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Abstract

Coronal mass ejections (CMEs) occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface
destabilize and erupt away from the Sun. This destabilization is often described in terms of an ideal
magnetohydrodynamic instability called the torus instability. It occurs when the external magnetic field decreases
sufficiently fast such that its decay index, ( )= - ¶ ¶n z B zln , is larger than a critical value, >n ncr, where

=n 1.5cr for a full, large aspect ratio torus. However, when this is applied to solar MFRs, a range of conflicting
values for ncr is found in the literature. To investigate this discrepancy, we have conducted laboratory experiments
on arched, line-tied flux ropes and applied a theoretical model of the torus instability. Our model describes an MFR
as a partial torus with foot points anchored in a conducting surface and numerically calculates various magnetic
forces on it. This calculation yields better predictions of ncr that take into account the specific parameters of the
MFR. We describe a systematic methodology to properly translate laboratory results to their solar counterparts,
provided that the MFRs have a sufficiently small edge safety factor or, equivalently, a large enough twist. After this
translation, our model predicts that ncr in solar conditions falls near ~n 0.9cr

solar and within a larger range of
( )~n 0.7, 1.2cr

solar , depending on the parameters. The methodology of translating laboratory MFRs to their solar
counterparts enables quantitative investigations of CME initiation through laboratory experiments. These
experiments allow for new physics insights that are required for better predictions of space weather events but are
difficult to obtain otherwise.

Unified Astronomy Thesaurus concepts: Laboratory astrophysics (2004); Solar coronal mass ejections (310); Solar
flares (1496); Solar magnetic fields (1503); Space weather (2037)

1. Introduction

Protrusions of the magnetic field and plasma from the solar
surface often result in the formation of long, thin magnetic flux
ropes (MFRs; Kuperus & Raadu 1974; Chen 1989; Rust 2003).
These flux ropes are bundles of twisted magnetic field lines
with foot points anchored to the solar surface through line-tying
to the conductive photosphere. The ropes are often long-lived
but can sometimes violently erupt, leading to coronal mass
ejections (CMEs; Crooker et al. 1997; Green & Kliem 2009).
Understanding the causes of these eruptions is necessary for the
prediction and further understanding of space weather.

One potential mechanism that can trigger a CME from an
initially stable MFR is an ideal magnetohydrodynamic (MHD)
instability called the torus instability (Bateman 1978; Kliem &
Török 2006). This instability occurs when the external magnetic
field perpendicular to the MFR’s axis, the strapping field, decays
quickly enough with height. The rate of decay of the strapping
field can be described by a decay index, ns, and causes an
instability when it exceeds a critical value, >n ns cr. For an
axisymmetric, large aspect ratio, full torus, the critical value is

=n 1.5cr (Shafranov 1966; Bateman 1978). However, extend-
ing this theory to nontoroidally symmetric line-tied systems such
as MFRs has proved challenging (Isenberg & Forbes 2007;
Olmedo & Zhang 2010). While some MFR simulations are
consistent with =n 1.5cr (Török & Kliem 2007; Aulanier et al.
2009; Zuccarello et al. 2015), other analytical work has found

critical values in a much larger range, < <n0.5 2cr , depending
on the ratio of the apex height and foot-point half-separation
(Olmedo & Zhang 2010). Some simulations have found values
near the higher end of this range with < <n1.75 2cr (Fan &
Gibson 2007; Fan 2010). This simulated range is inconsistent
with some observational evidence of ~n 1.3cr (Duan et al.
2019). Critical values on the lower end of the range presented in
Olmedo & Zhang (2010) have been seen in recent laboratory
experiments where an empirical threshold of ~n 0.8cr was seen
(Myers et al. 2015). This experimental value is also consistent
with some solar observations (Jing et al. 2018).
One cause of the large discrepancy in the previous values of ncr

comes from inconsistencies in definitions. For example, while
some works define ns at the rope’s apex height, zap (Jing et al.
2018), others choose a value above the rope even up to z= 2zap
(Chen 1996). Others still define zap as the location where =n ns cr
for an assumed value of ncr (Wang et al. 2017). Due to the
difficulty of solar measurements, sometimes the decay index of the
total external magnetic field is used rather than that of just the
strapping field, which is used in the theory (Liu 2008). Practical
measurement issues also cause some to measure ns at a fixed
height rather than at a dynamic one for each rope (Liu 2008).
While the value of ns at a fixed height is likely correlated with the
true ns(zap), it cannot be used to determine ncr or even be directly
compared against it. With these considerations, it is no surprise that
the literature contains many conflicting values and ranges for ncr.
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In order to reconcile the different values of ncr, we devise a
simple MFR model and use it to numerically calculate ncr as a
function of the flux rope parameters. The relevant dimensionless
parameters are the ratio of the apex height to the foot-point half-
separation, the aspect ratio of the partial torus, and the
normalized internal inductance. The prediction can be applied
to either laboratory or solar conditions to yield different results,
ncr

lab and ncr
solar. These ncr predictions are then validated against

previous (Myers et al. 2015) and more recent experimental
results. Our numerical results predict critical values in the range
of ( )~n 0.65, 1.1cr

lab when applied to our experimental condi-
tions. This is consistent with the previous empirical value of

~n 0.8cr
lab but greatly increases our understanding of it and

provides a detailed dependence on experimental conditions and
MFR parameters. Our model is able to predict erupting ropes in
our experiments with a true-positive rate (TPR) of 94%. This
high detection rate indicates that our method could ultimately be
used to improve space weather predictions.

We also present how these values should be translated to the
conditions on the Sun, which makes the majority of our results
clustered near ~n 0.9cr

solar with a full range extending to
( )~n 0.7, 1.2cr

solar . The results reported here can better explain
the wide range of ncr

solar values reported in the literature. This
new methodology of translating laboratory MFRs to their solar
counterparts paves a systematic way to quantitatively investi-
gate the initiation of CMEs through laboratory experiments.
These experiments allow for new physics insights that are
required for better predictions of space weather events but
difficult to obtain otherwise.

In the rest of this paper, we briefly introduce the torus
instability, as well as the kink instability, another important
MHD instability in arched, line-tied flux ropes. This is followed
by the development of numerical models of each of the
contributing forces and the resulting critical decay index
applicable to our laboratory experiments. The model allows for
a more accurate prediction of ncr than can normally be achieved
though purely analytical means. The predicted values of ncr
also lie in a range that depends on the exact parameters of the
MFR. The range allows for more accurate predictions than can
be achieved by a single scalar value. The results of the
experiments are then translated to the conditions on the Sun to
create a better prediction of MFR eruptions and subse-
quent CMEs.

2. Flux Ropes and Associated Instabilities

The magnetic field, B, and electric currents, J, of an MFR can
be broken up into components based on their source and direction,
as shown in Figure 1(a). First, B can be separated into external
and internal components based on whether they are generated by
currents in the Sun or within the MFR itself. The external field is
further divided into the guide field, Bg, along the axis of the MFR
and the strapping field, Bs, perpendicular to this axis. The internal
fields and the currents are then separated into toroidal, T, and
poloidal, P, components. In a low-β plasma (where β≡ 2μ0P/B

2

is the ratio of thermal to magnetic energy in the plasma), the
dominant force on an MFR is the J×B force. From the
decomposition of J and B, this force can also be decomposed
based on the source terms. These forces are called the hoop,
strapping, and tension forces and are defined in Table 1. The hoop
force caused by the toroidal current interacting with the internal
poloidal field causes the MFR to expand upward, while the

tension and strapping forces resist this expansion and hold
it down.

2.1. Torus Instability Parameter

The torus instability occurs when the net force on an MFR
increases with height away from equilibrium, i.e.,

( )å å=
¶
¶

>
= =

F
F

z
0 and 0 , 1

i
i

z z i

i

z zap ap

where Fi are the constituent forces and zap is the equilibrium
height of the rope’s apex. The instability can therefore also be
thought of as a loss of equilibrium, where small perturbations
cause the J×B forces to push the rope away from equilibrium.
Since the main downward force is caused by the external
strapping field, the torus instability criterion is often cast in
terms of the decay index7 of this field,

( )= -
¶
¶

>n
z

B

B

z
n , 2s

s

s
cr

where z is the height above the photosphere and =n 1.5cr in an
axisymmetric, large aspect ratio, full torus. That is, the torus
instability occurs when the strapping field decays too quickly
with height above the photosphere.

2.2. Kink Instability Parameter

Another ideal MHD instability that can affect MFRs is the
kink instability (Kruskal & Schwarzschild 1954; Shafranov 1956;
Török et al. 2004). This instability occurs when the toroidal
current, IT, in a flux rope is too large, or, equivalently, the guide
field, Bg, is too small. When the current causes the outer field
lines to fully twist around the rope, the instability can set in. The
instability criterion can be described in terms of the edge safety
factor, qa, or, equivalently, the twist number, N,

∣ ∣
( )p

º = <q
N

a

L

B

B
q

1 2
, 3a

a

a

T,

P,
cr

where a and L are the minor radius and length of the MFR, BT,a

is the edge toroidal magnetic field, BP,a≡ μ0IT/(2πa) is the
edge poloidal field, and qcr is the critical safety factor below
which the instability occurs. In a toroidally symmetric system,
such as a tokamak, the critical value is qcr= 1. However, in
line-tied systems where there is no toroidal symmetry, qcr is
modified (Ryutov et al. 2006). In recent experiments with
arched, line-tied MFRs, the critical value was found to be near
qcr∼ 0.8 (Myers et al. 2016). This value is also consistent with
some analytical work (Hood & Priest 1981).

2.3. Torus and Kink Instabilities’ Effect on MFR Eruptions

Both the torus and kink instabilities are often considered
when studying the onset of CMEs. However, since the kink
instability quickly saturates, it is unlikely to be the sole cause of
CMEs, and the torus instability is required for full eruptions
(Török & Kliem 2005). The kink instability of MFRs has been
extensively verified in laboratory experiments and will not be

7 The decay index is defined such that a field, B ∝ z− n, has a decay index
of n.
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the focus of this paper (Hsu & Bellan 2003; Bergerson et al.
2006; Oz et al. 2011; Ha & Bellan 2016).

While the torus instability is often described only in terms of
ns, recent experiments have found that ropes with both >n ns cr
and qa> qcr were relatively stable (Myers et al. 2015, 2017).
This “failed torus” regime involves reorganization that
stabilizes an otherwise erupting rope. Flux ropes that were
torus unstable but ultimately confined have also been found in
solar observations (Zhou et al. 2019). Since ropes in this
regime do not undergo the standard torus instability, they will
not be the focus of this paper, and we will limit most of our
analysis to ropes with <q qa max, where a value of =q 0.67max
will be used and justified by arguments in Section 5.2.

3. Quasi-analytical Flux Rope Model

A simple model of a solar flux rope is that of a partial torus
with ends anchored in the solar surface (see Figure 2). In order
to approximate the path of a flux rope, we will use a “shifted-
circle” model, such as in Chen (1989) and Myers et al. (2016).

In this model, the axis of a flux rope is assumed to follow the
path of a circle with foot points fixed on the solar surface,
which is modeled as a perfectly conducting region for z< 0. By
keeping the location of the foot points fixed, line-tying at the
solar surface can be maintained while the flux rope height is
changed.
In this model, the radius of curvature for the MFR, Rsc, and

the height of its center of curvature, zsc, are given by

( )=
+

=
-

R
z x

z
z

z x

z2
and

2
, 4sc

ap
2

f
2

ap
sc

ap
2

f
2

ap

where zap is the apex height and xf is the (fixed) foot-point half-
separation. The angle from the z-axis to the foot point, ff,
which measures the fraction of the circle present above z= 0, is
given by

⎛
⎝⎜

⎞
⎠⎟ ( )f = - z

x
2 tan . 5f

1 ap

f

Table 1
Breakdown of the Magnetic Forces on a Flux Rope

Force Symbol Source Term Analytical Expression

Hoop force (upward) Fh fh = JTBPi ⎡⎣ ⎤⎦( )m
p

= - +F
I

R4
ln 1R

a

ℓ
h

0 T
2

8

2
i a

Strapping force (downward) Fs fs = −JTBs Fs = −ITBs

Tension force (downward) Ft ft = −JP(Bg + BTi) ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

m
p

=
- á ñ -

» -
m

p
F

I

R

B B

B8 a

I

Rt
0 T

2
T
2

g0
2

P
2

1

2 4
0 T

2
b

Notes. The forces are separated based on their source terms in the J × B force. The fields and currents used are shown in Figure 1(a), and the analytical expressions
were derived in detail by Myers et al. (2016).
a This expression for Fh is different than some other sources due to the separation of Ft.
b This approximation is derived from the minor radius force balance.

Figure 1. (a) Breakdown of fields and currents in an arched, line-tied MFR. The foot points are anchored onto the conducting photosphere with a separation of 2xf.
The external fields, Bs and Bg, are generated by the Sun, while the internal fields, BPi and BTi, are generated by the currents in the rope. The figure is reproduced from
Myers et al. (2016) and adapted from Chen (1989) and Chen & Krall (2003). (b) The MRX vessel used to create arched, line-tied flux ropes. An arc discharge is
created between two copper electrodes and separated from the magnetic field coils by a glass substrate. The model in panel (a) corresponds to the pink plasma arc in
the center of the image. Four coils were inserted into MRX in order to control the profiles of both the guide and strapping fields. The orange coils contribute to the
guide field along the rope, while the blue coils control the strapping field across it. Control of the vacuum fields allows for control of the instability parameters for the
torus and kink instabilities. The figure is reproduced from Myers et al. (2015).
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From these equations, we see that the shifted-circle model is
1D, defined by one parameter, zap, and one constant, xf.

However, the shifted circle only describes the rope above the
solar surface at z= 0. In order for the model to be self-
consistent, the toroidal current flowing through the rope must
close. Different options for this closure are shown in Figure 2.
In the case of solar flux ropes, the most reasonable current
closure is that of an image current in order to maintain the value
of the normal magnetic field at the surface. However, in
laboratory experiments, the return current flows through wires
and thus should be fixed and independent of zap.

Another crucial part of modeling MFRs is a description of their
rise and expansion. While the magnetic axis is defined by just zap
and xf, the hoop force depends on other parameters of the rope.
These include the total toroidal current, IT; the inverse aspect ratio,
ε≡ a/R; and the internal inductance, º á ñℓ B Bi aP

2
P,
2 , where á ñBP

2

is the cross-section average of BP
2. The internal inductance

measures the distribution of toroidal current. Specifically, ℓi= 0.5
for a uniform current and increases for current distributions that are
more peaked around the axis. The evolution with respect to zap of
these parameters during an instability must also be specified. The
short-term evolution of IT(zap) is often defined by the conservation
of magnetic flux below the rope (Kliem & Török 2006; Olmedo &
Zhang 2010). However, in the laboratory experiments described in
Section 4, IT is fixed on the timescale of an eruption due to the
large external inductance in the capacitor banks driving the ropes,
and so ( ) =I z Const.T ap We will also consider a self-similar
expansion of the ropes. This means, in part, that ( )e =z Const.ap
Since the hoop force is only logarithmically dependent on ε, it is

not very sensitive to the choice of ε(zap), and a self-similar
expansion should be a reasonable approximation. The value of ℓi is
determined by the radial distribution of the toroidal current.
Therefore, a self-similar expansion also implies that ( ) =ℓ zi ap
Const. However, ℓi does not fully describe the current distribution,
and a specific distribution must be chosen in order for numerical
calculations to be carried out. As a model current distribution, we
have used

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )

p
a= + -

a

J r
I

a

r

a
1 1 , 6T

T
2

2

where r is the minor radius coordinate and α> −1 is a free
parameter that has a one-to-one correspondence to ℓi ä (0, ∞).

3.1. Numerical Modeling

In order to study the stability of flux ropes, we investigate
the force acting on a toroidal volume element around the apex,
shown in gray in Figure 1(a). The hoop force acting on this
element is numerically calculated using

( ) ( )ò ò òq=
D

p

-D

D
F

R T
dT d dr rR J B

1
, 7

T

T a

yiTh
0 2

2

0

2

0
0

where R0 is the radius of curvature, θ is the poloidal angle, T is
the toroidal angle,ΔT is a small toroidal angle around the apex,
and Byi is the y-component of BPi, which is found via the Biot–
Savart law,

⎡
⎣⎢

⎤
⎦⎥ˆ · ( )

∣ ∣
( )ò

m
p

= ¢ ´
- ¢
- ¢

¢J x
x x
x x

B y d x
4

. 8Tyi
0

3
3

In the space z> 0, JT follows the apex of the rope with a
magnitude given by Equation (6). The rest of the integral in
Equation (8) depends on the current closure chosen. In the
fixed current closures, the currents are carried by thin wires, so
a line current is used. For the image current, the same current is
used except with the sign of the x-component flipped. Then
the normalized hoop force, Fh/FN, can be found as a function
of zap/xf, ε, and ℓi. The hoop force has been normalized by

( )m pºF I x4N 0 T
2

f , and an example of this calculation is shown
in Figure 3(a).
In order to find the critical decay index, ncr, for the onset of

the torus instability, first consider an MFR in equilibrium with
an apex height of zap. The total J× B force acting on the apex
can be decomposed as F= Fh+ Fs+ Ft, where Fh, Fs, and Ft

are the hoop, strapping, and tension forces as defined in
Table 1. In order to find ncr, we ask when Equation (1) is
marginally satisfied,

( ) ( )!¶
¶

= 
¶
¶

= -
¶
¶

+
=

F

z

F

z z
F F0 . 9

F 0

s
h t

The derivative of Fs can be recast in terms of decay indices,

( ) ( )-
¶
¶

= -
¶
¶

= +
z

F

F

z

z

I B z
I B n n , 10I

s

s

T s
T s s

where ( )= - ¶ ¶n z I zlnI T is the decay index of the toroidal
current. At marginal stability, =n ns cr; thus, the critical decay

Figure 2. Shifted-circle model and different current closure options that are
considered. The axis of the flux rope is approximated by the solid blue circle,
which has foot points fixed at x = ± xf and apex height zap. Given xf and zap,
the radius of curvature, Rsc; center of curvature, zsc; and angle, ff, can be
determined, making this a 1D model with a single parameter, zap. The dashed
curves represent different potential paths that the return current can take below
the solar surface at z = 0. The return currents (dashed lines) shown are either
fixed paths or a dynamic image current (purple). The fixed paths are horizontal
closure between the foot points (red), vertical paths off to z → −∞ (yellow), a
fixed semicircular path (green), and a full circle (cyan).
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index is given by

( ) ( )= - -
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where we have also normalized all of the forces by FN in the
second step. This normalization of the hoop and tension forces
removes their IT dependency and thus isolates the effect of IT (and
its derivatives) to the first term. In the experimental results
presented in Section 5, nI≈ 0 due to the large external inductance
in the circuit driving the MFRs.

From the numerically calculated F(zap) and Equation 11, ncr
can be evaluated, an example of which is shown in Figure 3(b).
The numerical ncr generally increases with zap/xf and ε, while it
slightly decreases with ℓi. The new value of ncr is reduced from
the standard =n 1.5cr for a full torus because the general
reduction of Fh with height is counteracted by the emergence of
a larger fraction of the torus into the z> 0 space. Since the
partial torus effects cause Fh to decay slower with height than it
would for a full torus, Bs must also decay slower if stability is
to be maintained. This reduces the value of ncr. The value of
ncr for the full torus differs from a constant because, in
Equation (2), we have defined ns with respect to z rather than R,
as is often done when studying tokamaks.

4. Experimental Setup

Flux ropes were created inside the Magnetic Reconnection
Experiment (MRX; Yamada et al. 1997). The experimental setup
is shown in Figure 1(b) and described in more detail in Myers
et al. (2016). The flux ropes were created by a discharge between
two copper electrodes (ranging from 7.0 to 7.5 cm in radius) that
were inserted into the MRX vessel with a variable foot-point
half-separation of xf= 15.5–18.0 cm. The plasma was generated
by injecting a small amount of neutral hydrogen (30–40mTorr)
at the vessel wall and directly at the electrodes. Breakdown was
then achieved by biasing the electrodes with a capacitor bank
charged to a voltage in the range of 3–4 kV. In order to separate
the plasma region above the electrodes from the space behind, a
glass substrate is placed below the electrodes. Each discharge
lasts about 1 ms, during which time current is quasi-statically
injected into the rope with a characteristic driving time of

τD∼ 150 μs, which is considerably longer than the Alfvèn time
of τA≈ 3–8 μs. This separation of scales is what allows for
MHD instabilities to be studied in MRX.
Along with the electrodes, two sets of magnetic field coils

were inserted into MRX to compliment the two external coils
already present. These coils determine the configuration of the
vacuum fields and are arranged such that the guide and
strapping fields are independently controlled by two sets of
coils each. This pairing allows for control of both the strength
and decay index of the fields. The magnetic field within each
rope was measured by a 2D array of over 300 magnetic pickup
coils inserted at the rope apex. By controlling the magnitude
and direction of the currents in the four coils, both qa and ns can
be selected for each shot.
In addition to the numerical model of the hoop force

discussed in Section 3, numerical corrections have been added
to Fh due to eddy currents that formed in the vessel wall well
above the ropes at a height of zw= 68 cm. Due to the large
scale separation between the wall skin time (τ∼ 3 ms) and the
flux rope driving time (τD∼ 150 μs), the wall can be
considered a perfect conductor on the timescale of the rope’s
lifetime. This makes calculating the mutual inductance and
driven eddy currents rather straightforward. There are also eddy
currents that can be driven in the center stack that runs through
MRX and under the ropes. However, the skin time of the center
stack (τ∼ 75 μs) is shorter than the driving time and therefore
neglected.

5. Experimental Results

In Figure 4, each shot taken during this campaign is plotted
based on its value of the stability parameters for the kink and
torus instabilities, qa and n. The results of almost 2000
discharges are represented in the plot. Shots that erupted
multiple times (described below) are shown by red triangles,
while noneruptive shots are blue circles. The quadrants of the
parameter space are labeled with their stability behavior.8 We
are currently interested in the onset of the torus instability and
so will focus on the transition from the “Failed Kink” to the
“Eruptive” quadrants. To this end, we will limit our analysis to
those shots with a safety factor below an empirical value of
qa< 0.67, marked in Figure 4 as a dashed line. This value was
chosen based on statistical arguments that are presented in
Section 5.2. The decay index that is plotted is the decay index

Figure 3. (a) Numerically calculated hoop force and (b) critical decay index as a function of zap/xf for ε = 0.5, ℓi = 0.5, and nI = 0. Here Fh and ncr have been plotted
for all of the current closures shown in Figure 2, as well as for no closure, the unphysical situation where there are no return currents. The plots all begin at zap = a
because below this height, part of the rope would be below z = 0 and the model breaks down. The hoop force calculations have been done numerically via the Biot–
Savart law. For plots varying the other two input parameters, ε and ℓi, see Figure 9.

8 For a more detailed description of each quadrant, see Myers et al. (2016).
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from the total field, ( )= - ¶ ¶n z B zln , rather than just Bs,
where the total vacuum field is B= Bs+Bg. This is done in
part to be more consistent with how similar plots are made from
solar observations (e.g., Jing et al. 2018).

When a rope becomes unstable and erupts, its total current
would normally drop. However, there is a large external
inductance in the capacitor bank driving the plasma current.
This inductance prevents the total current from quickly
changing; so, instead of an erupting rope dissipating, a new
rope is formed at a lower height. Since the vacuum fields have
not significantly changed, the new rope is often unstable as well
and quickly erupts. As an example, a cross section of the
toroidal current distribution at the apex is shown for two times
in Figure 5(a). In the first panel, only one rope exists, but since
it is unstable, it quickly rises. Eventually, a new rope is formed
at a lower height, causing two distinct ropes to briefly coexist.
This new rope then rises and erupts, repeating the pattern. The
apex is defined by nulls in the in-plane (poloidal) field and can
be multivalued if multiple nulls exist. The poloidal field is
represented by arrows and the nulls by black dots. When
multiple ropes exist, there are usually three nulls: two O-points,
one at each rope apex, and an X-point between them. An
eruption was thus defined as the coexistence of two ropes, and
a rope is considered “eruptive” if this occurs more than once.
An example of the repeated eruptions is shown in Figure 5(b).
This plot shows the evolution of the apex height versus time
along with a stable example for reference.

5.1. Prediction of ncr

Using our more complete numerical model of the hoop force
and applying Equation 11, we can predict the critical decay
index, ncr, for each shot. Each shot is fit to the model based on
its experimental parameters, zap/xf, ε, and ℓi. The ranges of
these parameters that are represented by the experimental data
are discussed in Section 5.3. In Figure 6, each shot is plotted
based on this predicted ncr and the experimentally measured n.
In this type of plot, unstable shots should lie above the line

=n ncr (also plotted), with stable ones below it. With some
exceptions that will be discussed below, this is generally
confirmed by the figure. This plot shows numerical evidence
for the ~n 0.8cr empirical value of the critical decay index
observed previously in Myers et al. (2015).
There are some caveats to Figure 6 that deserve explanation.

In order to get good experimental agreement, the horizontal
closure from Figure 2 was used instead of the semicircular
closure that is more representative of the experimental setup.
The real experimental closure is the physical path taken by the
wires leading from the foot-point electrodes to the capacitor
bank and is somewhere between these two options, which
causes a slight overestimation of ncr.
There are a number of shots in Figure 6 that do not exactly

follow the predicted =n ncr stability line. Most of these
exceptions are isolated stable shots above the line but do not
alter the statistical evidence of our overall prediction. One
potential cause of the discrepancy comes from the value of B
that is used in n. When using the value of By in ns, it is assumed
that the rope is exactly perpendicular to the measurement array.
If, instead, the rope’s axis were tilted at a small angle, θ,
relative to x̂, the nominal guide field direction, then the correct
effective strapping field would be q q= -B B Bcos siny xs,eff ,
where By and Bx are, respectively, the strapping and guide
fields when there is no tilt. Due to experimental constraints, the
guide field, Bg, is often considerably larger than the strapping
field, Bs, so even small tilt angles can significantly change the
decay index. Therefore, for the robustness of our results, the
total field is used here to calculate ncr, which is consistent with
some previous work (Liu 2008; Myers et al. 2015). Several
attempts were made to measure the tilt angle of a given rope
from the available data; however, nothing convincing was
found. Further tests should be preformed in future experiments
to better measure the tilt angle and thus Bs,eff.

5.2. Statistical Analysis

As mentioned in Section 2.3, we have eliminated the effect
of the failed torus region by only focusing on shots with
an edge safety factor below a set value, qmax. In order to
investigate the effect of this choice of qmax, the statistical
validity of our ncr prediction was compared for different values
of qmax. In Figure 7, we compare two metrics, the TPR (the
fraction of eruptive shots that were correctly predicted as
eruptive) and the false-positive rate (FPR; the fraction of
noneruptive shots that were incorrectly predicted as eruptive).
As qmax is increased, the TPR quickly rises and then plateaus
near 96%. However, increasing qmax also causes the FPR to
increase as more shots are included that are not purely eruptive
and behave more like a failed torus. For the best results, a value
of qmax must be chosen to balance these two effects. By
inspecting Figure 7, a value of =q 0.67max was chosen because
for larger values, the FPR continues to rise for little gain in the
TPR. This value of qmax results in values of TPR= 94% and
FPR= 40%. It should also be noted that the total number of
shots represented in Figure 7 is about half that of Figure 4. This
is because a number of shots were taken with the measurement
array not perpendicular to the MFR axis. The angle removes
our ability to predict ncr, and thus they cannot be included in
the statistics.

Figure 4. Experimental parameter space. Each point represents a shot and is
placed based on its value of the two ideal MHD instability parameters, qa and
n. Shots that experienced multiple eruptions are represented with red triangles,
while noneruptive shots are blue circles. Four different regions of stability can
be seen, though their boundaries are not perfectly defined by the parameters.
The dashed line at qa = 0.67 is an empirical cutoff used to isolate the torus
instability transition from the failed torus regime. For later analysis, we will
only consider the shots to the left of this line.
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5.3. Experimental Parameter Ranges

As discussed in Section 3, the calculation of a predicted ncr
involves three dimensionless experimental parameters: the
normalized apex height, zap/xf; the inverse aspect ratio, ε; and
the internal inductance, ℓi. The shots shown in Figure 6 define

ranges of these parameters based on experimental constraints.
Scatter plots of these values versus the predicted ncr using a
horizontal current closure for each of the shots are shown
in Figure 8. The parameters fall within the ranges of
zap/xfä (0.75, 1.75), ε ä (0.5, 1.0), and ℓi ä (0.3, 0.9). Care
should be taken when extrapolating our results beyond these

Figure 6. Measured experimental decay index, n, vs. numerically calculated
predicted critical decay index, ncr, presented on a log–log plot. The represented
shots are limited in edge safety factor, qa < 0.67. Eruptive shots are represented
with red triangles, while noneruptive shots are blue circles. The experimental
parameters, zap/xf, ε ≡ a/R, and ℓi, of each shot are fit to our numerical model
to determine a value of ncr. The line =n ncr is also plotted. The model predicts
that all shots above this line should be unstable, while the ones below it are
stable.

Figure 7. Statistical validity of our ncr prediction as a function of the maximum
value of the edge safety factor that is to be considered, qmax. The TPR and FPR
are both plotted as functions of qmax. The number of shots that are considered
for each threshold is also plotted both as a fraction of the total and an absolute
number. The value of =q 0.67max that has been used in the previous analysis
has been chosen to maximize the TPR with minimal gain in FPR. It coincides
with TPR = 94% and FPR = 40%.

Figure 5. (a) Example cuts of the toroidal current density (in color) at the apex of an eruptive flux rope, with arrows representing the in-plane magnetic field and dots
at the nulls of this field. Contours of constant flux are shown with black curves, and the flux contour that contains 80% of the total current is marked in cyan. The first
panel is a time when the rope is rising and only a single apex value exists. The second panel is a later time, after a lower rope has formed that will soon erupt while the
remaining portion of the initial rope can still be seen. This example event is counted as an eruption. (b) An example of the time evolution of the apex height in an
eruptive rope (top) compared with a stable one (bottom). The locations of the apex height are plotted with blue dots, and a filtered height and envelope are plotted in
magenta. The peak value of the toroidal current density at each height is also plotted in color. The times shown in panel (a) are marked with dashed lines in the top
panel. Near the end of each eruption in the eruptive example, the apex height becomes multivalued as a new rope is formed at a lower height.
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values. Some correlations can also been seen between the
parameters in these plots and ncr. The strongest of these
correlations is between zap/xf and ncr, which is not surprising
based on the predicted ncr curves presented in Figure 9.

It should be noted that some shots had a measured ε> 1.
This is possible due to a varying minor radius over the length of
the rope, which is not captured by our model. Since, especially
at large ε, there are only minor changes in ncr with ε (see
Figure 9(a)), these shots have had their aspect ratio adjusted
to ε= 1.

6. Application to Solar Flux Ropes

The laboratory flux ropes we have created are most directly
comparable to solar flux ropes with some considerations that

are laid out in Table 2. There are three main differences that we
will focus on: (1) the evolution of the total toroidal current, (2)
the subsurface closure of the current, and (3) eddy currents in
the outer vessel wall.
The total toroidal current as a rope rises behaves very

differently on the Sun when compared to the laboratory case. In
the laboratory, the total plasma current is fixed due to the large
external inductance in the driving circuit. However, on the Sun,
the current is determined by the conservation of magnetic flux
between the rope and the solar surface. This affects ncr through
the current decay index, = +n n nIcr

solar
cr
lab solar. The value of nI

depends on the model being used, but for the standard large
aspect ratio full torus, »n 0.5I

solar . This value is also similar to
that used in other models. When the toroidal current is not able
to decrease with height, the MFRs are less stable to the torus
instability.
The laboratory return path of the current through fixed wires

rather than a conductive surface as on the Sun also has an effect
on ncr. The effect is largest on low-lying ropes, and when the
changes between the horizontal closure and image current
models are compared near zap/xf∼ 1, we find that ncr is
decreased by about −0.3.
The effect of eddy currents in the outer wall located at

z≈ 3.8xf has also been numerically calculated. The wall has the
largest effect on tall ropes, decreasing ncr by about −0.1. The
effect of the wall is much larger on ropes that would fully erupt
away. However, since we are focused on the onset of eruption
and not the dynamics afterward, this only has a minimal effect
on our results. The specific change in ncr due to these last two
effects is shown for each shot in Figure 10.
The net effect on ncr when translating from laboratory to

solar conditions is therefore

( )» + - ~ +n n n n0.4 0.1. 12Icr
solar

cr
lab

cr
lab

The modified ncr
solar is shown in Figure 9. These plots show

ncr
solar as a function of zap/xf, using an image current closure and

nI=0.5, for various values of ε with fixed ℓi= 0.5 and then for
various values of ℓi with fixed ε= 0.5. These 1D cuts help in
breaking down the 3D input space. It can be easily seen that the
effects of changing either ε or ℓi is very minimal for tall ropes
with zap/xf> 1.5 but can be important for low-lying ropes.
From these cuts, it is seen that ncr

solar increases with increasing ε

and decreases with increasing ℓi. That is, MFRs with lower
aspect ratios and less peaked currents are more stable to the
torus instability. The nonmonotonic curves in Figure 9 are

Figure 8. Scatter plot of the dimensionless, experimental parameters used in
the calculation of ncr, (a) zap/xf, (b) ε, and (c) ℓi, compared to the predicted ncr
value. The shots represented here are the same as in Figure 6 and are limited in
edge safety factor, qa < 0.67.

Table 2
Qualitative Comparison of Experimental and Solar Conditions with Resulting ncr Adjustment

Parameter Solar Value Laboratory Value ncr Adjustment

Current return path Image currents on the solar surface Fixed wires Decrease of ncr for low-lying ropes; » -n n 0.3cr
solar

cr
lab

Lower boundary
condition

Conductive surface at z = 0; line-tied
everywhere

Conductive, line-tied foot points;
dielectric elsewhere

Affects the poloidal flux conservation but no direct effect
on ncr

Total toroidal current Set by poloidal flux conservation;
nI ∼ 0.5

External inductance forces con-
stant current; nI ≈ 0

Increase of ncr due to nI; = + ~ +n n n n 0.5Icr
solar

cr
lab

cr
lab

Upper boundary
condition

Open boundary at z→ ∞ allows
ropes to erupt away

Conductive wall prevents ropes
from fully erupting

Minor effects except in posteruption
stages; » -n n 0.1cr

solar
cr
lab
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caused by two competing effects as the MFR rises: Fh

decreases overall, and a larger fraction of the torus is present,
increasing Fh. The latter effect becomes smaller as the MFR
rises, since the relative increase is less.

Another difference between the laboratory and solar
conditions is the state of the volume surrounding a flux
rope. On the Sun, the external volume is the ambient plasma
of the corona with frozen-in flux. However, in our experi-
ments, the plasma is generated by the arc discharge that
forms the rope, so most of the external volume is near vacuum
with small neutral gas pressure. On the Sun, an erupting rope
must displace this ambient plasma, while there is no such
force in our experiments. It has been seen in simulations that
when this background plasma contains a large guide field,
otherwise unstable ropes can be stabilized (Kliem et al. 2014).
However, we have not seen this effect in our experiments,
possibly because of the lack of ambient plasma. Since we
are currently focusing on ropes with small qa, the ambient
guide field is also small, and this effect likely would not be
applicable.

7. Discussion and Conclusions

The onset criteria of the torus instability in arched, line-tied
flux ropes have been investigated by laboratory experiments
and the application of a simplified theoretical model. Arched,
line-tied flux ropes are modeled by a shifted circle with fixed
foot points (see Figure 2), and the resulting forces are derived
from simple Biot–Savart calculations. The effect on the torus
instability of a partial torus model was previously considered in
Olmedo & Zhang (2010). However, the use of numerical
calculations in the hoop force of a partial torus allows for more
accurate predictions of its onset and the application to low
aspect ratio tori with small edge safety factors.
When applied to our experimental data, our model has

predicted critical decay index values within the range of
( )~n 0.65, 1.1cr

lab , which is consistent with the previous
empirical value of ~n 0.8cr

lab (Myers et al. 2015). Thus, our
new model provides quantitative evidence for the previous
empirical description of the flux rope stability regimes. The
deviation of this range from the standard value of 1.5 (Kliem &
Török 2006) is caused by taking into account the full effects of
the partial torus when applied to the conditions of the
laboratory experiments. A large portion of the decreased ncr

lab

is due to the external inductance in the flux rope–driving
circuit, which prevents the total plasma current from changing.
While this is a major change from solar conditions, its effect is
easily quantified and separated, allowing for direct compar-
isons. Further changes are caused by the modification of the
hoop force from partial torus effects. In particular, the
emergence of more of the torus as the rope rises counteracts
some of the decrease of Fh.
While the predicted ncr

lab largely agrees with our experimental
results, there are still a number of exceptions that were
discussed in Section 5.1. These exceptions can possibly be
explained by a small tilting of the flux ropes relative to the
measurement array. However, since this angle could not be
found through the measurements taken, there may, of course,
be other explanations that have yet to be considered. Further
investigation into this portion of the parameter space may yield
a better understanding of these ropes and their unexpected
behavior. Even with these exceptions, our model is able to
predict eruption ropes with a TPR of 94%. This rate of
prediction is very substantial when considering the complexity
of MFR eruptions. However, there is still a relatively high FPR
of 40% that warrants further investigation.

Figure 10. Change in the predicted ncr when the laboratory conditions are
translated to the Sun but with nI = 0. Each shot in Figure 6 is represented, with
eruptive shots again being represented by red triangles and noneruptive shots
by blue circles. The changes due to current closure and eddy currents in the
outer vessel wall are both accounted for and create a change centered on
D ~ -n 0.4cr in a larger range of ( )D ~ - -n 0.5, 0.3cr .

Figure 9. Numerically predicted critical decay indices for solar applications as a function of normalized apex height, plotted for different values of ε and ℓi. The plots
here are chosen to be most applicable to solar conditions with an image current closure and toroidal current decay index of nI = 0.5. (a) ( )n z xcr ap f for different values
of ε at fixed ℓi = 0.5. (b) ( )n z xcr ap f for different values of ℓi at fixed ε = 0.5. The minimum value of zap/xf where the MFR would pass below z = 0 is also shown for
this plot.
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Our analysis has also assumed small values of qa to eliminate
the failed torus regime. The twist number is difficult to measure
in solar observations, but the maximum value we have chosen,

=q 0.67max (or, equivalently, ∣ ∣ = =N q1 1.49min max ), is
relevant to many solar MFRs (Duan et al. 2019). When
translated to solar conditions, we find that most of our predicted
critical decay index values fall near ~n 0.9cr

solar and within a
larger range of ( )~n 0.7, 1.2cr

solar , which is consistent with some
solar observations (Jing et al. 2018). This range provides a more
accurate description of ncr

solar, and our methodology can help
explain the discrepancies seen in previous numerical and
observational studies. This new methodology allows for the
novel application of laboratory experiments directly to the
conditions present on the Sun. The ability to perform direct, local
measurements in the laboratory gives experiments a unique
advantage over other methods of studying solar flux ropes.
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