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Abstract—A simple method is proposed to determine the equilibrium quantities (such as the plasma position
and Shafranov’s parameter A) in Tokamaks and RFPs. This method is available in the transient phase of
a discharge, in which the plasma equilibrium is maintained by time-varying vertical fields, e.g. in the case
where the plasma is surrounded by a thin shell. In this method, the external fields measured are matched
to the approximate solution of the Grad-Shafranov equation in a vacuum, by a fitting procedure. In the
case of a circular plasma boundary, only a small number (>6) of the field measurements can provide a
stable and rapid determination of equilibrium. A successful application to the REPUTE-1 RFP plasma
with thin shell reveals that in most cases the plasma starts to move outward and downward before the
plasma current begins to fall.

1. INTRODUCTION
IDENTIFICATION of the equilibrium configuration is a basic measurement in plasma
confinement devices such as Tokamaks or RFPs. Information on the plasma shape
and position is especially important for studying the MHD equilibrium and instability.
and is also necessary for other plasma diagnostics. Recently, several RFP devices
(ASAKURA et al., 1986 ; GOFORTH ef al., 1986 ; ALPER et al., 1989) have been operated
with a thin shell in order to observe how plasmas behave when the discharge duration
exceeds the shell’s skin time g, for the penetration of vertical fields. The equilibrium
then of plasma is maintained partially by the shell and partially by the externally
applied vertical fields, i.e. the vertical fields due to both of them are time-dependent
with a time scale of 74,,. This means that the equilibrium is in a transient state rather
than in a steady state. Therefore, it is important to have a diagnostic system which
can provide information on the plasma position with a sufficiently fast time response.
in order to ihvestigate effects of the thin shell on the plasma equilibrium and instability.

Basically, the determination of equilibrium is to solve the MHD equilibrium equa-
tion as a free boundary problem, so as to match the externally measured fields and
poloidal flux (Luxon and BROWN, 1982 ;: DESHKO et al., 1983 ; Lao et al., 1985 ; BRAAMS
et al., 1986; ALLADIO and CRIsaNTI, 1986) or diamagnetic inductance (LAo et al.,
1985 : KUuzNETSOV et al., 1986 ; LazzAarRo and MANTICA, 1988) in Tokamaks. However,
one must assume an explicit form for the current distribution inside the plasma. and
the computation time consuming, which is difficult for application as a real-time
routine.

If only the plasma shape and position are of interest, there are several methods
(ZaxHAROV and SHAFRANOV, 1973 ; WooTTON, 1979 ; LEE and PENG, 1981 SWAIN
and NEILSON, 1982 ; DESHKO et al., 1983 ; CHE et al., 1988 ; HOFMANN and TONETTI,
1988) which have been used successfully. The conventional one is the current moment
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method (ZAKHAROV and SHAFRANOV, 1973 ; WoOTTON, 1979 : CHE et al., 1988), whose
principle is based on straight relations between the equilibrium quantities and the
external fields given by Shafranov’s toroidal equilibrium theory (MUKHOVATOV and
SHAFRANOV, 1971). These relations are available in the case where the equilibrium is
maintained by the ideal shell only or by the externally applied vertical fields only.
However, in the transient phase of a discharge Shafranov’s relations are not available.
For example, when the plasma is surrounded by a thin shell, penetration of the
magnetic fields through the shell takes place on the time scale of 7, and thus the
ideal shell condition is violated.

A fast method has been introduced to obtain the plasma shape and position, in
which the plasma current I, is represented by discrete six-current filaments (SWAIN
and NEILsON, 1982) or a finite-element model (HoFmMaNN and ToNetTIL, 1988). The
magnitudes of the currents which are flowing in the external windings are used in the
calculation. In the thin shell case, however, it is not appropriate to use these values
directly because the field penetration through the shell takes a finite time. One must
replace the external coil currents by at least four current filaments outside the plasma,
and thus the equilibrium determination requires a lot (at least 10 in principle, more
for a stable calculation) of measurement of the external fields or flux loops. Further-
more, it is difficult to include the effect of the iron core by this method.

Another method has been proposed to determine the plasma shape and position.
and has been tested numerically. LEE and PENG (1981) and DESHKO et al. (1983)
extended the poloidal flux W in terms of the eigenfunctions of the Grad-Shafranov
equation in a vacuum, and used a fitting technique to determine their coefficients.
Each eigenfunction is an associated Legendre function, denoting a Fourier component
of the plasma shape with respect to the poloidal angle 6.

In this paper we introduce a simple method, which is similar to that of LEe and
PENG (1981), based on fitting the approximate solution of the Grad-Shafranov
equation in a vacuum to the measured fields. However, our method differs from LEE
and PENG’s (1981) in two respects. First, as fitting parameters. we choose physically
meaningful ones such as displacements of the plasma center, instead of the eigen-
function’s coefficients which have no direct physical meaning. Second, as an approxi-
mation, we use truncated forms of eigenfunctions which are expressed as an infinite
power series of the inverse aspect ratio, so that we can denote the fitting function in
a simple analytic form, provided the aspect ratio is large. Using this method, there is
no necessity to consider effects of the iron core and the thin shell especially, and the
plasma position can be determined at every moment, even if the discharge is in a
transient phase. Note that there is no need to make any assumptions of explicit current
distributions inside the plasma. In Section 2. we describe the equilibrium model and
method of determining the fitting parameters in detail.

The REPUTE-1 device (ASAKURA et al., 1986) is characterized by a thin shell of 5
mm thick stainless steel whose skin time 74, is 1 ms. Since discharges presented in
this paper were obtained without the limiters, the plasma is limited by the inner surface
of the liner, which has a major radius of 82 cm and a minor radius of 22 cm. Optimum
discharges, whose duration Tgu..ion are about three times 1., have been obtained. In
spite of various efforts including vertical-Ohmic coil series connection experiments
(Toyama et al.. 1987), toroidal ripple reduction experiments (HATTORI et al., 1988)
and port bypass plate installation experiments (TOYAMA er al., 1989 ; SHINOHARA ef
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al., 1989), Taumion 18 still at present limited to 3.2 ms. Hence, it is necessary to measure
the plasma position accurately in order to understand what terminates the discharge.
In Section 3, as an application of the present method, we determine the time evolution
of the plasma position from the flat-top phase to the termination phase, when the
plasma begins to lose its equilibrium. Conclusions are given in Section 4.

2. DESCRIPTION OF THE METHOD

2.1. Plasma equilibrium model

For simplicity we consider the first Fourier component of the poloidal angle 6. In
other words, we can assume that the plasma has a circular outermost magnetic surface
which has a radius a. We choose this circular center as the center of the coordinate
(r.0), and let R denote the major radius of the plasma. Outside the plasma r > a we
use the vacuum solution of the Grad-Shafranov equation in the first-order approxi-
mation of the expansion in /R (MUKHOVATOV and SHAFRANOV, 1971):

RL (. S8R A 2
wr.0) = p<ln——2 _ s ln,—+(A+%)<l~a—2>]rcosﬁ. )
2 r 47 a r

Here A = f,+14/2—1, B, is the poloidal beta and /; is the internal inductance of the
unit length of the plasma column. Equation (1) satisfys the boundary conditions at
the plasma surface r = a:

By(a,0) = Bl,<l + %Acos 9). (2
B,(a.0) = 0, 3)
where B, = — uol,/2na. Note that we use the first Fourier component of 0 in the first-

order approximation of a¢/R only. From equation (1). the poloidal and radial fields
at position (r, 0) outside the plasma are :

By(r0) =B, + iB,,[(l + “;>(A+ Htinl - l]cos 0. )
r 2R re a
B.(r,0) = = B,,[ln T ria+h (1 - 1)} sin 6. (5)
2R a P

Since the vacuum fields are completely determined by the boundary conditions at
the plasma surface [equations (2) and (3)], there is no need to make any assumptions
about the boundary condition outside the plasma, such as the ideal shell condition
that the normal component of the fields vanishes at the inner surface of the ideal shell.
Moreover, the effects of the thin shell and the iron core are automatically included in
equations (4) and (5), therefore one can apply this model directly without any other
modifications.

From the solutions given in the Appendix of Shafranov’s paper (SHAFRANOV, 1960),
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the magnitude of the second-order term of a/R compared to the first-order term is
~(a/R)?*/4; thus in the case of large aspect ratio the second-order term can be
ignored, to a good approximation. In REPUTE-1, for example, a/R ~ 3.7~" and
(a/R)*/4 ~ 1.8%.

For a plasma which has a non-circular poloidal section, the second or higher
Fourier component of 6, i.e. the cos 20 term etc., must be incorporated into our
model discussed above. However, in the case of REPUTE-1, one expects that an
approximation of circular outermost magnetic surface is a good one from the decay
index of the vertical fields. Measurements of soft X-ray emissivity using a tomography
technique indicate the circular contours near the plasma edge (ASAKURA et al.. 1989).
Therefore, in the following sections, we restrict our analysis to the case of a circular
plasma for simplicity.

2.2. Determination of plasma position and A

Assuming that the limiter surface is a circle, we define A, A, as the horizontal and
vertical displacement of the outermost magnetic surface from the limiter center. Let
(p, ) denote the coordinate whose center is positioned at the limiter surface center.
Figure 1 shows the relation between the coordinates (r, 8) and (p, w). If the plasma
extends to the limiter surface. the plasma major and minor radius R and a are

R =R +A.. 6)
a=a.—/AI+A. 7

respectively, where R, and a; are the major and minor radius of the limiter surface,
respectively.
We now consider the case where the magnetic probes are installed in the region

i-th probe
a P i
0;
(t),"
A N\A a
Plasma
—
Limiter Surface
—
R
R

FiG. 1.—Displacement of plasma from limiter surface center, (p,w) and (r, ) coordinates
and magnetic probes.
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p = ap, in order to measure the displacements of plasma A,, A, and Shafranov’s A.
Let the location of the ith probe be (p;, w;) and (r;, 0;), as shown in Fig. 1. Here p; and
w; are constants, and r; and 6, are determined from A, and A, as follows:

r, =/ (picos w;—A)* + (p;sinw,—A,)?, ®)

pisinw;,—A,

)

tanf; = .
" picosw;—A,

From equations (4) and (5), we have the w and p components of the field at the
position of the ith probe,

a

B, (pi, w) = R B,[C, cos w;+ C, cos (w; —8,) + C; cos (w; — 20,)], (10)
B,(pi,w;) = — %B“[CO sin w; + C, sin (w; —0,) + C, sin (w; — 26,)], (1)

where

ri 2R a®
Cozll’l—+/\, Cl:_-. C2:—2(A+—5)_%
a r i

i i

There are three fitting parameters to determine B, (p;, w;) and B,(p;, ;) ; A,, A,
and A. We use the least-squares method to determine the fitting parameters which
minimize

. B, (pi, w;) — B, (pi, w;) : B, (o1 ;) — B;;(Pia w;) Z:I
S_le|:< J(,,(pf,a),-) ) +< O-p(phwi) ) ’ (12)

where B, (p;, w;) and B,(p;, ;) are the w and p components of field measured by the
ith probe, and ¢, (p;.®;) and o,(p;, w,) are the standard deviations of errors in the
B,(p;,w;) and B,(p;, w;) measurements. As a nonlinear problem, A, A, and A are
calculated using the Gauss—Newton Method based on the linear approximation,
through an iteration process.

Test fittings were performed by using ideal data with random errors. It is clarified
that, for a stable determination, B, and B, must be measured at least at three
proper poloidal positions, i.e. six signals in total, although in principle only three
measurements of B, or B, are required. The results are almost unchanged by increasing
field measurements to more than three positions, e.g. eight positions.
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Figures 2(a)—(c) show contours of constant S in the A -A, A ~A and A~A, planes,
when both B, and B, at eight poloidal positions are used in the calculations. Here,
A= —0.15A,=10cmand A, = —1.5cmare taken as the “true’ values. The values
of o, and o, are assumed to be 2.5% of B, and sin 1.5° of B,,, respectively, as is the
case in REPUTE-1. The errors in the fitting parameters are estimated from o, and
0,

Figure 2(d) shows contours of constant S in the A~A plane when the conditions
are the same as those in Figs 2(a)—(c) except that only B, at eight positions is used.
A, and A cannot be determined uniquely by B, measurements only, because of their
strong negative correlation.

In order to investigate the sensitivity of the fitting results to experimental errors
involved in the measured field, a series of test fittings with various magnitudes of

5 T T T T T T T T 5 T T T T T ™ T T T
A=-0.1320.07 | A=-0.13+0.07
A;=1.0203cm A,=1.0=03cm
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F1G. 2.—Contours of constant S in the A ~A plane (a), A,~A plane (b) and A,-A, plane (c)

with use of B,, and B, both at eight positions. The *‘true” values were taken as A = —0.15,

A, = 1.0cmand A, = —1.5 cm. Conditions in (d) are same as those in (a) except that only
B, are used.
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TABLE 1.—TEST FITTING RESULTS WITH VARIOUS MAGNITUDES OF ERRORS 0, AND ¢,. THE ““TRUE” VALUES

WERE TAKEN AS A = —0.15,A, = [.Ocm AND A, = —1.5¢cm
Error magnitude Fitting results
7, g, A A, (cm) A, (cm)
1% of B, sin 1° of B, —0.169+0.043 1.03+0.19 —1.50+0.09
2% of B, sin 1° of B, —0.180+40.055 1.01+0.20 —1.50+0.14
4% of B, sin 1° of B, —0.2104-0.087 0.99+0.20 —1.51+0.18
1% of B, sin 1° of B, —0.169 +0.043 1.03+0.19 —1.504+0.09
1% of B, sin 2° of B,, —0.1894+0.079 1.13+0.38 —1.4940.10
1% of B, sin 4° of B, —0.2524+0.146 1.45+0.70 —1.49+0.11

errors was performed. Table 1 shows the test fitting results, in which the conditions
are the same as in Fig. 2 except for the values of ¢, and o,. In the first three cases g,
is fixed and in the last three cases o, is fixed. It can be seen that by increasing ¢, the
A obtained have relatively large uncertainties whilst A, and A, are almost undistorted.
On the other hand, large o, values also bring an uncertainty in the A, determination
in addition to A. The parameter A, is still robust to large values of o,. As a result,
if B, pick-up coils are calibrated with an accuracy of +2.5% and B, pick-up
coils are installed with an accuracy of +1.5° with respect to the radial direction in
the REPUTE-1 case, then A, A, and A, can be determined with errors of +0.07,
+0.3 cm and +0.2 cm, respectively.

The calculations were usually carried out with less than ten iterations. They were
fast enough to perform between shots of REPUTE-1 operation (three minutes mini-
mum) as a real-time routine.

3. APPLICATION TO REPUTE-1 RFP

3.1. Poloidal magnetic probe array

A poloidal array of magnetic field pick-up coils with protective covers of 0.7 mm
thick stainless steel, was installed at a port segment (2.4 mm thick Inconel-625) inside
the vacuum vessel. A pipe of square cross-section which runs poloidally between the
probes leads the coil signal wires to the feed-through and protects them from the
plasma (Fig. 3). The array covers all poloidal angles equally at eight poloidal positions

——t
Smm Vacuum Vessel

/, L L LU

— Feedthrough
..... ey T
Three Components ____| Poloidal Direction (6)
Probe Bobbin
(Polyimide) admim: )
\ Stainless Steel
1t
B, Coil B ¢ Coil
B, Coil

F1G. 3.—Poloidal array of magnetic probes, consisting of a pipe of square cross-section and
the specially designed probe bobbins which can pick up three components of the fields.
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with a 45° separation. At each position the three components of fields By, B, and B,
can be measured by the specially designed probe bobbin simultaneously, with a
frequency response up to 40 kHz.

3.2. Results

A typical example of REPUTE-1 RFP discharge is shown in Fig. 4(a). At~ 1.4
ms, the plasma current /, has a maximum value of ~280kA, the loop voltage V; ~ 150
V and the chord-averaged electron density 77, ~ 5x 10" m~> After ¢t ~ 1.4 ms, I,
begins to fall down and V] begins to rise. Figure 4(b) shows the time evolution of A,
A., A, and A, where the toroidal shift A, presents the distance between the magnetic
axis and the center of the outermost magnetic surface due to the toroidal effect,

a2

Z(A+)) (13

A =5z

and typically A, is about 1 cm.

The reversal ratio F and the pinch parameter ® are also shown in Fig. 4(a), where
solid lines and dashed lines indicate the values with and without correction according
to the change of the plasma position, respectively. It is shown that the observed values
of F~ —0.35 and ® ~ 2.25 are reduced to reasonable values of F~ —0.25 and
® ~ 1.95 after the correction of the plasma position at the current flat-top phase
(t ~ 1.4 ms). The A—O diagram is shown in Fig. 5. Here the curve labeled BFM shows
the trajectory in the A—® plane obtained using the Bessel Function Model in which
i = toj-B/B? = const. and other curves labeled « show the trajectories in the Modified
Bessel Function Model defined by p oc 1 — (r/a)*. The closed circles indicate the results
obtained by the internal probe experiments (UeDA, 1985), where the values of /;
are calculated by the measured field distributions and f, ~ 0.1 is assumed. The ©
dependence of A from the equilibrium determination is consistent with that from the
direct measurements of internal field distributions. This fact indicates the accuracy
and usefulness of our method in equilibrium determination.

As a typical case, the plasma column starts to move outward and dowhward from
the linear center at r ~ 1.1 ms, before J, begins to fall at t ~ 1.4 ms. This displacement
of the plasma column is a candidate for the discharge termination, although its
toroidal dependence is not yet known. It is not clear whether the outward movement
is due to weak vertical fields and/or a short skin time of the shell.

From the internal probe measurements (REPUTE-1 ANNUAL REPORT 1984/1985),
the penetration of the vertical fields inside the shell is dependent on its distance from
the torus center, i.e. the penetration outside the torus is faster than that inside the
torus. This is due to the fact that the eddy current in the shell, preventing the
penetration of external fields, is disturbed by a lot of big diagnostic holes outside the
torus. As a result, the decay index N = — (R/B,) dB,/dR inside the shell has a negative
sign during the penetration, in spite of a positive sign after penetration. This negative
N induces an up—down instability of the plasma column and can terminate the
discharge.
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FiG. 4—Waveforms of 1,, ¥, ii,, Fand © (a); A, A, A, and A, (b) in a typical discharge
of REPUTE-1 RFP.
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FiG. 5.—A-0® diagram. Here BFM means Bessel Function Model and « is defined by
U= yj B/B? oc 1 —(r/a)*. The closed circles indicate the results obtained by the internal
probe experiments (UEDA, 1985).

4. CONCLUSIONS

We have introduced a simple method of measuring the plasma equilibrium quan-
tities, in the transient phase of RFP and Tokamak discharge. It is not necessary to
consider the effect of the iron core especially. We have tested the method, in the
simplest case that only the first order of r/R of the first Fourier component of § is
involved in the model, and applied it to the REPUTE-1 RFP plasma with thin shell.
The stable position determination requires only a small number (=6) of
field measurements. The plasma position is computed between shots in the case of
REPUTE-1 experiments as a real-time routine. It should be noted that in addition
to the plasma position, information about A or f,4//2 can be obtained by this
method. The parameters A, A, and A, can be determined with accuracies of +0.07,
+0.3 cm and +0.2 cm, respectively. Of course, higher Fourier components of 0
and higher orders /R can be involved by increasing the number of field measure-
ment and the fitting parameter, if necessary.

Measurements on the REPUTE-1 RFP plasma surrounded by a thin shell show
that the plasma starts to move outward and downward before /, begins to fall in most
shots. Downward movement can be explained as a result of a negative N during the
penetration of the vertical fields inside the shell. This suggests that a faster and more
precise feedback control in the vertical field coils system is necessary.
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