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ABSTRACT

The effects of a finite guide field on the distribution of plasmoids in high-Lundquist-number current sheets undergoing magnetic
reconnection in large plasmas are investigated with statistical models. Merging of plasmoids is taken into account either assuming that guide
field flux is conserved resulting in nonforce-free profiles in general, or that magnetic helicity is conserved and Taylor relaxation occurs to
convert part of the summed guide field flux into reconnecting field flux toward minimum energy states resulting in force-free profiles. It is
found that the plasmoid distribution in terms of reconnecting field flux follows a power law with index 7/4 or 1 depending on whether
merger frequencies are independent of or dependent on their relative velocity to the outflow speed, respectively. This result is approximately
the same for the force-free and nonforce-free models, with nonforce-free models exhibiting indices of 2 and 1 for the same velocity depen-
dencies. Distributions in terms of guide field flux yield indices of 3/2 for the nonforce-free model regardless of velocity dependence. This is
notably distinct from the indices of 11/8 and 1 for the force-free models independent of and dependent on velocity, respectively. At low guide
field fluxes, the force-free models exhibit a second power law index of 1/2 due to nonconstant flux growth rates. The velocity-dependent
force-free model predicts the production of slightly more rapidly moving large guide field flux plasmoids which are supported by observa-
tional evidence of flux ropes with strong core fields. Implications are discussed on particle acceleration via Fermi processes.
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I. INTRODUCTION

Impulsively fast magnetic reconnection is a ubiquitous phenome-
non widely observed in magnetized space, solar, astrophysical, and lab-
oratory fusion plasmas.1–4 However, fast collisionless reconnection
mechanisms based on non-MHD (Magnetohydrodynamic) effects
such as two-fluid or kinetic effects (e.g., Ref. 5) are only applicable to
scales much smaller than system sizes of these magnetized plasmas in
space and astrophysics. In large systems, collisional MHD models
such as the Sweet–Parker model are commonly used to describe
reconnection processes. However, the predicted Sweet–Parker recon-
nection rate is much too slow to be consistent with many large scale
phenomena like solar flares. At high Lundquist numbers, it has been
realized that these current sheets can potentially fracture in a cascading
process which results in a significantly increased reconnection rate.6

The instability responsible for this process is the plasmoid instability,
which can grow rapidly leading to a reconnection rate that remains
fast and is weakly dependent on the Lundquist number.7–10 Thus, the
plasmoid instability has been proposed as a promising mechanism to

couple global system scale to local dissipation scales in reconnecting
current sheets, although there exist alternative models based on MHD
turbulence (e.g., Ref. 11).

In the MHD regime, this instability is found at sufficiently
high Lundquist numbers,7 causing the breakup of long current
sheets into chains of self-contained magnetic islands. These mag-
netic islands are highly dynamic, interacting with each other as
they move through the length of the primary current sheet until
they exit. Electrons can be efficiently accelerated to high energies
by these dynamic magnetic islands12,13 emitting observable radia-
tion (e.g., Ref. 14) The acceleration process is based on the reflec-
tion of particles from the ends of each contracting magnetic island
resulting in first order Fermi acceleration. Additionally, higher
energy particles that are free to move throughout the primary cur-
rent sheet across multiple islands can be mirrored and accelerated
by an enhanced Fermi process.15,16 A better understanding of the
magnetic configuration of plasmoids and their statistical properties
may help reveal how plasmoids can contract, the relative velocities
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with which they interact, and hence how the particles within and
in between are accelerated.

Previous studies have shown how this instability can interrupt a
Sweet–Parker current sheet which surpasses Sc � 104 depending on
pre-existing noise.9,17 A plasmoid unstable current sheet undergoes a
cascading process which generates new plasmoids until their mean
separation is low enough that the local Lundquist number of recon-
necting current sheets between them has been reduced below Sc, thus
stable to the plasmoid instability.6 These plasmoids, however, are
highly dynamic through their interaction. Between the time when a
plasmoid is born and the time when it advects out of the reconnection
layer, it may absorb smaller plasmoids or be absorbed by larger plas-
moids. Reconnection of their surrounding current sheets leads to the
accretion of flux as well. Over time, the current sheet may produce
very large plasmoids on the order of one tenth the length of the sheet
or greater.18

Due to the importance of plasmoids in reconnection adjacent
phenomena, statistical scalings have been sought both analytically and
numerically to describe the distribution of plasmoids most commonly
in terms of their reconnecting flux w, as f ðwÞ. In the Hall-MHD (mag-
netohydrodynamic) regime, f / exp ð�wÞ behavior has been pre-
dicted.19 This exponential dependence of reconnecting flux has been
observed in the near-Earth space with limited in situmeasurements by
a few satellites,20,21 by remote-sensing measurements of solar erup-
tions,22 and in laboratory experiments23,24 but with limited resolutions.
In the 3D MHD regime without a guide field, an entropy variational
principle has been used to derive25 a power law index of 3, while 2D
relativistic particle-in-cell simulations have been paired with Monte
Carlo methods to uncover a power law index in the range of 1–2. The
often reported scaling is f ðwÞ / w�2, seen in many 2D MHD simula-
tions and justified in most cases by statistical approaches.18,26–29 It has
also been argued that the combination of a power law index of 1 with
an exponential tail could appear as a power law index of 2 in numeri-
cal results, and analytical models explaining this behavior have been
proposed.22,27 Specifically, Huang et al.27 developed a statistical
approach that deftly demonstrates how the power law dependence of
the distribution can be replicated by accounting for the essential
behaviors of the unstable current sheet. Two models, one which allows
for variation in the relative velocity to the mean outflow of these plas-
moids and one which does not, produce power law indices of 1 and 2
of the reconnecting flux, respectively. All of these models do not
explicitly take into account of the presence of a finite guide field in the
reconnecting current direction. In many natural circumstances, how-
ever, a finite guide field is present during reconnection which may
modify the distribution of plasmoids. Work by Ni et al.30 found that
the presence of a guide field does not have a major impact on the
instability itself. We expand here the approach of Huang et al. to inves-
tigate effects of a finite guide field on the plasmoid distributions.

Both models of Huang et al.27 are further developed here by
adopting force-free field profiles internal to plasmoids as a result of
Taylor relaxation31 to determine the distribution of plasmoids in the
presence of a finite guide field. Without a guide field, the current sheet
and the plasmoids within are essentially non-force-free, e.g., the
incoming reconnecting field pressure is balanced by plasma pressure.
With a finite guide field, however, plasmoids become magnetic flux
ropes32 which are long known33 to relax toward a force-free state
possessing a strong core field in an approximately cylindrical shape.34

Such force-free fields are also known in the laboratory pinch experi-
ments as a result of Taylor relaxation,31,35 during which magnetic
energy is minimized while conserving magnetic helicity.36 The force-
free fields,~B, are given by35,37

r�~B ¼ k~B; (1)

where k is the eigenvalue determined by boundary conditions. The
lowest order solution to this equation was found to be Bz ¼ B0J0ðkrÞ
and Bh ¼ B0J1ðkrÞ in cylindrical coordinates. Here J0 and J1 are the
zeroth and first order Bessel functions of the first kind, respectively.
Taylor showed35 that in toroidal pinch experiments with large
Lundquist numbers andmoderate toroidal fields, these profiles reason-
ably predicted the peaked toroidal (core) field at the center with a
much-reduced magnitude or even reversed direction at the edge by
extending beyond the first zero of J0.

Magnetic reconnection with a guide field can be thought of as
transporting magnetic helicity from the background into the plas-
moids in the current sheet. If these plasmoids with a finite magnetic
helicity are allowed to relax toward a minimum energy state while
advecting toward the current sheet exit, their internal field structures
will take a form of force-free profiles. When plasmoids merge, mag-
netic helicity can be dissipated in the secondary current sheets.
However for high Lundquist numbers (� Sc), this dissipation is low
for moderate to weak guide fields38 while magnetic energy is reduced
significantly during merging. Therefore, the plasmoid merging process
can be also regarded as a Taylor relaxation process to minimize mag-
netic energy while conserving the total magnetic helicity so that the
resultant plasmoids also take the form of force-free profiles. Making
use of these assumptions, the antiparallel reconnection model is modi-
fied to include the effects of Taylor relaxation with a finite but moder-
ate guide field, following plasmoid mergers where adequate time for
relaxation is available. These details are discussed in Secs. II B and IV.
Hence, distribution of reconnecting and guide field plasmoid fluxes
can be obtained. An alternative model is also provided which simply
adds guide field fluxes upon plasmoid coalescence without Taylor
relaxation.39 This represents the strong guide field regime where
Taylor relaxation is not allowed and the plasmoids are not force-free
while non-negligible magnetic helicity is dissipated in the merging sec-
ondary current sheets. For both the relative velocity independent and
velocity-dependent models, the non-force-free and force-free distribu-
tions are compared and their implications and differences are
discussed.

In Sec. IIA, we derive the relationships necessary to relate the
reconnecting and guide field fluxes of a plasmoid to its magnetic helic-
ity, providing the rate at which plasmoids gain magnetic helicity from
the background reconnection. Some assumptions of the cylindrical
plasmoid model are also discussed, along with their validity regimes.
Section IIB lays out further assumptions about magnetic helicity dissi-
pation as relevant to the construction of a statistical equation that con-
serves magnetic helicity in plasmoid mergers. The non-force-free,
guide field conserving model is also provided as the alternate regime
of a strong guide field. Section III provides the numerical methods and
solutions to the equations derived in Sec. II B. These distributions and
their features are discussed in detail in Sec. IV. With solutions in hand,
the assumptions made earlier can be verified or constrained. Section V
summarizes the results, especially where relevant to particle
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acceleration. Possible future improvements to the statistical equations
are also discussed.

II. THEORETICAL MODELS
A. Relations between relaxed plasmoids and the
reconnecting current sheet

Several simple but important relations between force-free plas-
moids and the reconnecting current sheet where they are embedded
are described in this section. Each isolated plasmoid either when they
are born or as a result of merging of two plasmoids is assumed to take
the force-free profiles, as predicted by Taylor through minimizing
magnetic energy while conserving magnetic helicity. Unlike Taylor,
however, both the guide field and reconnecting field fluxes are not
conserved; rather they are determined by the embedded current sheet
as follows. We assume that these plasmoids are simple axisymmetric
cylinders as shown in Fig. 1(a) embedded in the reconnecting current
sheet. The relations between these plasmoids and the background cur-
rent sheet are derived in a straightforward manner by relating the plas-
moid radius a to the eigenvalue k. At the edge of the plasmoid r¼ a,
we match the background reconnecting and guide fields (termed Brec
and Bg, respectively) to the azimuthal and axial magnetic components
of the cylindrical plasmoids, Bh and Bz, respectively. We note that this
is less valid for smaller, newly born plasmoids as their radius is not suf-
ficiently large to reach the asymptotic values of Brec and Bg. The impact
of this assumption, however, is likely small and will be discussed in
Sec. III. Eliminating B0 from the profiles, we have that

Brec

Bg
¼ J1ðkaÞ

J0ðkaÞ
: (2)

There are infinitely many solutions to this equation. However, we
assume that the solution with the lowest value of ka should be used.
This is because solutions with higher ka involve a reversing guide field,
yielding higher energy configurations. These configurations are unsta-
ble to kink modes past the critical ka ¼ 3:176, leading to nonaxisym-
metric dynamics which we do not seek to capture in this model.40 This
assumption is supported by observations that do not typically exhibit a
reversed guide or core field within plasmoids. For the rest of this
paper, the lowest solution with ka satisfying Eq. (2) will be used.
Figure 1(b) shows two such examples of lowest ka: one for
Bg ¼ 0:75Brec and one for Bg¼ 0. For each choice of Bg=Brec, the
corresponding ka is determined as shown in Fig. 1(c). Furthermore,
once ka is determined, B0 may also be determined from both
Bg ¼ B0J0ðkaÞ and Brec ¼ B0J1ðkaÞ.

The reconnecting flux per unit length (w) and the guide field flux
(/) contained within a plasmoid will be defined as follows:

w ¼
ða
0
B0J1ðkrÞdr; / ¼

ða
0
B0J0ðkrÞ2prdr: (3)

For a toroidal system, w is the analog of the poloidal flux per unit axial
length and / is the analog of the toroidal flux. In the construction of
our statistical kinetic equation, it will become necessary to relate the
reconnecting flux, guide field flux, and magnetic helicity through the
background quantities by eliminating individual dependencies on k
and a. The eigenvalue equation can be integrated over an area with the
ẑ normal, which using Stoke’s theorem and Eq. (3) gives

FIG. 1. (a) Schematic of a cylindrical plasmoid embedded in part of the reconnect-
ing current sheet shown with the coordinates used in this paper. The dotted separa-
trix coincides with either ka � 2:405 or �1 in (b). Field lines are drawn on the
select surfaces (omitting the separatrix and innermost surface), shown as blue out-
side the plasmoid and green inside. We assume for simplicity the field lines are
nearly circular up until the separatrix. (b) The plasmoid field profiles are shown to
connect to the constant background field at r¼ a, for the cases of Bg=Brec ¼ 0:77
and Bg=Brec ¼ 0. (c) The functional dependence of ka vs Bg=Brec is shown to illus-
trate their relationship.
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ð
r� B � ẑdA ¼

þ
BhðaÞĥ � d~l ¼ 2paBrec ¼ k

ð
~B � ẑdA ¼ k/:

(4)

Performing the same integration with the ĥ normal, we obtainð
r� B � ĥdA ¼

þ
Bzẑ � d~l ¼ ðB0 � BgÞl ¼ k

ð
~B � ĥdA ¼ kwl:

(5)

The loop integration was performed along the magnetic axis for a dis-
tance of l and returns on the cylindrical surface where the axial mag-
netic field component equals the background Bg. There is no
contribution to the loop integration at the ends of the plasmoid due to
the radial magnetic field being zero in the model. Dividing Eq. (4) by
the square of Eq. (5) with rearrangements leads to

2pkaBrecB0

ðB0 � BgÞ2
¼ B0/

w2 ¼ f; (6)

where the constant dimensionless term has been renamed as f for sim-
plicity. The same conclusion can be arrived at from dimensional analy-
sis when the goal is an expression relating w and / which does not
expressly contain statistical variables such as the plasmoid radius a.
Instead, only the combination of ka is involved as specified in Fig. 1(c)
for a given Bg=Brec. Using r�~A ¼~B the vector potential can be
found for each plasmoid, namely,

~AðkrÞ ¼ B0

k
J1ðkrÞ �

a
r
J1ðkaÞ

� �
ĥ þ J0ðkrÞẑ

� �
; (7)

where the gauge choice has been made such that AhðkaÞ ¼ 0 for
each plasmoid to be isolated to avoid generating magnetic helicity
through linking neighboring plasmoids and surroundings.
(Otherwise, the concept of relative helicity41,42 needs to be
invoked.) The magnetic helicity for each plasmoid may then be cal-
culated directly using K ¼

Ð
~A �~Bd3r. The resulting relation can be

manipulated to yield

K ¼ w/ ka
B2
rec þ B2

g

BrecðB0 � BgÞ
þ B0

Bg � B0

" #
¼ aw/; (8)

where the constant coefficient has been renamed a. This gives a simple
relationship for the magnetic helicity which depends only on w and
the background parameters,

K ¼ aðf=B0Þw3: (9)

The growth rate of the plasmoid magnetic helicity due to recon-
nection if the plasmoid relaxes more rapidly than the rate by which
the primary current sheet reconnects (an assumption to be justified in
Sec. II B), is given by

dK
dt
¼ 3cðaðf=B0ÞÞ1=3K2=3: (10)

The assignment dw=dt ¼ c has been made for brevity. To determine
the final state of a plasmoid that has formed as the result of the merger
of two plasmoids, we may then exploit either guide field flux conserva-
tion or magnetic helicity conservation depending on the background
conditions.

B. The kinetic equations for the plasmoid distribution

A standard governing kinetic equation for plasmoid size distribu-
tion in terms of the reconnecting field flux includes contributions
from the sources, growth, and sinks of plasmoids as they evolve in the
dynamic current sheets. The source of plasmoids is always localized at
zero flux while their growth is based on the overall reconnection rate.
The latter is determined by the critical Lundquist number for a
Sweet–Parker current sheet to become unstable:8 Sc � 104. Therefore,
the stable current sheets which lie in between plasmoids add flux to
the plasmoids at a rate dw=dt ¼ BVA=

ffiffiffiffi
Sc
p
¼ c. Following Huang and

Bhattacharjee,27 with the assumption that mergers occur with a fre-
quency independent of the plasmoid relative velocities, the statistical
kinetic equation is given by

@f
@t
þ c

@f
@w
¼ ndðwÞ � n>

sA
f � 1

sA
f ; (11)

where

n>ðwÞ ¼
ð1

w
f ðw0Þdw0: (12)

All of the solutions obtained are steady state with @t ¼ 0. On the right,
the first term, ndðwÞ, represents the creation of plasmoids where dðwÞ
is Dirac d-function. The second term represents the loss due to
absorption by larger plasmoids with a rate proportional to their num-
ber, n>ðwÞ, assuming a typical relative speed on the order of VA. The
third is the sink term representing the advection of plasmoids out of
the reconnection layer. The Alfv�en time sA ¼ L=VA is that of the
reconnecting component of the background current sheet. The solu-
tion for this equation was determined to be27

f ðwÞ ¼ 2C
csA

exp ð�w=csAÞ
C � exp ð�w=csAÞ½ �2

; (13)

where C ¼ 1þ 2=N and N is the number of plasmoids. This solution
possesses three regimes: a constant initial section where plasmoids
grow due to reconnection not having had time to merge yet, followed
by a power law dependence with the index of 2 where mergers domi-
nate dynamics, then finally an exponential tail where advection loss
dominates for the largest plasmoids. When accounting for plasmoids
with varying velocities relative to the mean outflow, the statistical
kinetic equation takes on a modified merger rate according to

@F
@t
þ c

@F
@w
¼ ndðwÞhðvÞ � H

sA
F � 1

sA
F; (14)

where

Hðw; vÞ ¼
ð1

w

ð1
�1

jv� v0j
VA

Fðw0; v0Þdv0dw0: (15)

The plasmoid creation term is now endowed with a velocity dis-
tribution, assumed to be hðvÞ ¼ 1=

ffiffiffi
p
p

VA

� �
exp ð�v2=V2

AÞ (although
as noted by Huang et al.27 and confirmed by our own tests the solution
is not very sensitive to the exact distribution chosen). The coalescence
term corrects the rate at which mergers occur by the difference in
velocity between the two merging plasmoids, approximating the resul-
tant velocity as that of the larger plasmoid. An analytical solution to
the steady state form of this equation is not known, it is instead solved
numerically.
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C. A model for force-free plasmoids

Equations (11) and (14) can be modified to account for the effects
of Taylor relaxation with a guide field. As the reconnecting flux of a
plasmoid grows by reconnection, its magnetic helicity also grows. This
change in magnetic helicity calls for a continuous modification to the
plasmoid internal profiles if there is sufficient time for the plasmoid to
continuously relax. This condition is generally satisfied as the plas-
moids grow on the tearing mode growth time while relaxation is
mostly Alfv�enic, evidenced for example from experimental observa-
tions.43 Furthermore, the relaxation time is defined with respect to a
given plasmoid’s local Alfv�en time. For current sheets with many small
plasmoids, the vast bulk of the plasmoid population will have the local
Alfv�en times orders of magnitude faster than the global Alfv�en time,
thereby consistent with globally super-Alfv�enic growth rates.10,44,45

The relaxation time is also much shorter than the plasmoid advection
time in the current sheet or equivalently the reconnection time on
order of

ffiffiffiffi
Sc
p

sA ¼ 100sA. Therefore, it is well justified to assume that
all plasmoids in the current sheet, other than those having very
recently undergone coalescence, are always in a force-free state at any
given time minimizing their magnetic energy while conserving mag-
netic helicity. For these plasmoids then, the reconnecting field flux and
helicity are related according to Eq. (9), aðf=B0Þw3 ¼ K .

As hinted above, in many instances it will be assumed that there
is ample time in between mergers for a given plasmoid to reach the
force-free state. Small plasmoids rarely encounter plasmoids with a
lower flux, and large plasmoids experience a small change in magnetic
helicity when merging, thereby not deviating significantly from the
force-free state. For intermediate plasmoids, however, there may exist
a regime where plasmoids merge too frequently at comparable mag-
netic helicities to fully relax to a force-free state in between mergers.
Therefore, we develop models in two opposing limits: one model for
all plasmoids to be force-free after relaxation while conserving
magnetic helicity even during plasmoid mergers, as described in
Subsection IIC. The other model on non-force-free plasmoids without
relaxation while conserving guide field flux, as described in Subsection
IID. The range of validity for the force-free assumption will require
further discussion; however, it will be reserved for Sec. IV.

Regardless of whether the resultant plasmoid is force-free, mag-
netic helicity is conserved if the helicity change or dissipation in the
secondary current sheet during coalescence is negligible. The change
in magnetic helicity during plasmoid merging is due to the change in
the linkage between the guide field flux contained in the secondary
current sheet and the reconnecting field flux around the current sheet.
An estimate of the rate of change in magnetic helicity per change in
magnetic energy,W, is given by Ji,38����WdK

KdW

���� ¼ 2
dsjBg j
LsBrec

; (16)

where ds and Ls are thickness and length of the secondary current
sheet, respectively. Since ds=Ls is the steady state reconnection rate for
the plasmoid merging, it should range from 0.1 to 1=

ffiffiffiffi
Sc
p
¼ 0:01,

depending on collisionality. Therefore, when the guide field is compa-
rable to or weaker than the reconnecting field, no significant helicity is
expected to be generated or dissipated by secondary current sheets.
This permits our consideration of the plasmoid merger process as
simultaneous Taylor relaxation. In a strong guide field, the dissipation

of magnetic helicity would not be negligible and so the merging pro-
cess would not be one of constant helicity. In fact, Taylor relaxation
does not typically occur in this limit in the laboratory fusion plasmas
and resultant profiles are generally not force-free.

With the assumptions above, the statistics of the new models can
be described with modification of Eqs. (11) and (14). The nonvelocity-
independent variable is chosen to be K, and the corresponding
reconnection growth is given by Eq. (10). The loss term now includes
advection and plasmoid mergers while a source is added to account
for the resultant plasmoids which reached the K in question by merg-
ing. If we denote the sources and sinks as RSðKÞ and note that the
influx of probability density is given by f ðKÞdK=dt, then the conserva-
tion of particle number for a dynamic distribution yields

d
dt

ð
f ðKÞdK þ

ð
d
dK

f ðKÞ dK
dt

� 	
dK ¼

ð
RSðKÞdK: (17)

Taking the steady state and equating the integrands, the distribution of
plasmoids with a velocity independent merger frequency is therefore
given by

3c
af
B0

� 	1=3 d
dK
ðK2=3f Þ ¼ ndðKÞ � N þ 1

sA
f

þ 1
sA

ðK=2
0

f ðK 0Þf ðK � K 0ÞdK 0; (18)

where N is the total number of plasmoids. The growth rate is present
inside the derivative in order to ensure that, if only reconnection
growth were present, f is conserved. Here all mergers trigger a change
in magnetic helicity, so the quantity n> of Eq. (11) is instead integrated
from 0 to1, becoming N. The merger term assumes the frequency of
plasmoid mergers between K � K 0 and K 0 is f ðK 0ÞdK 0=sA, adding
f ðK � K 0Þ to f(K), in a similar manner to Fermo et al.19 where plas-
moid area is conserved. It is integrated to K=2 in order to avoid double
counting. Combined with the merger loss term, this kinetic model is
constructed such that magnetic helicity is conserved by plasmoid
mergers. Each merger transforms the resultant plasmoid to a new
magnetic helicity which, ignoring reconnection and advection terms,
keeps the total helicity in the distribution constant. Similar modifica-
tions can be made to the velocity-dependent model,

3c
af
B0

� 	1=3
@

@K
ðK2=3FÞ ¼ ndðKÞhðvÞ � Ht þ 1

sA
F

þ 1
sA

ðK=2
0

ð1
�1

jv� v0j
VA

FðK 0; v0Þ

� FðK � K 0; vÞdv0dK 0; (19)

with

HtðvÞ ¼
ð1
0

ð1
�1

jv� v0j
VA

FðK 0; v0Þdv0dK 0: (20)

Note that the notation of F for velocity-dependent distributions and f
for velocity-independent distributions will be used from here on. The
same process is used as before to modify the merger rate to conserve
magnetic helicity. Once again, Ht is simply H of Eq. (14) integrated
from 0, and the resultant velocity of a merger is assumed to be that of
the larger plasmoid. A proof of the helicity conserving property of the
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merger terms, Eq. (20) and the last line of Eq. (19), is presented in
Appendix by showing their first helicity moment is zero. It is easily
extended to the velocity-independent case as well. Both of these force-
free models are solved numerically in Sec. III.

D. A non-force-free model

As an opposing limit of the force-free plasmoid model, which is
more applicable in the strong guide field regime, we offer an alterna-
tive model where plasmoid internal field profiles are not necessarily
force-free but total guide field flux is conserved by mergers. In this
case, the kinetic equation in w is unchanged from Huang et al. but the
kinetic equations in / are similar to those of the relaxing model in
terms of K,

cg
df
d/
¼ ndð/Þ � N þ 1

sA
f þ 1

sA

ð/=2

0
f ð/0Þf ð/� /0Þd/0 ; (21)

and

cg
@F
@/
¼ ndð/ÞhðvÞ �Ht þ 1

sA
F þ 1

sA

ð/=2

0

ð1
�1

jv� v0j
VA

� Fð/0; v0ÞFð/� /0; vÞdv0d/0; (22)

for constant and nonconstant velocities, respectively. Here Ht is the
same as Eq. (20) with the substitution w! /. Similar logic is
employed for the source and loss terms, but the growth rate due to
reconnection is modified. For a current sheet of thickness d, while w is
proportional to Brecd per unit length, / is proportional to Bgd

2. The
resultant growth rate is then cg ¼ Bgd

2=sA;local ¼ Bgðl2=ScÞðVA=lÞ
¼ BgVAL=NSc, where the local current sheet length l ¼ L=N . This
solution is also pursued numerically.

III. NUMERICAL SOLUTIONS TO GUIDE FIELD MODELS

The method of Jacobi relaxation was used to find the steady
state solution of the force-free model, and forward Euler time step-
ping was used to find the quasi-steady state solution of the non-
force-free model.46 In both cases a logarithmically spaced grid was
employed for the nonvelocity variable, so the magnetic helicity or
guide field flux conserving source term needed to make use of
interpolation. The value of f ðK � K 0Þ (or f ð/� /0Þ) was found by
using quadratic interpolation to K � K 0 (/� /0), while f ðK 0Þ
(f ð/0Þ) was simply evaluated at the grid points. All K (/) integra-
tions were performed with Simpson’s rule adapted for the logarith-
mic grid. The v integrations were performed using trapezoidal
quadrature on a uniform grid. All integration source terms con-
verge to at least second order. The convective gradient terms were
calculated with Euler upwinding. To avoid roundoff error, the
magnetic helicity solution was found as a function of K1=3

� w which significantly lowered the number of decades spanned
by the domain. When using Jacobi iteration the non-force-free
solution suffered from unstable over-relaxation unless a very high
precision was used, leading to the choice to iterate in time until a
quasi-steady state was reached. In both cases, the lower bound was
fixed to determine n and an upper bound was chosen equal to 0.
The solutions are given assuming Bg ¼ Brec ¼ L ¼ vA ¼ 1 (where
Brec is used for vA), except for the strong guide field regime where
Bg ¼ 100Brec is used.

A. Velocity-independent models

The distribution as a function of magnetic helicity for the
velocity-independent model was calculated for approximately
S ¼ 106, which assumes N � S=Sc. It is important to stress that in
practice when solving for the distributions, instead of choosing S we
choose the left bound, which determines the number of plasmoids,
which in turn is used to estimate S. A plot of the distribution can be
found in Fig. 2 for N¼ 97.2. The helicity dependent solution can be
converted to a solution as a function of the reconnecting field flux by
using w ¼ ðK=aðf=B0ÞÞ1=3 (equivalent to assuming all plasmoids are
always force-free), and enforcing

Ð
fwðwÞdw ¼

Ð
fKðKÞdK ¼ N where

dK ¼ 3ðaf=B0Þw2dw (fw, fK, and f/ are simply f for each variable with
subscripts to emphasize their respective normalizing scale factors).
The similarities between the force-free and the non-force-free models
at S ¼ 106 are apparent as shown in Fig. 3. The exponential tail has
been incrementally stretched to higher w for the force-free model, and
even more subtle is the lessening of the power law index from 2 to 7/4.
These changes may in practice be hard to detect from an experimental
or numerical standpoint. The flux distributions for multiple Lundquist
numbers are shown in Fig. 4 for the force-free model. As expected, at
higher Lundquist numbers, the power law region is extended similarly
to the behavior of the non-force-free solution.27

Further differences are revealed in the comparison between the
force-free and non-force-free distributions as a function of /. Figure 5
shows both models for a similar number of plasmoids (Nff � 100;
Nnff � 60) with significant differences between the assumption of
magnetic helicity conservation and relaxation, vs guide field flux con-
servation. The force-free model ties the / distribution to the w
distribution, so the power law index of 7/4 in w produces a power law
index of 11/8 in / because of Eq. (6) (B0/ ¼ fw2) and the require-
ment of consistent normalization (

Ð
fwðwÞdw ¼

Ð
f/ð/Þd/ ¼ N).

Additionally, the nonconstant / growth rate of the force-free model
results in a second low-/ power law with index 1/2. In the nonforce-
free case, a steeper power law index of 3/2 is obtained, with an

FIG. 2. The solution to the steady state statistical kinetic equation [Eq. (18)] as a
function of magnetic helicity, K, for the force-free model e with S 106. The power
law slopes match the K�2=3 and K�5=4 lines well, with the similar exponential tail to
that of Huang et al.,27 but a second power law results at low K from the fact that
dK/dt is not constant.
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approximately constant initial region. Both models begin to exhibit
exponential decay around roughly the same value of /.

B. Velocity-dependent models

Using the numerical methods mentioned above, the solutions to
the distribution of plasmoids with varying velocities were also found.
For the Gaussian velocity distribution calculated in a domain of
w 2 ½0; 0:1� and v 2 ½�3; 3� with f ð0; 0Þ � 106, the solutions are
shown in Figs. 6 and 7.

Figure 6 displays the solutions after translation to w using the
force-free relations, as well as after integration in v. It is plotted along-
side the integrated non-force-free distribution for comparison. The
result of the inclusion of Taylor relaxation in this model differs from
that of the velocity-independent model. The exponential tail is once

again extended slightly and the transition to the power law region is
largely unchanged, but the power law indices are both 1. Note that
using N � S=Sc, the Sweet–Parker thickness d can be found
(d � l=

ffiffiffiffi
Sc
p
� L

ffiffiffiffi
Sc
p

=S) as 4� 10�5. The average value of the mag-
netic field magnitude, B, for the Taylor profile is 0:575Brec, so plasmoid
widths reach the order of magnitude of the current sheet thickness at
w ¼ 2:32� 10�5 when B scales linearly with w. This is relatively close
to the constant premerger region, meaning the inability of small plas-
moids to fill the current sheet may not play a significant role.
Furthermore, plasmoids slightly below the current sheet width may
already be sufficiently large so as to exhibit the essential properties
sought for replicating the force-free behavior predicted here.

FIG. 6. The solutions to the steady state statistical kinetic w equation with the
velocity distribution effects included. Both the force-free [Eq. (19) with (9)] and non-
force-free [Eq. (14)] solutions are shown with velocity dependence integrated out.
The total number of plasmoids present in both solutions is �250.

FIG. 3. Distributions for both the force-free [Eq. (18) with (9)] and non-force-free
[Eq. (11)] models, at S ¼ 106. There is a very slight reduction of slope in the force-
free distribution with a 7/4 power law index, deviating from the w�2 behavior of the
non-force-free distribution.

FIG. 4. Distribution of force-free plasmoids vs w. Results are shown for
S � 106; 5� 106, and 107.

FIG. 5. The force-free distribution [Eq. (18) with (6)] for �100 plasmoids alongside
the non-force-free distribution [Eq. (21)] for 60 plasmoids and Bg ¼ 100Brec. The
non-force-free model produces a power law index of 3/2 with a constant initial
region, and the relaxing model has power law indices of both 1/2 and 11/8, resulting
from a non-constant d/=dt.
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Assuming the w at which a given plasmoid first merges with another
is proportional to l ¼ L=N ¼ LSc=S, the competing processes both
scale as 1=S and hence this balance should not change for different S.

A two-dimensional distribution of the solution in w and v is
shown in Fig. 7. The power law region begins where the approximately
constant distribution begins to narrow, indicating that collisions occur
frequently in this region. The narrowing in the velocity spread contin-
ues until a near delta-function distribution results. The comparison of
guide field distributions in the force-free and non-force-free cases is
shown in Fig. 8. Again the magnetic helicity conserving force-free

distribution presents a less steep power law than the guide field flux
conserving non-force-free distribution at higher /.

IV. DISCUSSION

In all models shown as functions of w, one can immediately
observe similarities between the numerical solutions obtained here
and those of Huang et al.27 The initial region appears approximately
constant, which can be understood as most plasmoids growing due
to reconnection prior to experiencing a single merger. If dw=dt
¼ c ¼ 0:01 and we assume the average time between mergers is sA=N
which for 100 plasmoids is 0.01, then on average a plasmoid will not
merge until they reach the size at w � 10�4. Regarding the exponen-
tial decay, this occurs wherever the dominant loss mechanism
becomes advection, i.e., the remaining number of plasmoids above a
certain w, n> (the integral of f from w to1), is on the order of one.
This can be seen in any of the distributions by estimating
n> � f ðwÞDw with w � Dw near the start of the exponential decay
and explains why steeper distributions transition to exponential decay
at smaller w.

As can be seen in Fig. 3, the velocity-independent force-free dis-
tribution differs only slightly from the non-force-free distribution. Of
these differences in the force-free distribution, the most visible is a
weak reduction in slope, and an extension of the exponential tail. The
change in slope can be understood as an effect of flux conversion from
guide field to reconnecting as a result of Taylor relaxation conserving
magnetic helicity. Guide field fluxes add during a merger while recon-
necting field fluxes do not. To satisfy the relationship / ¼ fw2=B0

[Eq. (6)] for the force-free field after relaxation while conserving mag-
netic helicity, the excess guide field flux must be converted to recon-
necting field flux. In practice, using these relationships one finds that
at most 20.6% of the guide field flux will be converted after a merger
between equivalent flux plasmoids. Given that smaller plasmoids are
much more populous, mergers often result in little flux conversion,
and hence the slope change in f is subtle. This can be understood more
quantitatively by a comparison between the merger terms in the force-
free and non-force-free statistical equations. These terms side by side
can be rewritten for w as (dropping the sA)

ðw=21=3

0

1� w03

w3

 !�2=3
f ðw0Þf ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w3 � w0

3
3

q
Þdw0 � Nf ðwÞ

and
ðw
0

f ðwÞf ðw0Þdw0 � Nf ðwÞ; (23)

where a scaling factor is present in the force-free expression as a result
of the transition from K to w. Due to the monotonic decreasing nature
of f, f ððw3 � w03Þ1=3Þ � f ðwÞ over the bounds of integration, increas-
ing the integrand, and the overall value of the source in Eq. (18). This
is further aided by the scaling factor, which within the bounds of the
integral reaches a maximum of 22=3. The integration interval is slightly
shortened by the upper bound of w=21=3; however, due to the steep-
ness of f and the scaling factor, the latter effect is outweighed by the
former. In the case of the velocity-dependent model, the slope is far
less steep and the collision rate is weighted by differential velocity
(see Fig. 6). This more mild slope lowers the enhancement of
Fððv;w3 � w03Þ1=3Þ in the integral, allowing it to be muted by an effect

FIG. 7. Two-dimensional distribution showing the velocity dependence of the force-
free solution. The differences between the force-free and non-force-free distribu-
tions are nuanced, with a �1:5% redistribution of probability density away from the
centerline in the power law (10�4–10�2) regime.

FIG. 8. The force-free [Eq. (19) with (6)] and non-force-free Eq. (22) / distributions
plotted with the velocity dependence integrated out. The non-force-free distribution
has the same power law as the velocity-independent case, �3/2, and the relaxing
distribution exhibits a �1 power law, once again accompanied by a distinct low-/
power law with an index of 1/2. In this case the non-force-free distribution shown
has �60 plasmoids with Bg ¼ 100Brec.
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introduced with the inclusion of a velocity distribution. A comparison
of the w� v dependence of the non-force-free distribution with the
force-free distribution in Fig. 9 shows that in the power law regime,
the force-free distribution experienced an outward shift of plasmoids
from the central low-v region to higher v regions. Overall, the average
speed of plasmoids increased by 1.5%. While this change is small, this
causes plasmoid mergers to occur more frequently in the power law
region, increasing the steepness of F slightly. This may be an effect of
flux conversion leading to more rapidly moving low flux plasmoids
“leapfrogging” into the merger-dominated regime and shortly merging
with other plasmoids. While this bolstered collisionality may increase
the steepness, any merger resulting in flux conversion still boosts the w
of one of the plasmoids. That is why in both the velocity independent
and dependent force-free models, the exponential tail of the distribu-
tion is extended, albeit to a lesser extent in the velocity-dependent
model.

From Fig. 5, the differences in the velocity-independent guide
field distributions are much more pronounced than those of w. While
one may expect flux conversion of guide field flux to reconnecting flux
would cause the force-free model to have a steeper slope than the non-
force-free model (at least without velocity), the results are quite the
opposite. This is due primarily to the reconnection growth rates of /
in the two models. In the non-force-free case the growth rate is the
constant cg for all plasmoids, however, the relaxing model does not
grow / at a constant rate. The nature of the guide field flux in this
model is assumed to be passive, and a plasmoid’s w grows in a manner
that maintains a force-free state at the expense of the growth of guide
field flux. Therefore, the plasmoid follows / ¼ fw2=B0 [Eq. (6)] so
that d/=dt ¼ 2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B0/=f

p
, growing faster the larger it gets. The force-

free growth rate, although smaller than cg initially, surpasses its non-
force-free counterpart near / � 10�6. This nonconstant growth rate
leads to another distinguishing feature of the force-free model, a 1/2
power law index at low /. This two vs one power law difference
between models is much more significant than that which occurs later

in / and could significantly ease the difficulty in determining which
model is most appropriate for a given data set. The same effects are
seen in the velocity-dependent distribution comparison, although in
this case, the non-force-free power law is the same as the velocity-
independent version, even though the force-free power law has
changed. This relates to the increase in steepness observed in the
velocity-dependent force-free w distribution. Since / � K2=3 in the
force-free model, mergers add / in a sort of two-thirds quadrature.
However, directly adding / in the non-force-free model allows for a
larger “jump” when merging, leading to a more significant difference
in slopes.

In Sec. II B, the force-free model was chosen to be the limit where
all plasmoids are in a force-free state at all times, even when merging.
However, it is possible that a plasmoid that undergoes two rapid con-
secutive mergers may not reach a force-free state in between the merg-
ers, even though magnetic helicity conservation is unaffected. Figure
10 shows the rate of change of a plasmoid’s magnetic helicity, normal-
ized to its helicity right before merging as a function of /, solely due to
mergers for the force-free models. This reveals wherein the distribu-
tion a given plasmoid experiences the most frequent and significant
mergers. The velocity-dependent model is shown evaluated at v¼ 0.
As an exercise, if one considers relaxation to be possible when the hel-
icity changes by no more than the given K in an Alfv�en time, the v-
independent model would exhibit force-free plasmoid configurations
before / � 10�9 and after / � 10�3, while slower plasmoids in the v-
dependent model would be force-free after / � 10�4 as well as before
/ � 10�9. The drop-off at high / indicates that the largest plasmoids
in the exponential tail should be frequently found in a relaxed state.
However, this is simply meant to illustrate wherein the distribution
plasmoids undergo the most change. If relaxation can take place suffi-
ciently rapidly, then one will observe characteristics of the force-free
model in the region of rapid helicity change. Finally, we note that we
assume that mergers of 3 or more plasmoids are rare enough so that
their effects on the distribution are negligible.

FIG. 10. Plot which shows rate of change of K due to mergers, normalized to the
given K as a function of /. It demonstrates where the average change in helicity
due to a merger is small enough that a plasmoid may be able to partially or fully
relax in between collisions.

FIG. 9. Heat map of the difference between the force-free model and the non-force-
free model. The two regions are separated based on which F is larger (non-force-
free “NF” and force-free “FF”). In the central low-v region, FNF > FFF. In the outer
regions FNF < FFF.
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V. CONCLUSIONS

These models do not necessarily represent the exact distribu-
tions of plasmoids in a current sheet that undergoes dynamic
reconnection. Due to the disruption of relaxation by frequent
mergers at some scales, it may be more appropriate to treat the
non-force-free and force-free cases as asymptotic behaviors. From
Fig. 10, we expect to observe force-free plasmoids at the smaller
scales, as well as the largest. The suspicion that large w plasmoids
may be able to relax is hinted at by the observation of Taylor-like
relaxed flux ropes present in the solar wind as well as the earth’s
magnetotail.47,48 While in the Hall-MHD regime, these results may
still indicate that larger plasmoids are capable of achieving a force-
free state, suggestive of some processes dominated by magnetic
helicity conservation.

The results here indicate that guide field flux distributions may
be noticeably distinct, especially due to the introduction of a second
low-/1/2 power law index in the force-free model. Experimentally,
however, this can be a challenging quantity to measure. A more
directly measurable characteristic would be the distribution of plas-
moid sizes, or the quantity a in the force-free case. From the surface
integration of the reconnecting field, we can easily demonstrate that
w � a in the force-free case. Unfortunately, the distinction of this
from the non-force-free model may also prove difficult. Using the con-
clusions of Uzdensky et al.,26 in the incompressible limit of the anti-
parallel plasmoid instability the width of a plasmoid perpendicular to
the current sheet would follow wp � w=Brec. This incompressible limit
may also be thought of as the case of a strong guide field where the
added magnetic pressure augments the pressure of the magnetized
plasma within. Hence one may only be able to distinguish the physical
size distributions, as well as the w distributions, can be distinguished
between the force-free and non-force-free models. Instead, a more
accessible indication that helicity conservation is, to some extent, play-
ing a role may simply be the presence of an enhanced core field in line
with that of the Taylor profiles internal to the plasmoids which form
the backbone of the force-free model.31,33,34,47 It should be noted that
if the w distributions (or more importantly a or wp distributions) are
similar between the force-free and non-force-free models and the /
distributions vary largely, then the internal plasmoid guide field pres-
sures will also be significantly different. Here, guide field pressure
would reach noticeably greater levels in the force-free model over the
non-force-free model.

The models presented here may also prove relevant to the
plasmoid distribution when the external guide field is negligible.
Instabilities which arise in three dimensions such as kink modes
add an out-of-plane magnetic field to an otherwise antiparallel
configuration. The process of flux rope merging in 3D is a particu-
larly important example of an event where kinking occurs in an
otherwise straight cylindrical island in 2D. The condition of thin
flux ropes being necessary should be mentioned to ensure that the
characteristic length scale of a kink does not largely affect the
assumption of approximately straight cylindrical Taylor states (as
in high aspect ratio reverse field pinch devices). This negligible
guide field regime is not forbidden in any way by our equations.
Rather, it is the case where the quantity ka is the first zero of J0ðxÞ.
This phenomenon of Taylor relaxation where the external guide
field is zero has been observed experimentally.49

The addition of relaxation has also allowed for an increase in the
spread of plasmoid velocities. Although it is a small change of 1.5%, a
Fermi-like process involving multiple reflections from plasmoids can
add up to cause an increase in the highest achievable energy of charged
particles undergoing this acceleration. More significantly, the accelera-
tion which occurs during island contraction relies on how quickly the
island is compressed. The enhancement of guide field pressures in the
relaxing model and the increasing rate with which guide field flux is
accreted onto a plasmoid can result in a greater effective mirror veloc-
ity in a first order process.50

The force-free model’s alterations to particle acceleration pro-
cesses and the speed of plasmoids in the outflow are unlikely to affect
the global rate of energy conversion in any considerable capacity.
While energization may be enhanced for some high energy particles
already capable of undergoing Fermi acceleration, they represent a
minute fraction of the overall energy of the plasma and therefore are
not likely to contribute to the global energy conversion rate in a signifi-
cant manner. It is possible, however, that the dissipation of magnetic
energy during the Taylor relaxation that accompanies plasmoid
growth and mergers could result in a modified conversion rate. The
assumption of perpetual relaxation as a plasmoid grows due to recon-
nection leaves the reconnecting flux growth rates the same, but the
guide field flux growth rates differ significantly between models. In
addition, it can be shown that a force-free plasmoid’s total magnetic
energy goes linearly with its guide field flux. For large plasmoids, the
guide field flux growth rate is enhanced in the force-free model, but
for small plasmoids, it is significantly hindered. Because of this, it is
not clear whether the overall rate of energy conversion would increase
or decrease between models. Therefore, we leave this calculation to
future investigations.

In order to make a more robust model of the plasmoid distri-
bution in a guide field, several more effects may be included in the
future. Specifically, the assumption of merged plasmoids adopting
the velocity of the larger allows for the narrowing of the velocity-
dependent distribution to a near delta function in v. If instead flux
weighted averaging was used, a greater spread in velocity at higher
w would result. This broadening is also suggested by the spread in
the velocity distribution found by Lingam and Comisso.25 In paral-
lel, a more thorough investigation of the effects of the choice of
H(v) on the distribution of plasmoid velocities may be of interest.
While this work has focused on the distribution in fluxes and helic-
ity, more realistic merging rules may be accompanied by varied
effects on the distribution of plasmoid velocities. It may also prove
important to address the possibility of incomplete or particularly
slow plasmoid mergers. Coalescence rates have been observed to
stall in simulations due to a sloshing effect at high Lundquist num-
bers.51 This delayed or inhibited coalescence could give rise to
more efficient production of high flux plasmoids in our statistical
models. Additionally, there have been growth rates proposed for
the plasmoid instability which would modify the Sweet–Parker
reconnection rate c used here. While they may not affect the power
law slope, an increase or decrease in c would affect where the tran-
sition from the constant region to the power law region occurs.
Numerical or experimental investigations of these distributions
may seek to determine which model is most appropriate for the
problem of plasmoid unstable reconnection in a guide field, or
whether they both remain contained within their expected regimes.
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Observation of power law behavior outside the limits of the force-
free and non-force-free models may suggest that conservation of
an alternative quantity holds over guide field flux or magnetic hel-
icity, while something in between may, if appropriate, suggest an
intermediate regime that possesses characteristics of both
distributions.
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APPENDIX: MAGNETIC HELICITY CONSERVATION
OF THE COLLISION TERMS IN THE PLASMOID
KINETIC EQUATION

A required characteristic of our plasmoid kinetic equation is
that the terms involving plasmoid mergers must conserve magnetic
helicity in the distribution. In other words, the first moment of the
following equation, from Eq. (19), must be zero:

dF
dt

� 	
merge
¼ � F

sA

ð1
0

ð1
�1

jv� v0j
VA

FðK 0; v0Þdv0dK 0

þ 1
sA

ðK=2
0

ð1
�1

jv� v0j
VA

FðK 0; v0ÞFðK � K 0; vÞdv0dK 0:

(A1)

In this section, we will prove that this is true. We begin by
integrating the equation over the entire velocity space v. For read-
ability, we will use the shorthand

Ð
v ¼

Ð1
�1 dv and

Ð
K ¼

Ð1
0 dK , as

well as Dv̂ ¼ jv� v0j=VA,ð
v

dF
dt

� 	
merge
¼ � 1

sA

ð ð ð
v;v0;K 0

Dv̂FðK; vÞFðK 0; v0Þ

þ 1
sA

ð ð
v;v0

Dv̂
ðK=2
0

FðK 0; v0ÞFðK � K 0; vÞdK 0: (A2)

Some reshuffling of the final term will prove useful. First, a
substitution of x ¼ K � K 0 yields

ð ð
v;v0

Dv̂
ðK=2
0

FðK 0; v0ÞFðK � K 0; vÞdK 0

¼
ð ð
v;v0

Dv̂
ðK

K=2

FðK � x; v0ÞFðx; vÞdx: (A3)

Given that v, v0, and x are integrated out, we can rename them
as v0, v, and K 0, respectively, without affecting the results

ð ð
v;v0

Dv̂
ðK=2
0

FðK 0; v0ÞFðK � K 0; vÞdK 0

¼
ð ð
v0;v

Dv̂
ðK

K=2

FðK � K 0; vÞFðK; v0ÞdK 0: (A4)

Therefore, the identical integrand on both side of the above
equation permits the following relationship:

ð ð
v;v0

Dv̂
ðK=2
0

FðK 0; v0ÞFðK � K 0; vÞdK 0

¼ 1
2

ð ð
v;v0

Dv̂
ðK
0

FðK 0; v0ÞFðK � K 0; vÞdK 0: (A5)

A property of our distributions is that FðK; vÞ ¼ 0 for K< 0
and equivalently FðK � K 0; vÞ ¼ 0 for K 0 > K . Therefore, we may
extend the K integration out to infinity producing a convolution,
and replace the result with our integrated merger termsð

v

dF
dt

� 	
merge
¼ � 1

sA

ð ð ð
v;v0 ;K 0

Dv̂FðK; vÞFðK 0; v0Þ

þ 1
2sA

ð ð
v;v0

Dv̂Fðv0Þ 	 FðvÞ; (A6)

where we use the standard notation for a convolution Fðv0Þ 	 FðvÞ
with explicit v dependence to differentiate between the primed and
unprimed variables. The next step is to Laplace transform this equa-
tion from K to s, and take a derivative with respect to s

�
ð ð
v;K

Ke�sK
dF
dt

� 	
merge
¼ � 1

sA

ð ð
v;v0

Dv̂L0 F½ �ðs; vÞL F½ �ð0; v0Þ

þ 1
2sA

ð ð
v;v0

Dv̂ L F½ �ðs; v0ÞL0 F½ �ðs; vÞ



þL0 F½ �ðs; v0ÞL F½ �ðs; vÞ�: (A7)

Taking the negative of Eq. (A7) and evaluating it at s¼ 0,

�
ð ð
v;K

L0 dF
dt

� 	
merge

" #
ð0; vÞ ¼

ð ð
v;K

K
dF
dt

� 	
merge
¼ 0: (A8)

This proof can easily be generalized to the velocity-independent
case, and is also of course applicable to the guide field conserving
regime with K replaced with /.
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