
Current disruption and its spreading in collisionless magnetic reconnection

Neeraj Jain,1,2 J€org B€uchner,1,2 Seth Dorfman,3 Hantao Ji,1,4 and A. Surjalal Sharma5

1Max-Planck/Princeton Center for Plasma Physics
2Max Planck Institute for Solar System Research, 37191 Katlenburg-Lindau, Germany
3University of California Los Angeles, Los Angeles, California 90095, USA
4Deparment of Astrophysica Sciences and Princeton Plasma Physics Laboratory, Princeton University,
Princeton, New Jersey 08540, USA
5Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA

(Received 29 August 2013; accepted 15 October 2013; published online 4 November 2013)

Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233

(2013)] have disclosed current disruption in the absence of an externally imposed guide field. During

current disruption in MRX, both the current density and the total observed out-of-reconnection-plane

current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that

current disruption is an intrinsic property of the dynamic formation of an X-point configuration of

magnetic field in magnetic reconnection, independent of the model used for plasma description and of

the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived

from Ampere’s Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic

(EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to

localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed

which depends on the wave number of the perturbation. The implications of these results for MRX are

discussed. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827828]

I. INTRODUCTION

Reconnection is the dominant mechanism of often ex-

plosive releases of magnetic energy in astrophysical and lab-

oratory plasmas. Magnetic reconnection involves space and

time scales ranging from the small electron scales to large

magnetohydrodynamic (MHD) fluid scales. In the last six

decades, studies of magnetic reconnection employing first

theoretical methods1–5 and later computer simulations6–9

have made several advances toward a better understanding

of the physics of magnetic reconnection and a fast release of

magnetic energy. In collisionless plasmas, the scale length of

the dissipation region, in which the frozen-in condition of

magnetic field breaks down allowing reconnection, becomes

comparable to the intrinsic microscopic lengths, viz., ion in-

ertial length di ¼ c=xpi and even the electron inertial length

de ¼ c=xpe. This invalidates a MHD description and requires

a multi-species or even kinetic description of the plasma.

The motion of the electrons and ions decouples in the dissi-

pation region forming an electron scale current sheet

(thickness� de) embedded inside an ion scale current sheet

(thickness� di). In reconnection models without guide field,

this generates a quadrupolar structure of the out-of-plane

magnetic field.10,11 The formation of a multi-scale structure

and quadrupole out-of-plane magnetic field has been con-

firmed by satellite observations in space and by laboratory

experiments.12–15

In impulsive reconnection events, the current density

has been observed to drop suddenly following a long period

of its build-up. For example, the cross tail current density in

the Earth’s magnetotail first slowly increases before the

onset of sub-storms and then drops fast. This drop in the cur-

rent was termed current disruption.16–18 Current disruption

in laboratory experiments revealed that it is accompanied by

an enhanced reconnection.19–22 For example, merging spher-

omak experiments in counter helicity mode show that an

ejection of the current density is associated with a sudden

increase of the reconnection rate.22

In this paper, we focus on the physics of current disrup-

tion and its relation to magnetic reconnection. We also inves-

tigate the spreading of localized reconnection and the

associated current disruption in the direction of current. It

should be noted that the present paper does not address the

mechanism(s) responsible for impulsive reconnection which

should include both the slow build up and fast disruption

phases.

Our studies are motivated by recent observations of

localized 3D current disruption events in laboratory mag-

netic reconnection experiments (MRX).21 These experiments

have shown that after a slow build up phase, the reconnec-

tion electric field at the X-point rises simultaneously with

both a drop in the current density at the X-point and a

decrease in total current integrated over the probe coverage

area. The current disruption events observed in MRX are

attributed to the ejection of a flux rope (O-point in the recon-

nection plane) from the plane of reconnection leaving behind

an X-point structure. This broadens the anti-parallel mag-

netic field profile across the thickness of the current sheet in

the reconnection plane. The broadening of the magnetic field

profile spreads in the direction of the electron drift.

Here, we distinguish between the usage of the term

“current disruption” to describe a drop either in current den-

sity or in the total integrated current. The term “current dis-

ruption” has mainly been used in context of current

disruption in the Earth’s magnetosphere, defined as a sudden

drop in current density rather than the total integrated cur-

rent.17 While this is consistent with the definition used in

MRX experiments, the total current integrated over the probe
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coverage area is also observed to drop. However, it is possi-

ble to construct a situation where a drop in the local current

density does not occur simultaneously with a drop in total

integrated current. For example, the current density may

evolve to a turbulent state in which regions of drop and

enhancement of the current density are randomly distributed

in space and time. In this case, a single dominant X-point, at

which current density should be measured, cannot be clearly

identified. Another possibility is that the current density

drops everywhere but spreads over a wider region such that

the total current remains the same or even increases.

However, due to the limited observations in the Earth’s mag-

netosphere, it may not be possible to calculate the total cur-

rent. Therefore, we distinguish between the two cases by

calling the drop of current density “localized current dis-

ruption” and drop of total current “global current disruption.”

In this paper, we shall use the term “current disruption” to

describe the global current disruption in which the total out-

of-reconnection-plane current, obtained by integrating cur-

rent density over a region surrounding an X-point, drops and

the out-of-reconnection-plane electric field at X-point rises.

In this paper, we first show that current disruption is an

inherent property of the dynamic formation of an X-point

magnetic field configuration during reconnection. This result

is independent of the model used for the plasma description

and the dimensionality (2D or 3D) of reconnection. We

derive an analytic expression for the current drop directly

from first principles, starting with a typical X-point magnetic

field configuration without referring to the dimensionality.

This means that the current disruption can occur both in 2D

and 3D. The MRX experiments21 show examples of 3D cur-

rent disruptions. In the MRX experiments,21 current disrup-

tion occurs when a flux rope is ejected in 3D fashion, leaving

behind an X-point magnetic field configuration. Two and

three dimensional simulations of reconnection are performed

using an electron-MHD (EMHD) model to illustrate how

current disruption occurs in 2D as well as in 3D. The expres-

sion of the amount of the current drop is verified both by 2D

and 3D EMHD simulations.

On the other hand, the spreading of the current disruption

in the direction perpendicular to the initial reconnection plane

is a 3D phenomenon. In MRX,21 e.g., the half thickness of the

current sheet before the current disruption was �1 cm � 6–7de.

The duration of the current disruption was �4 ls � x�1
ci . The

current disruption spread over the toroidally resolved region

(�10 cm) in �2 ls � 0:5x�1
ci (see Fig. 4 of Dorfman et al.21),

giving speed of spreading �5 cm/ls. This indicates that the

physics of current disruption in this experiment is dominated

by the electrons. Therefore, it is appropriate to investigate

the spreading of the current disruption by performing 3D

EMHD simulations. Note that although the EMHD simula-

tions presented in this paper do not directly correspond to the

experimental setup of MRX, they indicate that the electron

dynamics governs the physics of MRX reconnection. While

EMHD does not describe kinetic effects, it nevertheless cap-

tures many essential details of the electron-dominated recon-

nection processes. EMHD simulations show, e.g., that the

current disruption due to localized reconnection spreads in

the electron drift direction with a speed which depends on

the wavenumber of the perturbation that caused the recon-

nection. The wave number dependence allows the speed of

spreading to be much smaller than the speed of the current

carriers. Note that this new result is consistent with the MRX

experiments21 in which it was found that the speed of spread-

ing is much smaller than the speed of the current carriers.

Earlier theoretical and simulation results found that the speed

of spreading is very close to the speed of the current

carriers23,24 or to the wave velocity of the generating sausage

or drift waves.25,26 These studies, however, did not consider

the wave number dependence of the speed of spreading. We

show that the speed of spreading can vary from a fraction of

the current carrier (electrons in present studies) speed to the

current carrier speed depending on wave numbers.

The paper is organized as follows. Section II describes

the EMHD model and the simulation setup. In Sec. III, we

obtain an analytic expression for the current drop due to

reconnection. It is verified by means of 2D EMHD simula-

tions. Section IV presents 3D EMHD simulations of the

spreading of the current disruption in the direction of the elec-

tron drift. In Sec. IV, the expression of current drop is verified

again also by 3D EMHD simulations. A numerical solution of

linear EMHD equations to obtain the wave number depend-

ence of the speed of the spreading is presented in Sec. IV.

Finally, conclusions and discussions of the results in the con-

text of the MRX reconnection experiment are given in Sec. V.

II. EMHD MODEL AND SIMULATION SETUP

The EMHD model describes the dynamics of the elec-

tron fluid in a stationary background of ions. It is valid for

spatial scales smaller that di and time scales smaller than

x�1
ci . The EMHD equations are obtained by eliminating the

electric field from the electron momentum equation using

Faraday’s law. They can be written as27

@

@t
ðB� d2

er2BÞ ¼ r � ½ve � ðB� d2
er2BÞ�; (1)

ve ¼ �
1

l0n0e
r� B: (2)

In addition to ignoring the ion dynamics, Eqs. (1) and (2)

assume uniform electron number density n0 and incompressi-

bility of the electron fluid. The displacement current is

ignored under the assumption x� x2
pe=xce.

In EMHD, the frozen-in condition of magnetic field

breaks down due to the electron inertia (which is contained

in the two terms with Laplacian operator in Eq. (1)) leading

to reconnection. In the absence of electron inertia, Eq. (1)

represents the condition that the magnetic field is frozen in

the electron fluid. Electron inertia is the dominant non-ideal

term in Ohm’s law for fast time-dependent phenomena in

very thin current sheets (thickness� de).
28 This is in contrast

with the steady state of reconnection in which divergence of

the electron pressure tensor is the dominant term in the gen-

eralized Ohm’s law of collisionless two-fluid plasmas.28–30

The equilibrium magnetic field is taken to be B0

¼ B1tanhðx=LÞẑ (x will be referred to as radial direction in

this paper) corresponding to a current density J0 ¼ �ðB1=
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l0LÞsech2ðx=LÞŷ, where L¼ de is the half thickness of the

current sheet. For stationary ions, this means J0 ¼ �n0eve.

Similar to the Geospace Environment Modeling (GEM)

reconnection challenge,6 simulations are initialized by a high

amplitude perturbation with a purpose of initially forming an

X-point configuration of the magnetic field. These initial

conditions avoid waiting for a spontaneous onset of recon-

nection. The perturbation has the form

~Bxðx; y; zÞ ¼ Bx1 expð�x2=L2ÞgðyÞsinðpz=lzÞ; (3)

with Bx1 ¼ 0:1B1. Such a perturbation forms a single X-point

in the center of the coordinate frame, where it triggers recon-

nection. For 2D simulations, g(y)¼ 1 while for 3D perturba-

tions, two choices of g(y) are used corresponding to (1) a

y-localized perturbation and (2) a sinusoidal perturbation with a

single wavelength along y. The simulation box extends from

x¼�lx to lx and z¼�lz to lz in 2D case. In the 3D case, it

extends along y as well from y¼�ly to ly. The boundary condi-

tions are periodic along y and z while the perturbations vanish

at x boundaries far away from the central region of interest.

For 2D simulations, the box size (2lx � 2lz) is 60de � 15de

with 400� 100 grid points. For 3D simulations, the box sizes

(2lx � 2ly� 2lz) are 10de� 10de� 80de with 40� 40� 320

grid points for y-localized perturbation and 20de� 20de� 20de

with 80� 80� 80 grid points for the sinusoidal perturbation

in y. The time step for all the simulations is xceDt¼ 0.01.

Results (except the derivation of the expression for the

current-drop in Sec. III A) will be presented using the follow-

ing normalization: The magnetic field is normalized by its

asymptotic value B1, length by the electron skin depth de,

time by the inverse electron cyclotron frequency

x�1
ce ¼ ðeB1=meÞ�1

, and velocity by the electron Alfv�en ve-

locity vAe ¼ dexce. Under this normalization, J0 ¼ �ve.

III. CURRENT DISRUPTION

A. Derivation

Let us consider a typical initial current layer configura-

tion with an imposed magnetic reconnection perturbation. A

current layer carrying current along the y direction and con-

fined along x produces an anti-parallel magnetic field Bz

which changes its direction at x¼ x0 (at which point the layer

is centered). We wish to calculate the evolution of the total

current along y through an area around the X-point in the x-z
plane after the initially anti-parallel magnetic field lines start

to reconnect. The projection of magnetic field lines in the x-z
plane, shown in Fig. 1, depicts a typical magnetic field con-

figuration near an X-point valid in 2D and 3D reconnection.

Here, we use the physical un-normalized quantities to derive

an expression for the current drop.

The total current along y through an area in x-z plane

(x1< x< x2; z1< z< z2) can be written as Iy;totalðtÞ¼ð1=l0ÞÐ x2

x1

Ð z2

z1
ŷ:r�Bdxdz¼ Iy1ðtÞþ Iy2ðtÞ, where

Iy1ðtÞ ¼ �
1

l0

ðz2

z1

dz½Bzðx2; z; tÞ � Bzðx1; z; tÞ� and

Iy2ðtÞ ¼
1

l0

ðx2

x1

dx½Bxðx; z2; tÞ � Bxðx; z1; tÞ�

are the currents due to the x-variation of the reconnecting

magnetic field Bz and the z-variation of the reconnected mag-

netic field Bx, respectively. The initial magnetic field, assumed

to have a profile Bzðx; z; t ¼ 0Þ ¼ B1tanh½ðx� x0Þ=L�,
changes around the center (x¼ x0) of the current sheet as

reconnection proceeds. At the same time, it remains more or

less constant far away (jx� x0j � L) from the center of the

sheet. Taking x0 � x1; x2 � x0 � L; Bzðx1; z; tÞ ¼ �B1 and

Bzðx2; z; tÞ ¼ B1. This gives

Iy1 ¼ �
2

l0

B1ðz2 � z1Þ; (4)

which does not depend on time. Since Iy2ðt ¼ 0Þ ¼ 0 (no

reconnected field at t¼ 0), Iy1 ¼ Iy;totalðt ¼ 0Þ is the initial

total current.

In the course of reconnection, the magnetic field is

changing away from Bzðx; z; t ¼ 0Þ ¼ B1tanh½ðx� x0Þ=L�.
Reconnection at the site (x0, z0) forms an X-point configura-

tion of the magnetic field, generating the reconnected field

Bxðx; z2; tÞ > 0 for z2> z0 and Bxðx; z1; tÞ < 0 for z1< z0.

Therefore, Iy2(t)> 0 and magnitude of the total current

Iy;total ¼ Iy1 þ Iy2 drops as a result of the evolution of

X-point configuration of magnetic field.

Around (x0, z0), the reconnected field Bx is an

anti-symmetric function of z. Taking the limits z1 and z2

to be equidistant from z0 on the two sides of the reconnec-

tion site ðz0 � z1 ¼ z2 � z0Þ; Bxðx; z2; tÞ ¼ �Bxðx; z1; tÞ, and

therefore,

Iy2ðtÞ ¼
2

l0

ðx2

x1

Bxðx; z2; tÞdx

To quantitatively estimate the current drop, the shape of

Bxðx; z2; tÞ can be approximated as a typical shape of the ei-

gen function of the reconnecting field (Fig. 1, right panel:

two peaks separated by a small distance and a dip at x¼ x0)

using the function

FIG. 1. (Left) Geometry of reconnecting magnetic field lines in the x-z plane

for the calculation of the total current Iy,total through the area x1< x< x2 and

z1< z< z2. (Right) Shape of a typical eigen-function for Bx in evolving

reconnection.
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Bxðx; z2; tÞ ¼ Bx0ðz2; tÞ
�

sech2 x� x0 � d
L0

� �

þ sech2 x� x0 þ d
L0

� ��
; (5)

where

Bx0ðz2; tÞ ¼
Bx;peakðz2; tÞ

1þ sech2ð2d=L0Þ
> 0:

Here, Bx,peak is the peak value, 2d is the distance between the

two peaks, and 2L0 � 2d is approximately the half width of

the eigen function. Using Eq. (5)

Iy2ðtÞ ¼
8L0

l0

Bx;peakðz2; tÞ
1þ sech2ð2d=L0Þ

: (6)

Hence, using sech2ð2d=L0Þ � 1 for d � L0 the fractional

change in the total current ðDIy;totalÞf ¼DIy;totalðtÞ=Iy;totalðt¼ 0Þ
can be obtained as

ðDIy;totalÞf ¼
Iy;totalðt ¼ 0Þ � Iy;totalðtÞ

Iy;totalðt ¼ 0Þ

¼ Bx;peakðz2; tÞ
B1

� 4L0

ðz2 � z1Þ
: (7)

Note that ðDIy;totalÞf is directly proportional to Bx;peakðz2; tÞ.
Hence, Iy,total(t) keeps dropping with the rise in Bx;peakðz2; tÞ.
It must saturate, i.e., stop changing in time with the satura-

tion of Bx;peakðz2; tÞ. Amplitude and spatio-temporal scales in

the saturated state may depend on physical plasma model,

external drive, physical parameters, and dimensionality of

the system. For example, in the EMHD model, the initial

thickness L of the current sheet affects the saturated state.

Thinner current sheets have more free energy and reconnec-

tion grows faster compared to the thicker current sheets.

Therefore, in case of spontaneous reconnection, thinner cur-

rent sheets can quickly drive the system to a high level of

saturation amplitude, and hence cause a larger and faster

drop in the total current.

In order that Eq. (7) gives an amount of drop in the total

current ð½DIy;total�f > 0Þ; Bxðx; z2; tÞ > 0. Therefore, while

applying Eq. (7), one should choose a value of z2 such that

Bxðx; z2; tÞ > 0. In case of a single X-point Bxðx; z2; tÞ > 0

for all values of z2, therefore, any value of z2 can be chosen.

However, in case of multiple X-points, Bxðx; z2; tÞ changes

sign at certain values of z2. In this case, a value of z2 should

be chosen so that Bxðx; z2; tÞ > 0 making ½DIy;total�f > 0.

Note that, although Eq. (7) was derived assuming Bxðx; z2; tÞ
> 0, it is valid even in a case of Bxðx; z2; tÞ 	 0 giving an

amount of rise instead of drop in the total current. It means

that in case of multiple X-points, the rise or drop in the total

current depends on the region of integration. The total cur-

rent drops (rises) with time as long as the region of integra-

tion contains more X-points (O-points) than O-points

(X-points). Our objective in this paper is to demonstrate that

dynamic formation of an X-point is always associated with a

drop in the total current. Therefore, while verifying Eq. (7)

with EMHD simulations in Secs. III B and IV A, we choose

our region of integration to contain a single X-point.

According to Faraday’s law, the rise in Bx;peakðz2; tÞ due

to the generation of the reconnected magnetic field must lead

to a rise in the inductive electric field Ey at the X-point. This

electric field is expected to peak around the time when

dBx;peak=dt is maximum. The current Iy,total also drops fastest

at the maximum of dBx;peak=dt (see Eq. (7)). Hence the

instants of time, at which peak in Ey (at the X-point) and

fastest drop in current occur, are related. The peak of Ey falls

near the ankle (where the current begins to drop slowly after

a period of fastest drop) of the current drop curve Iy,total(t)
vs. t. The total current finally saturates with the saturation of

Bx,peak.

Equation (7) assumes Bxiðz2Þ ¼ Bx;peakðz2; t ¼ 0Þ ¼ 0. If

Bxiðz2Þ is finite, Iy2ðt ¼ 0Þ will be finite and contribute to

total initial current. In this case, the expression for fractional

change in current becomes

ðDIy;totalÞ0f ¼ ðDIy;totalÞf
1� L00

L0
Bxiðz2Þ

Bx;peakðz2; tÞ

1� 4L00
z2 � z1

Bxiðz2Þ
B1

2
6664

3
7775; (8)

where 2L00 is the initial half width of the eigen function and

ðDIy;totalÞf can be calculated using Eq. (7). Although the frac-

tional change in current at a given time t, given by Eq. (8), in

general, depends on the initially finite Bx through Bxi and L00,

it becomes independent of initial Bx if Bxiðz2Þ � Bx;peak

ðz2; tÞ;B1 and L00 � L0; ðz2 � z1Þ=4. Physically, it means

that by time t the amplitude and radial scale of Bxðx; z2; tÞ
must grow to values much larger than their initial values. In

addition, the initial values of the amplitude and the radial

scale of Bxðx; z2; tÞ must be much smaller than the asymp-

totic value of the reconnecting magnetic field and z2 � z1,

respectively. For sufficiently small Bxi and L00, the expres-

sion for ðDIy;totalÞ0f can be simplified using a binomial expan-

sion and neglecting terms which are second order in small

quantities

ðDIy;totalÞ0f ¼ ðDIy;totalÞf 1� L00Bxiðz2Þ
L0Bx;peakðz2; tÞ

1�ðDIy;totalÞf
� �" #

:

(9)

It can be seen that for ðDIy;totalÞf < 1, increasing the values

of Bxiðz2Þ or L00 reduces ðDIy;totalÞ0f .

B. Verification by simulations

Let us first verify Eq. (7) for the current drop by 2D

EMHD simulations. (The same expression will be verified

by 3D simulations later in Sec. IV A.) Fig. 2 shows the mag-

nitude of the total out-of-plane current Iy;totalðtÞ ¼
Ð lx
�lxÐ lz=2

�lz=2
Jyðx; z; tÞdxdz, obtained directly from 2D EMHD simu-

lations. Also shown in Fig. 2 is jIy;totalj ¼ jIy1 þ Iy2j, where

Iy1 and Iy2 are calculated using normalized versions of Eqs.

(4) and (6). For estimation of the values of L0; Bx;peak and d,

the simulation profiles of Bxðx; lz=2; tÞ, shown in Fig. 2, are
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used. The current drops almost by 50% by xcet ¼ 30.

Simultaneously, the magnitude of Ey rises to its peak value

near the ankle of the current drop. After that, the magnitude

of Ey drops again. There is a close agreement between the

current calculated directly by the simulation and the current

calculated using the analytic expressions.

Note that expression (7) for the current drop was derived

using Ampere’s law simply considering a typical X-point ge-

ometry of a reconnection magnetic field. It does not require

considerations either of dimensionality (2D or 3D) or of a spe-

cific model of plasma description. Note that, although the frac-

tional amount of current drop in expression (7) depends on the

chosen shape for the eigen function Bxðx; z2; tÞ, the current dis-

ruption occurs independent of the shape of the eigen-function.

The main reason for the current disruption is that the recon-

nected magnetic field, independent of its radial shape, always

corresponds to a current Iy2 in the direction opposite to the ini-

tial current Iy1. Therefore, as long as Iy1Iy2 < 0, the magnitude

of the total current always drops in reconnection for any radial

shape of the reconnected magnetic field Bxðx; z2; tÞ. The oppo-

site signs of Iy1 and Iy2 are not specific to the chosen magnetic

field geometry for which Iy1< 0 and Iy2> 0. If we reverse the

direction of Bz, the signs of both Iy1 and Iy2 will be reversed as

well. Therefore, we conclude that current disruption is an

intrinsic property of the dynamic formation of an X-point mag-

netic field configuration in reconnection. Duration and amount

of current disruption will, off course, depend on the physical

mechanism allowing magnetic reconnection. The physical

mechanism may depend on the physical parameters, applicable

plasma model and the dimensionality. A detailed study of the

dependence of current disruption on physical parameters,

plasma model and dimensionality will be presented in future

publications. Here we demonstrate current disruption and its

spreading in the framework of an EMHD model.

IV. SPREADING OF CURRENT DISRUPTION

In three dimensions, current disruption is expected to

spread perpendicular to the initial reconnection plane.

Although the occurrence of current disruption itself does not

require any specific dimensionality (2D or 3D) or plasma

model, its spreading does require three dimensional geome-

try and may well depend on plasma model. We study the

spreading of the current disruption by performing 3D EMHD

simulations.

A. y-Localized perturbation

First, we initialized the simulations with a perturbation

localized in y, i.e., we choose a shape function gðyÞ ¼ 0:5
½tanhðy=de þ 35Þ � tanhðy=de þ 5Þ� which rises from g¼ 0

at y¼ 0 to g¼ 1 at y � �7:5de. Such perturbation remains

uniform at g¼ 1 for �7:5 > y=de > �32:5 and then drops to

g¼ 0 at y/de¼�40. Reconnection triggered by this perturba-

tion initially forms an X-line x¼ z¼ 0 along y in the whole

region of the localization (�40 < y=de < 0) of the initial

perturbation. This broadens Bz across x (radially) along the

whole length of the X-line (localized in the region

�40 < y=de < 0), as can be seen at xcet¼ 5 in Fig. 3. On

the other hand, Jy sharpens radially and intensifies in the

region of localization. This opposite behavior of Jy and Bz is

explained in Fig. 4 which schematically shows the radial

profiles of Jy and Bz before and after reconnection. In the vi-

cinity of X-point at x¼ 0, the reconnection electric field Ey

accelerates the electron flow and therefore Jy increases

above its initial peak value. The increase in Jy / @Bz

@x requires

the radial profile of Bz to become sharper near x¼ 0.

The sharpening of Bz-profile near x¼ 0 is facilitated by the

incoming upstream magnetic field lines frozen-in with

the electron inflow. This increases the magnetic field in the

vicinity of x¼ 0 but depletes it in the upstream region. As a

result, the Bz-profile flattens in the upstream region

while sharpens in the vicinity of x¼ 0. Since Jy / @Bz=@x,

the flattening of Bz-profile in the upstream region is associ-

ated with a drop in the value of Jy and hence thinning of

Jy-profile. Therefore, the overall Bz-profile broadens, while

the Jy-profile thins down, as illustrated in Fig. 4. Thinning

and intensification of Jy at X-points were observed in 2D

EMHD simulations31 as well. Although Jy intensifies at an

X-point, we shall see in Fig. 5 that the total current along y
drops.

Further on, the radial broadening of Bz spreads in the

direction of the electron drift velocity (y), qualitatively simi-

lar to the spreading observed in MRX.21 This extends the

X-line as well. The propagation front reaches from y/de� 5

at xcet¼ 15 to y/de� 15 at xcet¼ 25, giving an average

speed close to the peak electron flow speed V0/vAe¼ 1. Note

that the propagation of the reconnection structure is similar

to the “reconnection wave” propagation observed in

Hall-MHD simulations23 and in 3D PIC simulations.25,26

The formation and extension of an X-line along with the

radial broadening of Bz are associated with current disruption

and its spreading. Fig. 5 shows the spreading of the current

disruption along y. The magnitude of the total current

Iy;totalðy; tÞ ¼
Ð lx
�lx

Ð lz=2

�lz=2
Jyðx; y; z; tÞdxdz drops and the magni-

tude of electric field (Ey) at the X-line rises with time first in

the region �40 < y=de < 0, where the perturbation is ini-

tially localized. At a given location, y=de > 0; Iy ¼ jIy;totalj

FIG. 2. (Top panel) Electric field (–Ey� 100, red line) at the X-point, mag-

nitude of the total current along y calculated directly from the simulations

(blue line), and from jIy;totalj ¼ jIy1 þ Iy2j using normalized versions of Eqs.

(4) and (6) (blue circle). (Bottom panel) Simulation profile of Bxðx; lz=2; tÞ
used to estimate L0, d, and Bx,peak in Eq. (6).
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FIG. 3. (3D EMHD simulation result) Evolution of the out-of-reconnection-plane current Jy (top row) and Bz (bottom row) in the z¼ 0 plane with projection of

magnetic field lines (black) in the planes y/de¼�20, 0, and 15 for an initial reconnection perturbation localized in the region <� 40 < y=de < 0. Contour

lines in the plane z¼ 0 for Jy=n0evAe ¼ �0:4 (top row, black lines) and Bz=B1 ¼ �0:9; 0:9 (bottom row, white lines) show how the thinning of Jy and broaden-

ing of Bz in the vicinity of X-line spreads along y.

FIG. 4. Schematic representation of the profiles of –Jy (top) and Bz (bottom)

before (blue-solid) and after (red-dash) reconnection. The vertical solid line

aligns the peak of Jy and zero crossing of Bz. The region of the intensifica-

tion of Jy is shown between two vertical dashed lines.

FIG. 5. Spreading of the current disruption along y for the current sheet ini-

tialized with a y-localized perturbation. Magnitude of the total current along

y (Iy ¼ jIy;totalj) (top panel) and electric field (–Ey) at X-point (middle plane)

as a function of y and time. In the bottom panel, –200�Ey (red) and

Iy (blue) for y¼ 0 (solid), y¼ 5de (dash), and y¼ 10de (dot). Blue circles

represent magnitude of the total current Iy;total ¼ Iy1 þ Iy2 calculated using

normalized versions of Eqs. (4) and (6) for y¼ 0.
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remains constant at its initial value and Ey� 0 until the

X-line is extended to that location allowing Iy to drop and

the magnitude of Ey at the X-line to rise (cf. the bottom panel

of Fig. 5, showing the evolution of Iy and –Ey at different

locations along y). The slope of the dashed line in the top

panel of Fig. 5 provides the speed of spreading as �vAe. Note

that for y=de > �20 the total current Iy rises again after

xceDt � 20 after the initial drop. Due to the periodic bound-

ary conditions along z (the reconnection-outflow direction),

the simulations are reliable only until the outflow recirculates

back to the X-line. The typical outflow speed is �0.5vAe.

Hence, the simulation box size along z (�10de) gives time of

recirculation of �20x�1
ce . This determines the period of the

validity of the simulation results after the arrival of the per-

turbation at a given y-location.

Although the drop in the current in a y ¼ constant (x – z)

plane is delayed by the time, it takes the X-line to reach

there, the amount of drop is almost the same. An estimate of

the current drop can be obtained from the bottom panel in

Fig. 5 as being about �30%. After the electric field (–Ey)

first attains a small negative value, it rises to a positive peak

value which is close to the time when the ankle of the current

drop is reached. The negative value becomes larger farther

away from y¼ 0 plane but the positive peak value is similar

at all distances along y.

In the bottom panel of Fig. 5, the magnitude of the total

out-of-plane current Iy;total ¼ Iy1 þ Iy2 is also shown. Here

the values of Iy1 and Iy2 are calculated from the normalized

versions of Eqs. (4) and (6) using values of L0, Bx,peak, and d
estimated from the simulation profiles of Bxðx; 0; lz=2; tÞ.
There is a good agreement between the current obtained

directly from the simulations and the current calculated using

the analytic expressions (blue circles in the bottom panel of

Fig. 5).

B. Sinusoidal perturbation with single wavelength
along y

One of the observations in MRX21 was that the radial

profile of Bz gets sharper when a flux rope (winding around

the O-points) builds up and broadens, while it is ejected

away from an X-point. In simulations initialized with local-

ized perturbations, however, only X-line can form. In order

to study the 3D structure of Bz near both X- and O-points, as

well as the transition between O- to X-points, we performed

another set of simulations which were initialized by a sinu-

soidal perturbation (gðyÞ ¼ sinðpy=lyÞ) with a single wave-

length of 2ly ¼ 20de along y.

Fig. 6 shows the resulting evolution of the current den-

sity (-Jy) in the x-z (y=de ¼ �10; 0; 10) planes. Because of

the initial sinusoidal perturbation, in the y¼ 0 plane an

X-point, while in the planes y/de¼�10 and y/de¼ 10

O-points are formed in the center at xcet¼ 10. By xcet¼ 30,

the X-point in the plane y¼ 0 is replaced by an O-point

while the former O-points are replaced by X-points (at

y/de¼�10 and y/de¼ 10). The magnetic field topology

changes back from X- to O-points and O- to X-points at

xcet¼ 50. The transformation from X- to O-points and vice

versa in different x-z planes is due to the convection of the

magnetic field frozen into the electrons flowing along the

y-direction. Since the O-point is convected from the

mid-plane y¼ 0 at xcet¼ 30 to the end plane y/de¼ 10 at

xcet¼ 50, the speed of its propagation is about �0.5vAe.

Fig. 7 shows iso-surfaces of the total magnetic field for

B/B1¼ 0.15 colored by –Jy. The high values (red) of –Jy at

the X-points follow a kinked line on the iso-surface and

show that reconnection takes place through a kinked current

sheet. The magnetic field lines illustrate the topology of 3D

reconnection near 3D extension of X- and O-points.

FIG. 6. Dynamical evolution of the

current density (–Jy) (color) and pro-

jection of magnetic field (black lines)

in x-z planes. Simulations are initial-

ized by a sinusoidal perturbation with

a single wavelength of 2ly¼ 20de

along y.
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Figs. 8(a) and 8(b) show color plots of Bz in the plane

z¼ 0 at xcet¼ 30 and 50. The X- and O-points are marked in

the planes y=de ¼ �10; 0; 10. The radial profiles of Bz in

Fig. 8 are broader at X-points and sharper at O-points, e.g.,

as evident from the contour lines Bz=B1 ¼ �0:9 and 0.9.

The radial profiles of Bz along the line z¼ 0 in the central

x – z plane (y¼ 0) in Fig. 8(d) show that the overall

Bz-profile is broader (sharper) at xcet¼ 50 (xcet¼ 30) when

the plane y¼ 0 contains the X-point (O-point). On the other

hand, Jy in Fig. 6 exhibits the opposite behavior, viz., a radial

broadening (thinning) at the O-point (the X-point). Thinning

and intensification of Jy at X-points are schematically illus-

trated in Fig. 4 and have been explained in Sec. IV A.

The radial broadening of Bz spreads along y as can be

seen in Figs. 8(a) and 8(b). It is due to the convection of

magnetic field frozen into the electron flow. The radial pro-

file of Bz is broader at xcet¼ 30 in the y/de¼�10 plane

where an X-point is located at that time. At xcet¼ 50, the

broadening spreads to the y¼ 0 plane due to the movement

of the X-point to there.

Note that the current disruption in MRX is associated

with the ejection of a flux rope in the x-z plane. This changes

the magnetic field configuration in the x-z plane from O-

point to X-point. In our 3D simulations, magnetic field con-

figuration in x-z planes changes from O- to X-point due to

the propagation along y. In Figs. 8(a) and 8(b), the O-point

in the plane y¼ 0 at xcet¼ 30 is propagated away and at its

position an X-point appears at xcet¼ 50. The total current

through an area (�10 < x=de < 10;�5 < z=de < 5) in y¼ 0

plane drops during the period xcet¼ 30-50 and magnitude of

the electric field Ey at x¼ y¼ z¼ 0 rises (as shown between

the two dashed vertical lines in Fig. 8(c)), constituting a cur-

rent disruption event. The simulations cannot be trusted

beyond xcet¼ 50 as from that time on the periodic bounda-

ries affect the internal solution (see discussion in Sec. IV A).

The drop in the current is small (<10%) because the X-point

in the plane y¼ 0 changes into an O-point after xcet¼ 50.

This lets the current to drop only for a short time during

which the X-point is active. Note that the drop in the current

could be larger if the X-point continued to be active and gen-

erate reconnected magnetic field for a longer time.

C. Speed of spreading

In case of localized perturbation, the speed vsp, at which

the reconnection region moved in the y-direction, is close to

the electron flow speed (V0¼ vAe). In case of sinusoidal per-

turbation, it is smaller, approximately equal to 0.5 V0. It

seems that vsp depends on ky and kz which are different in the

two cases. Past studies in the absence of guide field found

the unidirectional speed of X-line spreading to be the drift

speed of the current carriers23,24 or waves25,26 but did not

FIG. 7. Iso-surface of the total magnetic field (B/B1¼ 0.15) colored by the

current density (–Jy) (blue: minimum, red: maximum) at xcet¼ 30.

Magnetic field lines (black) illustrate the 3D topology of the magnetic field

around O- and X-points.

FIG. 8. Color coded Bz and contour

lines (white line) for Bz=B1 ¼
�0:9; 0:9 in the plane z¼ 0 at (a)

xcet¼ 30 and (b) xcet¼ 50 with mag-

netic field lines (black) in the planes

y/de¼ –10, 0, 10. Electric field

(–200�Ey, red) at x¼ y¼ z¼ 0 and

total current along y (blue) crossing the

area (�10 < x=de < 10;�5 < z=de

< 5) in the plane y¼ 0 (c). Radial pro-

files of Bz along the line y¼ z¼ 0 (d).
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consider the dependence on wave numbers. In the presence

of strong guide field, Alfven waves excited in the guide field

spreads the X-line bi-directionally with Alfven speed.32

The speed of spreading by the so called “reconnection

waves” was obtained in absence of guide field by applying

approximate linear EMHD equations near the mid plane

x¼ 0, ignoring electron inertia.23 We carry out an eigen

value analysis of a more general set of linear EMHD equa-

tions to understand the wavenumber dependence of vsp. The

linear EMHD equations can be written as two coupled equa-

tions for the perturbed variables vx1 and Bx1 (Ref. 33)

d2vx1

dx2
�ð1þ k2Þvx1þ

kzBx1

a
þ k2

z B0vx1

�xa
þðv

00
0� v0Þkyvx1

�x
¼ 0;

(10)

a
d2Bx1

dx2
� að1þ k2ÞBx1 � kzvx1 ¼ 0: (11)

Equations (10) and (11) have been Fourier transformed in y,

z, and t and written in normalized variables. Here, a ¼ �x=
ðB0 � B

0 0
0Þ; �x ¼ x� kyv0, and k2 ¼ k2

y þ k2
z . Equations (10)

and (11) take into account the full spatial dependence of the

equilibrium variables and the electron inertia. Applying Eq.

(11) near the mid plane x¼ 0, where vx1¼ 0, we can obtain

the speed of the reconnection wave x/ky¼ v0 to be the elec-

tron drift speed. A full solution of Eqs. (10) and (11), how-

ever, contains number of other modes and possibilities for a

range of propagation speeds.

Numerically solving Eqs. (10) and (11), one finds a

number of unstable modes for given ky and kz. In Fig. 9, the

ky and kz dependence of the y-component of the phase veloc-

ity v/;y ¼ xr=ky (where xr is real part of the complex eigen

value x ¼ xr þ ic) is shown for 0 < kyde; kzde 	 1 for the

fastest growing mode. It can be seen that the phase velocity

depends on ky and kz. Most of the modes with v/;y � vAe

have kz> ky. On the other hand, although all modes with

kz< ky do propagate along y, they have relatively small phase

velocities. The dependence of the spreading speed on ky is

consistent with the physical mechanism of spreading pro-

posed by Dorfman et al.21 Their mechanism also depends on

the finite gradients (@vy=@y) along y. Detailed studies on de-

pendence of spreading speed on ky, kz, and L will be pre-

sented in future publications.

The simulations initialized with the sinusoidal perturba-

tion have kyde ¼ kzde ¼ 0:314. For these values of ky and kz,

numerical solution of linear EMHD equations gives

xr=ky � �0:6vAe, in close agreement with the observed

value in the simulations. For the localized perturbation,

kzde¼ 0.628. The power is distributed in many ky and maxi-

mizes for the minimum kyde ¼ p=ly ¼ 0:0785 in the system.

For this set of the values of ky and kz, numerical solution

gives xr=ky � �0:89vAe, which, again, is in close agreement

with the value obtained by the EMHD simulations.

V. CONCLUSION AND DISCUSSION

It has been shown that current disruption is an intrinsic

property of the dynamic formation of an X-point in magnetic

reconnection, independent of a particular plasma model or of

the dimensionality of the system (2D or 3D). This supports

recent Hall MHD simulations which show that current dis-

ruption in Earth’s magnetotail occurs due to the onset of

magnetic reconnection leading to the formation of a

magnetic X-point.34 In MRX experiments21 also, most of the

current disrupts during the formation of an X-point configu-

ration of magnetic field during the ejection of a flux rope.

The expression for the current drop, derived from first princi-

ples considering a typical X-point magnetic field configura-

tion, agrees well with the current drop obtained by both 2D

and 3D EMHD simulations.

Three-dimensional EMHD simulations initialized with a

reconnection perturbation localized along y (in half the simu-

lation box) show that an initially localized X-line extends in

the direction of the electron flow. This also spreads the radial

broadening of Bz and the associated current disruption in the

direction of the electron flow. Simulations initialized with a

sinusoidal (along y) reconnection perturbation show that the

magnetic field geometry in the x – z planes changes along y
from X-point to O-point and vice-versa. The wavelength of

the variation of the geometry is equal to the wavelength of

the perturbation (k), i.e., X-point changes to O-point and

then to X-point again in a single wavelength of the perturba-

tion. The reconnection structure propagates in time along y
with a wavenumber dependent speed (vsp). The patterns of

alternating X- and O-points are maintained in the course of

the propagation of the reconnection structure in the

y-direction, being carried along with the electron flow. In a

given x – z plane, the time period of change from X-point to

O-point to X-point is k/vsp. The overall profile of Bz across

the width of the current sheet is broader at X-point than at an

O-point position, although it is sharper at an X-point near the

center of the current sheet.
FIG. 9. Color coded y-component of the phase velocity v/;y ¼ xr=ky of the

fastest growing mode as a function of ky and kz for L/de¼ 1.
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In the MRX reconnection experiment,21 both current

disruption and its spreading along y were observed: the total

current, which crosses the plane y¼ 0, drops approximately

by 37% (from 8 kA at t¼ 330 ls to 5 kA at t¼ 334 ls) in

about 4 ls. Using Eq. (7) and typical MRX parameters

(L0 � 3:5 cm; z2 � z1 ¼ 18 cm; Bx;peakðz2Þ � 112 G, and B1
� 300 G), the estimate of the current drop DIy;total is approxi-

mately 29%. The MRX parameters used in Eq. (7) for the

estimation of the current drop were obtained by approxi-

mately fitting the experimental profile of Bx at z¼ 9 cm and

t¼ 334 ls to the profile given by Eq. (5). This estimate of the

current drop is similar to the experimentally observed drop

in the total current. Simultaneous with the drop in the

current, the out-of-plane electric field Ey at the X-point

rises from �2 V/cm to �4 V/cm. The reconnection rate

Ey� 2 V/cm before current disruption depends on the time

dependent plasma currents and the external coil currents.

The plasma currents are due to details of the plasma creation

and discharge evolution processes in MRX which are beyond

the scope of the present paper. A rough estimate of the mag-

nitude of the electric field due to the main coil current ramp-

down can be made using Faraday’s law
Þ

E:dl ¼ � d/
dt , where

the line integral is over a circle of radius R centered at the

axis of the two current coils and located right in middle of

them. The flux of the magnetic field / ¼
Ð

B:ds � BavpR2 is

estimated using an average value of the magnetic field Bav

over the area enclosed by the circle of radius R. The mag-

netic field due to the two current coils varies along the radius

of the circle from Baxis at the center to 0.4Baxis at the coil ra-

dius. So, the average magnetic field over the area of the

circle can be approximated as 0.7Baxis, where Baxis ¼ l0Icoil

R2
coil=ðR2

coil þ z2Þ3=2
. Here, Rcoil is the radius of the two coils

each carrying current Icoil and separated by a distance 2z.

The component Ey can be written as

Ey ¼ �0:35� l0RR2
coil

ðR2
coil þ z2Þ3=2

dIcoil

dt
:

For MRX parameters (R � Rcoil ¼ 0:375 m, z¼ 0.294 m, and

dIcoil=dt � 500 MA=s), one obtains Ey¼ 1.07 V/cm, which is

of the same order of magnitude as the peak vacuum

Ey� 1.5 V/cm in MRX35 for typical discharge parameters.

The rise in the magnitude of Ey during current disruption is

due to the onset of faster magnetic reconnection at t¼ 330 ls,

which allows a faster removal of Bz from the circular area of ra-

dius R. The rate of the removal of Bz is equal to the rate of the

generation of Bx and can be estimated as follows. Neglecting

gradients along y, the x-component of Faraday’s law

gives @Ey=@z � @Bx=@t. Integrating along the line x� 38 cm

from z¼ 0 to z¼ 9 cm, we get Eyjz¼0 ¼ Eyjz¼9 cm � Dz
½@=@tð

Ð
Bxðx; zÞdz=DzÞ�, where Dz¼ 9 cm. In MRX, the value

of Bx averaged over the distance Dz¼ 9 cm (0< z< 9 cm)

increases from �0 at t¼ 330 ls to �75 G at t¼ 334 ls (see

Fig. 2(d) in Dorfman et al.21). This gives ½@=@tð
Ð

Bxðx; zÞ
dz=DzÞ�t¼332 ls � 75 G=4 ls ¼ 1875 T=s. Substituting for

Eyjz¼9 cm the experimental value � –2 V/cm at t¼ 332 ls

(see Fig. 2(b) in Dorfman et al.21), we get Eyjz¼0

� �3:69 V=cm. At t¼ 330 ls, the experimental value of

Eyjz¼0 � �2 V=cm, therefore, the rise in the magnitude of Ey

at the X-point (z¼ 0) is 1.69 V/cm by t¼ 332 ls. This is con-

sistent with the experimental results.

The spreading of the current disruption along y,

observed in the simulations, is qualitatively similar to the

one observed in MRX. The speed of spreading in MRX is

about �5 cm/ls.35 This is a fraction of the electron drift

speed estimated as Jy=ne � 30 cm=ls (n ¼ 2� 1013 cm�3

and assuming that the current is carried mainly by electrons).

A linear eigen-value analysis of EMHD equations showed

that the speed of spreading can be a fraction of the electron

drift speed depending upon the wave numbers ky and kz.

Although we do observe a commonality of features indi-

cating the same principal physical effects in EMHD simula-

tions and MRX experiments, the simulations presented here

do not directly correspond to the experimental setup. In

experiments, the current layer before disruption is thicker

(half thickness� 1 cm� 6de). The Sweet-Parker thickness

dSP ¼ Lz=
ffiffiffi
S
p
� 3� 20 mm 
 de implies a finite resistivity

in the electron scale current sheet. Reconnection is driven

and there are finite gradients in density and magnetic field

along the current direction. Simulations that include some of

these features are needed to provide more detailed descrip-

tions of the experimental results. On the other hand, new

experiments in MRX can be setup based on the EMHD simu-

lations results. For example, modes with a spectrum of wave-

lengths along y can be excited in EMHD regime and the

wave number dependence of the speed of propagation can be

directly verified. This would, however, require the imple-

mentation of an array of probes to scan the 3D magnetic field

instantaneously and to distinguish between temporal and spa-

tial variations.

We emphasize that the present manuscript focuses on

the current disruption and its spreading along y. It does not

address the mechanisms of impulsive reconnection which

includes both the slow build up and disruption phases.

Models describing impulsiveness and effect of resistivity has

been developed by other authors,8,34,36–38 for example, a

model of the transition from slow to fast reconnection below

a critical resistivity.36 The message here in this paper is that

current disrupts with the formation of a magnetic X-point in

reconnection independent of what triggers the reconnection

to form an X-point. Of course, the extent and time scale of

current disruption may depend on the trigger mechanisms

and physical processes occurring in the system.

In conclusion, the similarity of the basic features of

MRX reconnection and EMHD simulations indicates that the

essential physics of current disruption is captured by describ-

ing the electron flow dynamics. This motivates more compli-

cated 3D EMHD simulations closer to the experimental

conditions. The results of such simulations will be presented

in future publications.
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