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Experimental confirmation of the standard
magnetorotational instability mechanism with a
spring-mass analogue
Derek M.H. Hung1,2, Eric G. Blackman 3,4, Kyle J. Caspary2, Erik P. Gilson 2 & Hantao Ji 1,2

The magnetorotational instability (MRI) has long been considered a plausibly ubiquitous

mechanism to destabilize otherwise stable Keplerian flows to support radially outward

transport of angular momentum. Such an efficient transport process would allow fast

accretion in astrophysical objects such as stars and black holes to release copious kinetic

energy that powers many of the most luminous sources in the universe. But the standard MRI

under a purely vertical magnetic field has heretofore never been directly measured despite

numerous efforts over more than a decade. Here we report an unambiguous laboratory

demonstration of the spring-mass analogue to the standard MRI by comparing motion of a

spring-tethered ball within different rotating flows. The experiment corroborates the theory:

efficient outward angular momentum transport manifests only for cases with a weak spring in

quasi-Keperian flow. Our experimental method accomplishes this in a new way, thereby

connecting solid and fluid mechanics to plasma astrophysics.
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Understanding angular momentum transport in astro-
physical disks comprises a long-standing enterprise, span-
ning planetary, stellar, black hole, galactic, and laboratory

astrophysics. The challenge originated 250 years ago1–3 with
enduring questions about how the angular momentum distribution
within the solar system evolved from its original nebular gas4–6. In
addition, luminous and jetted sources in the universe, including
quasars, X-ray binaries7–9, pre-planetary nebulae10,11, and gamma-
ray bursts12 are likely powered by the conversion of gravitational
potential energy into kinetic energy and radiation, as matter
accretes onto central engines13. Since accreting plasma typically
originates far from the core of the potential well, conserving even a
modest initial angular momentum during infall would prevent
matter from reaching the engines. Angular momentum must be
extracted much faster than microphysical diffusivities alone allow.

Enhanced transport is typically parameterized by a “turbulent
viscosity”, allowing practical accretion disk models to be com-
pared with observations14. What mechanisms supply enhanced
transport and how to model it are long-standing physics pro-
blems of astrophysics15,16. A ubiquitous source of turbulence is
thought to be the magnetorotational instability (MRI)17,18 as
applied to accretion discs19–22: while purely hydrodynamic discs
require a decreasing angular momentum gradient for linear
instability, the MRI in a magnetohydrodynamic (MHD) disk
requires only a radially decreasing angular velocity, so magnetized
Keplerian disks of astrophysics should be unstable. Growth and
saturation of the MRI are widely studied23–30.

The scientific method establishes scientific fact by corroborating
theory with experiment, no matter how widely assumed the
veracity of a theoretically calculated mechanism may otherwise be.
As such, there are substantial efforts to demonstrate the MRI in the
laboratory using differentially rotating liquid metals31–33 and
plasma34, and even polymer fluids35,36 or an elastic beam37. Purely
hydrodynamic flow experiments confirm the Rayleigh criterion for
stability38,39. Measurements of the MRI in the standard setup with
a purely vertical field in liquid metals are challenging, although
recent evidence of related helical and azimuthal field MRI has been
reported40,41. The result of ref. 32, for example, is now understood
to result from boundary effects42. There is further optimism as
boundary control improves43,44, but so far, none of these experi-
ments have yet demonstrated the vertical MRI.

Here we take a different approach. We appeal to the known
result that the dispersion relation of the MRI for an initially
vertical magnetic field also characterizes the motion of two
masses tethered by a weak spring16,22. The spring represents the
magnetic field and the mass represents a parcel of MHD fluid. It
has been speculated16 that this analogue might be experimentally
testable in the laboratory, distinct from multi-tethered config-
urations that have been previously theoretically explored45–47.

Below we discuss the design and results from a new tethered ball
experiment using the Princeton Taylor–Couette apparatus with
water or Hydrodynamic Turbulence Experiment (HTX)48. We
compare the radial motion of the ball for cases when the ball is
untethered, weakly tethered, and strongly tethered. As predicted by
the MRI mechanism, angular momentum is transported efficiently
outward only in the cases with a weak spring in quasi-Keplerian
flows. The experiment demonstrates a new way to use solid and
fluid mechanics to study astrophysical processes in the lab.

Results
Theoretical model and predictions. A Keplerian flow with a weak
vertical magnetic field, Bz, subjected to perturbations within the hor-
izontal plane (r, θ) exhibits the MRI. The minimalist MHD version of
the equations depends only on the displacement of the field lines in the
plane perpendicular to the initial magnetic field. Two masses tethered

by a weak spring orbiting in a central potential15 then provide an
analogue of this local instability, although the minimalist MHD MRI
equations most directly correspond to the motion of a single mass
tethered to a fixed point in a co-rotating frame16 (Fig. 1a vs. Fig. 1b).

Physically, the linear phase of the instability interpreted in the
context of Fig. 1b is expected to occur as follows: a light test mass
is released from a post that is fixed to orbit with the flow at
angular speed Ω3. The mass is tethered to a weak spring. If the
spring is weak enough such that oscillation time is significantly
longer than an orbit time but still strong enough to couple the
post and mass over this time scale, the post will transmit angular
momentum to the test mass moving the latter outward. If the
spring is too strong, outward motion is limited by the spring
tension, effectively retaining the ball as part of the post.

Mathematical correspondence between the minimalist MRI
unstable MHD equations and those of tethered mass motion is
simplest in local Cartesian coordinates x, y, z in a rotating frame
with radius r= r0+ x and r0(θ− θ0)= y, with fixed point at x=
y= 0. This point moves in the lab frame with angular velocity
Ω3≡Ω(x= 0) and the shear flow away from the fixed point in the
rotating frame is given by rðΩ�Ω3Þ ’ xr∂rΩjr¼r0

¼ �xqΩ3,
with q≡−dlnΩ/dlnr. For the MHD case, when the centrifugal
force is balanced by gravity and total pressure gradients are
ignored, the local 2-D MHD momentum equations are

€x � 2Ω3 _y ¼ �ðKA � TÞx; ð1Þ

€y þ 2Ω3 _x ¼ �KAy: ð2Þ

Dots indicate time derivatives; T ¼ 2qΩ2
3 is the coefficient of

the tidal force per unit mass; the second terms on the left sides
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Fig. 1 Analogues of standard magnetorotational instability (MRI) in a purely
vertical magnetic field. a Conventional MRI analogue using two equal masses
(solid blue circles) tethered by a weak spring, under the influence of a central
gravitational force. b The MRI analogue that we study in our experiment,
depicted in the lab frame. A light mass (solid blue circle) is tethered to a fixed
post (solid black circle) moving at angular speed Ω3 through a weak spring
embedded in a Taylor–Couette flow, with inner cylinder and outer cylinder
rotating at Ω1 and Ω2, respectively. The outward radial pressure gradient,
sustained through the flow by the outer rigid wall in b, plays the role of the
central gravity of a. If the inner tethered mass in a were much larger than the
outer mass (both still being much less than the central mass), the equations
for the MRI analogue depicted in the two figures would be identical
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come from the Coriolis force; KA= (kvA)2, arises from magnetic
tension where vA is the Alfvén speed associated with the vertical
field.

Equations (1) and (2) also approximate motion of a mass
tethered to a fixed point x,y= 0 by a spring with spring constant
per unit mass KA, as in Fig. 1b. [For Fig. 1a this requires Ω=Ω3

and KA →2 KA
16.] The Coriolis and tidal force terms arise whether

supplied by gravity without pressure gradients, or by pressure
gradients when the mass is embedded in a laboratory quasi-
Keplerian (qK) flow without gravity. For initial displacements [x
(t)eikz, y(t)eikz] and q < 0, the system is stable. But for q > 0, when
KA < T, the MRI instability ensues. For KA= 0 (no spring), the
right side of Eq. (2) vanishes and x

::: ¼ _xðT � 4Ω2
3Þ. The behavior

then depends on q: the coefficient of _x changes sign at q= 2, and
instability occurs only for q > 2—the Rayleigh unstable regime.

Although the Cartesian approximation captures the MRI
mechanism, modeling the MRI mechanism with our our
Taylor-Couette experiment requires inclusion of the non-linear
curvature and damping terms. In cylindrical coordinates, the
vector lab-frame equation of motion for a tethered mass in the
rotating background flow is

r
:: ¼ fc � �K rðtÞ � rpðtÞ

h i
� ðD1 þ D2j r

: �rΩðrÞbeθjÞ r: �rΩðrÞbeθ½ �;
ð3Þ

where t is time; r ¼ rber and rp ¼ r0ber0 are the time-dependent
position vectors of the ball and its launch locus (the post)
respectively; �K is the spring constant divided by the mass of the
ball; ΩðrÞ ’ Ω0ðr=r0Þ�q, where q is a constant; and fc ¼�rΩ2ðrÞber is the centripetal force per unit mass on the ball,
supplied by the background fluid pressure gradient transmitted
from the outer wall. It is equal and opposite in magnitude to the
centrifugal force per unit mass of the flow of the local rotating
frame when the background flow is in equilibrium. Quantities D1

and D2 are the Stokes and Reynolds drag coefficients49 given by
D1 ¼ 6πρH2O

νH2O
R=M and D2 ¼ CDπρH2O

R2=2M, for water
density ρH2O

, kinematic viscosity νH2O
, test mass radius R, test

massM, and drag coefficient CD. Using R= 1.27 cm and neutrally
buoyant test mass, D1= 0.0284 s−1 and D2= 15.0 m−1 in our
experiments.

Since dber=dt ¼ _θbeθ , Eq. (3) contains both the azimuthal
and radial components of the force equation. For initial values
rð0Þ ¼ r0; θð0Þ ¼ θpð0Þ ¼ θ0; _rp ¼ 0; _θp ¼ Ω3, (where θp is the
angular coordinate of the post), the coupled equations for r(t) and
θ(t) are given by

€r ¼ r _θ2 �Ω2ðrÞ
h i

� �K r � r0cosðθ � θ0 �Ω3tÞ½ �

� D1 _r � D2 _r2 þ r2½ _θ �ΩðrÞ�2
h i1=2

_r;
ð4Þ

r€θ¼ �2_r _θ � �Kr0sinðθ � θ0 �Ω3tÞ � D1r _θ �ΩðrÞ
h i

�D2 _r2 þ r2½ _θ �ΩðrÞ�2
h i1=2

r _θ �ΩðrÞ
h i

;
ð5Þ

where we have used ber �berp ¼ cosðθ � θ0 �Ω3tÞ and beθ �berp ¼
sinðθ � θ0 �Ω3tÞ: Eqs. (4) and (5) reduce to Eqs. (1) and (2) in
the linear limit.

For realistic parameters, the D1 term is small. In the linear
regime, the D2 term also does not contribute and Eqs. (4) and (5)
then predict runaway displacement in the usual MRI unstable
regimes, namely 0<q<2 and �K>0, but not 0<q<2 and �K ¼ 0
(Table 1). By choosing springs with proper strengths, the MRI
mechanism can be directly tested using a tethered ball in qK
flows.

We emphasize that even when D1 and D2 are small, the ball is
still strongly coupled to the flow by the background fluid pressure
forces. In the vertical direction the upward pressure force
balances gravity to maintain neutral buoyancy which keeps the
primary ball motion confined to 2D. The radial pressure force
transmitted from the outer wall balances the outward radial force
associated with rotation as we have discussed in defining fc above.

Experimental measurements. For solid-body (q= 0) and qK (0
< q < 2) flows, we compare the motion of an untethered ball to
that of a ball tethered to a post anchored at a local rotating frame
(Ω3= 80 rpm, clockwise) by a weak or strong spring. These cases
are listed in Table 1.

Figure 2 shows polar coordinate and time-dependent ball
trajectories in the lab frame. Each solid line of a given color
corresponds to a separate experimental run with the same initial
conditions. The left and right column panels correspond to qK
and solid-body flow cases respectively. For each run in the qK
case, the ball is initially held to the post rotating at Ω3 which
rotates slightly faster (and has more angular momentum) than
the background flow at its radius, to minimize secondary Ekman
flow, as in the cases with both caps48. The ball therefore drifts to
larger radii, regardless of whether it is tethered or untethered.
However, the ball lags behind less in azimuth in the rotating
frame for the tethered cases and thus advances ahead to more
negative angles in the lab frame (Fig. 2a). The radial and
azimuthal drift speeds are also different for tethered versus
untethered cases. The radial velocity is lower for the tethered than
untethered cases (Fig. 2c). The tethered cases exhibit faster
angular speeds, as evidenced by their steeper slopes in Fig. 2e.

The dashed lines show the corresponding solutions to Eqs. (4)
and (5). Amplitudes of oscillation modes across all presented
cases are negligible compared to experimental noise. The very
early time linear growth rate, within the noise, is consistent with
the standard MRI growth rate with negligible Stokes drag D1. At
late times, saturation from nonlinear damping by the D2 term is
most consistent with the data.

Table 1 Theoretical predictions

Flow profile
(Ω1, Ω3, Ω2) [rpm]

Solid body
(60, 60, 60)

Quasi–Keplerian
(190, 80, 22)

Tether strength None Weak None Weak Strong
K [s−2] 0 75.4 0 75.4 6103.2
4 Complex Solutions, Ω [rad s−1] ±12.6, ±0.0 ±17.0, ±4.4 ±4.2, ±0.0 ±15.2, ±7.8i ±86.1, ±69.3
# of experimental runs 4 4 8 8 4

Four complex solutions to the linear limit of Eqs. (4) and (5) [i.e., Eqs. (1) and (2)] when variables are assumed to be proportional to exp(iωt) for tethered and untethered cases in solid body or quasi-
Keplerian (qK) flow. The tether spring constant divided by the mass of the ball, K, are also listed. Real values indicate oscillatory solutions, while imaginary values (boldface) indicate exponential growth
and damping modes. The number of experimental runs for each case is given. The full nonlinear solutions of Eqs. (4) and (5) for these cases are plotted along with experimental data in Figs. 2 and 3
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Most telling are the specific angular momentum evolution plots
of Fig. 3. Figure 3a shows that for the qK flows, the angular
momentum of the ball remains constant for the untethered case
(solid black lines) as expected from angular momentum
conservation. In contrast, the weak spring tethered ball gains
angular momentum (solid red lines) as expected from the MRI.
Figure 3c correspondingly shows that the tethered ball gains
angular momentum as it moves outward.

For solid body flow, Fig. 2d shows that the ball hardly moves in
radius from its initial position for either the weak spring case
(red) or the untethered case (black). Correspondingly, Fig. 3b, d
show little difference in the red and black lines for solid-body
flow runs. The blue lines in the plots of Figs. 2 and 3 show the
case of a strong spring where the MRI mechanism is predicted to
be ineffective. All of these blue trajectories are consistent with
theoretical expectation that outward motion is halted once the
strong spring is taut and angular momentum transfer is abated.
The initial radial drift and associated angular momentum gain in
the strong spring case is due to a limitation of the experimental
setup, namely that the spring anchor point is offset from the
center of mass of the ball. This does not affect the physics
conclusions.

Discussion
While many astrophysical processes are difficult to test and
validate in the lab, theory should be experimentally validated
when possible and this is one of the core pillars of the discipline
of laboratory astrophysics. In this context, neither the standard
MRI instability, nor its mechanical analogue have been previously
demonstrated in the laboratory, despite their widespread use in
theoretical astrophysics. Measurements from our new apparatus
now experimentally confirm the mechanism of angular momen-
tum transport by the MRI and thus support its validity.

The measurements are all consistent with the theoretical
implications of Eqs. (4) and (5). Specifically, (i) only for the weak
spring case with a qK (0 < q < 2) flow, does the MRI-like
instability manifest, and sustain angular momentum transport
from post to ball; (ii) measured trajectories of the ball agree with
non-linear model equations for weak-spring tethered, strong-
spring tethered, and untethered cases for qK and solid-body
flows; (iii) Reynolds drag eventually balances the spring force to
saturate the instability in the tethered case. Larger experiments
could better distinguish linear from non-linear regimes and
detailed investigations could further delineate the “weak” and
“strong” spring transition.
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Fig. 2 Ball trajectories in polar coordinate and their time evolution in the lab frame for two different rotation profiles. a Ball trajectories in the quasi-
Keplerian (qK) flows (Ω1, Ω3, Ω2)= (190,80,22) rpm clockwise, for the angular speeds of inner cylinder, local post frame, and outer cylinder, respectively.
b Ball trajectories in the solid body flows (Ω1, Ω3, Ω2)= (60, 60, 60) rpm clockwise. c, d Time evolution of radial coordinates for the qK (solid body) flows.
e, f Time evolution of azimuthal coordinates for the qK (solid body) flows. Experimental results for untethered, weak spring-tethered, and strong spring
tethered, cases are shown in black, red, and blue, respectively. Predictions from solving Eqs. (4) and (5) for each of these cases are shown as
corresponding dashed lines

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-018-0103-7

4 COMMUNICATIONS PHYSICS |             (2019) 2:7 | https://doi.org/10.1038/s42005-018-0103-7 | www.nature.com/commsphys

www.nature.com/commsphys


a b

c d

0.2

0.15

0.1|L
/m

| (
m

2 /s
)

|L
/m

| (
m

2 /s
)

|L
/m

| (
m

2 /s
)

|L
/m

| (
m

2 /s
)

0.05
0 0.1

0.1 0.12 0.14 0.16 0.18 0.1 0.12 0.14 0.16 0.18

0.2 0.3

t (s) t (s)

r (m)r (m)

0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0.2

0.15

0.1

0.05

0.2

0.15

0.1

0.05

0.2

0.15

0.1

0.05

Fig. 3 Time evolution and radial evolution of the ball’s angular momentum. a, b Time evolution of the ball’s angular momentum in the quasi-Keplerian or qK
(solid body) flows. c, d Radial evolution of the ball’s angular momentum in the qK (solid body) flows. Experimental results for untethered, weak spring-
tethered, and strong spring tethered, cases are shown in black, red, and blue, respectively. Predictions from solving Eqs. (4) and (5) for each of these cases
are shown as corresponding dashed lines. Efficient angular momentum transport occurs only in the case of the qK flows using a weak-spring tether (red).
All other cases show little angular momentum transport, as expected. The green dashed line shows the background flow angular momentum profile
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r2 = 20.3 cm
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Fig. 4 Experimental apparatus and diagnostics. a Schematic of the modified Taylor-Couette device48, with the inner and outer cylinder radii of r1= 6.9 cm
and r2= 20.3 cm, respectively, and the height of h= 39.7 cm. The device was filled with water to a depth of 31.1 cm and the top was open to allow access. A
GoPro HERO4 camera was partially submerged to minimize optical distortion. The camera was supported by an attachment and co-rotated with the ring
(yellow) at Ω3. A 1-inch-diameter neutrally buoyant test mass (red) was tethered by an unstretched spring to a vertical post and held by a spring-loaded
jaw-clamp. At t= 0 a release line (not shown) was pulled from above allowing the vertical spring to relax, releasing the mass. b Photograph of the test
mass and release mechanism. The camera is visible at the top of the image
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Our spring-ball apparatus highlights use of a novel combina-
tion of solid and fluid mechanics to test MHD principles in the
lab. The apparatus requires careful choices of the experimental
parameters to ensure that the MHD analogue is captured: the
dominant forces governing the motion of the ball must directly
correspond to the dominant forces governing the motion of a
parcel of MHD fluid for the chosen experimental design.

Methods
Apparatus. The experiments were carried out in a modified Taylor–Couette device
(Fig. 4) using water and an open top cap. Two co-axial cylinders with height h=
39.7 cm, and radii r1= 6.9 cm and r2= 20.3 cm, were driven by motors at two
independent angular rotation rates Ω1 and Ω2. qK flows in which Ω1 >Ω2 while
Ω1r

2
1<Ω2r

2
2 can be established. To minimize secondary Ekman flow, axial

boundaries are divided into three annuli. The innermost annulus with r < 8 cm co-
rotates with the inner cylinder while the outermost annulus with r > 14 cm co-
rotates with the outer cylinder. The intermediate annulus where 8 cm < r < 14 cm is
driven by a third motor at a rotation rate Ω3. The secondary flow can be minimized
by a suitable choice of Ω3, resulting in an extremely quiescent qK flow48. Our
experiments used only the bottom boundary, allowing top access to the interior. To
avoid significant fluid height variation that occurs on a rotating free surface, the
rotation rates were limited to Ω1= 190 rpm, Ω3= 80 rpm, and Ω2= 22 rpm.
Measurements of the azimuthal velocity at the mid-height of the fluid using laser
Doppler velocimetry confirmed that the flow had nearly the ideal Couette profile
with negligible Ekman effect (as using both axial boundaries48) with q ≤ 2 with little
dependence on r and z. Practical limitations on rotation rates and spring constants
led us to use 1-inch diameter water-filled plastic spheres, of total mass 8.43 g. With
any tethering spring, they were nearly neutrally buoyant. The finite size of the
spherical test masses, as compared with r1 and r2 is included in the analysis as
discussed above. The test mass was held in place by a clamp attached to a vertical
post mounted at r0= 10.8 cm on the annular ring rotating at Ω3. This radius was
originally selected so that Ω3=ΩTC(r0) where ΩTC(r) is the ideal Couette profile
with a Ω1:Ω3:Ω2= 190:80:22. The height l= 12.7 cm of the vertical post was chosen
so that the test mass would sit away from the lower boundary and the top surface at
z= 31.1 cm. The clamp release was triggered by hand using a metal arm fixed in
the laboratory frame. The test mass was either untethered to the vertical post, or
tethered with either a weak or strong spring. The springs had measured spring
constants of kweak= 0.636 Nm−1 and kstrong= 51.5 Nm−1. We estimate the
effective Reynolds number of the flow around the ball using
Re ¼ 2R½_r2 þ r2½ _θ �ΩðrÞ�2�1=2=νH2O

, and find maximum values Re ≈ 5000–20,000
for qK runs and Re ≈ 1 for solid body. The former values are consistent with the
importance of the D2 term in Eqs. (4) and (5).

Diagnostics. We mounted a compact battery-powered, waterproof, video camera
in the rotating frame of the vertical post with rotation rate Ω3 so that the test mass
appeared stationary until release at t= 0. The camera captured 120 frames
per second and the lens was slightly immersed in the water to minimize further
optical distortions due to the fluid free surface. After each run, the recorded video
was transferred to a computer. The camera uses a “fisheye” lens for a wide field-of-
view, but this distortion was readily removed using commonly available software.
The location of the center of the test mass in each frame was determined auto-
matically by object identification and tracking software. Cartesian image data were
converted into polar coordinates. From the position data, velocities, acceleration,
and the vertical component of the angular momentum were calculated. The
accuracy of the position data is limited by factors such as motion blur, tracking
errors, the abilities to correct for lens distortion and refraction.

Data availability
The digital data for this paper can be found at http://arks.princeton.edu/ark:/
88435/dsp01x920g025r.
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