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Stability and nonlinear evolution of rotating magnetohydrodynamic flows in the Princeton magnetorotational
instability (MRI) experiment are examined using three-dimensional non-axisymmetric simulations. In particular,
the effect of axial boundary conductivity on a free Stewartson-Shercliff layer (SSL) is numerically investigated
using the spectral finite-element Maxwell and Navier Stokes (SFEMaNS) code. The free SSL is established
by a sufficiently strong magnetic field imposed axially across the differentially rotating fluid with two rotating
rings enforcing the boundary conditions. Numerical simulations show that the response of the bulk fluid flow is
vastly different in the two different cases of insulating and conducting end caps. We find that, for the insulating
end caps, there is a transition from stability to instability of a Kelvin-Helmholtz-like mode that saturates at
an azimuthal mode number m = 1, whereas for the conducting end caps, the reinforced coupling between the
magnetic field and the bulk fluid generates a strong radially localized shear in the azimuthal velocity resulting in
axisymmetric Rayleigh-like modes even at reduced thresholds for the axial magnetic field. For reference, three-
dimensional nonaxisymmetric simulations have also been performed in the MRI unstable regime to compare the

modal structures.
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I. INTRODUCTION

Angular momentum transport in accretion disks has been
of great interest as the gravitationally contracting material
must transport angular momentum outward through means
of instabilities and turbulence [1-3]. Because the specific
angular momentum (Q2r?), Q being angular speed and r
being radius, for these accretion disks undergoing Keplerian
motion increases radially outward, accretion disks are hy-
drodynamically stable to Rayleigh’s centrifugal instability.
Although nonlinear hydrodynamic instabilities also might
arise in such systems, experimental and numerical work
suggest that such accretion disks are stable against purely
hydrodynamic modes [4-7], in particular, in the absence of
special features [8] and some physical stratifications [9,10].
Therefore, the magnetorotational instability (MRI) [11,12],
the magnetohydrodynamic (MHD) instability of a differen-
tially rotating flow in the presence of a weak magnetic field, is
believed to be the driving mechanism of angular momentum
transport in astronomical accretion disks [3].

In search of MRI in the laboratory, experiments have been
dedicated to studying the stability of differentially rotating
flows in the MHD regime. Global MHD simulations are
also critical to investigate the onset and saturation of MRI
in Taylor-Couette flow geometry [13—18] or in plasma [19]
experiments. In particular, in order to understand the liquid-
boundary interactions of the experimental apparatus, global
simulations with realistic boundary conditions are crucial.
In this paper, using global MHD simulations, we investigate
the effect of experimental axial boundaries in the Princeton
MRI experiment. The Princeton MRI experiment has been
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developed to demonstrate MRI in a laboratory setting using a
magnetized conducting fluid (GalnSn) rotating in a modified
Taylor-Couette device [20,21].

In Taylor-Couette devices, there are hydrodynamic bound-
ary layers that form due to differences in the rotation rate
between the boundaries and interior (bulk) fluid, such as
Ekman layers and Stewartson layers forming perpendicular
and parallel to the rotation axis [22,23]. These boundary layers
drive nontrivial secondary circulation that modifies the bulk
flow profile as a whole. The strengths of these circulations
are determined by the differential rotation rates of the Taylor-
Couette device. On the other hand, there are magnetic-liquid
interactions that arise when an axial magnetic field is applied
across the system to drive MRI, such as magnetized Ekman
or Hartmann and magnetized Stewartson or Shercliff layers
(SSLs) that form perpendicular and parallel to the background
field [24,25] in addition to MRI. Furthermore, induced cur-
rent loops that close around these layers can also nontriv-
ially affect the background flow dynamics with the strength
of these interactions determined by the fluid-boundary
conductivities.

Understanding these secondary circulations is of great im-
portance for identifying MRI in a laboratory setting. Initial ex-
perimental and computational studies [26,27] were conducted
with insulating boundaries; however, recent computational
work has been carried out motivated by the change from
insulating axial boundary end caps to conducting ones. Wei
et al. [28] discovered that changes in the radial magnetic
field corresponded well to the previously calculated MRI
thresholds and that the nonlinear saturation of the root mean
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square of the total (volume averaged) radial magnetic field
(the “MRI signal”) had similar dependence on key param-
eters, such as the background magnetic field, as the linear
MRI growth rate. Most importantly, the simulations showed
that the MRI signal with conducting axial boundaries is
significantly increased [28] from the MRI signal with in-
sulating axial boundaries. Based on these numerical predic-
tions, the axial boundaries have been changed to copper in
the present Princeton MRI experiment. Experimental studies
have been recently conducted in the slow-rotation regime to
understand the fluid response under the new boundary con-
ditions [29], revealing a vastly different instability response
in the two cases. Developing a thorough understanding of
the full fluid response in this slow-rotation regime is es-
sential for providing guidance for planned experiments as
well as numerical calculations in the experimentally relevant
fast-rotating MRI-unstable regime. Similar experimental and
numerical studies [30,31] have been conducted comparing
insulating and conducting axial boundaries to understand the
effects of boundary layers on the evolution of helical MRI
in the Potsdam Rossendorf magnetic instability experiment
and have led to an improved characterization of helical
MRI [32].

In this paper, we utilize three-dimensional (3D) nonax-
isymmetric calculations to study numerically the formation
of SSLs, the resulting mode structures, and mechanism of
the instabilities. We first perform simulations with the initial
flow and parameter space as close as possible to the actual
experiments [29] for direct comparisons. Consistent with the
experimental results [29], numerical MHD simulations using
the spectral finite-element Maxwell and Navier-Stokes solver
(SFEMaNS) [33] code show that the response of the bulk
fluid flow is also vastly different in the two different cases
of insulating and conducting end caps. We find that, for
the insulating end caps, there is a transition from stability
to instability of a Kelvin-Helmholtz-like (K-H) mode that
saturates at an azimuthal mode number of m = 1, whereas
for the conducting end caps, the reinforced coupling between
the magnetic field and the bulk fluid generates a strong shear
in the azimuthal velocity resulting in axisymmetric Rayleigh-
like modes (with hydrodynamic instability criterion for the
angular momentum dL/dr < 0) at reduced thresholds for the
axial magnetic field. Good agreement between the simulations
and the experimental results are obtained; for the insulating
boundary experiments, there is a coherent m = 1 instability
that develops in the azimuthal flow, and for the conducting
boundary experiments, a strong shear profile similar to the nu-
merical predictions is seen. We further compare the resulting
mode structure of the Rayleigh-like modes in the conducting
boundary simulations with the MRI mode structures in a
reference simulation case.

The paper is organized as follows. The simulation method
and its experimental relevance are discussed in Sec. II. In
Sec. III, we present energy and eigenstructure analysis for
insulating and conducting boundary conditions as well as
comparisons with a reference MRI unstable case. We summa-
rize the results in Sec. IV and present implications for future
simulations and experimental efforts to identifying MRI in the
Princeton MRI experiment.

II. METHODS

Nonaxisymmetric 3D numerical simulations were con-
ducted with the SFEMaNS [33]. The solver uses a Fourier
spectral method in azimuth and a finite-element method in the
meridional plane with up to 72 000 triangular finite-element
slices. Although previous work [28] focused on axisymmetric
perturbations (with only the m = 0 mode fully resolved), up
to 16 spectral azimuthal modes are resolved here to search for
nonaxisymmetric shearing layer instabilities. Each instance of
the 3D nonaxisymmetric simulation uses 256 cores running in
parallel with 2 GB memory per core and requires 3 weeks to
complete.

We solve the dimensionless Navier Stokes equation in the
fluid domain modeled for the Princeton MRI experiment using
a cylindrical coordinate system with the units of length, time,
magnetic field, and conductivity being r/, Qfl, r121/0 1o,
and o with p and o representing the density and conductivity.
The dimensionless parameters of the system are the fluid
Reynolds number Re = erlz /v corresponding to the viscos-
ity, the magnetic Reynolds number Rm = Q 1r120(;a1n5n o de-
termining the rotation rate, the Lehnert number By = V4 /Q2ry
corresponding to the magnetic field strength with V4 =
B/./1op the Alfvén velocity, and the Elsasser number A =
B3Rm which is the ratio of the Lorentz and Coriolis forces.

Figure 1 shows the simulation domain. The fluid is encap-
sulated in four rotating parts: the inner cylinder, inner ring,
the outer cylinder, and the outer ring. The radii of the inner
and outer cylinders are r; = 7 and r, = 21 cm, respectively;
the end caps are divided into differentially rotating inner
and outer rings to suppress secondary circulations [34]. The
transition radius between inner and outer rings is r, = 14 cm,
and the height of the fluid domain is # = 28 cm. The end
cap thickness d = 2 cm determines the effective electrical
thickness § = ocyd/0Gamsn- The induction equation is solved
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FIG. 1. Initialization of the simulation domain. The inner cylin-
der is composed of an insulating shell with stainless steel ends, and
the outer cylinder is composed of stainless steel in the experiments
and an insulator in the simulations. The inner and outer rings are
composed of copper. The working fluid is GalnSn.
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FIG. 2. Visualization of the parameter space involved in the
simulations and experiments with the curve representing marginal
stability and the shaded area representing the MRI unstable regime.
The red and blue diamonds, respectively, represent the split-stable
experiment and simulations that were conducted in the slow-rotation
regime. The black dot represents the MRI simulation in the fast-
rotation regime with the background field B = 6500 G and the
differential rotation rate AQ = Q; — Q, = 4250 rpm.

in the fluid and solid domains, namely, the conducting fluid,
the copper end caps, and the steel inner cylinder ends. Fi-
nally, a spherical vacuum domain with radius r; = 280 cm
surrounds the fluid and solid domains. For the insulating end
cap simulations, the induction equation is no longer solved
in the solid domain, and the entirety of the solid domain
is incorporated into the vacuum domain, representing full
insulating axial boundaries in the experiment.

We primarily perform our analysis under two different
regimes of rotation rates: the slow rotation rate (Rm ~ 0.6)
with the split-stable (S-S) rotation profile devised to visualize
the hydrodynamic response and compare with initial experi-
mental results [29], and the fast rotation rate (Rm ~ 10) with
the MRI rotation profile to highlight the differences in mode
structure between the slowly rotating magnetohydrodynamic
response and the fast rotating MRI. In the stability diagram in
Fig. 2, the red and blue diamonds represent the experimental
and simulational parameters for the slow rotation regime,
respectively, and the black dot represents the simulation pa-
rameters for the fast rotation regime. The axial field values B
were chosen to amplify the fluid response in the slow rotation
regime and to fully destabilize MRI in the fast rotation regime.

A S-S rotation profile composed of corotating inner and
outer components, respectively, is enforced in the simulations
to amplify the effects of the shear inside the fluid domain.
The inner cylinder, inner ring, outer ring, outer cylinder
rotations 21, 3, €24, and 2, were configured at the relative
rates Q) = Q3, Q= Q4 = 0.25Q2; (2 = 335 rpm) for this
setup with no-slip boundary conditions between the ring-fluid
interface. The initial bulk fluid rotations were matched to the
respective ring rotations piecewise uniformly and relaxed until
a hydrodynamically steady rotation profile was established to
closely emulate the real experimental rotation profile. Figure 3
shows this initial background rotation profile €2 as a function
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FIG. 3. Plots of the fluid rotation rate 2 as a function of radius
taken at the midplane (z = 0) of the system. (a) Initialization of
the hydrodynamically stable initial state is performed by relaxing a
piecewise uniform state matched at the rotation rates of the bound-
aries to more precisely emulate real experimental fluid flows. The
simulation flow for the split-stable case is indicated by a dashed
blue line, the experimental flow by a dotted red line, and the ideal
Taylor-Couette solution by a solid black line. The experimental flow
is collected using ultrasound Doppler velocimetry from a run with
the same ratio of inner and outer components but at a slightly higher
rotation rate. (b) Reference MRI unstable case with piecewise solid
body (PSB) initial state and the relaxed rotation profile. The relaxed
rotation profile is the effective initial state, which could trigger MRI
for this reference case.

of radius r at the midplane; although there are some slight dis-
crepancies in the flow between r = 1.25 and r = 1.75, overall
the experimental and simulated flow closely resemble each
other in the bulk fluid. The initial flow for the simulations
failed to be hydrodynamically stable for Rossby number Ro =
(2] — R2)/2, = 2.35 matching the experiment, so a higher
differential rotation rate with Ro = 3 was used to develop the
hydrodynamically stable initial flow in the simulations [35].
For reference, we have also performed 3D nonaxisym-
metric simulations of the MRI unstable case with the MRI
rotation profile that leads to the optimization of the MRI
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TABLE I. Experimental parameters of the physical system are
displayed. The physical dimensions of the experimental apparatus,
the differential rotation rates, the densities of the end caps, working
fluid, and the conductivities are summarized.

Experimental parameters
Split-Stable experiment

r 6.9 cm

r 20.3 cm

4 13.5 cm

h 28 cm

d 2cm

le Q} 335 Ipm

Qz, 94 100 rpm

Pcu 9.0 g/cm3
PGalnSn 6.3 g/cm3
ocu 6.0 x107 (Qm)~!
OGaInSn 3.5%x 106 (Q 1’1’1)7l
Osteel 1.75 x 106 (Q m)_l
B 4200 G

signal [28]. The relative rotation rates were configured at
Q3 = 0.5591, 94 = QQ = 0132591 (Ql = 5000 rpm), and
the background magnetic field By = 0.2 (B = 6500 G). This
simulation is not exactly experimentally relevant as the back-
ground magnetic field is initialized instantaneously after the
piecewise solid body initial state is enforced where the fluid
in the entire volume has the same velocity as the rotating
boundaries. However, the flow responds to the applied field
and relaxes rapidly before MRI growth so that the relaxed flow
could be considered as the effective initial state. Figure 3(b)
shows the rotation profiles of the piecewise solid body initial
state and the relaxed flow immediately after magnetic field
application.

Table I lists the experimental parameters used in the split-
stable experiments [29]. The experimental parameters are nor-
malized to the aforementioned scaling in the simulations. The
dimensionless constants of the simulations and experiments
are summarized in Table II. The dimensionless constants for
the split-stable simulations and experiments are relatively
similar with the exception of the fluid Reynolds number,

TABLE II. Dimensionless parameters of the system are dis-
played. The dimensionless parameters are the fluid Reynolds num-
ber, the magnetic Reynolds number, the axial magnetic field strength,
and the Elsasser number which corresponds to the viscosity of the
system, the rotation rate, the background magnetic field, and the
relative strength of the Lorentz force and Coriolis force, respectively.

Experiment Simulation Simulation
Split stable Split stable MRI
Re 108 Re 1000 Re 1000
Rm 0.68 Rm 0.68 Rm 10
By 1.89 B, 1.8 By 0.2
A 2.44 A 221 A 0.4

which is Re ~ 10° in the experiments but is Re = 1000 in the
simulations due to computational limitations.

II1. SIMULATION RESULTS

Here, we present simulation results for the two cases of
the S-S case and the MRI unstable case. In the split-stable
configuration, the inner and outer cylinders rotate with the
inner and outer rings, respectively, relaxing to a flow with
larger shear around the midradius. The effect of insulating and
conducting end cap boundaries are presented for this case. For
the reference unstable MRI case, a piecewise solid body initial
state (with three rotational frequencies) relaxes to a state with
lower flow shear unstable to MRI. For the conducting end cap
cases, the resulting mode structures and energies for the S-S
case are compared with the MRI case.

A. Split-stable case

Previous experimental results show that, for insulating
end caps, an instability with azimuthal mode number m = 1
develops, caused by the formation of magnetized SSLs driven
by the background axial field above the threshold Ag, >
1 [27,29]. The results from the nonaxisymmetric simulations
show the same general trend; after the background axial field
is applied, the azimuthal velocity becomes globally desta-
bilized by the formation of free SSLs near the inner and
outer ring boundaries. These fluctuations culminate in Kelvin-
Helmholtz-like modes with an axially uniform structure and
azimuthal mode structure transitioning fromm =4tom = 1.

In Fig. 4, we see the volumetrically averaged kinetic energy
of the insulating end cap system without the background
mean flow contribution. There is a modal cascade of power
from m = 4 to m = 1 in the kinetic energy spectrum of the
system with the m = 1 contribution exponentially growing at
early times. This qualitatively agrees well with the previous
results with the emergence of a single dominant mode from
initial multiple mode spectra [27,29]. The nonaxisymmetric
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FIG. 4. Calculated volumetrically averaged kinetic energy con-
tributions for the S-S insulating boundary simulations from az-
imuthal modes m = 1 to m = 4. Higher azimuthal modes are not
active.
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FIG. 5. The mode structures of the split-stable insulating simulation calculated for the normalized fluctuating azimuthal velocity Vj g =
(Vo — Vinean )/ Vinean- (@) shows the azimuthal mode structure at the midplane (z = 0), and (b) shows the axial (r-z) mode structure and streamlines
at the azimuthal cross section 8 = 7 /2, (c) shows poloidal streamlines. The computational data were taken at t = 2.1 s when the m = 1

contribution was dominant.

contribution to the volumetric kinetic energy is resolved fully;
kinetic energies from higher mode numbers m > 4 are orders
of magnitude less than those from m < 4 and do not contribute
significantly to the volumetrically averaged kinetic energy.

Fluctuating azimuthal velocities Vp 4 were calculated by
subtracting the time averaged mean flow V., from Vy and
plotted onto horizontal and vertical planes. The mode struc-
tures depicted in Fig. 5 clearly show the dominant m = 1
instability in the horizontal cross section at the midplane,
indicating that the magnetized SSL produced a global insta-
bility throughout the bulk fluid rather than localized behavior
near the end caps. The instability also has an axially uniform
profile.

In contrast to the gradual and coherent fluid response under
insulating end caps, the fluid response is much more dynamic
and rapid when conducting boundaries are enforced. A com-
parison between the azimuthal velocities of the insulating and
conducting end caps after the background magnetic field is
applied shows that there is an immediate response in the con-
ducting case that leads to changes in the mean fluid flow and
changes to the structural complexity of the azimuthal velocity
fluctuations, whereas, in the insulating case, the fluctuations
develop more gradually and are more structured. The m = 1
mode eventually dominates in the insulating case, but plots
of the modal structure of the conducting case show that after
the initial change in mean flow the fluctuations maintain an
apparent azimuthal structure of m = 2.

The volumetrically averaged kinetic energy graph is shown
in Fig. 6 for the conducting boundaries. Comparing to the
insulating case, the onset of instabilities in the conducting
boundaries case is much more rapid and diverse. Although the
strength of the modal fluctuations is weaker at a normalized
value of 0.1-0.2, there is no single mode that contributes dom-
inantly to the kinetic energy; rather, multiple high-frequency
modes contribute. However, the primary difference lies in the
m = 0 axisymmetric evolution. In the conducting case, we
see an immediate increase in the m = 0 kinetic energy which
translates to a sudden change in the mean flow of the system

compared to the insulating case where the mean flow does not
change drastically. The inset in Fig. 6(b) shows the change in
the bulk flow as the m = 0 growth sets in; the strong shear
is rapidly established as the total energy in the bulk flow is
established.

Because the azimuthal velocity Vp includes the m =0
background mean flow, the radial (V;) and axial (V) velocity
perturbations were visualized instead to look at the mode
structure of the instabilities. Figure 7 shows the azimuthal
and axial mode structures of the instability. There is a clear
m = 0 structure in both the radial and the axial components
of velocity. There seems to also be some modal breakdown
into a higher frequency in localized parts of the system near
the axial boundaries, indicating that the system is evolving
quickly and transitioning from the linear phase to the turbulent
phase. The axial cross sections show coherent structures on
the meridional plane; most noticeably, we have four circu-
latory cells that span the axial plane when the instability is
saturated. The drastically different mode structure for the con-
ducting boundaries suggests a completely different instability
response mechanism compared to the insulating boundaries.
For the insulating boundaries, the instability culminated in
K-H-like modes with m = 1 and the axially uniform mode
structure, whereas for the conducting boundaries the resulting
instability was an axisymmetric m = 0 mode with circulating
cells on the meridional plane hinting at Rayleigh-like modes.

To investigate the difference between the conducting and
the insulating response, the current response to the back-
ground axial magnetic field is plotted in Fig. 8. Almost
immediately after the background magnetic field is turned
on, large currents develop in the end cap boundaries for the
conducting case. These thick boundary layer currents and the
high conductivity of the end caps lead to strong magnetic
coupling of the fluid to the boundaries and result in significant
return currents in the fluid volume itself. The large return
currents ultimately drive strong azimuthal Lorentz forces and
Maxwell stresses that reinforce the fluid rotation in the inner
fluid volume whereas decreasing the rotation of the outer fluid
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FIG. 6. Calculated volumetrically averaged kinetic energy con-
tributions for conducting boundary S-S simulations. (a) Azimuthal
modes m = 1 tom = 4, and (b) m = 0, and the inset shows the flow
profile before initialization and after the m = 0 mode growth. Higher
azimuthal modes are not active.

volume, resulting in a sharp shear that drives the system to a
Rayleigh unstable state. In contrast, this effect is not observed
in the insulating case where the end caps are treated as part
of the vacuum; a small volume of fluid along the boundary
interface forms a thin layer on the fluid-vacuum interface,
effectively taking the place of the conducting end caps. How-
ever, the low conductivity and small current layer thickness
result in a much weaker coupling between the boundary
and the fluid compared to fully conducting boundaries. This
culminates as minimal return currents that do not significantly
increase the flow shear of the system and remains stable to
Rayleigh instabilities whereas still unstable to the magnetic
Kelvin-Helmholtz instability for the insulating boundaries as
reported previously [26,27].

The effect of the Lorentz forces on the hydrodynamic
stability of the system in both the conducting and the insu-
lating cases can be seen in Fig. 9 where the shear profile ¢ =
—9d In /0 In r at various times are plotted. Almost imme-
diately after application of the background field (t = 0.1 s), a

@ V,, Midplane V,, Halfway

(ToW) 2A A

FIG. 7. The mode structures of the S-S conducting simula-
tion calculated for the fluctuating radial and axial velocity V,, V..
(a) shows the azimuthal mode structure of V, at the midplane (z = 0)
and halfway to the axial boundaries (z = 1), and (b) shows the axial
mode structures of V,,V, and streamlines at the azimuthal cross
section § = /2. The data were taken at ¢t = 0.1 s when the m =0
contribution was growing rapidly.

localized peak that is above the Rayleigh stability threshold of
q = 2 appears in the shear profile for the conducting bound-
aries, whereas the shear profile for the insulating boundaries
remains relatively unchanged. This leads to an immediate
growth in the Rayleigh-like structures shown in Fig. 7 for
the conducting case. For the insulating case, the development
of shear is very slow; the shear eventually does go above the

Conducting Insulating
2 I & 2 ' 0.1
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0 0 3|
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R R

FIG. 8. The current responses J, to the background magnetic
field for the S-S conducting and insulating simulations. The current
response and resulting Lorentz forces are strong and immediate
for conducting case whereas the current response is weak for the
insulating case.
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FIG. 9. g = —0 In /9 In r plots at times = 0.1 s colored in
black and ¢ = 0.7 s colored in red, taken at the midplane for the S-S
simulations. The hydrodynamically stable initial state is colored in
green. Early time behavior suggests that the response of the shear is
rapid in the conducting case, whereas it is slower for the insulating
case. Later time behavior has the shear above the Rayleigh threshold
g = 2 for both the conducting and the insulating cases, but the
increased shear is maintained in the conducting case whereas it is
flattened for the insulating case as the K-H mode develops.

Rayleigh unstable limit at later times ( = 0.7 s), but the onset
of K-H modes forces the shear profile back below the g = 2
threshold.

The late time shear profiles for the simulations and ex-
periments are plotted in Fig. 10. The shear in the insulating
end cap simulations stays below g = 2 after the development
of the K-H-like mode except at the inner and outer cylinder
boundaries where viscous forces play a large role. The shear
in the conducting simulations shows localization of the shear
above the Rayleigh stability threshold ¢ = 2 between the radii
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FIG. 10. ¢ = —d In /9 In r plots versus radius at late times,
taken at the midplane for the S-S simulations and experiments.
q values above 2 are linearly unstable to Rayleigh’s centrifugal
instability. The black line indicates the g profile of the conducting
end caps, whereas the red line indicates the g profile of the insulating
end caps. The blue line indicates the g profile of the MRI unstable
configuration with conducting end caps.

r = 1.6 and r = 2.5. Referring back to Fig. 7, we observe that
the conducting m = 0 mode structure is also localized around
these radii where g > 2, indicated in light dashed lines,
supporting the onset of hydrodynamically unstable Rayleigh
modes. Experimentally, similar g profiles are seen in the
conducting case; the same large shear is established between
r=1.6 and r = 2.5. In the insulating case, the shear also
stays well below g < 2, but the shear profile deviates from
the numerical values. This is probably because viscous forces
are nontrivial in the insulating case and the computational
restraints on fluid Reynolds number, which is 1/1000 that of
the experiment, impact the flow dynamics.

The difference in response for the conducting and insu-
lating boundaries can be understood through the work per-
formed on line-tied K-H instabilities by Miura and Kan [36].
Although the stability analysis performed by Miura and Kan is
for an infinite slab geometry with vertical boundaries of finite
thickness and conductivity, a rough estimate for the stability
of the cylindrical system can be extrapolated by transforming
the longitudinal coordinate to the azimuthal coordinate. Mod-
ifying Eq. (36) in this paper for our cylindrical system gives
the linear growth rate y of line-tied K-H modes for finite axial
wave numbers,

yr=m(Vo/r)? — k2VL. (1)

Using the values of m=1, Vy/r; =33.5rad/s, k, =
7 /28 cm, and V4 = 4.5 m/s, the growth rate y? is negative,
indicating that the K-H mode is stabilized in the conducting
boundary system. Note that we have used the longest axial
wavelength due to the line-tied boundary condition. The
mode structures with nonzero k, that are demanded by the
line-tied conducting axial boundaries contribute to magnetic
field bending and stabilize the K-H modes.

However, in the insulating case, the most unstable K-H
mode is associated with k, ~ O resulting in the linear growth
rate in Eq. (40) of Ref. [36],

Y = —10(Gansad V2 /1 + {[10(0Gatmsnd V2 /h]
+m(Vy/r)?} 2. 6)

Using the values of m, V,/r;, and Vj listed above, the con-
ductivity of the fluid layer oGamsn = 3.5 x 10° (2 m)~! and
the value of d = 0.14 cm as a rough estimate of the layer
width using the current profiles in Fig. 8, the theoretical
growth rate is ¥y = 33.1 s~!. Analyzing the growth rate of
the line-tied K-H instability in the insulating simulations
from Fig. 4 gives the numerical growth rate g, = 4.8 s\
Despite the differences in the initial configuration (slab versus
cylindrical) and instability stage (local linear theory versus
global nonlinear simulations), the linear theory presented by
Miura and Kan qualitatively agrees with the results of the
simulations, predicting suppression of line-tied K-H modes
in the conducting case and the growth of said modes in the
insulating case. Modification of the line-tied K-H theory for
the cylindrical geometry in the MRI experiments remains for
future work.

B. Reference MRI unstable case

Three-dimensional nonaxisymmetric simulations of the
MRI unstable configuration with conducting boundaries are
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FIG. 11. The evolution of volumetrically averaged B, (MRI sig-
nal) for the MRI unstable and S-S simulations. The MRI signal
saturates at a much higher threshold in the MRI unstable configu-
ration compared to the split-stable configuration. Slight differences
in the MRI signal evolution for the 2D and 3D cases are due to
computational mesh size; the 3D simulations are conducted with a
mesh that is four times finer, so the initial perturbation is smaller
than the 2D simulations.

conducted to compare with the previous two-dimensional
(2D) results and the aforementioned split-stable state. Because
we expect only the MRI to be unstable in this particular
region, the eigenstructures and energy evolution of the MRI
unstable configuration should be significantly different from
the split-stable configuration, which is shown above to be
hydrodynamically unstable.

The volumetrically averaged B,, called the MRI signal,
measures the change in the radial magnetic energy and is
plotted for both the split-stable case and the MRI unstable
case in Fig. 11. The starting values of the MRI signal are
different because the split-stable case is initialized with an ex-
perimentally relevant rotation profile with perturbations in V.,

(a) V., MRI (b) V2, MRI
1 1
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FIG. 13. Azimuthal mode structures of B, and V, of the S-S
and MRI unstable simulations. Mode structures of V, are similar
in both cases with differences in radial distributions. The azimuthal
mode structures of B, of the MRI unstable configuration and the
split-stable configuration are vastly different from each other with a
strong dominant axisymmetric m = 0 component in the MRI unsta-
ble configuration compared to a weak fluctuation in the split-stable
configuration.

which, in turn, imparts a nontrivial B, when the background
field is turned on. The MRI signal starts near zero for the
MRI unstable case because a piecewise solid body initial state
was used with no V,. The saturated value of the MRI signal
in the 3D nonaxisymmetric simulations is identical to the
2D simulations, implying that only the axisymmetric m = 0
component is present. Furthermore, we can see that, for the
MRI unstable case, the MRI signal grows with a saturated
state orders of magnitude greater than the counterpart in the
split-stable case. This is not surprising because the dominant
instability in the split-stable case is hydrodynamically driven,
whereas MRI is magnetically driven. Interestingly enough, the

B, MRI (d) Bs, MRI
24 - 2 ‘ 0.05
A
F0.02 o
w
)
0 [
kS
-
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FIG. 12. Axial (r-z) mode structures of (a) V,, (b) V,, (¢) B,, and (d) B, for the reference MRI unstable simulation. Structures remain
axisymmetric even in the presence of nonaxisymmetric modes in the simulations.

033116-8



NONAXISYMMETRIC SIMULATIONS OF THE PRINCETON ...

PHYSICAL REVIEW E 100, 033116 (2019)

MRI signal in the split-stable case exponentially decays and
gives rise to hydrodynamic instabilities.

The axial and azimuthal breakdowns of the mode structures
of the MRI unstable case also highlight the difference between
these two configurations. Figure 12 shows the meridional
cross section of B and V for the MRI unstable case. Com-
parisons with previous 2D results [28] yield identical axial
mode structures for the 2D and 3D cases. Comparing the axial
structures of the MRI unstable case with the split-stable case
(cf. Fig. 7) shows that there is a clear difference in the axial
mode structure, indicating that the instability mechanism is
different. In particular, the streamlines of V of the split-stable
case resemble four vortices whereas, in the MRI unstable case,
there are only two vortices on top of each other and spanning
the entire radius of the system.

Figure 13 shows the relevant azimuthal mode structures
of V, and B, of the split-stable configuration and the MRI
unstable configuration. The velocity fluctuations are vastly
different as expected by the change in parameter space; it is
interesting to note that the shear profile of the MRI unstable
configuration goes slightly over the centrifugal instability
threshold ¢ = 2 (cf. Fig. 8). However, the spatial location of
the m = 0 amplitude in the mode structure of V, does not
overlap with the region of increased shear, suggesting that
the centrifugal modes are subdominant. In contrast, B, has a
large active m = 0 component orders of magnitude greater
than the mostly dormant split-stable counterpart as expected
for the axisymmetric MRI perturbations.

IV. CONCLUSION

The effects of boundary end cap conductivity on a free
Stewartson-Shercliff in the Princeton MRI experiment were
explored using 3D nonaxisymmetric computational simula-
tions. We find that the instabilities resulting from the forma-
tion of the free SSLs are global Kelvin-Helmholtz-like modes
with insulating axial boundaries, whereas the instabilities
resulting from conducting axial boundaries are Rayleigh-like

modes. The difference is attributed to the strong coupling of
the conducting axial boundary with the working fluid; the
immediate evolution of thick boundary layer currents in the
end caps leads to return currents in the fluid and stronger
coupling, resulting in a strong azimuthal force that ultimately
reinforces the flow shear. The increased shear causes the
formation of quick Rayleigh modes with finite &, in the con-
ducting case. In the insulating case, the shear development is
too slow to support Rayleigh-like mode growth, thus, the most
unstable K-H modes with zero axial wave number (k, = 0)
grow.

To summarize, we find that the simulation results with
insulating and conducting axial boundaries are consistent with
previous experimental measurements [29] using a split-stable
rotation profile to enforce large shear in the fluid domain.
Our preliminary 3D simulation of the MRI unstable state also
shows that there are significant differences in the velocity fluc-
tuations compared to the split-stable case suggesting different
instability mechanisms as expected. The magnetic field fluc-
tuations show a strong dominant m = 0 component and an in-
creasing MRI signal, which is a promising precursor for MRI.

As experiments and simulations in the MRI unstable
regime are carried out, it is important to differentiate be-
tween the Rayleigh-like instability and the MRI. Current
experimental efforts aim towards minimizing the formation of
these SSLs by adjusting the individual rotation rates of the
inner and outer rings so that the background hydrodynamic
flow becomes flatter to avoid Rayleigh instabilities. Moving
forward, it will be important to consider 3D nonaxisymmetric
simulations near the stability threshold for experimental rele-
vance and direct comparisons.

ACKNOWLEDGMENTS

This research was supported by the U.S. National Sci-
ence Foundation (Grant No. AST- 1312463), the U.S. Na-
tional Aeronautics and Space Administration (Grant No.
NNH15AB251), and the U.S. Department of Energy (Grant
No. DE-AC0209CH11466).

[1] N. I. Shakura and R. A. Sunyaev, Astron. Astrophys 24, 337
(1973).
[2] J. E. Pringle, Annu. Rev. Astron. Astrophys. 19, 137 (1981).
[3] S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).
[4] J.F. Hawley, S. A. Balbus, and W. F. Winters, Astrophys. J. 518,
394 (1999).
[5] H. Ji, M. Burin, E. Schartman, and J. Goodman, Nature
(London) 444, 343 (2006).
[6] E. M. Edlund and H. Ji, Phys. Rev. E 89, 021004(R)
(2014).
[7] J. Lopez and M. Avila, J. Fluid Mech. 817, 21 (2017).
[81 R. V. E. Lovelace, H. Li, S. A. Colgate, and A. F. Nelson,
Astrophys. J. 513, 805 (1999).
[9] G. Lesur and J. C. B. Papaloizou, Astron. Astrophys. 513, A60
(2010).
[10] R. P. Nelson, O. Gressel, and O. M. Umurhan, Mon. Not. R.
Astron. Soc. 435, 2610 (2013).
[11] E. P. Velikhov, Sov. Phys. JETP 36, 995 (1959).

[12] S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

[13] J. Goodman and H. Ji, J. Fluid Mech. 462, 365 (2002).

[14] G. Riidiger, M. Schultz, and D. Shalybkov, Phys. Rev. E 67,
046312 (2003).

[15] A. Kageyama, H. Ji, J. Goodman, F. Chen, and E. Shoshan,
J. Phys. Soc. Jpn. 73, 2424 (2004).

[16] K. Noguchi, I. Pariev, S. Colgate, and J. Nordhaus, Astrophys.
J. 575, 1151 (2002).

[17] D. R. Sisan, N. Mujica, W. A. Tillotson, Y.-M. Huang, W.
Dorland, A. B. Hassam, T. M. Antonsen, and D. P. Lathrop,
Phys. Rev. Lett. 93, 114502 (2004).

[18] F. Stefani, T. Gundrum, G. Gerbeth, G. Riidiger, M. Schultz,
J. Szklarski, and R. Hollerbach, Phys. Rev. Lett. 97, 184502
(2006).

[19] E. Ebrahimi, B. Lefebvre, C. B. Forest, and A. Bhattacharjee,
Phys. Plasmas 18, 062904 (2011).

[20] H. Ji, J. Goodman, and A. Kageyama, Mon. Not. R. Astron.
Soc. 325, L1 (2001).

033116-9


https://doi.org/10.1146/annurev.aa.19.090181.001033
https://doi.org/10.1146/annurev.aa.19.090181.001033
https://doi.org/10.1146/annurev.aa.19.090181.001033
https://doi.org/10.1146/annurev.aa.19.090181.001033
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1086/307282
https://doi.org/10.1086/307282
https://doi.org/10.1086/307282
https://doi.org/10.1086/307282
https://doi.org/10.1038/nature05323
https://doi.org/10.1038/nature05323
https://doi.org/10.1038/nature05323
https://doi.org/10.1038/nature05323
https://doi.org/10.1103/PhysRevE.89.021004
https://doi.org/10.1103/PhysRevE.89.021004
https://doi.org/10.1103/PhysRevE.89.021004
https://doi.org/10.1103/PhysRevE.89.021004
https://doi.org/10.1017/jfm.2017.109
https://doi.org/10.1017/jfm.2017.109
https://doi.org/10.1017/jfm.2017.109
https://doi.org/10.1017/jfm.2017.109
https://doi.org/10.1086/306900
https://doi.org/10.1086/306900
https://doi.org/10.1086/306900
https://doi.org/10.1086/306900
https://doi.org/10.1051/0004-6361/200913594
https://doi.org/10.1051/0004-6361/200913594
https://doi.org/10.1051/0004-6361/200913594
https://doi.org/10.1051/0004-6361/200913594
https://doi.org/10.1093/mnras/stt1475
https://doi.org/10.1093/mnras/stt1475
https://doi.org/10.1093/mnras/stt1475
https://doi.org/10.1093/mnras/stt1475
https://doi.org/10.1086/170270
https://doi.org/10.1086/170270
https://doi.org/10.1086/170270
https://doi.org/10.1086/170270
https://doi.org/10.1017/S0022112002008704
https://doi.org/10.1017/S0022112002008704
https://doi.org/10.1017/S0022112002008704
https://doi.org/10.1017/S0022112002008704
https://doi.org/10.1103/PhysRevE.67.046312
https://doi.org/10.1103/PhysRevE.67.046312
https://doi.org/10.1103/PhysRevE.67.046312
https://doi.org/10.1103/PhysRevE.67.046312
https://doi.org/10.1143/JPSJ.73.2424
https://doi.org/10.1143/JPSJ.73.2424
https://doi.org/10.1143/JPSJ.73.2424
https://doi.org/10.1143/JPSJ.73.2424
https://doi.org/10.1086/341502
https://doi.org/10.1086/341502
https://doi.org/10.1086/341502
https://doi.org/10.1086/341502
https://doi.org/10.1103/PhysRevLett.93.114502
https://doi.org/10.1103/PhysRevLett.93.114502
https://doi.org/10.1103/PhysRevLett.93.114502
https://doi.org/10.1103/PhysRevLett.93.114502
https://doi.org/10.1103/PhysRevLett.97.184502
https://doi.org/10.1103/PhysRevLett.97.184502
https://doi.org/10.1103/PhysRevLett.97.184502
https://doi.org/10.1103/PhysRevLett.97.184502
https://doi.org/10.1063/1.3598481
https://doi.org/10.1063/1.3598481
https://doi.org/10.1063/1.3598481
https://doi.org/10.1063/1.3598481
https://doi.org/10.1046/j.1365-8711.2001.04647.x
https://doi.org/10.1046/j.1365-8711.2001.04647.x
https://doi.org/10.1046/j.1365-8711.2001.04647.x
https://doi.org/10.1046/j.1365-8711.2001.04647.x

DAHAN CHOI et al.

PHYSICAL REVIEW E 100, 033116 (2019)

[21] M. D. Nornberg, H. Ji, E. Schartman, A. Roach, and J.
Goodman, Phys. Rev. Lett. 104, 074501 (2010).

[22] V. W. Ekman, Arch. Math. Astron. Phys. 2, 1 (1905).

[23] K. Stewartson, J. Fluid Mech. 3, 17 (1957).

[24] J. Hartmann, Mat. Fys. Medd. 15, 1 (1937).

[25] J. A. Shercliff, Math. Proc. Cambridge Philos. Soc. 49, 136
(1953).

[26] C. Gissinger, J. Goodman, and H. Ji, Phys. Fluids 24, 074109
(2012).

[27] A. H. Roach, E. J. Spence, C. Gissinger, E. M. Edlund, P.
Sloboda, J. Goodman, and H. Ji, Phys. Rev. Lett. 108, 154502
(2012).

[28] X. Wei, H. Ji, J. Goodman, F. Ebrahimi, E. Gilson, F. Jenko, and
K. Lackner, Phys. Rev. E 94, 063107 (2016).

[29] K. J. Caspary, D. Choi, F. Ebrahimi, E. P. Gilson, J. Goodman,
and H. Ji, Phys. Rev. E 97, 063110 (2018).

[30] J. Szklarski, Astron. Nachr. 328, 499 (2007).

[31] J. Szklarski and G. Gerbeth, Astron. Nachr. 329, 667
(2008).

[32] F. Stefani, G. Gerbeth, T. Gundrum, R. Hollerbach, J. Priede, G.
Riidiger, and J. Szklarski, Phys. Rev. E 80, 066303 (2009).

[33] J. L. Guermond, R. Laguerre, J. Leorat, and C. Nore, J. Comput.
Phys. 228, 2739 (2009).

[34] E. Schartman, H. Ji, and M. Burin, Rev. Sci. Instrum. 80,
024501 (2009).

[35] E. J. Spence, A. H. Roach, E. M. Edlund, P. Sloboda, and H. Ji,
Phys. Plasmas 19, 056502 (2012).

[36] A. Miura and J. R. Kan, Geophys. Res. Lett. 19, 1611 (1992).

033116-10


https://doi.org/10.1103/PhysRevLett.104.074501
https://doi.org/10.1103/PhysRevLett.104.074501
https://doi.org/10.1103/PhysRevLett.104.074501
https://doi.org/10.1103/PhysRevLett.104.074501
https://doi.org/10.1017/S0022112057000452
https://doi.org/10.1017/S0022112057000452
https://doi.org/10.1017/S0022112057000452
https://doi.org/10.1017/S0022112057000452
https://doi.org/10.1017/S0305004100028139
https://doi.org/10.1017/S0305004100028139
https://doi.org/10.1017/S0305004100028139
https://doi.org/10.1017/S0305004100028139
https://doi.org/10.1063/1.4737657
https://doi.org/10.1063/1.4737657
https://doi.org/10.1063/1.4737657
https://doi.org/10.1063/1.4737657
https://doi.org/10.1103/PhysRevLett.108.154502
https://doi.org/10.1103/PhysRevLett.108.154502
https://doi.org/10.1103/PhysRevLett.108.154502
https://doi.org/10.1103/PhysRevLett.108.154502
https://doi.org/10.1103/PhysRevE.94.063107
https://doi.org/10.1103/PhysRevE.94.063107
https://doi.org/10.1103/PhysRevE.94.063107
https://doi.org/10.1103/PhysRevE.94.063107
https://doi.org/10.1103/PhysRevE.97.063110
https://doi.org/10.1103/PhysRevE.97.063110
https://doi.org/10.1103/PhysRevE.97.063110
https://doi.org/10.1103/PhysRevE.97.063110
https://doi.org/10.1002/asna.200710774
https://doi.org/10.1002/asna.200710774
https://doi.org/10.1002/asna.200710774
https://doi.org/10.1002/asna.200710774
https://doi.org/10.1002/asna.200811019
https://doi.org/10.1002/asna.200811019
https://doi.org/10.1002/asna.200811019
https://doi.org/10.1002/asna.200811019
https://doi.org/10.1103/PhysRevE.80.066303
https://doi.org/10.1103/PhysRevE.80.066303
https://doi.org/10.1103/PhysRevE.80.066303
https://doi.org/10.1103/PhysRevE.80.066303
https://doi.org/10.1016/j.jcp.2008.12.026
https://doi.org/10.1016/j.jcp.2008.12.026
https://doi.org/10.1016/j.jcp.2008.12.026
https://doi.org/10.1016/j.jcp.2008.12.026
https://doi.org/10.1063/1.3077942
https://doi.org/10.1063/1.3077942
https://doi.org/10.1063/1.3077942
https://doi.org/10.1063/1.3077942
https://doi.org/10.1063/1.3702006
https://doi.org/10.1063/1.3702006
https://doi.org/10.1063/1.3702006
https://doi.org/10.1063/1.3702006
https://doi.org/10.1029/92GL01448
https://doi.org/10.1029/92GL01448
https://doi.org/10.1029/92GL01448
https://doi.org/10.1029/92GL01448

