial cylinders of radii
r1 < r2, heighth and angular velocitiesΩ1, Ω2. In a laminar steady state withh� r2−r1,
constancy of the viscously-transported radial angular momentum flux implies

Ω(r) = a +
b
r2 , (1)

wherea = (Ω2r2
2−Ω1r2

1)/(r2
2− r2

1) and b = r2
1r2

2(Ω1−Ω2)/(r2
2− r2

1). The Rayleigh
stability criterion isaΩ > 0, i.e., specific angular momentum increases with radius. In the
magnetized case, an axial background magnetic fieldB0 = Bez is assumed. Dissipation
is determined by the kinematic viscosity,ν , and especially magnetic diffusivity,η .



FIGURE 1. (a) Stability of a rotating liquid metal disk in dimensionless parameter space of
(Rm,ζ ) for the case ofε = 1. Here the stability can be divided into 3 regions: region (I) is
hydrodynamically unstable but can be stabilized by a large enough magnetic field, as exemplified
by point B. Region (II) is hydrodynamically stable but can be destabilized by presence of a
magnetic field (MRI), as exemplified by points A and C. Region (III) is always stable. (b)
Stability diagram inΩ1 andΩ2 space with dimensionsr1=0.05m,r2=0.15m, andh =0.1m. The
growth rates of points A, B, and C are also shown as functions of magnetic field in (c). Results
from global eigenmode analysis are also shown: dotted lines for conducting boundary conditions
and dashed lines for insulating boundary conditions.

Comparison with global linear analyses [11, 16, 17, 18, 19] confirms that WKB
methods describe the stability of this system very well even on the largest scales.
In cylindrical coordinates(r,θ ,z) and for axisymmetric perturbations proportional to
exp(st− ikzz− ikr r), the WKB dispersion relation is [20, 10]

[(s+νk2)(s+ηk2)+(kzVA)2]2
k2

k2
z

+κ
2(s+ηk2)2 +

∂Ω2

∂ ln r
(kzVA)2 = 0, (2)

where the epicyclic frequencyκ ≡ (2ζ )1/2Ω is the maximum frequency of stable oscil-
lations in the unmagnetized case andVA ≡ B/

√
µ0ρ (Alfvén speed). We presume that

kz andkr are nonzero multiples ofπ/h andπ/(r2− r1), respectively. The following di-
mensionless parameters are convenient: aspect ratioε ≡ kr/kz (reducing toh/(r2− r1)
for the fundamental mode), scaled vorticityζ ≡ (rΩ)−1∂ (r2Ω)/∂ r, magnetic Prandtl
numberPm ≡ ν/η , magnetic Reynolds number,Rm ≡ Ω/η(k2

z + k2
r ), and Lundquist

number,S≡ kzVA/η(k2
z +k2

r ). In liquid metals, viscosity is much smaller than resistiv-
ity, Pm∼ 10−6. As Pm→ 0, instability occurs when

ζ <
2S2

S2 +1
− S4(1+ ε2)

2R2
m(S2 +1)

. (3)

The Rayleigh stability criterionζ ≥ 0 follows by takingS→ 0 (unmagnetized case).
The stability condition (3) defines a two-dimensional surface in the parameter space

(S,ζ ,Rm) at fixedε. Stability boundaries in the(Rm,ζ ) plane are shown in Fig. 1(a)
for the case ofε = 1. Region (I) is hydrodynamically unstable but can be stabilized



TABLE 1. Parameters for a gallium disk withr1 = 0.05m,
r2 = 0.15m, andh = 0.1m.

point Ω1/2π(rpm) Ω2/2π(rpm) Rm ζ

A 3600.00 435.00 0.3319 0.06293
B 3600.00 390.00 0.3143 -0.01899
C 5089.77 620.70 0.4715 0.06984

by a finite magnetic field. This region has been extensively studied both theoretically
and experimentally [21], and is exemplified by point B. Region (II) is hydrodynamically
stable but destabilized by a finiteSor magnetic field. Stability returns at even largerS.
Stability atS= 0 and asS→ ∞ are hallmarks of MRI [3, 7]. (In ideal MHD, instability
extends formally toS= 0+.) Region (II) has never been studied experimentally. Region
(III) is always stable. The boundary between regions (II) and (III) occurs where (3) is an
equality and∂ζ/∂S= 0:

ζ = 2− 1+ ε2

R2
m

√
1+

4R2
m

1+ ε2 −1

 , S2 =
√

1+4R2
m/(1+ ε2)−1. (4)

It is useful to project the stability diagram onto experimentally controllable parame-
ters. To apply the local dispersion relation, we take

ζ ≡
2(Ω2r2

2−Ω1r2
1)

Ω̄
, Ω̄≡

√
Ω1Ω2 , Rm≡

h2Ω̄
ηπ2(1+ ε2)

,

andS≡ hVA/πη(1+ε2) as above. Figure 1(b) shows stability in the(Ω1,Ω2) plane for
an annulus of dimensionsr1=0.05m,r2=0.15m, andh=0.1m (henceε = 1) filled with
gallium (ρ ' 6×103kg/m3, η ' 0.2m2/s,ν ' 3×10−7m2/s). Table 1 lists the physical
parameters at points A, B, and C. The corresponding growth rates are shown as functions
of magnetic field in Fig. 1(c).

Global analysis of linear stability

WKB is a short-wavelength approximation, yet for the experimental parameters con-
templated above, the fastest-growing MRI modes are predicted to have wavelengths
twice the gap width and cylinder height. It is not clear that the WKB dispersion rela-
tion is applicable to these modes, so we have performed a global linear stability analysis
[11]. Periodicity in the axial direction simplifies the governing equation to a tenth-order
equation in ther direction:{[

(s−νDk)(s−ηDk)+(kzVA)2] 1
2Ω

[
(s−νDk)(s−ηDk)+(kzVA)2](−k−2

z Dk)

+(s−ηDk)
(r2Ω)′

r
(s−ηDk)

}
Br = − (kzVA)2rΩ′Br , (5)

whereDk ≡ ∂ 2/∂ r2 +(1/r)∂/∂ r −1/r2− k2
z. Chandrasekhar [21] performed the first

global linear analysis of non-ideal magnetized Couette flow, but he discarded the shear



FIGURE 2. Eigenmodes for conditions given by point C in Fig.1 atB = 0.3 Tesla with con-
ducting (a) and insulating (b) radial boundaries. Here, solid (dotted) lines represent positive
(negative) values;χ andψ are poloidal flux and stream functions, respectively.

term on the right-side of (5) as appropriate for the Rayleigh unstable cases, as did almost
all subsequent work. It was shown that the absence of this shear term eliminates MRI
both in the narrow-gap limit [11] and in more general cases [22]. This can be also easily
seen in the local dispersion relation (2), where the shear term corresponds to the last
term in the left-hand side. Without this term, the first term in the stability condition (3)
would be absent, eliminating possibility of MRI.

We have written a linearized, finite-difference, implicit initial-value code to discover
the fastest-growing mode. The code deals stably with radial boundary layers and is capa-
ble of finding overstabilities:i.e., a growing oscillations with complex eigenfrequency. In
fact, all our growing modes turn out to be non-oscillatory. Axisymmetry is assumed, and
periodic vertical boundary conditions with periodicity length twice the cylinder height,
so that the vertical velocity has nodes at both ends of the cylinder. The equations of
motion are discretized on a radial grid. Radial boundaries are impenetrable (δVr = 0),
no-slip (δVθ = δVz = 0), and electrically either perfectly insulating (δBθ = 0) or per-
fectly conducting (δBr = 0). Results of the global and WKB analyses are compared in
Fig. 1. Although the eigenfunctions are very nonsinusoidal, especially in the velocities
near the boundaries, the growth rates agree remarkably well with the WKB predictions.
Figure 2 shows eigenmodes for the parameters of point C withB=0.3 Tesla. Differences
between the conducting and insulating cases can be seen near the inner boundaries. A
boundary layer consisting of large toroidal and axial velocities within a radial thickness
of ∼ (ν/κkz)1/3 < 1mm (not visible in Fig. 2), forms at the inner conducting boundary
where the Lorentz force,δ jr ×Bz, balances the viscous force [11].
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FIGURE 3. Toroidal velocity profiles (left panel) in the hydrodynamic simulations compared
to the Couette flow solution and experimental measurements atz = 4cm, Ω1/2π = 2000 rpm
andΩ2/2π= 150 rpm. Experimental apparatus is shown in the right panel, wherer1 = 3.8cm,
r2 = 14.9cm, andh = 10cm.

PROTOTYPE WATER EXPERIMENT

The periodic vertical boundary conditions assumed above take no account of viscous
layers at the top and bottom of the flow. (The top must be capped because of large radial
pressure gradients.) The main effect of these viscous boundary layers is to drive Ekman
circulation, which flows more rapidly against a weak angular-momentum gradient than
against uniform rotation. A simple estimate of the thickness of the Ekman layerδE ≈√

ν/Ω̄ is small (∼ 10−3h), and the Ekman circulation timeh/2
√

νΩ̄ ∼ 10 s is much
longer than a typical MRI growth time if we use the laminar value for the viscosityν ;
turbulent boundary layers may produce much more rapid Ekman circulation.

In order to explore these issues, prototype water experiments were performed in a
short circular Couette flow, illustrated in Fig. 3. A container made of transparent acrylic
plates and cylinders is mounted on a stainless steel flange which is driven by a DC
motor. The speed is measured by a laser-based tachometer. The inner cylinder, made
of aluminum, is inserted through a lip seal from the top and is driven in the direction
of the container by an AC motor with a controller. The dimensions arer1 = 0.038m,
r2 = 0.149m, andh = 0.1m.

A PIV technique [23] is used to measure flow profiles as a function of radius and
height. Small particles with sizes on the order of 1µm made of mica and titanium
dioxide are mixed in the water. Since the particles are sufficiently small, they couple
closely with the water flow. The particles are illuminated by a light sheet with a thickness
of about 0.5 cm, which is generated by a horizontal slit in front of a bright halogen light
source. An electronically gated intensified-CCD camera records images of illuminated
particles at a given height. The images are saved to a PC using a frame-grabber with a
rate of 60 images per second. The illuminated particles appear in the images as streaks
elongated in proportion to flow speed. By repeating measurements at different radii and
heights, toroidal flow can be mapped out as a function ofr andz. The measurements were
benchmarked at various heights for a case of rigid rotation atΩ1/2π = Ω2/2π = 150
rpm.
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FIGURE 4. Flow under enforced symmetry aboutz = 0 for Re= 1600: (a) Poloidal flow
denoted by vector arrows; (b) toroidal velocityvϕ ; (c) angular velocityΩ; and (d) angular
momentumJ = rvϕ .

The experimental results are shown in Fig. 3 for the case ofΩ1/2π = 2000 rpm and
Ω2/2π= 150 rpm atz = 4cm. The measured velocity is significantly smaller than the
values predicted in an infinitely long circular Couette flow. Without allowance for these
qualitative deviations, the previous local and global stability analyses would be invalid.
The actual flow, if magnetized, would be locally stable to MRI at larger radii [Region
(III) in Fig. 1(b)] and unstable to hydrodynamic modes at small radii [Region (I) in
Fig. 1(b)].

HYDRODYNAMIC SIMULATION

In order to understand the velocity profiles measured in water, a nonlinear hydrodynamic
code has been written in two dimensions using realistic boundary conditions at the
endcaps. The stream-vorticity method [24] in the cylindrical coordinates (r,ϕ,z) is used
to ensure incompressibility. Time integration is performed by fourth-order Runge-Kutta
on uniform poloidal grids at resolutions on the order of 100×100 and Reynolds numbers
(Re) up to 3200. The code has been benchmarked at lowRewhere analytic solutions
exist.

Fig. 4 shows the caseRe= 1600. Ekman boundary layers form at both endcaps with
increasing thickness towards the inner cylinder. The average thickness is on the order of
0.1h, which is somewhat larger than the valueδE ≈

√
ν/Ω̄∼ .03h expected for uniform

rotation, but is more consistent with estimates for the differentially rotating case [25]:
δE ≈

√
2ν/κ̄ ∼ 0.085h. Circulation occurs in two poloidal cells, their convergence



FIGURE 5. (left) Measured toroidal velocity atr = 11.5± 1 cm andz= 3±0.5 cm during a
spin down experiment. Dotted line is the toroidal velocity during steady state when inner and
outer cylinders are rotated atΩ1 = 2000 rpm andΩ2= 150 rpm, respectively. (center) Toroidal
velocity averaged over the same volume in the simulation where the boundaries are stopped at
t = 6.0747 second in the case ofRe= 3200. (right) Spin down time versusRefor simulations
(asterisks) and experiment (diamonds). Dotted line is a fit to the simulations only.

produces a jet-like feature, which is found to be unsteady at higherRe.
Although the peak poloidal flow is only a few percent of the toroidal , its effects on the

toroidal flow are significant, as seen in Fig. 3. The angular velocity,Ω, is qualitatively
different from the circular Couette flow (1). Most of the gradient inΩ concentrates near
the inner cylinder, while the outer part is close to rigid body rotation. Simulated radial
profiles of toroidal velocity are shown in Fig. 3 atz= 4cm forRe= 1600 andRe= 3200.
These are in excellent agreement with the measurements, which is rather remarkable in
view of the facts that the experimental Reynolds number is∼ 300 times larger than that
of the simulations achieved in simulations and experiments, and that the simulations are
performed in only two dimensions.

To further test the validity of our simulations, a series of experiments and simulations
has been performed to study transient behavior of the system when both cylinders
(and endcaps) are suddenly stopped. The rate of spin-down reflects the efficiency at
which the Ekman circulation transports angular momentum. Experimentally, after a
steady flow has been established, both cylinders are braked to a complete stop within
about one second. The measured flow speed averaged over the annular volume(r,z) ∈
(11.5±1, 3±0.5) cm is shown against time in Fig. 5(left).

We should not use a simple exponential fit to the measured data to find the spin down
time, τ, becauseτ itself depends on velocity:τ = h/2δ κ̄ = h/2

√
νκ̄, where the factor

2 comes from the fact that the circulation has two cells. Thus, assumingκ̄ ∝ Ω̄, we have
dΩ̄/dt =−Ω̄/τ ∝−Ω̄3/2, which leads to

Ω̄(t) =
Ω̄(t0)(

1+ t−t0
τ

)2 . (6)

The spin down time,τ = 11.2±0.9 sec, is obtained by fitting Eq.(6) to the measurements
as shown as dashed line in Fig. 5(left).



FIGURE 6. Simulated toroidal velocity profile (left) and poloidal flow (center) in a final
optimized design using two rings at each end (Re= 800) and stability diagram inΩ1 andΩ2
space for the final design for each axial mode number based on local stability analysis (right).

A simulation of spin down atRe= 3200 is shown in Fig. 5(center). Again,τ is ob-
tained by fitting Eq.(6). For the case ofRe= 3200,τ = 0.82 sec. Figure 5(right) displays
τ as a function ofReand compares it to the best-fit power law,τ = 0.012Re0.53 (dashed
line). This power law agrees excellently with the simple estimateτ = H/2

√
νΩ̄ ≈

0.011Re1/2sec, and the experimental point is close to the extrapolation of the fit over
two orders of magnitude inRe. The clear implication is that up toRe∼ 106, our flow
is essentially laminar, although there is reason to believe that the boundary layer would
become turbulent at slightly higherRe[25]. With the same boundary conditions, the gal-
lium experiment might enter this turbulent regime since gallium has a lower kinematic
viscosity (∼ 0.2×), and the rotation rates will be somewhat higher. However, differen-
tially rotating endcaps are likely to stabilize the boundary layer somewhat by reducing
the velocity difference between the boundary and the neighboring interior flow.

GALLIUM EXPERIMENT

We have seen how the Ekman circulation transports angular momentum radially and
significantly modifies the toroidal flow profile. Therefore it should be minimized in order
to study MRI in a controlled fashion. One way to reduce the circulation is to divide the
endcaps into multiple, differentially rotating rings. After an optimization process, it was
found by simulation that two rings may suffice if they can rotate independently of the
two cylinders. Figure 6(left) shows the simulated profile around the midplane for the
case ofr1 = 7cm, r2 = 21cm,h = 28cm,Ω1/2π = 4000rmp, andΩ2/2π = 533rpm.
The angular velocity of the inner and outer rings are 1820rpm and 650rpm, respectively.
The remaining Ekman cells are much more localized at each end [Fig.6(center)], and the
resultant toroidal flow profile agrees excellently with the Couette solution (1), which for
an appropriately chosen magnetic field should destabilize multiple axial MRI modes
as shown in Fig. 6(right). The existence of multiple modes may allow mode-mode



FIGURE 7. A 3D view of the gallium experiment (left) and a photograph of the nearly com-
pleted apparatus (right).

couplings, which may be important to the nonlinear behavior of MRI.
To implement the new design, substantial engineering efforts have been spent to ac-

commodate multiple moving components with high mechanical stresses, while main-
taining accurate balance and tight seals. The experimental apparatus (Fig. 7) consists of
a containment vessel made of clear acrylic for the PIV measurements during a water
test phase, four independently computer-controlled motors, and 6 magnets to provide a
vertical magnetic field up to 0.8 Tesla with minimum redial component. Seven concen-
tric stainless pipes along the central axis are used to drive both inner and outer cylinders
and two pairs of rings at the ends. Each rotating component was accurately balanced
separately (to minimize vibrations) and the apparatus has been successfully assembled.
Currently, it is being tested with water, and should be ready for the MRI experiment
with gallium in the near future. An extensive set of controls and diagnostics is being
implemented to operate the experiment accurately and safely while providing quality
data on torque couplings between rotating components, internal and external magnetic
perturbations, internal pressure, and internal velocity. Fig. 7(right) shows a photograph
of the nearly completed experimental apparatus.

Our first experimental step is to confirm the design by directly measuring the radial
profile of toroidal flow in water, which may not be as smooth as as those of the relatively
low-Resimulations shown in Fig.6(left). According to the Taylor-Proudman theorem, a
steady rotating flow should be almost independent of height where viscosity is unim-
portant (i.e.outside boundary layers). Thus the velocity jumps at the edges of rings may
extend well into the interior of the flow, forming what are known as Stewartson layers
[26, 27]. Because of the small viscosity, however, the Stewartson layers may be unstable



[28], especially where angular momentum decreases outward across the layer. The ad-
dition of an axial magnetic field is expected to have no large influence on the structure
of Stewartson layer [29], but may alter its stability.

The characteristic times of the gallium experiment are listed as follows: magnetic
diffusion time τη <10ms, Alfvén timeτA = 25ms atB =0.5T, MRI growth time
τMRI ∼50ms,τspinup∼ τEkman≥ 20s, viscous timeτν ∼ 5000 s. Based on these time
scales, the following operational scenarios are planned.

1. A desired unmagnetized flow is set up by pre-programmed speeds for all four
motors. This takes at leastτEkman.

2. An appropriate magnetic field is imposed to trigger MRI. The penetration time for
the magnetic field,τη , is shorter than other relevant time scales. MRI is expected to
grow on the time scaleτMRI , and all diagnostics are expected to detect its existence.

3. Nonlinear saturation of MRI is expected to depend upon the initial flow profile and
magnetic field strength. Such information is crucial to characterizing the efficiency
of angular-momentum transport by MRI in the incompressible limit.

4. Additional external drives are possible by continuously changing the speeds of
the end rings even after MRI starts to grow. The characteristic time for flow to
change axially with a strong magnetic field isτA, which is comparable toτMRI .
Enhanced nonlinear saturation in response to such additional drives is of great
interests since they may lead to turbulence and new relaxation phenomena, as
suggested by numerical simulations [30, 31].

Another physical issue concerns the effect of magnetic field on the residual Ekman
circulation, which will possibly be the main competing mechanism for angular momen-
tum transport in this experiment. Local linear theory [32, 33] predicts a transition from
an Ekman layer thicknessδE =

√
ν/Ω to a Hartmann layer thicknessδH =

√
νη/VA

with increasing magnetic field. If the field is sufficiently large, this so-called Ekman-
Hartmann layer shrinks, predicting a reduced Ekman circulation. Globally, however, the
induced current [32] may reach deeper into bulk of the flow, depending on parame-
ter regimes [34]. In addition, the Ekman-Hartmann layer is subject to instabilities [35],
which may broaden its thickness, and thus increase the Ekman circulation. Experimen-
tally, magnetic Ekman circulation can be studied by choosing specific operation param-
eters so that the flow is stable to both hydrodynamic modes and also to MRI when a
magnetic field with appropriate strength is applied.

A number of numerical projects are underway to directly simulate the gallium exper-
iment using realistic boundary conditions. One class of simulations uses incompress-
ible MHD codes, either based on the existing 2D hydrodynamic code [25] or on a new
method using spectral and finite element [36]. Another class uses existing compressible
MHD codes, such as ZEUS [37, 38], which has been extensively used to simulate MRI in
astrophysical accretion disks. Comparisons between results from experiment, and com-
pressible and incompressible codes with realistic boundary conditions (but likely with
unrealistic Reynolds numbers), under the guidance of theoretical analysis, should pro-
vide much needed insights of the underlying nonlinear physics of MRI, and its implica-
tions for astrophysics.



DISCUSSIONS AND CONCLUSIONS

Other potential mechanisms to transport angular momentum by hydrodynamic turbu-
lence deserve some remarks here. Richard & Zahn [8, henceforth RZ] have argued that
purely hydrodynamic turbulence may provide an effective viscosity

νT =−β r3∂Ω
∂ r

, β ≈ 1.5×10−5, (7)

based on old Couette-flow experiments [39, 40] in which, at Reynolds numbersRe∗ ≡
r3∆Ω/ν∆r larger thanRe∗crit ≈ 6× 105, the flow became turbulent, even when the in-
ner cylinder was at rest—a strongly Rayleigh-stable case. RZ attribute this to finite-
amplitude instability and deduce a viscosity of the form (7) withβ = 1/Re∗crit. If appli-
cable to accretion disks, this is very important, especially for disks too weakly ionized
for MRI. The form (7), however, isnonlocalbecause of its explicit dependence on radius,
so local simulations would not find it. There have been few Couette-flow experiments
relevant to RZ’s hypothesis since those of Wendt and Taylor, which however have now
been partially confirmed by [41]. In addition, the existing results on this subject have
been limited to small gaps, i.e.,∆R/R≤ 1/3, which is far from the situation in accre-
tion disks. Our experiment will probe the relevant regime with a relatively larger gap
∆R/R∼ 1, though we will need to pay attention to wall effects [42] that do not exist
in accretion disks. By varying the magnetic field, we can also measure therelative im-
portance of MRI and hydrodynamic instability in our apparatus. In addition, the effects
of magnetic field on finite-amplitude hydrodynamic instability, if it does exist, can also
be studied; this is of interest because even cold disks (e.g., protostellar disks) may be
partially ionized by nonthermal sources (X-rays, cosmic rays) and therefore somewhat
magnetized. Since RZ, other finite-amplitude or even linear instabilities of Rayleigh-
stable Couette flows of astrophysical relevance have been proposed[9, 43, 44, 45].

Here a few comments on the other related experiments are in order. A liquid sodium
experiment in a similar Couette flow geometry is underway [46]. It will have larger
magnetic Reynolds number and Lundquist number than ours, but will likely suffer from
Ekman circulation, and consequently a poorly controlled background toroidal flow, since
the end plates corotate with outer cylinder (as in our water-based prototype experiments).

Another experiment in spherical geometry has already claimed to see MRI [47]. Since
the outer sphere does not rotate, however, this experiment should suffer hydrodynamic
(centrifugal) instability even before the field is applied, as in Region I of Fig. 1. The
observed lower threshold for non-axisymmetric modes is inconsistent with theoretical
predictions on first excitation of axisymmetric modes [48]. Furthermore, possible other
candidate instabilities, such as magnetized centrifugal and Kelvin-Helmholtz instabil-
ities, were not discussed, nor the aforementioned magnetic Ekman effect. While the
experiment does find enhanced angular-momentum transport associated with an applied
poloidal field, it is not clear how the enhancement relates to MRI in disks. These com-
plications stem from a design that was probably intended mainly to imitate planetary
dynamos rather than MRI in accretion disks.

In summary, a brief review of an ongoing experimental project to study MRI in a
short Couette flow of liquid gallium has been given. Interplay between experiment, sim-
ulation, and theory has been proven to be an effective approach to uncover the underlying
physics being investigated. Theoretical insights provide crucial guidance for the experi-



ment while simulations bridge highly-idealized theoretical ideas to a more complicated
real world. It was found that rapid Ekman circulation due to endcaps can effectively
transport angular momentum, and thus qualitatively modify flow profiles. An optimized
new apparatus has been designed and constructed. The engineering for this unique de-
vice was challenging but surmountable. In addition to MRI, a few related important
physics issues can also be studied using the same apparatus, including existence and
stability of Stewartson layer, magnetic Ekman circulation, and nonlinear hydrodynamic
instabilities. Our intention is to minimize all these complications in order to clearly
demonstrate MRI and study its nonlinear effects in detail.
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