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By examining the entropy production in fully kinetic simulations of collisional plasmas, it is shown that
the transition from collisional Sweet-Parker reconnection to collisionless Hall reconnection may be viewed
as a thermodynamic phase transition. The phase transition occurs when the reconnection electric field
satisfies E ¼ ED

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
, where me=mi is the electron-to-ion mass ratio and ED is the Dreicer electric

field. This condition applies for all mi=me, including mi=me ¼ 1, where the Hall regime vanishes and a
direct phase transition from the collisional to the kinetic regime occurs. In the limit me=mi → 0, this
condition is equivalent to there being a critical electron temperature Te ≈miΩ2

i δ
2, where Ωi is the ion

cyclotron frequency and δ is the current sheet half-thickness. The heat capacity of the current sheet changes
discontinuously across the phase transition, and a critical power law is identified in an effective heat
capacity. A model for the time-dependent evolution of an isolated current sheet in the collisional regime is
derived.

DOI: 10.1103/PhysRevLett.127.055102

Magnetic reconnection is a fundamental plasma process
responsible for rapidly releasing stored magnetic energy
and changing the magnetic topology. Reconnection occurs
in nearly all magnetized plasma environments: from highly
collisional to nearly collisionless kinetic systems. A wide
variety of physical effects and instabilities influence the
reconnection process, such as the Hall effect [1], electron
kinetic effects [2,3], and plasmoid instabilities [4–6]: many
of which were empirically organized into a reconnection
phase diagram in analog with a thermodynamic phase
diagram [7].
Although the reconnection phase diagram is a successful

tool for organizing parameter space, the question of
whether there truly exist phase transitions between different
regimes has not been rigorously addressed. In reconnec-
tion, the simplest and most well-established regimes are the
slow, collisional [8–11] and fast, collisionless regimes
[1,12,13] with a single two-dimensional X line. This
Letter focuses solely on the fundamental physics of the
transition between these two regimes.
Previous results for antiparallel reconnection have sug-

gested that the transition occurs when δ ¼ di, where δ is the
current sheet half-thickness, di ≡ c=ωpi is the ion inertial
length, and ωpi is the ion plasma frequency [14,15]. The
importance of di was suggested based on a scaling analysis
of the generalized Ohm’s law [16]; the presence of fast,
dispersive waves [17]; and abundant empirical evidence
that di is a relevant length scale within the collisionless
regime [18]. However, there is no fully self-consistent first-
principles theory that describes the transition or justifies the
exact equality δ ¼ di.
To date, the most comprehensive model of the transition

is the catastrophe model of Cassak et al. [14], who

examined it in an isothermal two-fluid system. An evolu-
tion equation for the current sheet was developed and a
bifurcation from the collisional to the Hall regimes was
identified [19]. This model has hysteresis. and it was
argued that phase diagrams must therefore include history
effects [20]. Hysteresis was observed in a two-fluid
simulation by artificially modifying the resistivity [14],
as well as in a Hall-magnetohydrodynamics (MHD) sim-
ulation due to the self-consistent interplay between plas-
moid instability and Hall physics [21]. To the authors’
knowledge, similar effects have not been observed in fully
kinetic simulations, suggesting that the underlying physics
of the transition may differ from simplified fluid models.
Within kinetic simulations, the transition has been observed
in both two and three dimensions, as well as for both
electron-positron and electron-ion plasmas [22–25]; and
the dynamic thinning of Sweet-Parker current sheets due
the Ohmic heating is known to be an important effect [24].
Here, these earlier results are extended by examining

fully kinetic particle-in-cell (PIC) simulations that self-
consistently evolve from an initial collisional equilibrium,
through a Hall regime where electrons and ions are
decoupled but classical resistivity is the dominant nonideal
effect, and finally into a collisionless, kinetic regime. The
evolution of the entropy is examined, and a thermodynamic
phase transition is shown to exist between the collisional
and Hall regimes. For finite mi=me, electron gyroviscosity
cannot be neglected; and the phase transition occurs when
the normalized reconnection electric field satisfies
Ê≡ E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
=ED ¼ 1, where ED ¼ mevtheνei=e is the

Dreicer electric field, vthe is the electron thermal speed, and
νei is the electron-ion collision frequency. This condition
applies for allmi=me, includingmi=me ¼ 1, where the Hall
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regime vanishes and a direct phase transition from the
collisional to the kinetic regime occurs. In the limit
me=mi → 0, and assuming a Sweet-Parker equilibrium,
this condition reduces to ρs=δ ¼ βe=2 ≈ 1, where ρs ¼
Ω−1

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound radius,Ωi is the ion cyclotron

frequency, and βe ¼ 8πneTe=B2 is the ratio of the electron
pressure to the magnetic field pressure. This condition may
also be written as T̂ ≡ Te=miΩ2

i δ
2 ≈ 1.

To further understand the phase transition, both the
current sheet heat capacity C and an effective heat capacity
Ĉ are introduced. C is discontinuous across the phase
transition corresponding to a change from isobaric to
isochoric heating, whereas Ĉ obeys a critical power law.
These results allow the time-dependent heating model of
Stanier et al. [24] to be extended into the “nonlinear”
regime where the phase transition occurs. It is shown that in
idealized and closed systems, Sweet-Parker current sheets
will always collapse down to kinetic scales, provided there
is enough free magnetic energy; and the collapse timescale
only weakly depends on the initial current sheet thickness.
The PIC code VPIC [26,27], along with a Coulomb

collision algorithm [22,28], is used to simulate
reconnection in a resistive current sheet. The initial
setup is a one-dimensional Harris equilibrium with
B ¼ B0 tanhðx=δ0Þẑ, ne ¼ ni ¼ nb þ n0sech2ðx=δ0Þ, and
Ti ¼ Te ¼ miv2A0=4, where nb=n0 ¼ 0.3, δ0 ¼ 2di0,
d2i0 ≡mic2=4πn0e2, and v2A0 ¼ B2

0=4πðmi þmeÞn0. An
initial long-wavelength perturbation is applied to seed
reconnection. For the case discussed in detail,
mi=me ¼ 40, ωpe;0=Ωe0 ¼ 2, and νei;0=Ωe0 ≈ 0.042, cor-
responding to an initial Lundquist number of
S0 ¼ 4πL0vA;up=η0c2 ≈ 2200, where η0 is the initial
Spitzer resistivity, v2A;up ¼ ðn0=nbÞv2A0, and L0 ¼ Lz=2.
The domain spans Lx × Lz ¼ 50 × 100di0 and contains
790 × 1560 cells and 2.5 × 109 macroparticles. Periodic
boundary conditions are used along z, whereas particle
reflecting and electrically conducting boundaries are used
along x. The time dependence of the reconnection rate
(R ¼ cEy=BvA) and δ=di are shown in Fig. 1 along with the
out-of-plane current density at three representative times
corresponding to the collisional, Hall, and kinetic regimes.
Thermodynamic phase transitions often involve change

in the entropy or in properties derived from entropy, and
several previous studies have examined entropy in PIC
simulations [29–32]. The differential (Boltzmann-Gibbs)
entropy for a species s is given by

HsðtÞ≡
Z

d3xhsðx;tÞ; hsðx;tÞ≡−
Z

d3vfs lnfs; ð1Þ

where fs is the single-particle distribution function for
species s. Previous studies have used a plug-in integral
estimator where hs is integrated over a phase-space
histogram [30,32]. For the similar plug-in redistribution
estimator, histograms are either slowly converging or

inconsistent with significant bias [33], leading to non-
negligible systematic error. Here, hs is instead computed
with the Kozachenko-Leonenko (KL) estimator [34],

hsðx; tÞ ¼ −wn½bðkÞ − bðnÞ� þ w
Xn
i¼1

ln

�
4πρ3i;k
3kw

�
; ð2Þ

where ρi;k is the distance in velocity space from
macroparticle i to its kth nearest neighbor; and
bðxÞ ¼ ψðxÞ − ln x, where ψðxÞ is the digamma function.
The sum extends over all n macroparticles in a given cell:
each of which has an identical statistical weight w. The
standard choice of k ¼ 1 is used here. The KL estimator is
consistent and converges as n−1=2 if f satisfies regularity
conditions [35]. The KL estimator is compared with a
histogram estimator in the Supplemental Material [36].
The time evolution of Hs is shown in Fig. 2(a). Entropy

monotonically increases in time and at a rate larger than the
numerical entropy gain in an equivalent collisionless case.
To the lowest order, entropy is equally partitioned between
species since deviations from quasineutrality (ne ¼ ni) and
local thermal equilibrium (Te ¼ Ti) are small. To gain
insight into the various regimes of reconnection, the data
can be reorganized using the current sheet width rather than
time as an independent coordinate; see Figs. 2(b) and 2(c).
Two measures are shown, di=δ, where δ is the half width at
half maximum of Jy, and di is evaluated using the
X-point density, and T̂ ≡ Te=miΩ2

i δ
2, where Te is evalu-

ated at the X point and B at 1δ upstream. The former is
motivated by significant heuristic and empirical evidence
that di is involved in the transition physics, whereas the
latter is a dimensionless temperature measure. In these
simulations, T̂ predominantly changes due to current sheet
thinning and may be equivalently viewed as a measure of δ.
An abrupt increase inHs can be seen at δ ≈ di ≈ ρs. This

discontinuity in entropy could be interpreted as a first-order
thermodynamic phase transition where the net change in
entropy across the phase transition is due to a latent heat.

(a)

(b)

(c)

(d)

(e)

FIG. 1. (a) Reconnection rate and (b) δ=di and T̂ as a function
of time. (c)–(e) Examples of out-of-plane current densities in the
(c) collisional, (d) Hall, and (e) kinetic regimes.
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However, the phase transition requires a finite time of
100 Ω−1

i0 ≲ t≲ 200 Ω−1
i0 in order to occur. During this time,

ongoing reconnection leads to a continuous production of
entropy unrelated to the phase transition itself. As will be
shown below, the phase transition appears to be continuous.
By finding the local minimum in jdðdi=δÞ=dHij, the

point at which the collisional to Hall (kinetic for
mi=me ¼ 1) phase transition occurs can be accurately
determined. Various proposed transition criteria are shown
as a function of mi=me and at the time of the phase
transition in Fig. 2(d). The criteria of δ ¼ di and δ ¼ ρi do
not hold for all mass ratios. Rather, it is empirically found
that the local criteria of Ê≡ E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
=ED ¼ 1 offers an

accurate prediction of when the phase transition will occur
across all mi=me. This criterion was previously suggested
as an equivalent condition to δ ¼ ρs since, for largemi=me,
it can be written as ρs=δSP ¼ βe=2 or T̂ ¼ ðβe=2Þ2, where
δSP ¼ L=

ffiffiffi
S

p
and L and S are the time-dependent half-

length and Lundquist number of the current sheet [44].
For finite mi=me, however, Ê differs from the large

mi=me limit due to electron gyroviscosity, which is present
even in the collisional regime. Within the current sheet, the
electron pressure tensor Pe has finite off-diagonal elements
Pe;xy and Pe;yz due to electron motion in the sheared
magnetic field [37]. In the steady-state collisionless limit,
∂Pe;xy=∂x ≈ ∂Pe;yz=∂z, resulting in an electric field
of ENG ≡ ffiffiffi

2
p ðme=eÞvthedvez=dz [38]. However, these

simulations are in a semicollisional regime where
L≳ vthe=νei ≫ δ. As a result, collisions suppress Pe;yz
but do not affect Pe;xy, and the electric field is reduced by
half from the collisionless limit ð∇ · PeÞy=en ≈ ENG=2.

This effect is discussed further in the Supplemental
Material [36]. Setting dvez=dz ¼ vA=L gives ENG=2ED ¼
d2e=

ffiffiffi
2

p
δ2SP and the condition

ffiffiffiffiffiffi
mi

me

r
ηJy þ 1

2
ENG

ED
¼ 2

βe

�
ρs
δ
þ

ffiffiffiffiffiffiffiffi
me

2mi

r
ρ2s
δ2SP

�
¼ 1; ð3Þ

where δ ≠ δSP in general. For mi=me → ∞, the Sweet-
Parker limit is recovered; whereas for mi=me → 1,
ρs=δSP ∼ ðmi=meÞ1=4. Equation (3) is evaluated and shown
to hold within 12% in Fig. 2(d). Although this correction
vanishes in the large mi=me limit, it provides insight into
the underlying physics; the local electric field is responsible
for the phase transition, and not the current sheet geometry.
The remainder of this Letter assumes mi=me ≫ 1 and
nb=n0 ≪ 1, which allow the simpler condition of T̂ ≈ 1 to
be used; up to factors of βe ∼ 1, this is equivalent to the
slow-to-fast transition criteria by Cassak et al. [14].
In the collisional regime, the rate of entropy production

can be estimated as dH=dt ¼ ð1=TÞdQ=dt, where Q is the
total heat generated by collisions. Locally, the heat gen-
eration is predominantly resistive dissipation ηJ2, and so
dH=dt ≈ ð4LδLyÞðηJ2=TÞ ≈ 2NSPβ

−1νieðdi=δÞ2, where νie
is the ion-electron collision frequency, NSP ≡ 4LδLyn is
the number of particles in the current sheet, and Ly is the
out-of-plane extent. Assuming that L and B are constant
and using the Spitzer resistivity scaling, η ∼ T−3=2 gives
the scaling S ∼ n−1=2T3=2 ∼ β3=2n−2. For Sweet-Parker
current sheets, it then follows that NSP ∼ nδ2S1=2∼
β3=4δ2. Using subscript 0 to denote initial condition values
and taking β ≈ 1 lead to the estimate

dH
dt

≈ 2NSP;0

�
δSP;0
δ0

�
2
�
T0

T

�
3=2

τ−1A0; ð4Þ

where τA ≡ L=vA is the Alfvén transit time.
Using the X-line temperature and assuming He ≈Hi,

Eq. (4) is integrated to produce the black dashed lines in
Figs. 2(a)–2(c), which agree well with the simulation
during the collisional phase of t≲ 100 Ω−1

i0 . In the colli-
sionless regimes, resistive production of entropy is reduced,
and viscous heating and thermal mixing are additional
sources of entropy production; these effects will be detailed
further in a future paper.
To characterize the phase transition, the viscous electric

fields at the X point (ϕe and ϕi) are proposed as phenom-
enological order parameters,

ϕs ¼ −
�
cð∇ · PsÞy
qsnsB0VA;0

�
; ð5Þ

where h·i denotes a local spatiotemporal average in order to
reduce statistical noise. These order parameters are shown
as a function of T̂ in Fig. 3(a). They are equivalent until the
onset of kinetic effects (T̂ ∼ 6), which follows from the

(a)

(d)

(b) (c)

FIG. 2. (a)–(c) Evolution of electron and ion differential
entropies, He and Hi, relative to their initial values (a) as a
function of time, and reorganized by (b) δ=di and (c) T̂ (nat is a
dimensionless unit of information). Identified phase transition is
shaded in Fig. 2(a) and shown with a vertical line in Figs. 2(b) and
2(c). (d) Quantitative evaluation of proposed transition criteria at
time of collisional to Hall (kinetic for mi=me ¼ 1) phase
transition. Dotted line shows reference ðmi=meÞ1=4 scaling.
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momentum equations since ∇ · ðPe þ PiÞ ¼ 0 at a sym-
metric steady-state X point. There is an onset at
T̂ ¼ 1 corresponding to a transition from a disordered
phase (T̂ < 1) to an ordered phase (T̂ > 1).
The heat capacity of a system changes across a thermo-

dynamic phase transition. Here, two heat capacities are
introduced, C≡ TdH=dT and Ĉ≡ T̂dH=dT̂, where T is
the X-point temperature and H ¼ He þHi. C and Ĉ are
shown in Figs. 3(b) and 3(c). C has a discontinuous change
at T̂ ¼ 1, which is consistent with a continuous phase
transition. Ĉ is asymmetric and diverges at T̂ ¼ 1. For
T̂ < 1, there is a critical power law of Ĉ ∼ α0ð1 − T̂Þᾱ with
the best fit scaling exponent ᾱ ¼ −3=5.
The two limits for C can be understood. If there is

efficient thermal transport across flux surfaces, then chang-
ing the X-point temperature requires heating the entire
plasma volume. This is an isochoric process due to the
fixed simulation volume; and C ≈ 3N, where N ¼ R

d3x n
is the total number of (real) particles per species. A factor of
2 has been included to account for both species. This limit
is consistent with the ordered side. In the opposite limit,
heat is confined within the current sheet and outflow. This
is an isobaric process since the reconnecting magnetic field
maintains a constant pressure within the current sheet and
C ≈ 5ðNSP þ NoutÞ, whereNout is the number of particles in
the outflow. Since the initial equilibrium is a 1D current
sheet, Nout;0 ¼ 0; and neglecting the contribution from
inflowing particles gives NSP;0 ¼ NSP þ Nout and
C ≈ C0 ≡ 5NSP;0. This limit is consistent with the disor-
dered side of Fig. 3(b).

As an example of the utility of C and Ĉ, a model for the
evolution of a resistive current sheet can be developed.
Writing Eq. (4) as dH=dt ¼ H0

0T
−3=2 and using the

definition of C and Ĉ give

dT̂
dt

¼ H0
0

α0

T̂

ð1 − T̂Þᾱ T
−3=2 ð6Þ

dT
dt

¼ H0
0

C0

T−1=2: ð7Þ

The solution to these equations is

T ¼
�
3

2

H0
0

C0

tþ T3=2
0

�
2=3

ð8Þ

T̂ ¼ F−1
�
C0

α0
ln

T
T0

�
; ð9Þ

where

FðxÞ ¼
Z

x

T̂0

t−1ð1 − tÞᾱdt:

Collectively, these equations describe Ohmic heating and a
collapse of the current sheet, but they differ from previous
results that assumed T − T0 ∼ t and did not include a
critical power law [24]. Setting T̂ ¼ 1 in Eq. (9) and using
Eqs. (8) and (4) lead to an estimate for the collapse
timescale of

τ

τA;0
¼ 5

3
ðeγFð1Þ − 1Þ

�
δ0
δSP;0

�
2

; ð10Þ

where γ ≡ 3α0=2C0. For initially thick current sheets,
T̂0 ≪ 1 and eγFð1Þ ≈ ðe1=ᾱT̂0Þ−γ . In these simulations,
γ ≈ 1=11 and, assuming this is universal, τ ∼ 10τA;0 for
Sweet-Parker current sheets that are initially 104ρs thick;
whereas for δ≲ 5ρs, τ ≲ τA;0. This model is in good
agreement with the simulation data, as shown in Fig. 4;
however, further study on the parameter and boundary
condition dependence of γ is required before applying these
predictions to other systems.
Although derived here in terms of T̂, an entirely

equivalent analysis can be done in terms of Ê. For the
simulations studied, an approximate power law of
ÊdH=dÊ ≈ 0.13C0ð1 − ÊÞ−1=2 is found. The resulting
model agrees well across all values of mi=me tested,
representative examples of which are shown in Fig. 4(c).
In the isothermal limit of C → ∞, this model is identical

to the slow-to-fast transition in the catastrophe model of
Cassak et al. [14], where the Sweet-Parker current sheet is
stable. This work extends the catastrophe model by
including thermodynamic feedback that results in an
instability of the Sweet-Parker current sheet wherein

(a)

(b) (c)

FIG. 3. (a) Order parameters, and (b) and (c) effective heat
capacities for the phase transition phase transition as a function of
T̂. Vertical lines mark the phase transition (T̂ ¼ 1). Shading in
Fig. 3(a) shows the region examined in Figs. 3(b) and 3(c),
dashed lines in Fig. 3(b) show different limits as discussed in text,
and black line in Fig. 3(c) is a power law fit with critical exponent
ᾱ ¼ −3=5.
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Ohmic heating and thinning naturally drive the system
toward collisionless regimes. This study does not address
whether hysteresis is present in kinetic descriptions, and
this remains an open question.
Here, a closed system with a single isolated current sheet

was examined; however, in nature, current sheets do not
occur in isolation. Additional thermodynamic effects such
as thermal transport between the current sheet and the
external environment or thermal coupling to neutrals [25]
can modify these results. Furthermore, macroscopic phys-
ics can be more influential than local current sheet physics
in determining current sheet stability and the long-term
reconnection rate [45,46], whereas microscopic kinetic
physics can strongly influence stability in nearly collision-
less systems.
Finally, in large collisional systems, fast reconnection is

thought to be driven by the plasmoid instability [4,6,22],
resulting in a fractal plasmoid chain that ends at either a
Sweet-Parker or a kinetic current sheet [7]. Previous
estimates for the division between these two endpoints
do not include the resistive evolution described here, which
will drive the terminating current sheet toward kinetic
scales. Similarly, systems with initial Lundquist numbers
below the critical value for plasmoid instability (∼104) can
become plasmoid unstable due to self-consistent heating
[5,24]. Even without this modification, plasmoid instability
itself is regarded as a separate reconnection phase, and
future work will investigate whether it may be similarly
understood as a phase transition and whether critical
behavior is present.

The data that support the findings of this study are
openly available in the Princeton University
DataSpace [47].
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