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ABSTRACT

Context. Results from helioseismology indicate that the radial gradient of the rotation rate in the near-surface shear layer (NSSL) of
the Sun is independent of latitude and radius. Theoretical models using the mean-field approach have been successful in explaining
this property of the NSSL, while global direct or large-eddy magnetoconvection models have so far been unable to reproduce this.
Aims. We investigate the reason for this discrepancy by measuring the mean flows, Reynolds stress, and turbulent transport coefficients
under conditions mimicking those in the solar NSSL.
Methods. Simulations with as few ingredients as possible to generate mean flows were studied. These ingredients are inhomogeneity
due to boundaries, anisotropic turbulence, and rotation. The parameters of the simulations were chosen such that they matched the
weakly rotationally constrained NSSL. The simulations probe locally Cartesian patches of the star at a given depth and latitude. The
depth of the patch was varied by changing the rotation rate such that the resulting Coriolis numbers covered the same range as in the
NSSL. We measured the turbulent transport coefficient relevant for the nondiffusive (Λ-effect) and diffusive (turbulent viscosity) parts
of the Reynolds stress and compared them with predictions of current mean-field theories.
Results. A negative radial gradient of the mean flow is generated only at the equator where meridional flows are absent. At other
latitudes, the meridional flow is comparable to the mean flow corresponding to differential rotation. We also find that the meridional
components of the Reynolds stress cannot be ignored. Additionally, we find that the turbulent viscosity is quenched by rotation by
about 50% from the surface to the bottom of the NSSL.
Conclusions. Our local simulations do not validate the explanation for the generation of the NSSL from mean-field theory where
meridional flows and stresses are neglected. However, the rotational dependence of the turbulent viscosity in our simulations agrees
well with theoretical predictions. Moreover, our results agree qualitatively with global convection simulations in that an NSSL can
only be obtained near the equator.
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1. Introduction

The convection zone (CZ) of the Sun, despite being highly tur-
bulent, shows a well-organized large-scale axisymmetric rota-
tion profile depending on both depth and latitude. The entire CZ
rotates faster at the equator than at the poles, and the rotation rate
decreases mildly with depth, except near the radial boundaries,
where there are regions of strong shear (Thompson et al. 1996;
Schou et al. 1998). Additionally, a large-scale circulation in the
meridional plane, known as the meridional flow (MC), is also
present. The amplitude of the MC is about 15–20 ms−1, which
is two orders of magnitude smaller than that of the rotational
velocity (Duvall 1979; Hathaway 1996).

The near-surface shear layer (NSSL) occupies about 17%
of the CZ, or roughly 35 Mm in depth, from the photosphere.
Recently, two further properties of it have been reported. First,
the value of the logarithmic radial gradient of the rotation rate is
reported to be

d ln Ω

d ln r
≈ −1 (1)

in the upper 13 Mm of the NSSL, independent of latitude up to
60◦ (Barekat et al. 2014). Second, the gradient evolves over time
by an amount between 5–10% of its time-averaged value. This
closely follows the magnetic activity cycle (Barekat et al. 2016).
On the other hand, the MC maintains its poleward motions
throughout the cycle (Hathaway & Upton 2014).

Shear flows play an important role in generating and main-
taining the solar magnetic field and its activity cycle (e.g.,
Krause & Rädler 1980). In particular, radial shear is important
in the αΩ dynamo model for explaining the equatorward migra-
tion of the magnetic activity (Parker 1955; Yoshimura 1975). In
this model, negative radial shear in combination with positive
α is required to produce the correct equatorward migration of
the activity. This negative shear exists prominently in the NSSL.
The effect of the NSSL has been tested numerically in mean-field
dynamo models by Käpylä & Korpi (2006), where it was found
to aid equatorward migration. More observational and theoreti-
cal arguments that the NSSL strongly shapes the solar dynamo
process were presented by Brandenburg (2005). The role of
NSSL can be easily investigated in mean-field models, where
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it can be added or removed by hand. In contrast, global 3D con-
vection simulations typically fail to self-consistently generate a
realistic NSSL (e.g., Guerrero et al. 2013; Hotta et al. 2015), and
thus its role in the resulting dynamo solutions is unclear. Under-
standing the role that the NSSL plays for the dynamo therefore
requires that we understand its formation mechanism and why
global simulations do not capture it.

The equations governing the generation of large-scale flows
in the solar CZ are the following: First, the azimuthally aver-
aged angular momentum equation describes the time evolution
of the differential rotation. This equation is obtained using the
Reynolds decomposition, where each physical quantity, A, is
decomposed into its mean A and fluctuations around the mean,
a, and where averages are taken over the azimuthal direction.
Then, we obtain the equation

∂

∂t
(ρ$2Ω) = −∇ · {$[$ρUm Ω + ρ uφu − 2νρS · φ̂

− (BφB/µ0 + bφb)]}, (2)

where ρ, U
m

= (Ur,Uθ, 0), Ω = Uφ/r sin θ, ν, µ0, and B are den-
sity, meridional flow, angular velocity, molecular viscosity, the
vacuum permeability, and the magnetic field, respectively. Fur-
thermore, $ = r sin θ, where θ is the latitude, Qφi and Mφi are
the Reynolds and Maxwell stresses, and S is the mean rate of the
strain tensor. The Reynolds and Maxwell stresses are the correla-
tions of fluctuating components Qφi = uφui and Mφi = bφbi/µ0,
respectively, where i denotes r and θ. Density fluctuations are
omitted, which corresponds to an anelastic approximation.

Second, the azimuthally averaged equation for the azimuthal
component of vorticity describes the time evolution of the MC:

∂wφ

∂t
= $

∂Ω2

∂z
+(∇s × ∇T )φ−

[
∇×

1
ρ

[∇·(ρQ−2νρS)]
]
φ

+ [∇ × ∇ · (BB
T

+ M)], (3)

where w = ∇×U is the vorticity, s is the specific entropy, T is the
temperature, and ∂/∂z is the derivative along the rotation axis.
The first and second terms describe the centrifugal and baro-
clinic effects, respectively. From these two equations it becomes
clear that meridional flow can drive differential rotation and vice
versa, and additionally, any misalignment of the density and tem-
perature gradients can drive meridional circulation through the
baroclinic term, while turbulent stresses are important in driving
both flows.

Theoretical studies have shown that the main forces gener-
ating stellar differential rotation are described by the first two
terms in Eqs. (2) and (3) (Rüdiger 1989; Kitchatinov et al. 2013).
Additionally, the Coriolis number Ω?, describing the degree of
rotational influence on the flow, defined as

Ω? = 2τΩ, (4)

where Ω is the rotation rate of the star and τ is the turnover
time of the turbulence, has been found to be a key parameter. Ω?

describes the role of rotation in different parts of the CZ. In par-
ticular, it leads to a completely different rotation profile within
the NSSL in comparison to the rest of the CZ.

In the solar structure model of Stix (2002), Ω? changes from
the surface to the bottom of the CZ as 10−3 . ΩNSSL

? . 1 .
ΩCZ
? . 10. Helioseismic measurements (Greer et al. 2015) have

revealed that in the region of the NSSL, the Rossby number
(the inverse of Ω∗) is 0.11 at a depth of 30 Mm and 2.16 in the

near-surface layers. This shows that the rotational influence is
weak in the surface regions and grows to a significant level in
the bottom part of the NSSL. The accuracy of the measurements
is generally very good at such small depths.

Nonrotating density-stratified convection is dominated by
radial motions, in which case the vertical anisotropy parame-
ter AV ∝ u2

H − u2
r < 0, where u2

H = u2
θ + u2

φ and u2
r are the

fluctuating horizontal and radial velocities. uφ and uθ are the
longitudinal and latitudinal fluctuating velocities. Rotation tends
to suppress convection (e.g., Chandrasekhar 1961), reducing the
radial motions, and typically |AV| decreases when Ω? increases
such that the maximum of |AV| is achieved for Ω? = 0 (e.g., Chan
2001; Käpylä et al. 2004). |AV| is also expected to depend on lat-
itude due to the suppression of u2

r and the rotational influence on
the horizontal components.

Rotation also introduces an anisotropy between the latitu-
dinal and azimuthal directions. This is described by the hor-
izontal anisotropy parameter AH ∝ u2

φ − u2
θ . As has been

empirically shown using numerical simulations in both local
convection (Käpylä et al. 2004) and forced turbulence simula-
tions (Käpylä & Brandenburg 2008), AH is typically positive and
increases with Ω?. Its value also increases toward the equator
due the increasingly deviating effect of the Coriolis force on the
horizontal flows. Furthermore, AH → 0 as Ω? → 0. Thus, Ω?

in the solar CZ also reflects the anisotropy of turbulence, which
arises due to the presence of the Coriolis force and density strat-
ification. Consequently, rotation and gravity vectors define the
necessary two misaligned preferred directions for nonzero off-
diagonal Reynolds stress (Rüdiger 1989).

A theoretical model that reproduces the entire rotation
profile of the Sun including the NSSL was presented in
Kitchatinov & Rüdiger (2005, hereafter KR05). They derived
an extension to the quasi-linear turbulence model of
Kichatinov & Rüdiger (1993) that did not take the slow-
rotation regime into account that is required to treat the NSSL.
In the new model (KR05), the vertical anisotropy parameter
AV is crucial to produce strong inward transport of the angular
momentum in the slowly rotating surface layers, resulting in the
formation of the NSSL. The horizontal anisotropy parameter is
assumed to be small, hence |AV| � AH for Ω? . 1 applies in
the surface layers, although the turbulent transport coefficients
depend on latitude. They used a hydrodynamic mean-field
(MF) model and studied the value of the anisotropy parameter
required to reproduce the NSSL. They concluded that values
that agreed reasonably well with the local magnetoconvection
models were sufficient to reproduce the NSSL.

The remarkable agreement of the recently observed latitu-
dinal independence of the angular velocity gradient with their
model motivated a further development of the theory, in which
the effect of the magnetic field in the NSSL was included
(Kitchatinov 2016). This led to the prediction that the angular
velocity gradient varies during the solar cycle, which qualita-
tively agrees with the observations. As the variations are caused
by the magnetic field, Kitchatinov (2016) suggested that mea-
surements of the rotational properties of the NSSL can be used
as an indirect probe to measure the subsurface magnetic field.
In their model, however, the Reynolds stresses were computed
using a second-order correlation approximation (SOCA), the
validity of which in astrophysical regimes with high Reynolds
numbers is questionable.

To avoid the necessity of using such simplifications, it is
desirable to build numerical simulations of stellar convection,
directly solving for the relevant, either hydro- or magnetohy-
drodynamic, equations in spherical geometry. Such models have
been developed and used since the 1970s (e.g., Gilman 1977,
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1983; Glatzmaier 1985), but reproducing the NSSL is a serious
challenge for these models. These global convection simulations
can generate a shear layer close to the equator, mostly confined
outside the tangent cylinder, where rotation-aligned, elongated
large-scale convection cells form (see, e.g., Robinson & Chan
2001; Käpylä et al. 2011a; Guerrero et al. 2016; Warnecke et al.
2016; Matilsky et al. 2019). Only for a higher-density stratifica-
tion was a shear layer found that extended to latitudes of 60◦
(Hotta et al. 2015). In this case, however, the gradient of the
radial shear was positive in the range 0◦ < θ < 45◦, which
contradicts the helioseismic inferences of the NSSL. Hotta et al.
(2015) concluded that the meridional Reynolds stress, originat-
ing from the radial gradient of the poleward meridional flow, is
the most important driver of the NSSL. In their model, the lumi-
nosity was decreased to obtain an accelerated equator, therefore
the influence of rotation on convection (Coriolis number) was
overestimated, and they also speculated about an unfavorable
effect of the boundary conditions on their results. It is therefore
unclear whether these results are indeed applicable to the NSSL.
Overall, it is cumbersome to use global direct numerical sim-
ulations (GDNS) to study the origin of the NSSL because the
computational cost is high, many effects are present, and it is
difficult to reliably separate them from each other. For such an
approach, a simpler modeling strategy is required. This is what
we attempt here.

In addition to MF and GDNS models, the NSSL has also been
studied from the point of view of different types of equilibria. The
most recent of these models, Gunderson & Bhattacharjee (2019),
considered the formation of the NSSL in a magnetohydrostatic
equilibrium model, where it is driven by a poleward meridional
flow near the surface. In addition to the assumption of stationar-
ity, which does not apply because the magnetic field of the Sun
is oscillatory, the model considers only nonturbulent states; nev-
ertheless, a large-scale poloidal flow, when inserted in addition
to the equilibrium configuration, is seen to reduce the rota-
tional velocity near the surface and therefore leads to an NSSL-
like condition there. Miesch & Hindman (2011) accounted for
the Reynolds and Maxwell stresses in the governing equations,
hence allowing for turbulent effects. The authors considered
a case in which an equilibrium condition exists for the angu-
lar momentum transport, Eq. (2), in which case the meridional
circulation and the relevant stresses must balance. Any imbal-
ance in the term encompassing the stresses was then postulated
not only to drive differential rotation, but more importantly, to
induce a meridional flow. Similarly, the azimuthal vorticity equa-
tion, Eq. (3), in a steady state was postulated not only to drive
meridional flow, but more importantly, to contribute to main-
taining the differential rotation profile. In the earliest scenario
explaining the NSSL, Foukal & Jokipii (1975) proposed that the
reason for the existence of the NSSL would be the local angu-
lar momentum conservation from rising and falling convective
fluid parcels, which would lead to inward angular momentum
transport. In the scenario of Miesch & Hindman (2011), how-
ever, this angular momentum transport is not a sufficient con-
dition to sustain the NSSL. Another necessary ingredient is the
meridional force balance in between the turbulent stresses and
centrifugally driven circulation within the NSSL, however. In
the bulk of the convection zone, a meridional force balance
would be rather provided by the baroclinic effect, and the bot-
tom of the NSSL would be determined by the transition point
from baroclinic to Reynolds stress balancing. Some agreement
with this scenario was found in the study by Hotta et al. (2015),
whose models showed that in the region of the NSSL, the force

caused by the turbulent stresses was balanced by the Coriolis
force.

Our approach here is entirely different from the approaches
reviewed above. We formulate a model with as few ingredi-
ents as possible to generate large-scale flows to study the role
of rotation-induced Reynolds stress specifically in a rotational
regime relevant for the NSSL. This involves replacing convec-
tion with anisotropically forced turbulence and omitting density
stratification, magnetic fields, and spherical geometry. The sim-
plicity of the model allows an unambiguous identification of the
drivers of the mean flows that can be used to assess the genera-
tion mechanisms of the solar NSSL. Additionally, this simplic-
ity facilitates measuring the turbulent transport coefficients that
can be compared with those in the MF model. This can provide
insights regarding the discrepancy between MF and GDNS in
obtaining the NSSL.

2. NSSL in terms of mean-field hydrodynamics

In this section we briefly explain the theory of the Λ-effect and
its relevance for the formation of the NSSL (Kitchatinov et al.
2013; Kitchatinov 2016). We refer to Rüdiger (1989) for a thor-
ough treatise. In this theory, rotating and anisotropic turbulence
contribute to diffusive and nondiffusive transport of angular
momentum. The nondiffusive part is known as the Λ-effect
(Lebedinski 1941). Therefore the Reynolds stress consists of two
parts,

Qi j = Q(ν)
i j + Q(Λ)

i j , (5)

Qi j = Nijkl
∂Uk

∂xl
+ Λi jkΩk, (6)

where Ni jkl and Λi jk are fourth- and third-rank tensors describ-
ing the turbulent viscosity and Λ-effect, respectively. In spheri-
cal geometry, Qrφ, Qθφ, and Qrθ are the vertical, horizontal, and
meridional stresses, respectively. We note here that the merid-
ional stress appears only in the vorticity equation, and in the
model by KR05, it does not play any role in the generation of
the NSSL.

Ignoring magnetic fields, the vertical and horizontal stresses
are given by

Qrφ = ν‖ sin θ
(
VΩ − r

∂Ω

∂r

)
+ ν⊥Ω2 sin θ2 cos θ

∂Ω

∂θ
, (7)

Qθφ = ν‖

(
cos θHΩ−sin θ

∂Ω

∂θ

)
+ν⊥Ω2 sin θ2 cos θr

∂Ω

∂r
, (8)

where ν‖ and ν⊥ are the diagonal and off-diagonal components of
the turbulent viscosity tensor Nijkl, respectively. Component ν⊥
is caused by the effect of the rotation on the turbulent motions
(Rüdiger et al. 2019). V and H are the vertical and horizontal
Λ-effect coefficients, which to the lowest order are proportional
to AV and AH (Rüdiger 1980). These coefficients are typically
expanded in latitude in powers of sin2 θ as

V =

j∑
i=0

V (i) sin2i θ, (9)

H =

j∑
i=1

H(i) sin2i θ. (10)

In the NSSL, Ω? 6 1 and AH ≈ 0, such that Q(Λ)
θφ due to the

Λ-effect vanishes. The off-diagonal viscosity ν⊥ is nonzero, but
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Fig. 1. Schematic representation of the geometry of the current models
and their relation to the NSSL. The depth of the layer is magnified for
clarity. The simulation boxes are located at nine depths (not all shown)
and seven latitudes. Ω? increases gradually from the surface to the bot-
tom of the NSSL.

small, such that its effect is negligible (Rüdiger et al. 2019). It
has been shown analytically (Kitchatinov & Rüdiger 2005) and
numerically (Käpylä 2019b) that in the slow-rotation regime,
only the first term in the expansion of the vertical coefficient V (0)

survives and tends to a constant. Furthermore, when a stress-free
boundary condition is applied at the radial boundaries, Qrφ =
Qrθ = 0. Using this in Eq. (7) and equating the diffusive and
nondiffusive stresses, we obtain

∂ ln Ω

∂ ln r
= V (0) < 0, (11)

which agrees reasonably well with observational results,
where the radial rotational gradient is independent of latitude
(Barekat et al. 2014).

3. Model

We investigated the role of Reynolds stresses in the generation
of mean flows in a quite simplified model that encompasses all
physics required by the MF model to generate the NSSL. The
physics are |AV| � AH, Ω? 6 1, and a stress-free boundary con-
dition in the radial direction. The first simplification comes from
the geometry, in which we used cubic boxes to map the NSSL at
different depths and latitudes instead of using spherical geome-
try, see Fig. 1. This approach certainly brings specific limitations
to this study. They are the absence of the MC and the adoption
of stress-free boundary conditions in models that are located at
different depths of the NSSL. The consequences of the latter lim-
itation is discussed in detail in Sect. 5.5.

The second simplification comes from replacing self-
consistently generated convection with an artificially forced
turbulent medium. We used a forcing that produces anisotropic
turbulence, which has two important advantages. First, it allowed
us to control the turbulent parameters, for example, the size of
the eddies. Second, the desired anisotropy of the NSSL can be
provided artificially without gravity. Consequently, the effect of
stratification can be simply eliminated from the medium because

it is difficult to separate this effect from the effect caused by
Reynolds stresses in generating the mean flows.

The third simplification comes from the treatment of ther-
modynamic properties of the medium. We assumed the medium
to be isothermal with a constant sound speed obeying p = c2

sρ,
where p, ρ, and cs are the pressure, density, and sound speed,
respectively. We also note here that full compressibility of the
equations is retained, but the effect is weak (Ma = urms/cs =
0.04). This choice leads to a simpler MF analysis in which the
density fluctuation can be ignored. This model was used success-
fully to study the properties of the Reynolds stresses in slow-
and fast-rotating regimes by Käpylä & Brandenburg (2008) and
Käpylä (2019b).

The hydrodynamic equations that we solved directly are

D ln ρ
Dt

= −∇·U, (12)

DU
Dt

= −c2
s∇ ln ρ − 2 Ω × U + Fvisc + Ff , (13)

where D/Dt = ∂/∂t + U·∇ is the advective derivative and
Ω = Ω0(cos θ, 0, sin θ)T is the rotation vector. The viscous force
is given by

Fvisc = ν

(
∇2U +

1
3
∇∇·U + 2S·∇ ln ρ

)
, (14)

where Si j = 1
2 (Ui, j + U j,i) − 1

3δi jUk,k is the traceless rate of the
strain tensor, δi j is the Kronecker delta, and the commas denote
differentiation. The forcing function is given by

Ff(x, t) = Re(N · f k(t) exp[ik(t)·x − iφ(t)]), (15)

where x, k, and φ are the position, wave vector, and a random
phase, respectively. The desired vertical (z) anisotropy can be
enforced using a tensorial normalization factor Ni j = (f0δij +

δiz cos2 Θkf1/f0)(kc3
s/δt)

1/2 of the forcing, where f0 and f1 are the
amplitudes of the isotropic and anisotropic parts, respectively. δt
and Θ are the time step and the angle between the vertical direc-
tion z and k, respectively, and k = |k| determines the dominant
size of the eddies. In the forcing, f k is given by

f k =
k × ê√

k2
− (k · ê)2

, (16)

which results in the forcing transversal waves; ê is an arbi-
trary unit vector. The details of the forcing can be found in
Brandenburg (2001).

4. Simulation setup

We used the Pencil Code1 (Brandenburg et al. 2021) to run
the simulations. We considered a cubic box with size (2π)3 dis-
cretized over 1443 grid points. z corresponds to the vertical, x
to the latitudinal, and y to the azimuthal direction, respectively,
the latter two being referred to as the horizontal directions. Hor-
izontal boundaries are periodic, and stress-free conditions are
imposed at vertical boundaries with

Ux,z = Uy,z = Uz = 0 on z = zbot, ztop, (17)

where zbot and ztop represent the bottom and top of the domain.
The box size is represented by the wave number k1 = 2π/L,

1 https://github.com/pencil-code
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Table 1. Summary of the runs in which we varied the Taylor number
and latitude.

Set Ta (106) Ω? AV (0◦ . . . 90◦) AH[10−3] (15◦ . . . 75◦)

C0 0 0 −0.54 0.56
C02 0.05 0.02 −0.54 0.73...0.57
C04 0.15 0.04 −0.54 0.72...0.66
C06 0.30 0.06 −0.54 0.16...0.32
C13 1.40 0.13 −0.54 0.73...0.30
C24 4.54 0.24 −0.54 ... − 0.53 2.85...0.19
C46 15.58 0.46 −0.54 ... − 0.52 8.84...1.41
C64 30.54 0.64 −0.54 ... − 0.51 14.3...1.12
C83 50.49 0.83 −0.54 ... − 0.50 20.7...1.11
C1 75.43 1.01 −0.54 ... − 0.49 27.0...0.89

Notes. The grid resolution of all runs is 1443, forcing amplitudes f0 =
10−6 and f1 = 0.04, Re ≈ 13, and ν = 3.3 × 10−4 (csk3

1)−1. The values
of AV are shown at the equator and the pole, and the values of AH are
listed at latitudes of 15◦ and 75◦. We note that for AH , a scaling of 10−3

is applied in this table because its magnitude is much smaller than that
of AV .

and we chose a forcing wave number k f /k1 = 10. The units of
length, time, and density are k−1

1 , (csk1)−1, and ρ0, respectively,
where ρ0 is the initially uniform value of the density. The forcing
parameters f0 = 10−6 and f1 = 0.04 were chosen such that the
effects of compressibility are weak with a Mach number Ma =
urms/cs ≈ 0.04 in all simulations. Moreover, with f1 � f0, we
fulfilled the NSSL condition in which |AV| � AH; see Table 1.
The vigor of turbulence is quantified by the Reynolds number,

Re =
urms

νk f
, (18)

where urms = (U2 − U
2
)1/2 is the root mean square of the fluctu-

ating velocity field. When a fixed value of the kinematic vis-
cosity is used, ν = 3.3 × 10−4 (csk3

1)−1, the Reynolds num-
ber is about 13 for all simulations. We placed the box at seven
equidistant latitudes from the equator to the pole by setting the
angle θ between the rotation vector and the vertical direction as
shown in Fig. 1. The vertical placement was determined by the
value of Ω0, which was varied such that the range of Ω? from
Eq. (4) is relevant for the NSSL. The turnover time was defined
as τ = `/urms, where ` is the size of the eddies. In our simula-
tions the energy-carrying scale of turbulence is the forcing scale
` = 2π/k f . The Coriolis number in the simulations is therefore
given by

Ω? =
4πΩ0

urmsk f
. (19)

The corresponding input parameter is the Taylor number,

Ta =

(
2Ω0L2

ν

)2

. (20)

The values of Ta, Ω?, and the anisotropy parameters are given in
Table 1. An additional run with Ω0 = 0 was made. This run was
used to obtain the reference anisotropy; see Sect. 5.2. It was also
used to remove a contribution to the Reynolds stress that appears
in the nonrotating case; see Sect. 5.4

Mean quantities were defined as horizontal (xy) averages.
The local Cartesian quantities are related to their counter-
parts in spherical polar coordinates via (r, θ, φ) → (z, x, y),

(Ur,Uθ,Uφ) → (Uz,Ux,Uy), Qθφ → Qxy, Qθr → Qxz, and
Qrφ → Qyz. We normalized the quantities such that Ũi = Ui/urms

and Q̃i j = Qi j/u2
rms; the tilde denotes this operation. Addition-

ally, the error on the measured physical quantities, which were
obtained directly from the simulations, was estimated by divid-
ing the time series into three parts and comparing their time-
averaged values with the value obtained from the whole time
series. The maximum deviation from the latter was considered
to be the error of the measurement.

5. Results

We start our analysis by studying the properties of the veloc-
ity field. Then we apply horizontal averages to separate the
mean and fluctuating velocities. Using the velocity fluctuations
obtained in this way, we measure the diagonal components of
the Reynolds stresses to ensure that the flow fulfills the NSSL
condition |AV| � AH in Sect. 5.2. In Sect. 5.3, by measuring
the mean velocity field at all depths and latitudes, we search
for the NSSL-like flow. Next, we focus on the properties of the
off-diagonal components of the Reynolds stresses in Sect. 5.4,
which are the only transporters of the angular momentum in our
model. We also compare their properties with those in previous
works of both local and relevant global convection simulations.
These comparisons show the differences between our artificially
generated turbulent flow with more realistic flows. This can also
indicate the relevance of the excluded physics from our model.
In Sect. 5.5 we investigate whether these stresses are the main
driver of the observed mean flows measured in Sect. 5.3.

5.1. Velocity field

A statistically stationary turbulent state appears after about a few
τ independent of Ω? everywhere except at the equator, where the
statistically stationary state is reached between a few to about
300 τ from the lowest to highest Ω?. As an example, we show
snapshots of the zonal flow normalized by the sound speed at
about 1000 τ for set C46 at the equator and at a latitude of 30◦ in
panels A and B of Fig. 2, respectively. The other components of
the velocity field are very similar to the zonal component shown
in panel B. The dominant scale of the turbulence is the forcing
scale k f /k1 = 10. The expected large-scale zonal flow similar to
the actual NSSL is generated only at the equator, as shown in
panel A. All other sets show a similar behavior.

5.2. Anisotropy of the flow

We used the diagonal components of the Reynolds stress tensor
to measure the anisotropy parameters, which are given by

AV =
Qxx + Qyy − 2Qzz

u2
rms

, (21)

AH =
Qyy − Qxx

u2
rms

. (22)

We show the time-averaged diagonal stresses of a nonrotating
run in panel A of Fig. 3. All of our runs show similar profiles,
regardless of θ and Ω?. The stresses are almost constant in the
entire domain, except at the boundaries, where Q̃zz = 0 and the
horizontal components rise to twice higher values. In the inte-
rior, the values of Q̃zz are about twice as high as the other two
components, reflecting the fact that AV ≈ −0.5. This is shown
in panel B of Fig. 3, where we show volume averages of AV
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Fig. 2. Streamlines of the velocity field. The color table shows the
amplitude of the azimuthal component of the velocity field normalized
by the sound speed. Panels A and B show Uy/cs at the equator and at
θ = 30◦ for set C46, respectively.

excluding the boundaries (−2 ≤ zk1 ≤ 2) to avoid boundary
effects. As expected, |AV| has its maximum value in the absence
of rotation at Ω? = 0.

In the slow-rotation regime, Ω? . 0.2, the effect of rotation
on the turbulence anisotropy is weak at all latitudes, in agree-
ment with the theory. In deeper layers of the NSSL (Ω? > 0.2),
the effect of rotation in generating horizontal motions and sup-
pressing vertical motions becomes more prominent, which is
reflected in the two anisotropy parameters. AH stays positive at
all Ω? and latitudes, which shows that u2

y > u2
x independent

of the two parameters. We note that the value of u2
y increases

toward the equator and the bottom of the NSSL. In contrast to
u2

y , u2
x increases toward higher latitudes and at bottom of the

NSSL, except at 15◦, where it decreases by increasing Ω?. AH
increases significantly by about one order of magnitude from the
top to the bottom of the NSSL at low latitudes. In contrast, |AV|

decreases by only about 15% at low latitudes and stays constant
at the equator. This shows that the latitudinal dependence of |AV|

is much weaker than that of AH in Ω? < 1.
Although the latitudinal dependence of AV is weak, it shows

a nonmonotonous profile. For a specific Ω?, the largest mag-
nitude of AV is obtained at the equator. |AV| decreases signif-

Fig. 3. Panel A: time-averaged and normalized diagonal components of
the Reynolds stress as functions of z. The dotted (solid) line shows Q̃zz

(Q̃xx and Q̃yy) of set C0. The vertical dashed lines mark the part of the
domain from which AV and AH were measured. Anisotropy parameters
AV panel B and AH panel C are shown as functions of Ω? at the latitudes
indicated in the legend. The diamonds in panel B show the values of AV
at the equator from the runs from which the mean flow was removed.

icantly at a latitude of 15◦ and then starts to monotonically
increase toward higher latitudes, but it never reaches the high-
est values, which are obtained at the equator. The numbers listed
in Table 1 reflect the differences measured between the pole
and the equator. They indicate an overall decrease in magni-
tude of AV as a function of latitude due to this nonmonotoicity.
Käpylä & Brandenburg (2008) applied fully periodic boundary
conditions and retrieved a monotonic profile. We performed an
additional set of runs at the equator without the mean flows, in
which case the monotonic behavior was recovered. The results
of these runs are shown in panel B of Fig. 3 and are indicated
with a diamond. This shows that the nonmonotonicity is caused
by the strong equatorial mean flows generated in our model
that are not permitted by the periodic boundary conditions. We
note that the GDNS models commonly exhibit thermal Rossby
waves (also known as Busse columns or banana cells) close
to the equator (e.g., Käpylä et al. 2011b; Guerrero et al. 2013;
Hotta et al. 2015; Matilsky et al. 2019), and the mean flows seen
in our stress-free boundary condition model might reflect their
appearance. Studying this phenomenon is beyond the scope of
this study, however and will be addressed at a later time.

Although the anisotropy of the flow changes with increasing
rotation rate, we see from comparing the absolute values of AV
and AH that the model fulfills the NSSL condition |AV| � AH.
Therefore the model has all ingredients that were suggested by
the MF model as necessary to generate the NSSL.
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Fig. 4. Normalized mean components of the velocity field vs. time in terms of turnover time in representative runs in set C24. The rows from top
to bottom show Ũy, Ũx, and Ũz. The left and right columns show the mean velocities at the equator and at a latitude of 15◦, respectively. To make
the comparison of the velocity components feasible, we clipped the values of the color table of panel A at 50% of the maximum value.

5.3. Mean flows

The development of mean flows in rotating cases means that it
takes significantly longer to reach a statistically steady state than
in nonrotating runs. Furthermore, long time averages are needed
for a statistical convergence of the turbulent quantities. We ran
all the simulations for at least 1100 turnover times. As an exam-
ple, we show a subset of the time evolution of the three com-
ponents of the normalized mean velocity field for about 1200
turnover times for set C24 at the equator and at θ = 15◦ in Fig. 4.
At the equator, a large zonal flow Uy with a negative vertical gra-
dient developed gradually over 100τ, as shown in panel A. All
other sets show a similar zonal flow profile at the equator, but the
amplitude and steepness of the gradient increase with increasing
Ω?. Farther away from the equator, the amplitude of the mean
zonal flow is significantly reduced and the negative gradient dis-
appears, as shown in panel B of Fig. 4. The dependence of the
mean zonal flow on rotation is shown in the panel A of Fig. 5,
where we show the time-averaged Ũy at selected Ω? at a lat-
itude of 15◦. When Ω? increases, the gradient of Ũy changes
sign and becomes steeper up to Ω? = 0.46, then it becomes
shallower, and it slowly vanishes in the middle at Ω? = 1.
The latitudinal dependence of Ũy is shown for sets C06 and
C46 in panels C and E of Fig. 5, respectively. We find that Ũy
decreases as a function of latitude, vanishes at the poles, and
the amplitude is lower than 5% of urms everywhere except at the
boundaries.

The time-averaged meridional component of the mean flow
Ux is consistent with zero at the equator for all runs similar to
the run shown in panel C of Fig. 4. In contrast to the zonal flow,
its value increases away from the equator; see panel D of Fig. 4.
The time-averaged value of this component at 15◦ is shown in
panel B of Fig. 5 for selected values of Ω?. The negative gradi-
ent persists up to Ω? = 0.24. Above this Ω?, the shear slowly
vanishes at the center of the box and becomes slightly positive at
increasing Ω?. However, the strong shear persists only near the
boundaries. We show the latitudinal dependence of Ux for the
two sets C06 and C46 in panels D and F of Fig. 5. The ampli-
tude of Ux decreases as a function of latitude. The amplitudes of
Ux and Uy are comparable everywhere except at the equator, and
the negative gradient of Ux for Ω? < 0.1 persists at all latitudes.
These results clearly show that in contrast to the MF model, the
NSSL-like flow is generated only at the equator. It is also inter-
esting that although our model is significantly simpler than the
GDNS models and there is no connection between latitudes, it
reproduces results similar to the GDNS.

For completeness, we show the vertical component of the
normalized mean flow Ũz in the bottom row of Fig. 4. All runs
show a similar pattern of high-frequency oscillations for Ũz
regardless of latitude and Ω? with amplitudes of about 10−4urms.
These oscillations are identified as longitudinal sound waves,
as expected for a compressible system in a vertically confined
cavity.
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Fig. 5. Time-averaged normalized mean velocity components vs. verti-
cal direction. panels A and B show Ũy and Ũx at 15◦. The second and
third rows show the mean horizontal velocities for sets C06 and C46,
respectively, at the latitudes indicated in the legends.

5.4. Reynolds stresses

For zero rotation, it is expected that Q̃xy = 0, see Eq. (8). How-
ever, we find that Q̃xy always has a small but nonzero value that
also persists in the longest time series of our data. We find that
this contribution is present and its magnitude remains unchanged
for higher resolutions as well (2883 and 5763 grids). This issue
therefore does not appear to be caused by a numerical conver-
gence issue. We have been unable to identify whether the cause
is due to some as yet unidentified physical effect, for example,
caused by compressibility, the forcing, inhomogeneities in the
system, or a combination thereof. Because this contribution is
systematically present, we used the nonrotating run (C0) and
subtracted Q̃xy from that run from the results of the runs with
rotation.

We show representative results of the off-diagonal stresses
at five selected Ω? at 15◦ (left column) and spatially aver-
aged (−0.5 ≤ zk1 ≤ 0.5) as function of latitude (right
column) in Fig. 6. The Reynolds stresses for all sets are
available in Appendix A. The vertical Reynolds stress at
all latitudes shows similar profiles as at 15◦, see panel A.
The stress is nearly constant in the interior of the domain
and tends to zero at the boundaries. Q̃yz is always nega-
tive, independent of Ω? and latitude, as shown in panel B.
Thus, the vertical angular momentum transport is inward, in
agreement with previous studies (e.g., Pulkkinen et al. 1993;
Chan 2001; Käpylä et al. 2004; Kitchatinov & Rüdiger 2005;
Käpylä & Brandenburg 2008; Käpylä 2019b). Independent of
Ω?, the vertical stress vanishes at the pole and has its mini-
mum and maximum amplitude at the equator and 15◦, respec-
tively, after which it gradually decreases toward the pole. For
a given Ω?, its amplitude is about twice larger at 30◦ latitude
than 60◦. The latitudinal dependence of Qyz is different from that

Fig. 6. Left column: time-averaged off-diagonal Reynolds stresses vs.
vertical direction at five selected Ω? indicated by the legend at a latitude
of 15◦. Right column: stresses shown in the left panels, further spatially
averaged (−0.5 ≤ zk1 ≤ 0.5), at different latitudes. The rows from top
to bottom show Q̃yz, Q̃xy, and Q̃xz.

in previous studies by Pulkkinen et al. (1993) and Käpylä et al.
(2004) at Ω? ≈ 1, in which they measured Qyz from local
box convection simulations. Pulkkinen et al. (1993) reported that
the latitudinal dependence was almost constant up to 60◦ and
decreased toward higher latitudes. Qyz has a v-shape profile in
latitude with the minimum at 45◦ in Käpylä et al. (2004). The
main ingredient that is missing in our forced turbulence simula-
tion in comparison with theirs is density stratification. Moreover,
Käpylä et al. (2004) included the overshooting layer below the
CZ. This makes it difficult to determine what causes our results
to be different from theirs.

The middle panels C and D in Fig. 6 show horizontal stress
Qxy. The signature of turbulent fluctuations at the forcing scale is
more clearly visible in this component, and the measurement is
quite noisy. The values of Qxy are close to zero up to Ω? = 0.46,
above which they slowly start to become positive (negative) val-
ues in the middle (close to the boundaries). We note here that Qxy
obtains notable values at similar Ω? as AH. This clearly shows
that the generation of horizontal Reynolds stress depends on the
presence of the horizontal anisotropy in the flow. However, AH
being maximum at certain latitude does not necessarily mean that
Qxy also has its maximum value at that latitude. This can be seen
by comparing the maximum values in panel D of Fig. 6 with the
maximum values of AH shown in panel C of Fig. 3. At a given
Ω?, the profile of Qxy is similar at all latitudes. Its amplitude
is maximum at 30◦ and gradually decreases toward the equator
and the pole, as shown in panel D. This result agrees with the
observational measurements of Qxy using sunspot proper motions
(Ward 1965; Gilman & Howard 1984; Pulkkinen & Tuominen
1998), but not with the one measured using supergranulation
motions, see Fig. 10 in Hanasoge et al. (2016). The horizontal
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Fig. 7. Time-averaged mean velocities Uy and Ux and their correspond-
ing balancing terms in Eqs. (27) and (28) at latitude of 30◦ (upper panel)
and Eq. (30) at the equator (lower panel) in the vertical direction for set
C46. In the upper panel, the orange and blue lines show Ux and Uy,
respectively. The red and black lines show the RHS of Eqs. (28) and
(27), respectively. In the lower panel, the solid and dotted lines show
the LHS and RHS of Eq. (30), respectively.

stress has always positive values independent of Ω? and latitude,
in agreement with previous studies in the slow-rotation regime
(e.g. Kitchatinov & Rüdiger 2005; Käpylä & Brandenburg 2008;
Käpylä 2019b). The latitudinal profile of Qxy measured by
Pulkkinen et al. (1993) is very similar to our results, but has neg-
ative values because their box is located in the southern hemi-
sphere; see their Fig. 6.

The meridional stress is shown in the last row of Fig. 6. In
contrast to the other stresses, Q̃xz shows a complicated profile,
in particular, close to the boundaries. Moreover, it has positive
or negative values depending on both Ω? and θ, as shown in
panel E. The latitudinal dependence of the meridional stress is
shown in panel F. At Ω? < 0.1, Q̃xz is positive at low latitudes
and Q̃xz → 0 above 45◦. By increasing Ω?, Q̃xz moves toward
negative values and its absolute value increases. For Ω? > 0.24,
it has its maximum amplitude at about 45◦ and decreases toward
the pole and the equator, similar to Q̃xy. The meridional stress in
Pulkkinen et al. (1993) also shows a sign change in agreement
with ours, but in mid-latitude. However, the sign change occurs
at Ω? ≈ 1 while our results show only negative values at that
Ω?. Comparing the absolute amplitude of the stresses in right
column of Fig. 6, we see that Q̃yz is always larger than Q̃xz and
Q̃xy. For example, at Ω? = 0.64, Q̃yz is about 2 to 10 times larger
than Q̃xz and 5 to 20 times larger than Q̃xy depending on the
latitudes. When we also compare the absolute amplitude of Q̃xy

and Q̃xz, we see that |Q̃xz| > |Q̃xy| for all Ω?. These results show
that although Qxy increases as a function of Ω?, its values are
still much lower than the vertical stresses, which agrees with the
assumption of KR05 regarding the NSSL.

Although our model is quite simple in comparison to the
GDNS, it is of interest to compare the Reynolds stresses with
simulations such as those in Käpylä et al. (2011b). These authors
modeled turbulent convection in a spherical wedge for a variety

of rotation rates. Considering the runs of Käpylä et al. (2011b)
with Ω? < 1, we find good agreement for the horizontal stress
Qxy, which is small and positive for small Ω?, and which has
appreciable values only for Ω? > 0.5. However, we find maximu
values at 30◦ instead of at 10 . . . 15◦ in Käpylä et al. (2011b).
We also observe a similar trend for Qxz such that it is positive
for small Ω? in the northern hemisphere with a sign change after
certain Ω?. However, this trend depends on latitude in their case;
see their Fig. 8. The profile of Qyz in the convection simulations
is quite different from ours, such that it has a strong latitudinal
dependence and has both positive and negative values depending
on Ω? and latitude. This is consistent with earlier studies (e.g.,
Käpylä 2019b), in which a sign change of Qyz occurs at higher
Ω? than those considered in the present simulations.

5.5. Role of Reynolds stresses in generating the mean flows

As the Reynolds stresses appear in the MF momentum equa-
tion, we start by writing the MF equations for Ux and Uy using
Eq. (13). We wrote these equations first by considering that our
setup is fully compressible and that the forcing we used here is
not solenoidal, which might cause density fluctuations that can-
not be ignored in the MF equations. These considerations led to
three terms in addition to the Reynolds stresses in the momen-
tum equation (e.g., Käpylä et al. 2020). We compared all of them
with the Reynolds stresses. They and their gradients are con-
siderably smaller than the Reynolds stresses. Therefore we can
ignore the density fluctuations, and the final set of equations read

U̇x = −Uz∂zUx−∂zQxz−ν∂
2
z Ux−2(ΩyUz−ΩzUy), (23)

U̇y = −Uz∂zUy−∂zQyz−ν∂
2
z Uy−2(ΩzUx−ΩxUz). (24)

Omitting terms proportional to the small quantities ν and Uz, and
Ωy = 0, yields the final form of the equations,

U̇x = −∂zQxz + 2ΩzUy, (25)

U̇y = −∂zQyz − 2ΩzUx. (26)

We verified the validity of the MF equations by considering the
steady-state solution, which reads

Uy = (2Ωz)−1∂zQxz, (27)

Ux = −(2Ωz)−1∂zQyz. (28)

We show the horizontal mean velocities in comparison with the
RHS of Eqs. (27) and (28) from a latitude of 30◦ in set C46
in the upper panel of Fig. 7. These results are representative of
all nonequatorial cases. Although there are fluctuations in the
gradient of the Reynolds stresses, the match is satisfactory.

The equator is a particular case, and Eq. (27) cannot be used
because Qxz and Ωz are both zero there. Therefore we need to use
the third component of the MF momentum equation. Applying
similar elimination of the terms as for Eqs. (23) and (24), we
have

U̇z = −c2
s∂z ln ρ − ∂zQzz − 2ΩxUy. (29)

The pressure gradient appears in this equation due to horizontal
averaging. In the steady state, the zonal flow can be written as

Uy = −(2Ωx)−1(∂zQzz + c2
s∂z ln ρ). (30)

We show both sides of Eq. (30) in the lower panel of Fig. 7. The
good correspondence indicates that these equations can be used
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Fig. 8. Panel A: time-averaged normalized mean velocity vs. vertical
direction of the PBC run for set C46 at a latitude of 30◦. The black
and red lines show Uy and Ux, respectively. Panel B: comparison of the
time-averaged normalized stresses obtained from periodic and stress-
free boundary condition of the same run. The solid and dashed lines
show the measured Q̃xy (red), Q̃xz (blue) and Q̃yz (black) from SFBC
and PBC runs, respectively.

to investigate the role of the stresses in generation of the mean
flows.

We emphasize that although in the steady state, for example,
at the equator, the two terms on the RHS of Eq. (30) balance,
these terms are not the generators of the mean flow. They do,
however, determine the final amplitude of the flow. Instead, the
mean flows are generated by the gradient of the vertical stress
Qyz at the vertical boundaries, as can be seen from Eq. (26). This
flow then slowly penetrates to the middle of domain. This behav-
ior is also clearly shown in the first panel of Fig. 4, where we
show the time evolution of Uy.

The generation of mean flows is straightforward at the equa-
tor because the meridional stress, and hence the meridional flow,
vanish there. At other latitudes, the meridional stress and flow
have to be included, but it is clear that the Reynolds stresses are
the main driver of mean flows in the current setups.

6. Parameterization of Reynolds stresses in terms
of mean-field hydrodynamics

Based on the Λ-effect theory explained in Sect. 2, the vertical and
horizontal Reynolds stresses given in Eqs. (7) and (8), respec-
tively, can be written in the simulation domain as

Qyz = Q(ν)
yz +Q(Λ)

yz =−ν‖
∂Uy

∂z
+ν‖V sin θΩ, (31)

Qxy = Q(ν)
xy +Q(Λ)

xy =ν⊥Ω2 sin θ cos θ
∂Uy

∂z
+ν‖H cos θΩ. (32)

Measuring the Λ-effect coefficients V and H from a single exper-
iment is not possible because the turbulent viscosities ν‖ and ν⊥
are also unknown. We compensated for this by running another
set of otherwise identical simulations, but suppressed the hor-
izontal mean flows artificially at each time step. Therefore the
first terms in Eqs. (31) and (32) go to zero. From these simula-
tions, we directly measured Q(Λ). However, we needed to val-
idate this approach because the velocities can be affected by
the nonlinearity of the Navier-Stokes equations. To do this, we
performed yet another set of otherwise identical simulations,
but used periodic boundary conditions (PBC) in all directions
instead of the stress-free boundary condition (SFBC) in the verti-
cal direction. Then we compared the two sets of stresses obtained
with these sets of boundary conditions. This comparison of

varying boundary conditions is also important with respect to
interpreting the Ω? dependence as a depth dependence. This
approach is somewhat artificial because we practically enforced
unrealistic BCs within the convection zone.

As an example, we show the horizontal mean velocities for
the PBC version of C46 at a latitude of 30◦ in panel A of Fig. 8.
Clearly, no notable mean flow is generated in this run. Therefore
the first term in both Eqs. (31) and (32) goes to zero, similar to
the cases in which the mean flows are suppressed. In panel B of
Fig. 8, we show the results of comparing the Reynolds stresses in
PBC and SFBC cases. The difference caused by varying bound-
ary conditions is confined to a very narrow layer near the bound-
ary. These results suggest that our method for the separation of
different effects and enforcing artificial SFBC at different depths
is valid.

Considering Eq. (31), the subtraction of the Reynolds stresses
obtained from these simulations from the total ones gives

Qyz − Q(Λ)
yz = −ν‖

∂Uy

∂z
. (33)

Measuring the vertical gradient of Uy, the value of ν‖ can be
determined by performing an error-weighted linear least-squares
fit to Eq. (33). Inserting the measured values of ν‖ back into Q(Λ)

of both Eqs. (31) and (32), we can measure V and H provided
that ν⊥ � ν‖.

6.1. Properties of the diffusive and nondiffusive parts of
Reynolds stresses

Similar to Sect. 5.4, we first measured Qi j from a nonrotating
run and then subtracted its mean value from the corresponding
stress in other sets. We show the different contributions to the
Reynolds stresses in Fig. 9. In the left column we show stresses
from one or two simulation sets, and in the right column we show
the dependence of volume averages, excluding the boundaries
(−2 ≤ zk1 ≤ 2), of Q(Λ)

i j on both latitude and Ω?. In panel A
we show the vertical stresses for set C24 at the equator and at a
latitude of 30◦. With these results, we can explain the minimum
of Qyz at the equator: the diffusive and nondiffusive parts of the
stresses are comparable but of opposite signs, leading to a low
negative value for the total. With Eq. (31), we see that ν‖ > 0,
which in combination with ∂zUy < 0, gives Q(ν)

yz > 0. Moreover,
the final negative value of Qyz also shows that Q(Λ)

yz generates the
zonal flow. The profile of Q(ν)

yz for all other latitudes is similar to
the profile at a latitude of 30◦, and it shows that the main con-
tribution from the diffusive part occurs close to the boundaries
at |zk1| & 2 with positive values. Furthermore, the amplitude of
Q(ν)

yz decreases toward higher latitudes (not shown). In the mid-
dle of the domain, it has negative values, which fits ∂zUy > 0
well, as is shown in Fig. 5. The nondiffusive part of the vertical
stress is always Q(Λ)

yz < 0. Its absolute value increases from the
pole toward the equator and increases with Ω?. We also find that
Q(Λ)
yz is linearly dependent on Ω? in the slow-rotation regime, in

agreement with previous numerical results (Käpylä 2019a).
We show corresponding results for Qxy in panel C of Fig. 9

for Ω? = 0.64. Q(Λ)
xy has positive values in the whole domain,

while Q(ν)
xy is almost zero in the middle of the domain, and its con-

tribution to Qxy is confined to the boundaries at |zk1| & 2. This
also shows that Q(ν)

xy is the main contributor to the negative values
of Qxy close to the boundaries shown in Fig. 6 C. The volume-
averaged values of Q(Λ)

xy , excluding the boundaries, are shown in
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Fig. 9. Panels A, C, and E: time-averaged diffusive and nondiffusive
parts of the Reynolds stresses vs. vertical direction. The black and blue
lines in panel A show the normalized vertical stresses at the equator
and a latitude of 30◦ for set C24, respectively. In panel C the horizontal
stresses are shown at a latitude of 30◦ for set C64. The blue and black
lines in panel E show the meridional stresses for sets C06 and C64 at
a latitude of 30◦, respectively. The vertical lines denotes the z range
used for volume averages. Solid, dotted, and dash-dotted lines show
Q̃i j, Q̃(Λ)

i j , and Q̃(ν)
i j , respectively. Panels B, D, and F: Volume averages

over −2 ≤ zk1 ≤ 2, of Q̃(Λ)
i j vs. Ω? at different latitudes as indicated by

the legend.

Fig. 9 D as a function of both Ω? and latitude. Its value is almost
zero at the equator and at the pole. It is significantly nonzero above
Ω? > 0.24 and increases with increasing Ω? independent of lat-
itude. Independent of Ω?, it has maximum value at a latitude of
30◦. We note here that the amplitude of Q(Λ)

xy is also significantly
smaller than |Q(Λ)

yz |. The measured profile of Q(Λ)
xy is almost iden-

tical to the profile obtained by Käpylä (2019b).
Our results for Qxz are shown in Fig. 9. At low Ω?, Q(Λ)

xz
contributes almost nothing to the total stresses. For Ω? > 0.15,
the contribution of Q(ν)

xz disappears in the middle of the domain,
but maintains its positive value close to the boundaries. This is
shown in panel E, where we plot Qxz for low and high Ω? for
the sake of comparison. In panel F, we show volume averages
of Q(Λ)

xz at all Ω? and latitudes. The value of Q(Λ)
xz is almost zero

at the equator and at the pole. At other latitudes, its absolute
value increases with increasing Ω?. It has always negative val-
ues, independent of both Ω? and latitude. These results agree
with those of Käpylä (2019b) in the slow-rotation regime.

6.2. Measuring turbulent viscosity

The diagonal turbulent viscosity ν‖, normalized by `urms, and its
dependence on both Ω? and latitude is shown in panels A and B
of Fig. 10, respectively. Except for the highest latitudes, where
measurements are unreliable, the turbulent viscosity decreases

monotonically as a function of Ω? such that for the largest Ω?,
corresponding to bottom of the NSSL, its value has decreased by
roughly a factor of two. The method used here to measure tur-
bulent viscosity relies on the presence of mean flows. As these
diminish toward high latitudes, it is very difficult to obtain reli-
able estimates of ν‖ near the pole. We note that the measurements
of ν̃‖ also suffer from numerical noise at Ω? < 0.1 at low lati-
tudes. In particular, the latitudinal dependence of ν̃‖ for θ . 60◦,
shown in panel B, is probably not reliable. According to the
results at lower latitudes, we conclude that the latitude depen-
dence is weaker than the rotational dependence. As ν‖ is mea-
sured with high confidence, we consider its profile at the equator
applicable for other latitudes. We used it to measure V and H at
other latitudes. The ratio of turbulent to kinematic viscosity is
ν‖/ν ∼ 10–20, as expected for the fluid Reynolds numbers in the
current simulations.

Käpylä et al. (2020) measured turbulent viscosity from non-
rotating isotropically forced turbulence with shear. Using the
same normalization as in their study with νt0 = urms/3k f , we
obtain νt/νt0 ≈ 3.5 . . . 3.8 in the slowly rotating simulations in
sets C02, C04, and C06. These values are roughly twice higher
than those in Käpylä et al. (2020). The cause of the difference is
unclear.

We also compared the profile of ν‖ with an analytical expres-
sion for the rotation dependence of the viscosity obtained under
SOCA by Kitchatinov et al. (1994, hereafter KPR94). We con-
sidered the first term in Eq. (34) of their work, which is rele-
vant to our simulations in which ν‖ = ν0φ1(Ω?), where ν0 =
4/15`urms is the turbulent viscosity obtained for the isotropic
nonrotating case, and where φ1 is a function of Ω? given in the
appendix of KPR94. We scaled the analytical result by a factor
of κ = 0.68 to make it comparable with our numerical result. In
Fig. 11 we show the result of this comparison. This result shows
that except for the κ factor, the rotation dependence agrees fairly
well between the theory and numerical simulations.

Considering the off-diagonal turbulent viscosity ν⊥, we
failed to measure it because the two terms that constitute it, Q(ν)

xy

and Ω2 sin θ cos θ∂Uy/∂z, are too small. The measurement error
in the former is large.

6.3. Measurements of the vertical Λ-effect coefficient

We measured the vertical Λ-coefficient by substituting the vol-
ume averages of Q(Λ)

yz shown in panel A of Fig. 9 and ν‖ at the
equator using

V =
Q(Λ)

yz

ν‖ sin θΩ0
. (34)

Our results are shown in panel C of Fig. 10. |V | is about 0.75 and
gradually increases to ≈ 0.95 for latitudes ≤ 45◦. However, the
value of |V | at the lowest Ω? is lower at all latitudes, but it has
large error bars. In contrast to low latitudes, values of |V | at lat-
itudes of 60◦ and 75◦ decrease for Ω? > 0.3. Considering the
large errors in the measurements at low Ω?, we might consider V
to be roughly constant for Ω? ≤ 0.15 independent of latitude,
but it shows a strong latitudinal and rotational dependence for
Ω? > 0.15. This means that considering the first term V (0) in
Eq. (9) in the NSSL condition alone is not enough, as is assumed in
the theoretical model by KR05 explained in Sect. 2. Moreover, the
increase in |V | toward higher Ω? at low latitudes is in contrast with
the decrease predicted in KR05 model. The same applies to the
results of Käpylä (2019b), who did not consider that νt = νt(Ω?).
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Fig. 10. Normalized turbulent viscosity ν̃‖ and Λ-
effect coefficients as a function of Ω? and latitude.
Panels A, C, and D show ν̃‖, V, and H as a function
of Ω? from the equator to a latitude of 75◦, respec-
tively. Panel B shows ν̃‖ as a function of latitude for
five selected Ω?.

Fig. 11. Comparison of the obtained turbulent viscosity with the analyt-
ical result of KPR94. The solid and dashed lines show the normalized
turbulent viscosity and rescaled analytical expression κφ1, respectively.

6.4. Measurements of the horizontal Λ-effect coefficient

We measured the horizontal Λ-effect coefficient similarly to the
vertical coefficient using

H =
Q(Λ)

xy

ν‖ cos θΩ0
. (35)

The results are shown in panel D of Fig. 10. The values of H are
always positive, independent of Ω? and latitude. Its values are
one order of magnitude lower than |V | up to Ω? = 0.6, above
which H begins to increase at latitudes < 45◦. We also note that
its value is zero at the equator and at the pole. H is largest at a
latitude of 15◦ and gradually decreases toward higher latitudes.
These results show that close to the surface, H does not play any
role in transporting the angular momentum, which validates the
assumption applied in the NSSL model by KR05.

7. Conclusions

We applied an alternative approach to the MF and GDNS, that
is, we ran direct numerical simulations of forced turbulence in
local boxes, to primarily determine whether the assumptions and

approximations applied in MF theory to explain the formation of
the NSSL are valid. In contrast to the GDNS, we were able to iso-
late and study the role and contribution of the Reynolds stresses
in the rotational regime relevant for the NSSL. Additionally, we
were able to measure the turbulent viscosity. Our results show
that the three required conditions explained in Sect. 2, which are
necessary to generate the NSSL in the RK05 model, are insuf-
ficient. In particular, the meridional component of the Reynolds
stress cannot be ignored. However, our results are in accordance
with Qxy → 0 in the upper part of the NSSL, whereas Qxy obtains
small but nonzero values close to the bottom of the NSSL, in
agreement with theoretical predictions. The role of the verti-
cal Reynolds stress in transporting the angular momentum radi-
ally inward agrees with the theory. However, its profile differs
from that predicted by the theory. In particular, Kitchatinov et al.
(2013) and Kitchatinov (2016) assumed that only the term V (0)

survives in the expansion of V in the NSSL. However, our results
indicate that higher-order terms in the expansion of V need to
be considered. Moreover, it is also expected from theory that
the inward angular momentum flux (V) decreases with increas-
ing Ω? at all latitudes, but our results show that this expecta-
tion is fulfilled only at high latitudes. We also note here that the
rotational quenching of the turbulent viscosity, ν‖, adds another
degree of complexity to the problem that was not considered pre-
viously in the models of NSSL. From the theoretical MF predic-
tion (Kitchatinov et al. 1994), this behavior agrees qualitatively
well with our results, however.

Although these local box simulations have a moderate value
of Re ≈ 13 and there is no connection between different lat-
itudes, our results are largely consistent with the stresses and
mean flows obtained in the GDNS. On the other hand, the the-
oretical works used SOCA, which should be valid at Reynolds
or Strouhal numbers of up to unity, which is in the vicinity of
the parameter regime of the current models. It is expected there-
fore that we find a relatively good match between the measured
turbulent viscosity and the viscosity predicted by SOCA.

Qxz cannot be disregarded in the NSSL. Its role can be fur-
ther investigated in more realistic setups using spherical geome-
try where the artifact of the discontinuity between latitudes can
be removed. We also note here that we considered only a single

A79, page 12 of 14



A. Barekat et al.: Generation of mean flows in the solar near-surface shear layer

modest Reynolds number and one forcing scale, the effects of
which need to be explored with wider parameter studies. The
other important physics that needs to be investigated are the
effects of stratification, compressibility, and magnetic fields, and
this needs to be compared with previous studies that have studied
them in turbulent convection, namely Pulkkinen et al. (1993),
Chan (2001), and Käpylä et al. (2004).

It is worthwhile to note here that a set of companion laboratory
experiments is being proposed to test several aspects of our model.
In these experiments, a rotating water-filled apparatus will be used
to simulate regions of finite latitudinal extent, including β-plane
effects, and forcing will be introduced by pump-driven nozzles
at the boundaries (Burin et al. 2019). The relative variation of the
system rotation rate and the nozzle exit velocity will allow both
the Ω? > 1 and Ω? < 1 regimes to be explored. The forcing
scale length and isotropy will be changed by opening and closing
nozzles and by altering the nozzle shapes and orientations. Time-
resolved measurements of the components of the flow velocity
will allow the mean flows and stresses to be computed and com-
pared with numerical results and theoretical models. Although
the details of the forcing and the fluid boundary conditions will
be different in the experiment compared to our simulations, it is
expected that meaningful results will be obtained as the rotation
rate of the system is varied and the experimental data are analyzed
to search for signatures of the Λ-effect.
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Appendix A: Reynolds stresses

We show the measured Q̃yz, Q̃xy and Q̃xz at all latitudes and Ω?

in Fig. A.1, Fig. A.2, and Fig. A.3, respectively.

Fig. A.1. Q̃yz vs. vertical direction at all Ω? indicated by the legend.
Each panel shows Q̃yz at a certain latitude.

Fig. A.2. Q̃xy vs. vertical direction at all Ω? indicated by the legend.
Each panel shows Q̃xy at a certain latitude.

Fig. A.3. Q̃xz vs. vertical direction at all Ω? indicated by the legend.
Each panel shows Q̃xz at a certain latitude.
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