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Abstract

The dynamics of rotating flows in magnetohydrodynamics (MHD) are expected to play an

important role in astrophysical accretion disks, specifically via the generation of the mag-

netorotational instability (MRI). The Princeton MRI experiment, a Taylor-Couette device

with split axial endcap rings and with a gallium-indium-tin working fluid, was constructed

to study rotating MHD flows in the laboratory. This work uses an ultrasound Doppler

velocimetry (UDV) diagnostic to measure internal fluid velocities of the mean background

flow and also of fluctuations driven by instabilities in this experiment.

Mean azimuthal velocities have been measured to show the effect of an applied axial

magnetic field. For moderate magnetic field strengths, with the Elsasser number Λ =

B0/
√

4πρηΩ < 1, the normalized azimuthal velocity at a point, vθ/v1, with v1 the inner

cylinder velocity, is constant for a given vA/v1, the Alfvén speed normalized to v1. In the

Λ ≫ 1 regime, the shear at the split in the endcaps extends axially as a free Shercliff layer

through the full height of the experiment.

When the inner endcap ring rotates faster than the outer endcap ring, the free shear

layer produces a Kelvin-Helmholtz instability with an eigenmode that fills the experimental

volume when Λ = B0/
√

4πρη∆Ω > 1, with ∆Ω the angular velocity jump across the split

endcap rings, or when there is sufficient background rotation so that the Rossby number

Ro = ∆Ω/Ω > 2.35, with Ω the background rotation. When the inner endcap ring rotates

slower than the outer endcap ring, the Kelvin-Helmholtz instability is present in the absence

of an applied magnetic field or background rotation.

Using a linear eigenmode analysis of a free shear layer, the threshold for the appear-
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ance of the Kelvin-Helmholtz instability is presented as a competition between Rayleigh’s

centrifugal instability, which is driven by a negative radial gradient in the specific angular

momentum, and the Kelvin-Helmholtz instability, which is driven by the velocity shear.

Both instabilities act to smooth out the shear layer. While the eigenmodes of the centrifu-

gal instability are confined to the free shear layer, allowing quiet flow in the bulk of the

fluid when that instability dominates, the eigenmodes of the Kelvin-Helmholtz instability

fill the fluid volume, creating large-amplitude coherent velocity fluctuations throughout.
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Chapter 1

Introduction

The work presented is this thesis is relevant to two topics in magnetohydrodynamics (MHD):

the magnetorotational instability (MRI), an instability that is suspected to be important

in astrophysical accretion disks, and instabilities of free shear layers. These topics are

explored using fluid velocity measurements in the Princeton MRI experiment, a modified

Taylor-Couette device with a liquid metal working fluid. Background information on each

of these topics is given in the sections below.

1.1 Astrophysical accretion disks

Accretion disks are astrophysical structures formed by matter that is accreting onto a central

object. They are common features in the universe, found in protostellar systems, in binary

star systems, and in active galactic nuclei. Disks in binary star systems and active galactic

nuclei have significant ionization fractions, so magnetic fields can play an import role in the

dynamics of these disks.

1.1.1 Angular momentum transport in accretion disks

In order to fall onto the central object, matter must lose both its energy and its angular

momentum. Energy can be radiated away, but the angular momentum must be transported

radially through the disk.

1
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The transport of angular momentum in a rotating flow can be described by multiply-

ing the azimuthal component of the momentum equation in nonideal MHD in cylindrical

coordinates, found in Appendix C, by rρ to find the time evolution of the specific angular

momentum, where r is the radial coordinate and ρ is the fluid density. This results in the

equation

∂

∂t
ρrvθ + ∇ · ρr

[

vθ~v −
Bθ

~B

4πρ
+

1

ρ
P θ̂

]

−∇ · ν
[

r2∇vθ

r

]

= 0 (1.1)

in the incompressible limit with spatially constant ρ and ν, the kinematic viscosity. (This

analysis is performed in the more general, compressible case in Balbus and Hawley [1998].)

The rate of change of specific angular momentum can therefore be described as the diver-

gence of fluxes of angular momentum. In the steady state, the divergence of these fluxes is

zero, even though the fluxes themselves may be nonzero.

If we consider the case of steady, laminar, axisymmetric rotation with vr = vz = 0, the

angular momentum is transported entirely by the last term in Equation 1.1, the viscous

stress. This would be the case for the simplest models of matter in Keplerian rotation. But

the molecular viscosity in many accretion disks is far too small to account for the angular

momentum transport that must be associated with observed accretion rates.

But small scale, turbulent fluctuations can also lead to angular momentum transport.

To see this, consider writing each dynamic variable as the sum of a mean part, denoted

by a bar, and a fluctuating part, denoted by a tilde, e.g. vθ = v̄θ + ṽθ. We can rewrite

Equation 1.1 in terms of these mean and fluctuating components, and then take an average

over an interval large compared to the scale of the fluctuations, with an average being

indicated by a quantity in angle brackets, 〈〉. The average may be performed over an

appropriate spatial or time interval.

By definition, the average of any fluctuating quantity is zero, e.g. 〈ṽθ〉 = 〈ṽr〉 = 0. The

average of a mean quantity multiplying a fluctuating quantity is also zero, e.g. 〈v̄θṽr〉 = 0.

But the average of two fluctuating quantities may not be zero if there is a correlation

between the two. We can describe the average transport of angular momentum in terms of
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mean and fluctuating components. The radial angular momentum flux is then

rρ

[

v̄rv̄θ −
B̄rB̄θ

4πρ
+ 〈ṽrṽθ〉 −

〈B̃rB̃θ〉
4πρ

]

− νr2
∂

∂r

[ v̄θ

r

]

(1.2)

The contributions from correlated velocity fluctuations and correlated magnetic field fluc-

tuations arise from components of the Reynolds stress tensor and Maxwell stress tensor,

respectively.

For decades it has been accepted that turbulence must be invoked to account for the

observed accretion rates, although the mechanism and saturation of the turbulence were

not understood. Instead, the effect of the turbulence was simply parametrized by an ob-

servationally determined coefficient corresponding to an enhanced viscosity, such as in the

widely used α-disk model [Shakura and Sunyaev, 1973].

1.2 Potential instability mechanisms in accretion disks

There are two primary candidates for the source of the necessary turbulence in accretion

disks: subcritical hydrodynamic turbulence and the magnetorotational instability. Each of

these will be discussed separately in the subsections below.

1.2.1 Subcritical hydrodynamic turbulence

Rotating flows are known to be linearly unstable if the specific angular momentum decreases

with radius, ∂(r2Ω)/∂r < 0 for positive Ω [Lord Rayleigh, 1917]. Flows in this regime are

known to be “Rayleigh-unstable” or “centrifugally unstable”. For Keplerian rotation, where

Ω ∝ r−3/2, this inequality is not satisfied, so the flows are linearly stable.

In the absence of a linear hydrodynamic instability, some have turned to the idea of a

subcritical transition to instability in accretion disks [Lynden-Bell and Pringle, 1974]. Some

sheared flows are known to be subcritically unstable at large Reynolds numbers Re = vL/ν,

where v and L are characteristic velocity and length scales. This means that they are linearly

stable but that finite amplitude perturbations can still lead to turbulence. Pipe flow, for

instance, is known to break down into turbulence at Re of a few thousand even though the
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B

r

z

Figure 1.1: Cartoon of the MRI mechanism, showing two fluid elements linked by a common
magnetic field line. Left: Projection of the motion on the r− z plane. Right: Projection of
the motion on the r − θ plane.

flow is linearly stable. Accretion disks would seem at the outset to be an ideal candidate

for such subcritical transitions, since the Reynolds numbers are often greater than 1012.

In support of this theory, there have been several reports of enhanced turbulence at large

Reynolds numbers in Taylor-Couette devices [Richard and Zahn, 1999, Paoletti and Lathrop,

2011], in which sheared flow is developed in the gap between two coaxial, differentially

rotating cylinders. But experiments performed during the hydrodynamic phase of this

experiment suggest that quasi-Keplerian rotating flows are particularly resistant to such

subcritical transitions when axial boundary conditions are controlled better than in the

experiments that claimed to have demonstrated the subcritical transition [Ji et al., 2006,

Schartman et al., 2012].

1.2.2 Magnetorotational instability

Magnetic fields are frequently associated with the damping of turbulence. But an axial

magnetic field can lead to a robust, local, linear, ideal MHD instability in sheared rotating

systems, called the magnetorotational instability (MRI). This instability was first discovered

by Velikhov [Velikhov, 1959] and Chandrasekhar [Chandrasekhar, 1961], but its relevance to

accretion disks was not realized until the work by Balbus and Hawley [Balbus and Hawley,

1991].
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The mechanism of the MRI is often explained by considering the axial magnetic field

to be a massless spring connecting fluid elements in a rotating flow with angular velocity

decreasing with radius, illustrated in Figure 1.1. If a small radial disturbance with some

axial wavelength is given to two fluid elements connected by a common field line (t0), a fluid

element that moves radially inward will begin rotating faster because the angular velocity

of the flow is larger there, with the opposite being true of the fluid element that moves

radially outward. This results in azimuthal separation of the fluid elements, stretching the

magnetic “spring” that links them (t1). The spring tugs back on the fluid element that

moved radially inward, decreasing its angular momentum, and tugs forward on the fluid

element that had moved radially outward, increasing its angular momentum. This transfer

of angular momentum causes the inner fluid element to fall further radially inward, and the

outer fluid element to move further radially outward (t2). This is a runaway process, in the

form of a linear instability, that transfers angular momentum outward through the fluid.

In contrast to the centrifugal instability, which required that the specific angular mo-

mentum decrease with radius, the MRI requires that the angular velocity decrease with

radius, a condition that is satisfied for Keplerian rotation with Ω ∝ r−3/2.

The MRI is commonly referred to as a “weak field” instability, because if the magnetic

field, and its associated spring force, is too strong, the radial force is large enough to pull

the fluid elements back toward their initial radius, leading to oscillatory motion about that

radius. But a weak field can transfer angular momentum between the fluid elements while

still allowing runaway radial separation.

The MRI is easily found in the linearized equations of ideal MHD, assuming axisymmetry

and periodic variation in r̂ and ẑ [Balbus and Hawley, 1991, Balbus and Hawley, 1998]. In

ideal MHD, instability occurs for k2
zB

2
z/4πρ < −dΩ2/d ln r. Keplerian rotation can always

be destabilized for sufficiently large axial wavelengths and/or sufficiently weak magnetic

fields.

There was quick recognition of the potential importance of the MRI in the dynamics of

accretion disks, where the differential rotation and often significant ionization fractions pro-
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duce the necessary conditions for this relatively simple instability mechanism. Its popular-

ization by Balbus and Hawley led to a considerable interest in its study [Balbus and Hawley,

1998, Balbus, 2003], particularly through computation [Hawley et al., 1995, Balbus and Hawley,

2003, Julien and Knobloch, 2010], where the nature of the full MRI-driven turbulent spec-

trum, the saturation mechanism of the instability, and the effects of the MRI on the global

dynamics of accretion disks are all topics of great interest.

1.3 Experimental studies of MRI

While the simplicity of the MRI mechanism and the near ubiquity of the ingredients required

for its generation have left many with little doubt that the MRI is a physical phenomenon

that exists and that plays an important role in accretion disks, direct observation of the

instability would be an important confirmation of its validity and would provide a useful

benchmark of the computer codes used for simulations of accretion disks.

Because the direct observation of the instability in an astrophysical system is currently

not possible, a number of efforts have been undertaken in an attempt to generate the

instability in the laboratory.

There are some differences in the expected behavior of the MRI in the laboratory, where

the combination of limits on the axial wavenumber due to an experiment’s finite height and

dissipation due to fluid viscosity and resistivity places further restrictions on the MRI insta-

bility space [Ji et al., 2001, Goodman and Ji, 2002]. Namely, a critical magnetic Reynolds

number Rm = vL/η > O(1) is required for instability, where v and L are characteristic

velocity and length scales, and η is the magnetic diffusivity. The magnetic Reynolds number

describes the ratio of magnetic field induction due to the fluid motion to dissipation due to

the magnetic diffusivity. The induced magnetic field is required for the transfer of angular

momentum between fluid elements.

While the linear instability in ideal MHD suggests a maximum magnetic field above

which there is stable oscillation, finite resistivity also leads to a minimum magnetic field

relative to the dissipation, which can be expressed in terms of a minimum Lundquist number
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S = |Bzkz|/η(k2
z +k2

r) [Ji et al., 2001], where kz and kr are the axial and radial wavenumbers.

Once the minimum Rm has been reached, the MRI therefore is unstable for a range of

magnetic field strengths between some minimum and maximum values.

The experiments that have been developed to study the MRI all share the common

features of forcing sheared, rotating flow in a conducting fluid with an applied magnetic

field. But there are variances among the choice of fluids, the mechanism of driving the flow,

and the nature of the applied magnetic field.

A Russian experiment planned to drive sheared flow in a liquid metal by forcing a

radial current between inner and outer cylinders in a Taylor-Couette like geometry. The

interaction of the radial current with the applied axial magnetic field would give rise to a

~j × ~B force that would drive the fluid rotation [Velikhov et al., 2006].

An experiment currently being developed at the University of Wisconsin-Madison will

attempt to destabilize the MRI in a cylindrical, sheared, rotating plasma [Collins et al.,

2012]. The flow is driven locally at the walls by ~j × ~B forces in a magnetic cusp field

that contains the plasma and that falls off rapidly with distance from the boundaries. The

plasma in the bulk of the device is coupled viscously to the plasma that is driven at the

boundary. An additional axial magnetic field applied throughout the plasma volume will

provide the conditions for the instability. The choice of a plasma instead of a liquid metal

as a working fluid allows the viscosity and the resistivity of the fluid to be varied, as well as

allowing the examination of effects that are not present in liquid metals, such as the effect

of the Hall term in Ohm’s law on the instability.

An experiment in Germany called PROMISE (and later succeeded by PROMISE-2)

uses a GaInSn alloy in a cylindrical Taylor-Couette device. This experiment generated a

variant of the MRI called the helical MRI, or HMRI, which removes the requirement of a

critical Rm for instability by supplying not only an externally applied axial magnetic field,

but also an externally applied azimuthal magnetic field, rather than relying on induction to

create it [Hollerbach and Rüdiger, 2005, Stefani et al., 2007, 2008, 2009]. The HMRI can

be generated in this experiment at very low speed. But the instability takes the form of an
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axial traveling wave and has specific conditions on the radial boundaries, leading some to

question its relevance to accretion disks [Liu et al., 2006, 2007]

A spherical Couette experiment, in which a fluid is confined between an inner sphere

and outer sphere in differential rotation, produced unstable nonaxisymmetric modes in a

liquid sodium working fluid with an applied magnetic field. These modes were attributed to

the MRI [Sisan et al., 2004], although results from computational modeling of that experi-

ment suggest that these observations may have been of hydrodynamic shear flow instabil-

ities [Hollerbach, 2009, Gissinger et al., 2011], similar to the results that will be presented

in the second half of this thesis.

1.4 Expected behavior of the MRI in the Princeton MRI

experiment

The Princeton MRI experiment was built to investigate the MRI in a Taylor-Couette de-

vice with a GaInSn working fluid and with an applied axial magnetic field. The behav-

ior of the MRI in the experiment has been investigated through linear analysis [Ji et al.,

2001, Goodman and Ji, 2002], and through nonlinear MHD simulations [Liu, 2008a, 2007,

Gissinger et al., 2012]. It is expected to produce an eigenmode that drives two counter-

rotating poloidal circulation cells, resulting in significant Maxwell and Reynolds stresses.

The instability saturates by suppressing the shear in the bulk of the fluid.

Nonlinear 3-D MHD simulations by Christophe Gissinger [Gissinger et al., 2012] using a

modified version of the HERACLES code [Gonzalez et al., 2007] represent the most up-to-date

understanding of the expected behavior of the MRI in the experiment. These simulations

predict a critical Rm = Ω1r1(r2 − r1)/η ≈ 10, where Ω1 is the angular velocity of the

inner cylinder, r1 is the inner cylinder radius, and r2 is the outer cylinder radius. This

suggests Ω1 > 2500 rpm, which is slightly more than 60% of the designed maximum speed of

4000 rpm. The instability takes the form of an imperfect bifurcation from residual Ekman

circulation, which has a common eigenmode structure of two dominant counter-rotating
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poloidal circulation cells. So the MRI can perhaps be identified by a change in the fluid

velocities that otherwise occur in magnetized Couette flow, namely a further suppression of

the shear in the azimuthal velocity and an increase in the radial velocity.

These simulations also indicate an unfortunate scaling of the saturated MRI amplitude,

which goes as Re−1/4. Full saturation of the MRI in these simulations results only in about

a 2% change to the azimuthal velocity as compared to cases below the critical Rm. As we

will see in this work, this is near the threshold of what can be successfully resolved by the

current set of diagnostics.

1.5 Free shear layer instabilities

Because of the split endcaps in our experiment, described more fully in Chapter 2, strong

shear in the azimuthal velocity at an axial boundary can be produced. Under the appro-

priate conditions, shear at these surfaces can be extended into the bulk of the fluid, making

our experiment a platform for the study of free MHD shear layers and their instabilities.

Shear layers are common at the boundaries of fluid dynamics experiments, where they

are typically called “boundary layers”. Hartmann studied the effect of a magnetic field

on boundary layers where the field is perpendicular to the boundary [Hartmann, 1937].

Magnetized boundary layers of this sort are called “Hartmann layers”. Shercliff extended

that analysis to boundary layers with the magnetic field parallel to the boundary [Shercliff,

1953], which are called “Shercliff layers”.

Free shear layers, which exist in the bulk of the fluid rather than at a boundary, are

somewhat rarer than boundary layers. The classic example of a free shear layer is the Stew-

artson layer, which arises from small differences in the rotation speeds at axial boundaries

of rapidly rotating systems [Stewartson, 1957a]. For small departures from rapid solid body

rotation, the fluid velocity becomes invariant in the axial direction, a result known as the

Taylor-Proudman theorem [Proudman, 1916, Taylor, 1917]. The large shear at the axial

boundary extends into the bulk of the fluid, where a free shear layer is established. Such

shear layers can form in cylindrical systems with split endcaps, or in spherical Couette sys-
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Figure 1.2: Pictures of a Stewartson layer produced in a cylindrical system with a sus-
pended disk rotating at a slightly different rate than the cylindrical container, reproduced
from Hide and Titman [1967]. Left: Picture from the side, with ink injected to show the
volume of fluid corotating with the disk. Right: Picture from above showing the destabi-
lization of the Stewartson layer by a Kelvin-Helmholtz instability

tems, where they may be present at the tangent cylinder. A picture of a Stewartson layer

in cylindrical geometry is shown in Figure 1.2

Free shear layers can also arise in systems with a strong axial magnetic field, where

the shear at the axial boundary is communicated to the bulk of the fluid by the ten-

sion of magnetic field lines. In this case, they can be referred to as magnetized Stewart-

son layers or as free Shercliff layers, in analogy to the magnetized boundary layers that

share similar properties. Such free shear layers were first observed experimentally by Lehn-

ert [Lehnert, 1955], with analytic descriptions of these free shear layers coming first from

Stewartson [Stewartson, 1957b], and later from Braginskii [Braginskii, 1960] and Vempaty

and Loper [Vempaty and Loper, 1978].

A recent computational work focused on the effects of background rotation and magnetic
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field on the development of free shear layers in the Princeton MRI experiment [Spence et al.,

2012]. An illustration of a free Shercliff layer from a 2-D nonlinear MHD simulation of this

experiment is shown in Figure 1.3, showing the currents induced by axial shear in the

presence of an axial magnetic field that act to extend azimuthal velocity shear at the axial

boundaries into the bulk of the fluid.

1.5.1 Centrifugal instability

The centrifugal instability, or Rayleigh instability, is a thoroughly studied topic in the

Taylor-Couette literature for globally unstable configurations, which are typically estab-

lished with the inner cylinder rotating and the outer cylinder at rest. At marginal stability

in the narrow-gap limit, the eigenmodes of the instability take the form of Taylor vor-

tices: large-scale axisymmetric rotation cells with a large amount of poloidal circulation

in addition to the azimuthal velocity perturbation [Taylor, 1923]. Beyond marginal sta-

bility, the parameter space is rich with features, including nonaxisymmetric perturbations

to the Taylor vortices, leading eventually to fully developed turbulence at sufficiently large

Re [Andereck et al., 1986]. Pictures of Taylor vortices in a narrow-gap Taylor-Couette

experiment are shown in Figure 1.4.

Free shear layers can be unstable to the centrifugal instability in flows that are otherwise

stable if there is a local negative angular momentum gradient large enough to overcome

viscous damping, although much less attention has been devoted to this topic than to the

globally unstable cases. The centrifugal instability of a free shear layer has been noted in

simulations of Taylor-Couette experiments, including simulations of this experiment [Liu,

2008b, Hollerbach and Fournier, 2004], where its effect is to limit the extension of a free

shear layer from the axial boundaries.

1.5.2 Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability is driven by velocity shear and is a very common insta-

bility in fluid dynamics. The instability takes the form of velocity perturbations of some
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Figure 1.3: Illustration of a free Shercliff layer from a simulation with the ZEUS-2D

code [Stone and Norman, 1992a, Liu, 2007] performed by Erik Spence in the geometry
of the Princeton MRI experiment. The boundaries are fully insulating, Bz = 16000 Gauss,
Re = 3836, and Rm = 3.836. The inner half of each axial endcap rotates with the inner
cylinder (Ω1 = 400 rpm), and the outer half of each endcap rotates with the outer cylin-
der (Ω2 = 100 rpm). Top: Contour plot of the angular velocity, Ω, showing large shear
throughout the fluid volume at the radial location of the split in the endcaps. Bottom:
Color contour plot of the radial current density, with streamlines of Bθ overlaid. Solid
lines indicate positive Bθ and clockwise current flow. Dashed lines indicate negative Bθ

and counterclockwise current flows. The currents return in a Hartmann layer at the axial
boundaries. The Lorentz force from these currents act to reinforce the free shear layer.
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Figure 1.4: Pictures of Taylor vortices taken through the transparent outer cylinder of a
narrow gap Taylor-Couette experiment, reproduced from Fenstermacher et al. [1979]. The
centrifugal instability forms a series of axisymmetric rolls, which become nonaxisymmetric
and eventually transition to turbulence at large Re.
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wavelength in the direction of flow, and uniform in the direction along the shear layer but

perpendicular to the flow. The nonlinear evolution of the Kelvin-Helmholtz instability typi-

cally results in swirls along the shear layer, features that are observed in an extremely broad

range of systems.

Kelvin-Helmholtz instability of free shear layers can occur when the shear is sufficient

to overcome the viscous damping. A picture of the Kelvin-Helmholtz destabilization of a

shear layer in cylindrical geometry with small Ro is shown in Figure 1.2. The destabiliza-

tion of Stewartson layers and free Shercliff layers to Kelvin-Helmholtz instabilities has been

studied experimentally [Hide and Titman, 1967, Früh and Read, 1999, Hollerbach et al.,

2004, Schaëffer and Cardin, 2005], analytically [Busse, 1968, Nagata, 1985] and computa-

tionally [Hollerbach and Skinner, 2001, Hollerbach et al., 2004, Wei and Hollerbach, 2008].

Most of the work has focused on the transition where the instability overcomes viscous

damping. For Stewartson layers this transition occurs in the small Rossby number regime,

where the Rossby number Ro = ∆Ω/Ω describes the ratio of inertial forces to Coriolis

forces. ∆Ω is the angular velocity differential across the shear region, and Ω is the overall

rotation of the system, typically the outer cylinder velocity. There is a critical minimum

Rossby number for generation of the Kelvin-Helmholtz instability. For free Shercliff layers,

a minimum Reynolds number Re is typically required to overcome viscous stabilization for

a given Hartmann number Ha = BL/
√

4πρην, where L is a characteristic length.

By contrast, in this work we will show a maximum finite Rossby number for the ap-

pearance of a Kelvin-Helmholtz instability of a Stewartson layer, and a maximum Reynolds

number required for the Kelvin-Helmholtz instability of a free Shercliff layer with a given

B0 when the inner endcap ring rotates faster than the outer endcap ring. Rather than

resulting from sufficient inertial forces to overcome viscous stabilization, these thresholds

are consistent with a competition between Rayleigh’s centrifugal instability and the Kelvin-

Helmholtz instability for the free energy in the shear layer. When the centrifugal instability

is unstable, its growth rate typically dominates that of the Kelvin-Helmholtz instability.

The most unstable eigenmodes of the centrifugal instability have large radial and axial
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wavenumbers, so the associated velocity fluctuations are confined to the shear layer region.

But an axial magnetic field and overall rotation can damp the centrifugal instability, allow-

ing the growth of the Kelvin-Helmholtz instability. The eigenmodes of the Kelvin-Helmholtz

instability are characterized by relatively small radial and axial wavenumbers, making it

capable of producing large-amplitude radial and azimuthal velocity fluctuations throughout

the fluid volume, far from the location of the unstable shear layer.

3-D nonlinear MHD simulations have exhibited the Kelvin-Helmholtz instability of the

free Shercliff layer that will be described here [Gissinger et al., 2012]. This work therefore

provides a good benchmark for nonlinear 3-D MHD codes.

1.6 Organization of thesis

Chapter 2 gives an overview of the experimental apparatus, including changes to the me-

chanical aspects of the experiment since previous published descriptions. It includes infor-

mation about the liquid metal working fluid. It also describes how an experimental shot is

executed.

Chapter 3 is dedicated to describing the ultrasound Doppler velocimetry diagnostic,

a new addition to the experiment for this work. It includes a brief description of the

mechanism of operation, parameters relevant to the operation of the diagnostic, and a

description of the diagnostic installation. It also includes information about the calibration

of the beam geometries and speed of sound, and gives information about the performance

of the diagnostic in measuring various aspects of the fluid flow.

Chapter 4 describes measurements of mean velocity profiles in the unmagnetized, slightly

magnetized (Λ < 1) and strongly magnetized (Λ ≫ 1) regimes, where Λ = B2
0/4πρηΩ is the

Elsasser number, describing the ratio of ~j× ~B forces to inertial forces arising from rotation.

This chapter describes how the application of a magnetic field results in increased coupling

of the axial boundaries to the fluid through the induced Hartmann current. It also describes

how the experiments so far relate to the search for the MRI.

Chapter 5 describes measurements of a Kelvin-Helmholtz instability of a free shear layer
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observed with Λ = B2
0/4πρη∆Ω > 1 or Ro < 2.35 when the inner endcap ring rotates faster

than the outer ring. It presents measurements of the instability near marginal stability and

explains how the instability differs in the region far from marginal stability (Λ ≫ 1).

Chapter 6 shows the results from calculations of the linear stability of a free shear layer,

using a nonaxisymmetric global stability code described in Appendix D. It provides an

explanation of the experimentally determined threshold for the appearance of the Kelvin-

Helmholtz instability as a competition between the centrifugal instability and the Kelvin-

Helmholtz instability for the energy in the free shear layer.

Chapter 7 gives a summary of the conclusions from this work and discusses ideas for

future work.

Appendix A provides a quick reference for symbols and dimensionless parameters used

in this thesis.



Chapter 2

Experimental apparatus

The experimental apparatus is well described in Ethan Schartman’s thesis concerning hy-

drodynamic results from the Princeton MRI experiment [Schartman, 2008]. This chapter

will summarize the key features of the experiment, and point out any modifications that

have been made since that description was written.

2.1 Mechanical apparatus

The Princeton MRI experiment is a modified Taylor-Couette device consisting of a fluid

which is forced to rotate between two concentric cylinders. The dimensions of the exper-

iment are listed in Table 2.1. The experiment has a wider radial gap and is shorter than

typical Taylor-Couette experiments, design decisions motivated by the necessity of a large

radial wavenumber for easier destabilization of the MRI and by the high cost of the working

fluid.

The novelty of this device lies in its axial boundaries, which are divided into two differ-

entially rotatable end rings, as shown in Figure 2.1, minimizing the effect of the endcaps

on the bulk flow dynamics. The benefits of this arrangement in hydrodynamic experiments

have been written about many times [Kageyama et al., 2004, Burin et al., 2006, Ji et al.,

2006, Schartman, 2008, Schartman et al., 2012], and will be revisited in Chapter 4.

The inner cylinder and outer cylinder of the experiment are made of stainless steel, and

17
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Figure 2.1: Schematic of the Princeton MRI experiment showing the four differentially
rotatable components: the inner cylinder, inner rings, outer rings, and outer cylinder.

Quantity Symbol Value

Inner cylinder radius r1 7.06 cm
Outer cylinder radius r2 20.3 cm

Inner/outer ring transition radius rl 13.3 cm
Height of fluid volume h 28 cm

Table 2.1: Nominal dimensions of the experimental apparatus.



19

Figure 2.2: Photographs of the full experiment (left) and closeup of the seal stack (right).
The experimental volume is at the bottom, surrounded by the magnetic field coils.

the inner ring and outer ring are made of acrylic. Each rotating component is fixed to a

stainless steel shaft, which are nested and which exit the top of the experiment. Each shaft

has a drive pulley, and a dynamic seal is made between each pair of shafts to avoid ejection

of the fluid or exposure of the fluid to air during operation.

2.1.1 Motor modifications

The rotating components were driven by four motors: one for the inner cylinder, one for

the outer cylinder, one for the pair of inner rings, and one for the pair of outer rings. The

increased seal friction associated with higher-speed runs necessitated more powerful motors

than those that had previously been used. For this work, the inner cylinder was driven by

a 30 horsepower AC motor, the inner ring was driven by a 10 horsepower AC motor, the

outer ring was driven by a 1 horsepower DC motor, and the outer cylinder was also driven

by a 1 horsepower DC motor. The motors were controlled as before by a computer running

LabVIEWTM. For the AC motors, the computer output a DC voltage corresponding to the
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desired speed, with the variable frequency drive for each motor enforcing that speed. The

feedback for the DC motors was provided by a motor control board, as before, with output

to the motor drives controlling the torque of the motors.

Braking during operation

During high-speed operation, the large differential rotation between the outer rings and

inner rings resulted in the need to strongly brake the outer rings. The braking force at

times exceeded that which could applied by the DC motors, causing the outer rings to spin

faster than the desired speed. To address this, a pneumatically operated disc brake was

added to the outer ring slave shaft. The brake could be applied manually during a shot

when it was observed that the control system was demanding a large negative torque from

the outer ring motor. The brake supplied a steady negative offset to the torque, with the

control system continuing to provide feedback for fine control of the outer ring speed using

the torque from the DC motor.

2.1.2 Modifications to seal designs

Energized lip seals were used to seal the concentric shafts that led to each of the rotating

components. One of the issues plaguing the experiment was the difficulty in maintaining

the concentricity of the seals, which were fixed to the outer shaft at each sealing junction,

and of the differentially rotating inner shaft against which the dynamic seal was made. The

lip seals allow radial runout of only a few thousandths of an inch, a tolerance that was

difficult to maintain since the bearings locating the shafts radially are typically 8 inches or

more apart.

This problem was addressed by a technique originating from Ethan Schartman, in which

the seals were held in a seal holder which was coupled to the outer shaft of each nested pair

by a flexible urethane bellows. The seal was thus allowed to move with respect to the outer

shaft, but its position with respect to the inner shaft was fixed by a ball bearing between

the two. A pin fixed to the seal holder inserted into a larger diameter hole in a part fixed to
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the outer shaft, allowing the parts some freedom of movement, but also allowing torque to

be transmitted from the outer shaft to the seal holder through a path that did not include

the bellows. This free-floating seal design was able to maintain the runout tolerance much

more effectively, decreasing seal friction and extending the lifetime of the seals.

The modified seal design made access to the seals for lubrication more difficult, render-

ing the automated oiling system that was used in hydrodynamic experiments ineffective.

Instead, the seals were lubricated manually between shots with about 1 cm3 of automatic

transmission fluid per seal. As high speed shots lasted at most a little over three minutes,

this procedure provided sufficient lubrication.

2.1.3 Modifications to accommodate hydrodynamic pressure

The centrifugal force of the rotating fluid is balanced by a radial pressure gradient. As

discussed in Ethan Schartman’s thesis, this can lead to substantial hydrodynamic pressures

at high speed. The problems encountered during the hydrodynamic phase of the experiment

are exacerbated with the liquid metal working fluid, which has a density six times greater

than water, leading to pressures that are six times larger.

To relieve the axial pressure gradients across the rotating rings during the hydrodynamic

experiments, a number of holes were drilled axially through these components. While this

modification was sufficient to allow successful operation during the hydrodynamic phase,

experiments at high speed with the liquid metal still encountered pressure-related problems.

In particular, axial pressure gradients across the outer rings produced a force pulling the

outer rings into the fluid which, depending on the specifics of the azimuthal velocity profile,

might reach more than 10 tons of force. The method of locating and fixing the components

axially was not able to withstand these forces, causing the outer rings to slip until they

contacted the inner rings, leading to a premature end to the experiment and damage to

both components.

The solution to this problem was to seal the outer rings to the outer endcaps of the

experiment, eliminating the path by which the high pressure at the outer cylinder radius
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Figure 2.3: Picture of gasket used to minimize axial pressure loads on the outer ring. The
gasket is the black rubber piece fitted into the groove machined near the outer diameter of
the component.

was communicated to the back side of each outer ring. A groove was machined in each

outer ring, and a rubber gasket was placed into this groove, as shown in Figure 2.3. Each

outer ring was positioned during assembly so that this gasket was pressed tight against the

outer endcap. A small gap was left in the gasket so that gas could pass through as the

experiment is filled with fluid, eliminating gas pockets that might otherwise have formed.

2.1.4 Sacrifice of differential outer ring rotation

The addition of the gasket between the outer ring and endcap eliminated the possibility

of differential rotation between these components. But even before that modification was

made, there seemed to be rubbing problems between the outer ring and outer cylinder, and

the decision was made to eliminate the differential rotation between them. This removed

one degree of freedom in controlling the boundary condition. But as it was noticed that the

outer ring speed had a much smaller effect on the measured velocity profile at the midplane

of the experiment compared to the inner ring speed, this seemed a reasonable sacrifice to
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Property Symbol Value

Density ρ 6.36 g/cm3

Kinematic viscosity ν 2.98 × 10−3 cm2/s
Magnetic diffusivity η 2.57 × 103 cm2/s
Melting point 10.5 ◦C

Table 2.2: Nominal material properties of the GaInSn eutectic, reported in Morley et al.
[2008].

make.

2.2 Liquid metal

The liquid metal used for these experiments is a gallium-indium-tin eutectic, sometimes

called Galinstan, which is liquid at room temperature. The properties of this material have

been described elsewhere [Morley et al., 2008], and are summarized in Table 2.2.

The liquid metal oxidizes quickly when exposed to even small amounts of oxygen. In

the presence of oxygen and vigorous mixing, the solid oxides and remaining liquid metal

can quickly form a thick sludge. This fact drives the strict sealing requirements of the

experiment.

The liquid metal is stored in a tank under a high-purity argon cover gas. The experiment

is backfilled with argon when it is assembled and drained of the liquid metal. The liquid

metal is transferred between the tank and the experiment by means of a hose that is

connected to the bottom of the tank and which may be connected to the bottom of the

experiment with a quick-disconnect fitting. Gas pressure of up to 15 psi can be applied to

the tank or to the experiment to force the liquid metal into one or the other.

2.2.1 The effects of gallium on aluminum

Gallium can corrode many metals at high temperatures [Luebbers and Chopra, 1995]. At

room temperature, it remains highly corrosive to aluminum. Gallium disrupts the passivat-

ing oxide layer that normally forms on aluminum and penetrates into the solid aluminum,

allowing oxidation at all of the grain boundaries throughout the volume. This transforms
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a block of aluminum into a brittle structure with such poor mechanical properties that it

sometimes simply crumbles.

The amount of damage and time to damage depend on a number of factors, including

the volume of gallium to which an aluminum part is exposed and the surface condition

of that part. For an aluminum part with a clean surface and a scratch in its oxide layer,

penetration of gallium can occur within minutes, with visible damage to the part. The

addition of water, for example in the application of a water-based cleaner, speeds up the

destruction, since the aluminum is sufficiently chemically active to crack water, oxidizing

itself and releasing hydrogen gas. This reaction is vigorous and exothermic, leading to

bubbling and fuming from the released hydrogen gas, and noticeable warming of the part.

Aluminum can be protected by painting it or by an oily or greasy film on its surface.

But if an aluminum part with a protected surface is exposed to gallium, the gallium will

eventually find a defect and lead to damage to the part. Any part that could potentially be

exposed to gallium and cannot fail or cannot be easily replaced should be made of something

other than aluminum, like stainless steel, plastic, or titanium.

2.2.2 Reclaiming liquid metal from spills

Small spills of the liquid metal in the course of experiments are not infrequent. The liquid

metal often becomes mixed with the oil used for seal lubrication. Large drops or puddles

can be scooped up and deposited in a container, where the bulk of the oil and liquid metal

will naturally separate. For more finely dispersed droplets of liquid metal in oil, the cleaner

Simple Green is quite effective in disrupting the oil layer separating droplets of liquid metal,

allowing those droplets to coalesce into larger ones. It can even help in the absence of large

amounts of oil. For surfaces that have been smeared with a drop of gallium, scrubbing the

surface with a cover of Simple Green often results in the microscopic drops of liquid metal

reforming into a macroscopic ball.
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2.3 Diagnostics

The experiment’s diagnostics consisted of an array of 72 magnetic pickup coils measur-

ing Ḃr [Schartman, 2008], as well as several saddle coils intended to be sensitive only to

axisymmetric magnetic fluctuations.

The results presented in this thesis are of the fluid velocity, which was measured using

an ultrasound Doppler velocimetry system, described separately in Chapter 3.

2.4 Anatomy of a shot

One experimental shot consists of a spin-up phase during which the rotating components

of the experiment are brought up to speed and the fluid is allowed to reach a steady state,

normally followed by the application of a magnetic field during which the experiment is

diagnosed, followed by a spin-down phase where the rotating components are brought back

to rest. The control of the experiment is performed by two computers running LabVIEWTM.

The first computer controls the motors and sends a trigger at the appropriate time to the

second computer, which controls the magnetic field and the diagnostics. Each phase of the

shot is described in the subsections below.

2.4.1 Fluid spin-up

A shot begins with a fluid spin-up time, during which the rotating components are brought

up to full speed and the hydrodynamic flow profile develops. The ramp-up time for the

rotating components can be as fast as a couple of seconds for very low speed shots, to a bit

less than a minute for higher speed shots. The total time between when the components

start rotating and when the magnetic field is applied is typically two minutes. This provides

sufficient time for the fluid spin-up, as illustrated by the velocity measurement made by a

UDV transducer in Figure 2.4.
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Figure 2.4: Raw UDV measurement of velocity at r = 12.5 cm, near the midplane, illus-
trating fluid spin-up at the beginning of a shot. t = 0 s corresponds to the time that the
outer cylinder begins moving. The measured velocity is relative to the outer cylinder on
which the transducer is mounted. The velocity is initially negative since the outer cylinder
has started rotating but the fluid is still stationary.
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Nomenclature of rotating component configurations

The angular velocity of the inner cylinder and outer cylinder are indicated by Ω1 and

Ω2, respectively, as is common in the fluid dynamics literature for Taylor-Couette devices

with only two rotation speeds. The additional velocities for the differentially rotating axial

boundary components in this device are indicated by Ω3 for the inner ring and Ω4 for the

outer ring.

Because it is cumbersome to list all of the component rotation speeds when describing

the configuration used for a shot, a naming scheme was devised for many of the common

component speed ratios used. “MRI-Z” is a configuration optimized to produce a nearly ideal

Couette azimuthal velocity profile at the midplane with an effective exponential dependence

on the angular velocity Ω(r) ∼ r−1.9, in principle allowing destabilization of the MRI at

sufficiently large Rm while avoiding centrifugal instability. The “Ekman” profile has the

same inner and outer cylinder speeds as the “MRI-Z” configuration, but the inner ring and

outer ring corotate with the outer cylinder. “Split” indicates any configuration in which

the inner cylinder and inner ring corotate, and the outer cylinder and outer ring corotate:

Ω3 = Ω1 and Ω4 = Ω2. “Split-unstable” is a special case of the “split” configuration

with the outer components at rest.

The component speed ratios for several configuration names are summarized in Table 2.3.

In all cases except for the generic “split” configuration, the name of the configuration may

be followed by a number indicating the rotation speed of the inner cylinder as a percentage

of the maximum design speed of Ω1,max = 4000 rpm. Thus, the profile MRI-Z 10% would

have component speeds of (Ω1, Ω3, Ω4, Ω2) = (400, 220, 53, 53 rpm).

2.4.2 Application of magnetic field

The axial magnetic field B0 is supplied by six solenoidal electromagnetic coils. Magnetic

fields up to 5000 Gauss can be applied. The application time of the field is limited by

the resistive heating of the coils, which must be kept under 60 ◦C. For fields less than 800

Gauss, the field can be run steady state, as the water coolant is sufficient to keep the coil
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Configuration name Speed ratios

Ekman (1.0, 0.1325, 0.1325, 0.1325)
Split (Ω1, Ω1, Ω2, Ω2)
Split-unstable (1.0, 1.0, 0, 0)
MRI-Z (1.0, 0.55, 0.1325, 0.1325)

Table 2.3: Component speed ratios for several rotating component configurations. The
component speeds are written in terms of increasing radius of the components: (Ω1, Ω3,
Ω4, Ω2). The split configuration is used to describe any configuration with Ω3 = Ω1 and
Ω4 = Ω2.

temperature below the threshold. A field of 2300 Gauss can be applied for 50 seconds, a

field of 3400 Gauss can be applied for 30 seconds, and a field of 4600 Gauss can be applied

for only 15 seconds.

The voltage from the rectifier that powers the coils is chosen by moving a tap within the

rectifier by means of a remotely operated motor. This tap is positioned before a shot and

does not move during the shot. The coils are therefore supplied with a constant voltage.

But as the coils are heated during a shot, their resistance increases, leading to a drop in

current over the course of a shot. It is not uncommon for the field to drop by more than

10% over the course of a shot, as shown in Figure 2.5.



29

0 5 10 15 20 25 30 35 40
Time [s]

−500

0

500

1000

1500

2000

2500

3000

3500

4000

B
0
 [

g
a
u
ss

]

Figure 2.5: Magnetic field as calculated from the measured currents through the leads to
the field coils during a typical shot with a nominal field of 3400 Gauss.



Chapter 3

Ultrasound Doppler Velocimetry

3.1 UDV overview

Ultrasound Doppler Velocimetry (UDV) is a technique for non-perturbatively measuring

velocities in liquids using pulses of sound waves scattered from particles entrained in the

fluid [Takeda, 1991, 1995, Sig, 2012]. The most common non-perturbative velocity measure-

ment techniques in fluid dynamics, Laser Doppler Velocimetry (LDV) and Particle Image

Velocimetry (PIV), make use of tracer particles in optically transparent media. While Laser

Doppler Velocimetry was used on the Princeton MRI experiment in the first round of ex-

periments with water as a working fluid, the change to liquid metal required a different

velocity measurement technique.

UDV has been used in a number of applications similar to our experiment. Takeda et al.

used UDV to measure axial velocity fluctuations in a Taylor-Couette device with a stationary

outer cylinder [Takeda et al., 1993a,b]. Axial velocities in Couette systems were also made

by Cramer et al., who measured magnetic-field-driven flow in a cylinder of mercury and

GaInSn [Cramer et al., 2004], and by Stefani et al., who measured axial velocities in a

rotating Taylor-Couette device with a GaInSn working fluid [Stefani et al., 2007]. Brito

used UDV for azimuthal velocity measurements in a vortex of liquid gallium, with the UDV

beam passing through the stationary copper outer cylinder [Brito et al., 2001]. UDV has

30
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also been used in non-rotating liquid metal flows in sodium [Eckert and Gerbeth, 2002] and

gallium [Tasaka et al., 2008].

3.1.1 Principles of operation

In pulsed UDV, a single transducer acts as both an emitter and a receiver. The transducer

is resonant at an emitter frequency fe. Pulses consisting of several oscillations of the emitter

frequency are emitted by the transducer, with a time between these pulses tprf determined

by the pulse repetition frequency. These pulses scatter off of particles in the flow that have

a different acoustic impedance than the fluid. Between pulse emissions, the transducer acts

as a receiver, listening to these echos.

For a distribution of particles along the UDV beam, the transducer will receive a series

of echos, with the time delay τ between emission and reception of an echo determined by

d, the depth of the particle relative to the transducer,

τ =
2d

c
, (3.1)

where c is the speed of sound in the fluid. The maximum depth at which a measurement

can be made before another pulse is emitted is therefore dmax = ctprf/2.

In principle, the component of the velocity of the reflecting particle along the beam,

v, could be found by measuring the Doppler shift fD from the emitter frequency in the

received echo,

fD = 2fe
v

c
. (3.2)

But in practice, the number of ultrasonic oscillations in a single received echo is too small

to make a good, direct measurement of the small Doppler shift to the emitter frequency.

Instead, information from multiple received echos is used. A received echo is compared to

the signal from the oscillator at the emitter frequency to find the phase shift of each echo

relative to the oscillator signal. The change in phase, ∆φ, between echos off of the same

scattering particle from two successive pulses is

∆φ = 2πfe(τ2 − τ1), (3.3)
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where the change in the echo reception time is τ2 − τ1 = 2vtprf/c. So, we find

∆φ = 4πfe
v

c
tprf = 2πfDtprf . (3.4)

By this technique, a quantity proportional to the Doppler shift fD is measured. But it

should again be emphasized that despite the name of the technique, the small Doppler

frequency shift is not being directly measured. Rather, it is the change in the depth of a

particle along the ultrasound beam between pulse emissions that is measured.

The fact that these measurements rely on phase measurements between multiple pulses

rather than a direct measurement of fD from a single pulse has a number of implications.

First, not all values of the Doppler frequency can be measured unambiguously. Any velocity

that would yield a phase shift |∆φ| > π will be aliased. This implies a maximum velocity

vmax = c/(4fetprf) that can be unambiguously measured. The pulse repetition frequency

also provides a constraint on the maximum measurable depth, dmax, so that the product

vmaxdmax = c2/8fe is fixed for each emitter frequency. As will be seen later, aliasing of

the measured velocity can often be removed when the data is processed, allowing velocities

above vmax to be measured.

If a particle is not resident in the beam for more than tprf , the time to interact with

two emitted ultrasound pulses, a measurement of its velocity cannot be made. This implies

a maximum velocity perpendicular to the beam v⊥max = w/tprf for a beam of width w.

For our setup, the beam width (≈ 1 cm) is about 15 times greater than the ultrasound

wavelength (0.068 cm), so v⊥max ≈ 15vmax.

3.2 Implementation of UDV in the MRI experiment

3.2.1 UDV hardware

The UDV appliance used for this work is a DOP 3010, manufactured by Signal Processing,

S.A. of Lausanne, Switzerland. The appliance supports 10 multiplexed transducers, meaning

that there is one set of electronics that is used in turn by each transducer to make a
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measurement. The appliance supports a range of emitter frequencies from 0.45 MHz to

10.5 MHz.

Signal Processing, S.A. also provided the ultrasonic transducers for use in this experi-

ment. The transducers are stainless steel cylinders with epoxy faces that make up a resonant

cavity for a piezoelectric crystal driven at the emitter frequency. Transducers are available

with a range of face diameters. The geometry of the face has an effect on the shape of the

ultrasound field emitted by the transducer.

The transducer face can be ideally modeled as a uniform disk of spherical sound emitters.

The problem of calculating the acoustic field emitted by a cylindrical transducer is equivalent

to the familiar problem of diffraction of a wave by a circular aperture. The solution for the

wave field is then characterized by a near-field (Fresnel) region of depth r2t /λ, where rt is the

radius of the transducer face, and λ is the ultrasound wavelength. At 4 MHz, λ = 0.068 cm

for GaInSn. So for the 8 mm and 12 mm diameter transducers used in this work, the near

field extends 2.35 cm and 5.3 cm, respectively. In the near-field region, the sound intensity

field is approximately cylindrical with a cross-section matching the shape of the transducer.

The acoustic field has oscillations in the intensity parallel to the propagation direction.

In the far-field (Fraunhofer) region, the intensity falls off as 1/r2 along the centerline

of the beam, but there are also variations perpendicular to the propagation direction. The

directivity function, D, describes the acoustic field pressure at an angle ζ relative to the

acoustic field pressure on axis:

D(ζ) =
2J1(krt sin ζ)

krt sin ζ
(3.5)

where k = 2π/λ, and J1 is a Bessel function of the first kind of order 1. This function is

plotted for the 8 mm and 12 mm transducer diameters in GaInSn in Figure 3.1. Note that

most of the energy is in the primary lobe, but side lobes are present. The full-width of the

primary lobe from zero-crossing to zero-crossing is 11.9◦ for the 8 mm diameter transducer,

and 7.92◦ for the 12 mm diameter transducer.
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Figure 3.1: Directivity of the acoustic field in the far-field limit for 8 mm and 12 mm
diameter transducers at 4 MHz in GaInSn (c = 2.72 × 105 cm/s).

3.2.2 Reflecting particles

While most fluids must be seeded with tracer particles to reflect the ultrasound pulses,

GaInSn is seeded naturally with solid oxides that form when the fluid is exposed to oxygen.

Some previous work with UDV in gallium used a powder of ZrB2 to seed the flow [Tasaka et al.,

2008], however others noted that using only the natural oxide particles resulted in measure-

ments that were just as good [Brito et al., 2001]. All of the measurements presented here

used only the natural oxides as tracer particles.

The concentration of particles plays a critical role in the performance of the UDV sys-

tem. If there are too few oxide particles, ultrasound pulses can bounce around the metal

cylinders, leading to loud echos that interfere with velocity measurements. If there are

two many oxide particles, the ultrasound pulse is dispersed quickly by the large amount

of scattering, limiting the depth of measurement of the diagnostic. The effect of differing

oxide concentrations in two shots can be seen in Figure 3.2.

Since the oxide particles are formed naturally and the concentration of particles is not

controlled directly, it can be challenging to ensure that the concentration is within the range
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Figure 3.2: A comparison of the Doppler energy measured by the UDV diagnostic for a
shot with a good concentration of oxides and a shot with excessive oxide concentration.
The Doppler energy is a measure of the energy of the total power in the Doppler frequency
spectrum at each depth, with the stationary (zero frequency) component removed. With
a good concentration of oxides, the energy falls off roughly as 1/r2 in the far-field region,
with a finite level of energy throughout the measurement region. When the oxide concen-
tration is too high, the oxides dissipate the beam. The energy falls off quickly, restricting
measurements to within a few centimeters of the transducer.
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required for good measurements. Nonetheless, we have developed techniques to exercise

some control over the oxide concentration.

It has been observed that because the oxide particles are very slightly buoyant, if the

fluid is left still for several hours the clarity of the fluid improves. Agitating the fluid remixes

the particles, quickly increasing its opacity. A strategy was developed to manage the oxide

particle concentration based on the particle buoyancy. When the fluid becomes too opaque

to the ultrasound pulses, the fluid in the experiment is agitated to ensure mixing of the

oxide particles and then transferred to a holding tank, where it is allowed to sit overnight.

With many of the oxides concentrated in the top part of the tank, fluid is transferred from

the bottom of the holding tank back to the experiment, leaving some of the oxide-rich fluid

in the holding tank.

If the oxide concentration needs to be increased, some of the fluid can be transferred from

the experiment to the holding tank and mixed with the oxide-rich fluid there by bubbling

argon through it. Some of this fluid can then be returned to the experiment, carrying with

it an extra dose of oxides.

3.2.3 Choice of frequency

The choice of emitter frequency presents a number of trade-offs. Higher frequencies have

better spatial resolution along the beam because of their smaller wavelengths, whereas lower

frequencies can unambiguously measure larger velocities and tend to have larger penetration

depths.

An emitter frequency of 4 MHz was chosen after testing showed adequate operation

with the natural oxide particles. The constraints on maximum measurement depth and

maximum unambiguous velocity measurement for this frequency in GaInSn is shown in

Figure 3.3, along with some experimental parameters for reference.
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Figure 3.3: Curve of maximum depth of measurement and maximum unambiguously mea-
surable velocity for various values of tprf , assuming fe = 4 MHz and c = 2.72 × 105 cm/s.
Measurements can be made above this curve, but the tprf required to reach the desired
depth will lead to aliasing of the measured velocity. Over-plotted are relevant parameters
for the experiment: the inner cylinder velocity at 100% of the design speed (4000 rpm)
and at 10% of the design speed (400 rpm), and the distance between the inner and outer
cylinders, r2 − r1.
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3.2.4 Transducer arrangement

Two configurations of transducers were used for this work. In both configurations, the

primary transducers were mounted on the equator of the experiment, with the beams all

lying in the equatorial plane. In experiments with both configurations, additional trans-

ducers were sometimes installed in other available ports for specialized measurements. The

location of those transducers will be noted when their measurements are presented.

Transducer configuration #1, with a transducer nominally aimed radially toward the

inner cylinder and two others passing tangentially to the inner cylinder, was used for opti-

mization of the azimuthal velocity profiles, for much of the measurements of the free shear

layer instability, and for initial measurements at MRI-relevant rotation rates.

Transducer Configuration #2 was devised because of the difficulties of obtaining mea-

surements from the radial transducer, both because the beam divergence tended to pick up

contributions from the azimuthal velocity, and because at high rotation rates fluid elements

did not reside in the beam long enough to make good measurements. In this configuration,

the transducers were installed with all centerlines passing tangentially to the inner cylinder.

But the sign of the angles varied, with some beams passing ahead of the inner cylinder and

some beams passing behind it. This configuration was used for verification of the measure-

ments of the free shear layer instability, and for additional measurements at MRI-relevant

rotation rates. Both transducer arrangements are shown in Figure 3.4.

3.2.5 Hardware installation

The transducers were mounted in Delrin port plugs which were then bolted to the outer

cylinder. A hole allowing a slip fit to the transducer body was drilled through each port

plug at the desired transducer angle. An o-ring in an internal gland provided a seal between

the transducer body and the port plug. An example schematic is shown in Figure 3.5

The transducers were mounted on the experiment with an additional backing plate to

protect against the ejection of the transducers by the high fluid pressures generated when

the experiment is running. Pictures of the port plug, backing plate, and installed assembly
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Figure 3.4: Top: Transducer configuration #1. Bottom: Transducer configuration #2. The
diagrams show the transducers installed at the midplane of the experiment. The divergence
of the beams in the diagram corresponds to the full width of the primary peak in the
directivity function of the acoustic field in the far-field limit.
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Figure 3.5: An example drawing of a port plug for a 8 mm diameter UDV transducer. A
hole is drilled through the Delrin port plug with an 8 mm drill bit, providing a close fit to
the body of the transducer. An 8 mm ID x 1.5 mm thick o-ring provides the seal between
the body of the transducer and the port plug.
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Figure 3.6: Left: Port plug and backing plate for UDV mounting. Right: Port plug installed
in a port on the outer cylinder. The brown objects in the foreground are two of the magnetic
field coils.

are shown in Figure 3.6.

Standard RG-174/U coaxial cables terminated with BNC connectors came out of the

transducers and passed around the bottom endcap of the experiment, where they were

plugged into a patch panel. Any extra cable length was wrapped and secured with zipties

to prevent the cables from rubbing against the magnetic field coils when they were forced

outward by rotation.

From the patch panel, wires ran to slip rings that transmitted the signals from the

rotating experiment to the stationary laboratory environment, shown in Figure 3.7. Coaxial

cables connected the laboratory side of the slip ring to the UDV appliance.

Because the UDV appliance used multiplexed channels, only one transducer was being

used for a measurement at any given time. We took advantage of this fact to more econom-

ically use the limited number of available slip rings by passing the grounds for all of the

signals over a single slip ring. The grounds from each coaxial cable in the lab frame were

soldered together inside the slip ring assembly housing and passed over one ring. In the ro-

tating frame, this single ground was connected to the ground terminal of each panel-mount

BNC connector.
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Figure 3.7: Picture of the hardware for transmitting signals between the rotating experiment
and the stationary laboratory. The inside of the slip ring assembly and the patch panel
rotate on the outer cylinder shaft, while the outside of the slip ring assembly and the
incoming cables are stationary.
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3.3 Data processing

The UDV diagnostic produces a timeseries of measurements of the velocity component in

the direction of the beam at multiple distances from the transducer face along the beam.

But for our experiment we wish to know the location of these measurements in cylindrical

coordinates, as well as the velocity components not in the direction of the beam, but in the

cylindrical coordinate directions.

There are four principle steps in the processing of the UDV data:

1. De-alias raw velocity measurements.

2. Determine position of each measurement in cylindrical coordinates.

3. Combine information from channels to find velocity components in cylindrical coor-

dinates.

4. Transform vθ to laboratory frame.

Each of these steps is described in its own subsection below.

3.3.1 De-alias raw velocity measurements

The first step in the data processing routine is to unwrap any 2π phase jumps in each

measured velocity profile caused by aliasing. A phase jump is typically identified by a jump

from more than 75% of the maximum velocity to less than -75%, or vice versa for a reverse

phase jump, although this threshold may be adjusted. A tally of these phase jumps is

kept along the depth of the measurement, and the velocity is corrected by adding twice the

maximum measurable velocity for each jump that has been recorded up to each depth. An

example of this is shown in Figure 3.8.

There can be challenges in implementing this technique when there are large gradients

in the velocity, for example in the case of a strong boundary layer near the outer cylinder,

as is often seen in split-unstable configurations. It can be difficult to get an accurate

count of the number of 2π phase jumps when passing through such a boundary layer. In
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Figure 3.8: An example timesample from the UDV diagnostic with samples suffering from
aliasing, as compared to the same data after the 2π phase jumps have been unwrapped.

such cases, it is best to send UDV pulses rapidly enough to ensure that there will be no

aliasing when steep velocity gradients are encountered.

3.3.2 Convert measurement depth to location in cylindrical coordinates

The transducer geometry is determined by the radius, height, and azimuthal location of the

transducer, and the beam trajectory. The beam trajectory is characterized by two angles:

A, the half-opening angle of a cone centered on the radial unit vector; and B, an angle

describing the trajectory of the beam on the surface of that cone, with B = 0 at the top,

B = 90◦ to the right, and B = −90◦ to the left when looking from the outer cylinder.

A position in cylindrical coordinates can be found for each measurement depth along

the UDV beam, as shown in Appendix B. For illustration, the position of the centerline of

the beam as a function of depth-of-measurement is shown in Figure 3.9 for A = 20.3◦, and

B = 90◦.
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Figure 3.9: Radial position and azimuthal position of measurements for A = 20.3◦, B = 90◦.
The dashed vertical line shows the point with the minimum radius.
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Figure 3.10: Contributions of the components of the velocity vector in cylindrical coordi-
nates to the velocity measured by the UDV diagnostic for A = 20.3◦, B = 90◦. The dashed
vertical line shows the position with the smallest radius.
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3.3.3 Determine velocity components in cylindrical coordinates

The UDV technique measures velocity in the direction of the beam, but we are interested

in the velocity components in cylindrical coordinates. At each measurement depth, the

UDV-measured velocity will be a mixture of the cylindrical coordinate velocities:

vudv = ~v · û = urvr + uθvθ + uzvz (3.6)

where û is the unit vector along the beam centerline, as defined in Appendix B. The

contributions to the measured velocity as a function of measurement depth are shown in

Figure 3.10 for a beam angle with A = 20.3◦, B = 90◦.

Once the coefficients are known, it becomes an inversion problem to determine the cylin-

drical coordinate velocities from measurements by multiple UDV transducers at different

angles. Solutions to the inversion problem for several common scenarios are discussed below.

Single transducer measuring vr or vz

In principle it is possible to aim a transducer so that it points purely along a radial chord

or purely axially. Then the measured velocity is simply vr or vz. In practice, these mea-

surements are never that simple. Because the background poloidal flow is typically 1 to 2

orders of magnitude smaller than the azimuthal flow, small deviations from perfect align-

ment or the divergence of the ultrasound beam can lead to contamination of the signal by

vθ, making measurements of residual vr and vz in the background flow almost impossible.

However, fluctuations in vr and vz can be of the same order of fluctuations in vθ, making it

possible to distinguish these velocity components for unstable modes. This is discussed in

more detail in Section 3.4.

Single transducer measuring vθ

A single transducer is sometimes used to make a measurement of vθ. Typically this trans-

ducer’s beam lies in the r− θ plane, so it measures a mix of radial and azimuthal velocities.

But because the background vr is typically only a few percent of vθ, it is possible to de-
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termine the background vθ with the assumption that vr = 0 with only a small error as a

penalty. In this case, the inversion is trivial:

vθ = vudv/uθ. (3.7)

Two transducers in the r − θ plane, assuming axisymmetry

A typical arrangement uses two transducers aimed with different angles in the r− θ plane.

Each channel measures a combination of vr and vθ. In general, these measurements will

not be made at the same azimuthal location. But if we assume axisymmetry, that is we

assume that the transducers are measuring the same vr and vθ at a given time, these two

components of the velocity can be found by the two independent UDV measurements.

First, the data sets must be sampled on a common radial grid. The data from one of

the channels is interpolated onto the radial coordinate vector for the other channel using a

cubic spline representation with 30 explicit knots evenly spaced in r.

Next, the coefficients ur and uθ are found for each channel at each radial location. Now

there is a system of equations at each radial location





vudv,1

vudv,2



 =





ur,1 uθ,1

ur,2 uθ,2









vr

vθ



 (3.8)

where the measurements vudv,1 and vudv,2 are known, as well as the coefficients ur,1, uθ,1, ur,2,

and uθ,2. It is simply a matter of inverting this 2x2 matrix to find the velocity components

in cylindrical coordinates at this radius.

Transducers in the r − θ plane with a known nonaxisymmetric structure

If we have a steady-state nonaxisymmetric velocity structure with a known azimuthal mode

number, m, (which can often be verified by examining the signals from transducers at two

azimuthal locations) and a known rotation frequency ω, information can still be combined

from measurements at different azimuthal locations to accurately determine the contributing

velocity components. To properly do the velocity inversion, we would like to have a dataset

that is as if all measurements had been made at the same azimuthal location. To do this,
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Figure 3.11: Illustration of the offset in the timeseries required to correct for the azimuthal
transit of a single ultrasound beam with A = 20.3◦ and B = 90◦ when measuring a velocity
fluctuation with m = 1 and ω = 3.1 rad/sec.

we note that the phase of the velocity at a given radius varies as mθ − ωt. We wish to

combine measurements taken at the same phase of this varying velocity. A measurement

made at an azimuthal location shifted by δθ is equivalent to a measurement made at the

original location but shifted by a time δt:

m(θ + δθ) − ωt = mθ − ω(t+ δt), (3.9)

if δt = −mδθ/ω. So, we shift the timeseries backwards in time according to the azimuthal

location of each measurement and use cubic splines with 6 explicit knots per period to

interpolate the measurements onto a common time basis. We can then perform the velocity

inversion as for an axisymmetric velocity structure. The proper phase shift due to the

azimuthal transit of an individual UDV beam is shown in Figure 3.11. The time shifts

required to transform measurements from two beams so that each have effective azimuthal

measurement locations of θ = 0 are shown in Figure 3.12.
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Figure 3.12: Illustration of the offset in the timeseries required to correct for the azimuthal
transit of two ultrasound beams with A = 20.3◦ and B = 90◦, at azimuthal locations
θ1 = π/2 and θ2 = π, when measuring a velocity fluctuation with m = 1 and ω = 2.7
rad/sec. The measurements are made at r = 11 cm, and both signals are offset to an
effective measurement location of θ = 0. The “no phase correction” timeseries have been
offset by 70 cm/s for clarity. The “with phase correction” timeseries have been upsampled
significantly during the interpolation step of the phase correction process.
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3.3.4 Transformation of azimuthal velocity to laboratory frame

All of the measurements are made with the UDV transducers fixed to the rotating outer

cylinder. Thus, all velocities are measured in a moving frame of reference. We note the

relationship between coordinates in the rotating (prime) frame and those in the lab frame,

r′ = r, θ′ = θ − Ω2t, z′ = z, t′ = t. (3.10)

The radial and axial velocities are the same in the rotating and laboratory frames. But we

must make a Galilean transformation for the azimuthal velocity

v′θ =
d

dt′
(rθ′) =

d

dt
r(θ − Ω2t) = vθ − rΩ2. (3.11)

So to find the azimuthal velocity in the lab frame, we simply add a solid-body rotation

component to the velocity measured in the rotating frame,

vθ = v′θ + rΩ2. (3.12)

3.4 Calibration

To properly determine the velocities in cylindrical coordinates in the experiment, two fac-

tors need to be calibrated: the speed of sound c in the fluid, and the geometry of each

measurement chord. The determination of each of these factors is discussed below.

3.4.1 Speed of sound

The speed of sound was calibrated by measuring the time of flight between the ultrasonic

transducer and a hard object which produced a strong echo, with the distance between the

two objects capable of being precisely controlled.

A bolt was threaded into a piece of steel and sunk in the GaInSn, with the head of the

bolt about 2 cm above the bottom of the container. A UDV transducer was placed in the

fluid, with the beam pointing down toward the head of the bolt. The transducer-mounting

apparatus was attached to a micrometer-driven optics stage which could precisely raise the

transducer up to 1 cm from its starting position.
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Figure 3.13: One data set showing measurements of the echo off the head of a bolt sunk in
GaInSn for a set of additional displacements of the transducer in 0.1 cm increments.

Three independent sets of measurements were taken with the transducer and the bolt

head initially separated by ≈5.5 cm. The transducer was raised in 0.1 cm increments

and a measurement of the echo amplitude versus time was taken at each step, up to the

maximum of 1 cm. An example of one data set is shown in Figure 3.13. The echo time for

each measurement was defined to be the time at which the echo signal reached one half of

the peak echo signal. For each set of measurements, a linear regression was performed on

the set of displacements ∆z from the starting position, versus ∆t, the change in the echo

time from the ∆z = 0 measurement, to yield the speed of sound, as shown in Figure 3.14.

The average of the measurements is 2.72×105 cm/s with a standard deviation of 0.05×

105 cm/s (1.8 %). This result is in reasonable agreement with the previously reported

c = 2.73 × 105 cm/s for a GaInSn alloy [Morley et al., 2008], and c = 2.86 × 105 cm/s for

pure gallium [Brito et al., 2001].
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Figure 3.14: Results of the linear regressions of displacement from the initial position ∆z
versus the change in the echo time ∆t for three data sets. The bottom plot shows the
residual of all of the measurements and of the three fits as compared to the change in the
echo time expected for the mean speed of sound determined by these fits, c̄ = 2.72 × 105

cm/s.
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3.4.2 Transducer position

In Taylor-Couette experiments with velocity diagnostics mounted in the laboratory frame,

such as with LDV in experiments with optically transparent fluids, it is common to use

solid-body rotation to calibrate the diagnostic. All of the rotating components are rotated

at the same frequency. After the flow has had time to settle, the azimuthal velocity has

a known functional form, vθ(r) = rΩ, and the poloidal velocity components vr and vz are

known to be zero. The angle of the measured velocity component relative to the azimuthal

flow is then relatively easy to determine.

But because the UDV diagnostic is mounted in the rotating frame of the experiment,

solid body rotation results in no movement of the measuring transducer relative to the fluid

and so it cannot be used for calibration. So we must find a way to calibrate the coordinates

of the transducer beam using unknown fluid flows.

A scheme was devised to measure identical differential rotation configurations with the

components rotating forwards (with Ω̂ up) and backwards (with Ω̂ down). The assumption

is then made that the forward and backward azimuthal velocities are simply inverses of each

other, vθ,f(r) = −vθ,b(r), and that the radial velocities are equal, vr,f(r) = vr,b(r). A set of

transducer geometrical factors (offsets, and beam angles), can then be chosen so that the

velocities inferred from the measurements satisfy these relations.

The calibration presented here was performed for transducer Configuration #2 in the

split configuration, with Ω1 = 400 rpm and Ω2=53 rpm. The calibration was then tested

against forward and backward shots with the forward component speeds (400, 270, 53, 53

rpm) and (800, 106, 106, 106 rpm).

Transducer offset

All transducers were installed with the transducer face recessed at least slightly in the hole

drilled through its port plug. Because the velocity profiles are highly sheared, it is important

to account for these offsets.

Figure 3.15 shows averaged raw data from each of the channels if we were to assume
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that each transducer is flush with the outer cylinder. Channels 1 and 4 should nominally

measure the same velocity profile, since they are aimed in approximately the same direction,

as should Channels 2 and 3. Additionally, the separation in measured velocity due to the

influence of vr between the forward- and backward-facing transducers should be equal in

magnitude for the forward and backward rotation shots. These requirements are not met

for the uncorrected raw data.

Figure 3.16 shows these same averaged raw data profiles, with the offset value chosen so

that the plots with the adjusted depth scale meet the above requirements. The conditions

above actually constrain the relative offset of all of the transducers. The absolute offset

is chosen so that the relative offsets relations are satisfied, and so that the chosen offsets

closely match the distance from the face of the transducer to the front of the port plug as

measured before installation.

Transducer angles

With the transducer offsets accounted for, the angles A of the transducers are now deter-

mined. The angles were found by a brute-force method of minimizing an error function for

each pair of forward- and backward-facing transducers. For a range of angles around the

nominal installed angle of A = 20.3◦, the velocity transformation was done for the forward

and backward shots with the new choices of A. An error function was then calculated for

this pair of shots,

Error =

∫ 19 cm
11 cm dr(10|vr,f − vr,b| + |vθ,f + vθ,b|)

(19 cm − 11 cm)
, (3.13)

where the part due to the difference in vr has been given extra weight since vr is at least

an order of magnitude smaller than vθ. The error functions for each pair of forward- and

backward-facing transducers are shown in Figure 3.17. As can be seen, the error function is

very insensitive to equal changes to each transducer angle and so we are getting information

about the relative angles of the transducers. The angles were therefore chosen so that the

relative angles minimize the error function, and the average of the angles is near the nominal

installation angle of A = 20.3◦.
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Figure 3.15: Raw transducer signals from forward and backward shots before offset cali-
bration. Negative signs multiply the signals to put the signals from forward and backward
shots and transducers with B = 90◦ and B = −90◦ on the same scale.
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Figure 3.16: Raw transducer signals from forward and backward shots with offset-corrected
depth scales. Transducers nominally aimed in the same direction now measure the same
velocity. The difference between the transducers with B = 90◦ and B = −90◦ is now
consistent between forward and backward shots, as it should be if that difference is due to
the influence of vr.
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Figure 3.17: Contours of the error function defined in Equation 3.13 for varying angles A
of pairs of forward- and backward-facing transducers. The chosen angles are indicated by
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close to the nominal installation angle of 20.3◦.
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Check of calibration

To test the calibration, forward and backward shots were taken for several different ring

ratios. The measured velocity profiles for the forward and backward shots as calculated from

an 80-second time average measured with transducers 1 and 2 are shown in Figure 3.18.

There is a good reproduction of the vθ profile for the forward and backward shots, although

there is some deviation in the (400, 270, 53, 53 rpm) case. The measurements in all cases

agree that vr is small, although more detailed information about vr, such as its sign, is not

reliable.

A more-clear picture of the internal inconsistency of finding the velocity components

can be seen in Figure 3.19. There, vr and vθ (or −vθ for the backward rotating shots) were

found at several different radii from measurements by each of the 4 pairs of transducers

of opposites signs of B: 1 and 2; 3 and 4; 1 and 3; 2 and 4. For each pair of forward

and backward shots, there are thus 8 estimates of the velocity components, all of which

would be the same assuming a perfect measurement, a perfect calibration, and a perfectly

recreated, axisymmetric flow state. The spread of these points is indicative of imperfection

in the measurement and calibration, or an incorrect assumption about the flow state.

Good information is obtained about vθ, where the spread is typically on the order of

5%. The measurement of vr, however, is more problematic. For the small radial velocities

generated by the Ekman circulation in these configurations, the spread is typically 100%

or more of the velocity. The situation gets worse for smaller radii, where the combination

of a diverging beam geometry and less sensitivity to vr because of the changing beam unit

vector û leads to increasingly large errors.

It is difficult to separate the spread in these points due to errors in the measurement

and calibration from the spread due to a failure to recreate exactly the same axisymmetric

flow state with the forward and backward shots. The configuration that we used for the

calibration, (400, 400, 53, 53 rpm), has a relatively small spread in the radial velocities.

Attempts were made to perform the same calibration using the measurements of the other

two profiles, but it was not possible to obtain the same level of internal consistency as with
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Figure 3.18: Velocity profiles calculated from measurements from transducers 1 and 2,
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Figure 3.19: Test of calibration with various rotation profiles. Points show the measured
vr and vθ (or −vθ) for the forward and backward rotation configurations, with each pair
of different-facing transducers (1 and 2; 3 and 4; 1 and 3; 2 and 4). The (400, 400, 53, 53
rpm) and (400, 270, 53, 53 rpm) cases each had two sets of forward and backward shots,
yielding 16 total points.

the (400, 400, 53, 53 rpm) case. This indicates that the other profiles may be violating our

assumptions about the flow state to some degree.

Reliability of vr measurement

As shown above, this technique does not produce reliable measurements of the vr that

arises from residual boundary-driven poloidal flow in the experiment. This is because vr

is typically only a few percent of vθ. Small errors arising in the vθ contribution can easily

swamp the measurement of vr. Even for configurations with a transducer aimed directly in

the radial direction, the divergence of the ultrasound beam allows pickup of vθ components

that can still cause large errors in vr. Thus, the measurement of a small vr in the presence
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Figure 3.20: Consistency of reconstructions of vr fluctuations associated with a nonaxisym-
metric instability, reconstructed from the four possible pairs of forward- and backward-
facing ultrasound transducers.

of a large vθ is unreliable.

However, for instabilities present in the system, it is often the case that there are fluctu-

ating quantities where vθ and vr are of the same order. In this case, even though the mean

background vr is uncertain, the fluctuating quantity can be measured with much greater

certainty. An example of this for the Kelvin-Helmholtz instability of a free shear layer

discussed later is shown in Figure 3.20. While the four reconstructions of vr differ in the

measured mean, the basic structure and magnitude of the fluctuations on top of that mean

are consistent.



Chapter 4

Mean velocity profiles

In this chapter we describe measurements of the mean azimuthal velocity profiles in the

experiment, and the effect of an applied axial magnetic field on those flows. We first

describe the hydrodynamic state. Then we give a basic explanation of how the application

of a magnetic field affects the flows through the induction of Hartmann currents. The flow

is then described in the weakly magnetized (Λ ∼ O(1)) and strongly magnetized (Λ ≫ 1)

regimes. The measurements in the weakly magnetized regime are used as motivation for a

possible technique for identifying the MRI in this experiment.

The flow in the experiment can be described by the equations of nonideal, incompressible

MHD, derived in Appendix C, and reproduced here for convenience:

~̇B + ~v · ∇ ~B − ~B · ∇~v = η∇2 ~B, (4.1)

~̇v + ~v · ∇~v +
1

ρ
∇P −

~B · ∇ ~B

4πρ
= ν∇2~v, (4.2)

∇ · ~B = 0, (4.3)

∇ · ~v = 0. (4.4)

The first equation is the magnetic field evolution equation. The second is the momen-

tum equation describing the flow evolution. The last two equations are constraints on

the magnetic field and flow imposed by the absence of magnetic monopoles and the fluid

61
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incompressibility.

4.1 Hydrodynamic flow state

We begin first with the hydrodynamic problem, where there are no currents and no magnetic

field. In this case, the problem is described by two equations: the momentum equation with

the magnetic field term removed, and the incompressibility constraint.

4.1.1 Ideal Couette flow

The ideal Couette solution is a steady-state solution to the hydrodynamic equations assum-

ing axisymmetry and no axial dependence (implying an infinitely long device) [Couette,

1890, Taylor, 1923]. In this limit, the momentum equation describing the azimuthal flow is

simply

(ν∇2~v)θ = 0. (4.5)

If the viscosity is spatially constant, the azimuthal velocity must satisfy the differential

equation
[

r
∂2

∂r2
+

∂

∂r
− 1

r

]

vθ = 0. (4.6)

If we posit a solution vθ =
∑

n anr
n, we find

∑

n

an [n(n− 1) + n− 1] rn−1 = 0, (4.7)

which can be satisfied for nonzero an and r only if n = ±1. So the ideal Couette solution

for the azimuthal velocity is

vθ(r) = ar +
b

r
, (4.8)

where the constants a and b are found by matching the solution to the rotation speeds of

the cylinders at the radial boundaries:

a =
Ω2r

2
2 − Ω1r

2
1

r22 − r21
, b =

(Ω1 − Ω2)r
2
1r

2
2

r22 − r21
. (4.9)



63

Measured azimuthal velocities matching this profile would suggest that the effects due

to axial endcaps that might distort the velocity distribution are minimized, so that the fluid

is behaving as if it were in an infinitely long device.

4.1.2 Effects of axial boundaries

When there is only azimuthal velocity, the radial force balance is satisfied by a pressure

gradient balancing the centrifugal force of the fluid,

v2
θ

r
=

1

ρ
∇P, (4.10)

leading to a radial distribution of the pressure

P (r) = ρ

∫ r

r1

dr
v2
θ

r
. (4.11)

When axial boundaries are added, the fluid at the endcaps is forced by the no-slip

boundary condition to corotate with the bounding element. The difference between the

rotation speed of the fluid at the endcaps and in the bulk of the fluid leads to an axial

gradient in the balancing pressure. This pressure gradient can then drive poloidal secondary

circulation, leading to additional axial and radial angular momentum transport, and driving

the fluid rotation profile away from the ideal Couette solution. This secondary circulation

is known as Ekman circulation.

A solution to this problem is to divide the endcaps into differentially rotatable rings,

allowing the speed of the fluid at the boundaries to more-closely match the speed of the

fluid in the bulk [Kageyama et al., 2004]. This approach was found to successfully mini-

mize the axial boundary effects in the water phase of this experiment [Burin et al., 2006,

Schartman et al., 2009], allowing measurements of the Reynolds stress in the absence of

significant secondary circulation [Ji et al., 2006, Schartman et al., 2012].

4.1.3 Measurement of hydrodynamic flow profiles

The hydrodynamic azimuthal velocity profiles were measured in the Ekman 10% configura-

tion, the MRI-Z 10% configuration, and the split configuration with Ω1 = 400 rpm and
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Figure 4.1: Profile of vθ measured by the UDV diagnostic at the midplane for several
different ring speed configurations, all with Ω1 = 400 rpm and Ω2 = 53 rpm. The black line
shows the ideal Couette solution for these inner cylinder and outer cylinder speeds.

Ω2 = 53 rpm. The measured profiles are shown in Figure 4.1. The Ekman and split config-

urations feature axial boundary configurations that are frequently used in Taylor-Couette

devices, though the geometrical aspect ratios of this experiment are quite different from

typical Taylor-Couette devices. These configurations yield vθ profiles that are far from the

ideal solution. The optimized MRI-Z configuration comes much closer to reproducing the

ideal solution. Note in all cases that the azimuthal velocity measurement becomes much

less reliable for r < 9 cm as the ultrasound beam widens, and all feature an obvious artifact

with r < 8 cm produced by the interaction of the sound waves with the inner cylinder wall.

Optimization of inner ring speed for MRI-Z profile

As mentioned in Chapter 2, for operational reasons the outer ring and outer cylinder were

forced to corotate. So in optimizing the boundary configuration there was only one free

parameter: the inner ring speed. Figure 4.2 shows the hydrodynamic vθ profiles for the
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Figure 4.2: Profiles of vθ at the midplane for several candidate inner ring speeds for the
MRI-Z 10% configuration. The black line shows the ideal Couette solution for this Ω1 and
Ω2.

MRI-Z 10% configuration with several choices of Ω3. Note as before the decreasing accuracy

of the measurement for r < 9 cm and the artifacts at r < 8 cm. The (400, 220, 53, 53

rpm) configuration was chosen since it minimizes the error with respect to the ideal Couette

solution in the bulk of the fluid volume.

4.2 Modification of flow state by applied magnetic field

For the hydrodynamic problem, vθ at the midplane is determined by a balance of vis-

cous and inertial forces, the inertial forces arising from the boundary-driven Ekman cir-

culation. The addition of a magnetic field adds magnetic stresses to the vθ force bal-

ance [Loper and Benton, 1970, Benton, 1973, Khalzov et al., 2010], as well as modifying

the inertial forces through magnetic braking of the Ekman circulation [Gilman and Benton,

1968, Szklarski and Rüdiger, 2007, Liu, 2008b].
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4.2.1 Hartmann currents

The Hartmann current is an electrical current that is driven by the interaction of the axial

magnetic field with the axial gradient of the azimuthal velocity arising from the no-slip

boundary condition.

The current density in the fluid can be described by Ohm’s law,

4πη

c2
~j = ~E +

1

c
~v × ~B. (4.12)

In the absence of fluid flow, currents are just driven by potential gradients. The rotation

in the experiment gives rise to an additional (1/c)vθB0r̂ contribution to Ohm’s law. In

an infinitely long system, this contribution could be perfectly balanced by an electric field

arising from a potential

φ(r) =
B0

c

∫ r

r1

drvθ(r). (4.13)

In the same way that the Ekman circulation could be viewed as being driven by an axial

pressure gradient arising from the azimuthal velocity difference between the bulk fluid flow

and the fluid viscously coupled to the boundary, the Hartmann current can be seen as being

driven by an axial electrical potential gradient that arises for the same reason.

Balancing of Ohm’s law in a channel: a toy model

We can gain some intuition concerning the effect of the Hartmann current on the flow by

considering a simplified problem: that of an infinitely long channel, open at the top, with

width w and fluid depth d, shown in Figure 4.3. The bottom boundary is insulating. The

flow consists of a boundary layer of thickness δ at the bottom, in which the fluid velocity is

everywhere zero, and a bulk flow region in the rest of the channel with velocity v0. Currents

are allowed to pass between the boundary layer and the bulk of the fluid only at the side

boundaries, and the potential is uniform along the sides. (One could imagine the boundary

layer and fluid being separated by a thin insulating sheet, and the side walls being made of

a superconducting material.) A uniform axial magnetic field of magnitude B0 penetrates

the entire fluid.
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Figure 4.3: Schematic of setup for toy model of Hartmann currents in a channel.

In the bulk of the fluid, Ohm’s law takes the form

4πη

c2
jbulk = −(φ2 − φ1)/w +

1

c
v0B0, (4.14)

where φ1 is the electrical potential at the left wall, φ2 is the electrical potential at the right

wall, and jbulk is the constant current density in the x̂-direction in the moving part of the

fluid.

In the stationary boundary layer there is no fluid motion, so the balance of Ohm’s law

is entirely between the current and the potential,

4πη

c2
jboundary = −(φ2 − φ1)/w. (4.15)

We know that the total current must be conserved, so

jboundaryδ = −jbulk(d− δ). (4.16)

Now we can substitute to find the relative contribution of the ∇φ terms and the ~v × ~B

terms in Ohm’s law in the bulk,

∇φ
(1/c)v0B0

= 1 − δ

d
. (4.17)

In the limit where the boundary layer is infinitely thin, δ → 0, the potential gradient entirely

balances ~v× ~B. And in the limit δ → d, where the boundary layer is infinitely thicker than

the bulk flow, the current density term entirely balances ~v × ~B in the bulk.
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In reality, the boundary layer thickness is not a free parameter. It follows the width

scaling for a Hartmann layer, δ ∼ Ha−1 [Hartmann, 1937, Liu, 2008b], where the Hartmann

number describes the square root of the ratio of the Lorentz force to the viscous force in the

momentum equation, Ha = B0L/
√

4πρην, with L a characteristic length. If we consider

the situation for Ha = 400 (a reasonable Ha for the parameters of GaInSn, with L ∼ 10

cm, and B ∼ 1000 G) and with d = 1 cm, we note that the boundary layer is very thin,

a few hundredths of a millimeter, and Ohm’s law in the bulk of the fluid is balanced by

the ∇φ and ~v × ~B terms to within one part in 400. But the forcing of the fluid due to

the Hartmann current is still significant. We see that if we compare the ~j × ~B terms and

the viscous term in the momentum equation, the ~j × ~B forces exceed the viscous force by

Ha2 = 1.6× 105, producing a strong decelerating force in the bulk of the fluid. Thus, while

Ohm’s law is nearly balanced by ∇φ, the residual current can still play a very important

part in the force balance of the fluid.

We note that the analysis in this toy model was for an insulating bottom boundary,

like the axial boundaries in our experiment. If the bottom boundary were conducting, the

very thin Ha−1 boundary layer would be replaced by a macroscopic conductor, leading to a

much larger contribution of ~j to the balance of Ohm’s law, and an even larger decelerating

force due to ~j × ~B in the bulk.

Alternative picture for generating Hartmann currents: bending field lines

An alternative way to understand the generation of Hartmann currents dispenses with the

admittedly contrived model of the previous section, making use of the induction equation

directly. If for now we neglect the diffusive term of the induction equation, and consider

magnetic fields generated in a cylindrical system by the spatially uniform ~B = B0ẑ and by

a velocity field which is entirely in the azimuthal direction, ~v = vθθ̂, we see that

∂ ~B

∂t
= ( ~B · ∇)~v = B0

∂

∂z
vθ. (4.18)
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So the axial shear of the velocity combined with an axial magnetic field generates an az-

imuthal magnetic field. This new magnetic field is associated with a radial current,

~j =
c

4π
∇× ~B ⇒ ∂

∂t
jr = − c

4π
B0

∂2

∂z2
vθ. (4.19)

So we see that the radial current density is produced as field lines are bent by the axial

shear of the flow velocity, producing a force which acts to eliminate the axial velocity shear.

In both models, we see that the effect of the ~j × ~B force due to the Hartmann current

when the fluid in the bulk is rotating faster than the fluid at the boundary is to decelerate

the fluid in the bulk, and to attempt to accelerate the fluid at the boundary. (Since the

boundary layer is forced to rotate at the boundary component speed by the no-slip boundary

condition, this accelerating force leads to a narrowing of the boundary layer, so that the

Hartmann number Ha = B0δl/
√

4πρην, with δl the boundary layer thickness, is always of

order one.) The opposite is true if the fluid in the bulk is rotating slower than the boundary:

the ~j × ~B force from the Hartmann current accelerates the fluid in the bulk and attempts

to decelerate the fluid in the boundary layer.

Hartmann currents in nonlinear MHD simulations

For the purpose of illustrating the Hartmann current, we show here the Hartmann currents

generated from a simulation performed by Wei Liu in the experimental geometry using

the ZEUS-2D code [Stone and Norman, 1992a,b], modified to include finite viscosity and

resistivity [Liu, 2007]. The simulations were run with Ω1 = 945 rpm, Ω2 = 160 rpm,

Ω3 = 396 rpm and Ω4 = 177 rpm, with B0 = 5000 Gauss, Re = 6400 and Rm = 20. The

axial boundaries were insulating, and the radial boundaries were partially conducting.

A contour plot of the azimuthal velocity is shown in Figure 4.4. The velocity in the

bulk of the fluid is mostly uniform axially, with the axial shear concentrated near the axial

boundaries. This velocity shear and the induced jr can be seen for several different radii

in Figure 4.5. As the intuition built from our simple model suggested, the force due to

the induced jr attempts to eliminate the axial shear. Contours of jr and the associated Bθ

are shown in Figure 4.6, showing that jr is largest near the boundary, but there remains a
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Figure 4.4: Contour plot of vθ from a ZEUS-2D simulation.

relatively small current density in the bulk of the fluid. But, as illustrated by our toy models,

even a relatively small current can have an important effect on flow dynamics because the

viscous force in the bulk flow in our experiment tends to be very small.

4.3 Experimental measurements of mean velocity profiles with

a magnetic field

The effect of a magnetic field on the hydrodynamically optimized MRI-Z configuration has

been investigated for many values of Re andB0. The application of the magnetic field results

in a shift of the mean velocity profile from the hydrodynamic state when the magnetic field

is applied. As shown in Figure 4.7, the azimuthal velocity at a given spatial point evolves

smoothly in time to a new equilibrium value. The azimuthal velocity profiles at the new

equilibrium are shown in Figure 4.8. Note that the applied magnetic field results in a
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Figure 4.7: Timeseries of azimuthal velocity at the midplane at r = 16 cm with several dif-
ferent applied magnetic field strengths for the MRI-Z 40% configuration. The black vertical
line indicates the beginning of the application of the magnetic field. Each timeseries is cut
off at the time that the magnetic field is turned off.

suppression of the azimuthal velocity across the entire gap at the midplane. Our toy model

would have suggested that the flow should be accelerated where the boundary speed exceeds

the fluid speed with no applied field. But this far from the boundary such effects might be

smoothed over, yielding a decrease in vθ everywhere since the radially averaged boundary

speed is slower than the fluid velocity.

4.3.1 Azimuthal velocity scaling

The azimuthal velocity measured at a single point is plotted in Figure 4.9 for various rotation

speeds and applied field strengths. Note that the data for each rotation speed all have the

same slope, so that applying a magnetic field of a given strength results in the same change

of velocity, regardless of what that azimuthal velocity initially was. This fact motivates

plotting the measured velocities as scaled quantities, with the measured vθ normalized by
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Figure 4.9: vθ measurements at r = 16 cm for several rotation speeds and B0.

the measured inner cylinder velocity v1, and the magnetic field B0, represented by the Alfvén

speed, also scaled by v1, as shown in Figure 4.10, where the Alfvén speed vA = B0/
√

4πρ.

The vertical error bars in this plot come from a combination of the standard deviations of

the measured velocity, the measured inner cylinder speed, and the measured outer cylinder

speed. They do not include the uncertainty in the speed of sound or the uncertainty due

to geometrical errors of the UDV measurement, including averaging of the velocity over

the beam width, which should result only in equal shifts of all measurements of similar

azimuthal velocity profiles. The horizontal error bars come from a combination of the

standard deviations of the measured current to the coils and of the measured inner cylinder

speed.

4.3.2 Effect of changes to boundary conditions

Maintenance on the experiment between experimental runs leads to changes to the axial

location of boundary components on the order 1-2 mm. As shown in Figure 4.11, this
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Figure 4.11: Several independent measurements of the scaled vθ with nearly the same
magnetic field, without perfect replication of the relative height of the boundary components

results in significant changes to the (scaled) azimuthal velocity. For appropriate comparisons

between shots, it is therefore necessary to compare only within a series of shots in which the

positions of the boundary components could not have been altered. When that is done, the

scaled velocities for constant vA/v1 are quite reproducible over a range of rotation speeds,

as shown in Figure 4.12.

4.3.3 Relevance to the MRI

The observed scaling has no clear basis in terms of a force balance between two components

of the momentum equation. Instead, it seems to be a result of the global dynamics of the

experiment, including viscous shear forces, inertial forces from the residual effects of the

Ekman circulation, and ~j× ~B forces. Attempts have been made with nonlinear MHD codes

to reproduce this scaling in simulation, though none have been successful. But it is worth

noting that all of the nonlinear simulations use Re smaller than the experiment by one
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to three orders of magnitude, and none feature all of the peculiarities of the experiment,

including possible gaps or bumps in boundaries, and holes in the bounding components

allowing circulation through the boundary.

Still, the experimental robustness of this scaling suggests that a deviation from the

scaling with increasing rotation rate could be a sign of the MRI. As shown in Figure 4.12,

the normalized velocities are nearly independent of rotation rate for fixed vA/v1. It may

be possible to identify the MRI from a deviation from this scaling, since the additional

Reynolds and Maxwell stresses produced by the MRI will likely act in addition to the

inductionless processes that determine the flow dynamics below the critical Rm, leading to

an additional suppression of the saturated azimuthal velocity profile.

Unfortunately, simulations have shown that the fully saturated MRI eigenmode will

result in changes to the azimuthal velocity of only ≈ 2% [Gissinger et al., 2012]. This is

comparable to the drift in experimentally measured velocities below the threshold for the

MRI, so the identification of the MRI on top of this drift would be challenging.

4.4 Mean velocity profiles with Λ ≫ 1

The Elsasser number Λ = B2
0/4πρηΩ describes the ratio of the Lorentz force to the Coriolis

force, and as such is a measure of the relative importance to the flow dynamics of the

magnetic field compared to rotation. Experiments were undertaken in the split-unstable

configuration with very small rotation rates (< 1 rpm) yielding Elsasser numbers of 10s to

100s, allowing study of situations where the magnetic field has a very large effect on the

flow profiles.

One consequence of such large Elsasser numbers is the appearance of a shear layer at

the midplane of the experiment, as the magnetic field attempts to force the flow everywhere

to match the step in the boundary velocity at the radial location of the gap between the

rings. Example profiles with various magnetic field strengths are shown in Figure 4.13.

A systematic evaluation of the shear layer was performed by fitting a hyperbolic tangent
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angular velocity profile to the measured angular velocity at each time point,

Ω(r) = a1 tanh

(

r − rl
wl

)

+ a2, (4.20)

where the free parameters a1 and a2 describe the amplitude and offset in Ω of the rotation

profile, rl is the radial location of the center of the shear layer, and wl is a characteristic

width, about one-half the total width of the shear layer. The angular velocity profiles

were determined using the measurements only from a single tangential transducer. Two

transducers, which would take into account the effects of vr, were not used because the

noise inherent in combining measurements of such slow speeds made a clean determination

of the width very difficult. There were several shots whose noise characteristics did permit

full reconstructions of vr and vθ and a determination of the shear layer width. The results

verified that the error in neglecting vr before the onset of the instability was negligible, and

the error in the average determined shear layer width during saturation of the instability

was always less than 10%, and normally only a few percent.
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Figure 4.14: Evolution of shear layer width over the course of a shot in the split-unstable
configuration with Ω1 = 0.25 rpm and B0 = 570 Gauss (Λ = 61). The beginning and end
of the plotted timeseries are at the turn-on and turn-off of the magnetic field. Top: shear
layer half-width wl in cm. Bottom: measure of total shear associated with the layer, found
by dividing the change in Ω across the shear layer by the full width, 2wl.

An example of the evolution of the shear layer as a function of time can be seen in

Figure 4.14. After the magnetic field is applied, the shear layer width approaches a steady-

state value between t = 200 s and t = 400 s. Note that even as the shear layer width

saturates, the associated shear continues to rise because the angular velocity jump ∆Ω

across the shear layer continues to increase. All of these shots are subject to the magnetic-

field-initiated instability discussed later, evidenced here by oscillations in the layer width

and shear. When the instability sets in, there is an average increase in the shear layer width

and a decrease in the amount of shear associated with the layer.

Since the growth time for the instability is long compared to the time to establish the

shear layer, the shear layer can be examined in a regime where the layer width is mediated

by the molecular viscosity rather than the Reynolds stress associated with the instability.

The width of a free shear layer in cylindrical geometry in the large-Λ limit has been found
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to scale as Ha−0.5 [Vempaty and Loper, 1978] in the small Ro limit, just as it does for

free shear layers in spherical geometry [Hollerbach, 2000] and in the boundary layer of

pipes [Shercliff, 1953, Roberts, 1967]. We show the measured scaling of the shear layer

width as a function of Hartmann number in Figure 4.15. Note that results are presented for

fields that could not be run in steady state since the measurements of the shear layer width

only require that the field be on for tens to hundreds of seconds, rather than the thousands

of seconds required for measurements of the instability.

We find that the shear layers here scale as Ha−0.63±0.15 and Ha−0.62±0.14 for the mea-

surements at z = 14.5 cm and z = 3 cm. The scaling Ha−0.5 is contained within one

standard deviation of both measurements, but just barely, suggesting that an adjustment

to this scaling may be necessary for cases such as this with Ro ∼ O(1).
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Figure 4.15: Scaling of shear layer width wl with Hartmann number Ha for large Λ. Mea-
sured saturated widths are shown in the split-unstable configuration for two rotation
speeds, Ω1 = 0.5 rpm and Ω1 = 0.25 rpm, from measurements at the midplane, z = 14.5 cm
and z = 3 cm. Power law fits for the data at z = 14.5 cm and z = 3 cm show a scaling of
Ha−0.63±0.15 and Ha−0.62±0.14, respectively. The dashed lines show the scaling Ha−0.5 for
reference.



Chapter 5

Kelvin-Helmholtz instability of free

shear layers: experiments

Under the right conditions, the flow in the experiment is unstable to a Kelvin-Helmholtz

instability of a free shear layer. The eigenmodes are nonaxisymmetric and rotate with

respect to the outer cylinder, producing measurable velocity fluctuations with a dominant

frequency determined by the rotation rate. These results were first published in a limited

form in Roach et al. [2012].

The first section of this chapter describes the conditions under which the Kelvin-Helmholtz

instability is observed. The second section describes the characteristics of the unstable mode

near marginal stability, and the third section describes the instability far from marginal sta-

bility in the magnetized case, with Λ ≫ 1. A comparison of the measurements to the linear

instability analysis of a free shear layer is deferred to Chapter 6.

84
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Figure 5.1: Example timeseries of velocity fluctuations during flow destabilization with
applied magnetic field, measured at r = 18 cm for MRI-Z 10% configuration with B =
3440 Gauss. The vertical lines indicate the start and the end of the application of the
magnetic field.

5.1 Destabilization criteria for the Kelvin-Helmholtz insta-

bility

5.1.1 Destabilization with magnetic field

Starting with both hydrodynamically stable and hydrodynamically unstable background

rotation states, application of a sufficiently strong background magnetic field results in

the appearance of the Kelvin-Helmholtz instability. In the case of the hydrodynamically

unstable background, the application of the magnetic field results initially in the damping

of the broadband fluctuations characteristic of the hydrodynamically unstable state, with

the single-frequency Kelvin-Helmholtz instability growing up some time later. Figure 5.1

shows an example of these velocity fluctuations.

The amount of field required for the instability with the hydrodynamically stable MRI-Z

background is shown in Figure 5.2. The Kelvin-Helmholtz unstable points are shown by
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Figure 5.2: Measured Kelvin-Helmholtz instability space with an MRI-Z background. Area
of circles are proportional to the power in the primary frequency band at saturation of the
instability, normalized to the square of velocity jump at the inner-ring/outer-ring junction.
‘X’s indicate stability.

plotting a circle with area proportional to the power in a narrow band around the dominant

frequency peak normalized to the square of the velocity jump between the inner and outer

endcap rings, as is done for all such plots in this chapter. These calculations were made in all

cases from the raw timeseries of velocity fluctuations measured by a tangential transducer

at r = 19 cm, and thus represent a combination of vθ and vr velocity fluctuations. The

boundary between the stable and unstable regions occurs at a constant Elsasser number

defined using the difference between the inner ring and outer ring rotation rates, Λ =

B2
0/4πρη(Ω3−Ω4). Note that the transition region is gradual, with the saturated amplitude

tending to grow with increasing B0 above the stability boundary.

For the split-unstable configuration, the instability region was measured over a much

broader range of rotation rates, spanning more than 3 orders of magnitude from Ω1 = Ω3 =

0.25 rpm at the low end, up to Ω1 = Ω3 = 800 rpm at the high end. This represents a range
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Figure 5.3: Measured Kelvin-Helmholtz instability space with a split-unstable back-
ground. Area of circles are proportional to the power in the primary frequency band at
saturation of the instability, normalized to the square of the velocity jump at the inner-
ring/outer-ring junction. ‘X’s indicate stability.

of Reynolds numbers from 820 to 2.6 × 106. The condition for instability again requires

a minimum critical Elsasser number, as shown in Figure 5.3. Note that the absence of

data points in the upper left of that plot is not in itself an indication of stability there.

For each rotation rate there is a maximum magnetic field with which the instability can

be studied because of the time limits caused by resistive heating of the magnet coils. But

the decrease in saturated mode amplitudes with increasing field is a suggestion of a move

toward stability, a topic that will be discussed further in Section 5.3.5.

5.1.2 Requirement of shear at axial boundary for instability

The effect of the shear at the inner-ring/outer-ring interface was investigated by starting

with the MRI-Z 10% configuration and varying the inner ring speed Ω3 from matching Ω1

at the high end, to matching Ω4 at the low end. The result on the stability threshold are
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Figure 5.4: Effect of shear at the inner-ring/outer-ring interface on the Kelvin-Helmholtz
instability. The base state is the MRI-Z 10% configuration, with the inner ring speed Ω3

varied. The solid black line shows the constant Elsasser number Λ = 1 boundary. The
dashed line shows a boundary for a modified Elsasser number Λ = B2

0/4πρη(Ω1 − Ω3) = 1,
defined by the difference between the inner cylinder and inner ring speeds, rather than the
inner ring and outer ring speeds.

shown in Figure 5.4.

There is no instability for any magnetic field strength when the differential rotation

between the endcaps is eliminated. When the differential rotation between the endcap

components is small, the transition threshold does not follow the line of constant Elsasser

number Λ = B2
0/4πρη(Ω3 − Ω4). Instead, it seems to follow a constant modified Elsasser

number, written in terms of the differential rotation between the inner cylinder and inner

ring Λ = B2
0/4πρη(Ω1 −Ω3). Although the data suggesting this are rather sparse, this does

suggest a different mechanism for the development of the instability in these cases.
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Figure 5.5: Timeseries of raw velocity measurement from a tangential transducer with
Ro = 2.35.

5.1.3 Destabilization of split configuration with background rotation

The effects of background rotation were examined with component speeds rotating in the

split configuration, with nonzero Ω2 = Ω4. With this configuration, the instability is

observed when the outer cylinder rotation is sufficiently large compared to the differential

rotation. The marginally stable state is characterized by a Kelvin-Helmholtz instability

that is driven in the spin-up phase of the experiment, but is damped as the flow reaches full

speed, as shown in Figure 5.5. The scaling of ∆Ω with Ω2 for this marginal state is shown

in Figure 5.6, showing a critical Rossby number Ro = ∆Ω/Ω2 = 2.35.

5.1.4 Destabilization of split configuration with background rotation

and magnetic field

Further experiments were conducted in the split configuration with Ω2 6= 0 and with

B0 6= 0. When adding a strong enough magnetic field to the marginally stable state with

Ro = 2.35, the Kelvin-Helmholtz instability reappears. An example timeseries is shown in
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mentally determined marginal stability points are shown, with the line Ro = ∆Ω/Ω2 = 2.35
overplotted.

Figure 5.7.

The critical magnetic field for the cases with Ro = 2.35 is shown in Figure 5.8, following

a line of constant Λ as in the magnetized cases with larger Ro shown at the beginning of

this section.

There is some interesting behavior in the stability plot with constant Ω2 and varying

∆Ω, shown in Figure 5.9. When ∆Ω is small and the instability is present in the absence

of a magnetic field, the addition of the magnetic field has no effect on the instability. The

magnetic field can provoke the instability for the marginal case with Ro = 2.35, but it

doesn’t require a small amount of magnetic field to do so. It requires just as much field as

if Ω2 were zero.

5.1.5 Destabilization in cyclonic flow

The cyclonic configuration is an analog of the split-unstable configuration, but with the

inner components at rest, Ω1 = Ω3 = 0, and the outer components rotating with Ω4 = Ω2. It
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Figure 5.7: Timeseries of velocity fluctuations in the split configuration with Ro = 2.35
and Λ > 1. Measurements are the raw velocity measured by a tangential transducer at
r = 19cm. The magnetic field is applied in the region between the two vertical lines.
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Figure 5.8: Kelvin-Helmholtz instability space in split configuration with fixed Ro = 2.35.
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Figure 5.9: Kelvin-Helmholtz instability space in split configuration with fixed Ω2 = 100
rpm and varying B and ∆Ω. The Kelvin-Helmholtz instability is seen if Ro < 2.35 or Λ > 1.
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Figure 5.10: Timeseries of raw velocity measurements from a tangential transducer at r =
19 cm in the cyclonic configuration with Ω1 = Ω3 = 0 rpm and Ω4 = Ω2 = 106 rpm.

has the same amount of shear at the split between the axial endrings as the split-unstable

configuration, but the angular momentum gradient is reversed. Experiments were carried

out with Ω4 = Ω2 = 106 rpm and Ω4 = Ω2 = 26.5 rpm. In the cyclonic configuration, the

instability is observed with no magnetic field applied, with an example timeseries shown

in Figure 5.10. The instability appears as the flow is spinning up, and continues to be

vigorously unstable when the flow reaches full speed. Application of a magnetic field up to

4000 Gauss, the maximum examined, had no effect on the instability in these cases.

5.2 Instability characteristics near marginal stability

As we have seen, the onset of the instability is characterized by large-amplitude velocity

fluctuations. Figure 5.11 shows the effect on the azimuthal and radial velocity profiles.

The power spectrum of the fluctuations measured by a transducer show a single dom-

inant frequency at saturation as shown in Figure 5.12. The square root of the power at

this frequency in each of the velocity components vr and vθ can be plotted as a function of
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Figure 5.11: Effect of instability on vθ and vr profiles in the Split-unstable configuration
with Ω1 = 200 rpm, and B0 = 3440 Gauss.. Curves represent four independent measure-
ment, each separated by 1/4 of an oscillation period in time. The black line in the vθ plot
indicates the ideal Couette rotation profile for these inner and outer cylinder speeds.



95

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Freq [Hz]

10-2

10-1

100

101

102

103

Po
w

e
r

25 30 35 40 45 50
Time [s]

−15
−10

−5
0

5
10

15
20
25
30

V
e
lo

ci
ty

 [
cm

/s
]

Figure 5.12: Power spectrum of velocity fluctuations during saturation of the instability
for the split-unstable configuration with Ω1 = 200 rpm and B = 3440 Gauss. A single
frequency is dominant, with a hint of a second harmonic with less power.

radius to give information about the radial structure of the velocity fluctuations, as shown

in Figure 5.13. The fluctuation in vθ is peaked near the inner and outer cylinders, going

nearly to zero in the middle of the experiment. The opposite is true for the fluctuation of

vr, which peaks in the middle.

Using two transducers aimed identically but separated by π/2 in azimuth, azimuthal

phase information about the fluctuations can be obtained. As shown in Figure 5.14, the

two transducers record the fluctuation with a π/2 phase difference at saturation, suggesting

an m = 1 mode structure, although it appears that a larger azimuthal mode number is

dominant before saturation.

5.2.1 Mode structure

Once the azimuthal mode number, and therefore the time for the mode structure to complete

one rotation, is known, it is possible to use the measurements by the UDV diagnostic to
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Figure 5.13: Velocity fluctuation amplitude as a function of radius for the split-unstable
configuration with Ω1 = 200 rpm and B0 = 3440 Gauss. The amplitude is calculated
from the square root of the measured power for each velocity component at each radius,
appropriately normalized to correspond to the actual velocity fluctuation amplitude in cm/s.
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Figure 5.14: Example timeseries of raw velocity measurements during flow destabilization
in the Split-unstable configuration with Ω1 = 200 rpm and B0 = 3440 Gauss. Time
traces show measurements from two tangential transducers at the midplane with θ = π/2
(blue), and θ = π (red). The black vertical line indicates the turn on of the magnetic field.
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Figure 5.15: Typical m = 1 mode structure near Λ = 1 stability boundary. The mode was
reconstructed by measurements from two UDV transducers during the saturated phase of
the instability, with the mean m = 0 contribution at each radius subtracted off, leaving
only the fluctuating velocity contribution. Split-unstable configuration with Ω1 = 400
rpm and B0 = 4000 Gauss, for Λ = 1.9.

reconstruct the mode structure. As the mode rotates by, a measurement at some time

corresponds to a particular point in the mode phase. By projecting the timeseries of velocity

measurements onto the r − θ plane, the mode structure can be visualized, taking care

to account for the different azimuthal locations of the transducers used to perform the

reconstruction as discussed in Chapter 3. In all of the plots of the mode structures that

follow, the m = 0 component (determined from the mean of the velocity timeseries) at each

radius is subtracted, leaving only the fluctuating part of each velocity component.

The mode structure near the Λ = 1 stability threshold is typified by Figure 5.15. The

mode is m=1, and consists of two large circulation cells that fill the gap between the two

cylinders.

5.2.2 Axial structure

Two identically aimed transducers mounted at the same azimuthal location at z = 14.5 cm

(the midplane) and z = 3 cm were used to investigate the axial structure of the unstable

mode. As shown in Figure 5.16, measurements at the two axial locations are almost iden-

tical, having the same magnitude and phase of oscillations, even replicating the features

caused by higher-order azimuthal mode numbers quite well. This suggests that there is al-

most no axial dependence on the unstable mode structure in the bulk of the fluid, although
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Figure 5.16: Comparison of raw velocity timeseries during the instability from two identi-
cally aimed transducers mounted at the same azimuthal location but different axial posi-
tions. Blue: Raw velocity measurement at z = 14.5 cm (midplane). Red: Raw transducer
signal at z = 3 cm.

there must certainly be axial structure near the boundary as the velocity transitions to that

required by the no-slip boundary condition.

5.2.3 Correlated fluctuations in vz

Using the normal transducer arrangement, only fluctuations in vθ and vr can be measured.

To determine the amount of correlated fluctuation in vz, an ultrasound transducer was

mounted on the end of a rod with its projected beam extending perpendicular to the rod.

The rod passed through a port plug at the midplane of the experiment, where it was sealed

with an o-ring. The o-ring seal permitted the rod to be rotated and to be translated

radially. Measurements were made at radii of 11, 12, 13, 14, and 15 cm, all with the outer

cylinder fixed. Before each measurement of the unstable mode, the probe rotation angle

was adjusted until a pair of shots with forward and backward rotation indicated no bias in
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Figure 5.17: Measurement of the amount of correlated vz fluctuation of the unstable mode.
Top: power spectra, and bottom: timeseries of raw measurements from a tangentially-aimed
transducer (blue), and a transducer mounted on a rod and aimed axially at r = 15 cm
(green). Measurements are 2 cm from the face of the transducer in both cases.

the beam orientation that would cause the transducer to pick up a contribution from vθ.

No correlated fluctuations were evident by examination of the timeseries or examination

of the power spectra at any of the measured radii or at any distance from the transducer.

An example power spectrum and timeseries are shown in Figure 5.17. The noise floor of

the measurements limits the constraint that can be placed on the fluctuating axial velocity

to ṽz < 0.05ṽθ .

The addition of the stationary rod resulted in a reduction in the mean azimuthal velocity

because of the additional drag on the fluid. The instability as measured by the permanent

transducers seemed to be unfazed by this change, but it is worth noting nonetheless. If

anything, we expect that the addition of the rod would mix some of the azimuthal flow into

the axial direction, leading to an overestimate of the contribution of the fluctuating vz. So

we retain confidence in our bound on ṽz even though the act of measuring it perturbed the
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flow.

5.2.4 Frequency of fluctuations

The frequencies of the unstable modes during the saturation phase were found by fitting the

timeseries to a single frequency sinusoid, using the peak in the power spectrum as a starting

value. Frequencies found by this method could be found more precisely than examining the

power spectrum directly.

The frequency of one full rotation of the unstable mode is typically 10-20% of the

difference between Ω3 and Ω4 as measured in the frame of the outer cylinder. Rotation

rates for all of the unstable modes in the MRI-Z and split-unstable configurations are

shown in Figure 5.18. There seems to be a general trend from lower rotation frequency near

the stability boundary, increasing with magnetic field, although that is not universally true.

It must be noted that the frequency is not entirely reproducible even with the component

rotation speeds and magnetic field reproduced as accurately as they can be. Frequencies can

vary by up to 30% under seemingly identical conditions. The frequency during the saturated

phase can also drift over the course of a shot by a slightly smaller amount. Since the modes

seem to be advected by the flow, the frequency will depend on the precise character of that

flow state, which is dependent on component rotation speeds, magnetic field, and to some

extent the history of the development of that flow.

5.3 Instability in high-Λ regime

The high-Λ regime was explored using very slow rotation in the split-unstable configu-

ration. Significant changes from the behavior near the marginal stability curve were found

for Ω1 = 0.5 and Ω1 = 0.25 rpm. Because of the extremely long timescales with such slow

rotation, full exploration of the instability could only be performed for magnetic fields below

800 Gauss, which could be sustained in the steady state. But even this relatively modest

field allowed experiments up to Λ = 120.
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Figure 5.18: Unstable mode frequencies in the MRI-Z configuration (top) and
split-unstable configuration (bottom). Frequencies are normalized by the difference be-
tween the inner ring and outer ring speeds, and are reported in the frame of the outer
cylinder.
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5.3.1 Saturated shear layer width

As shown in Chapter 4, the azimuthal velocity profiles for Λ ≫ 1 are those of free shear

layers penetrating throughout the experiment. The scaling of the shear layer width was

investigated there by fitting a hyperbolic tangent shear layer model to the measured angular

velocity profiles, with the time evolution of the shear layer half width wl for one shot shown

in Figure 4.14. It was noted that the average shear layer width decreased with the onset

and saturation of the instability.

The initial (before onset of the instability) and final (at instability saturation) shear

layer widths are plotted in Figure 5.19 for the range of B0 for which there was sufficient

time to observe the instability. The values are also tabulated in Table 5.1. The saturation

of the instability is associated with the broadening of the shear layer in all cases. While the

initial shear layer width is independent of Ω1, the saturated state exhibits larger wl for larger

Ω1. Before the onset of the instability, the shear layer width is mediated by the viscous

stress [Hunt and Shercliff, 1971], leading to a scaling in Hartmann number, wl ∼ Ha−0.5,

which has no dependence on the rotation rate. In other words,
√
B0Lwl/(4πρην)

1/4 is con-

stant. We could consider writing this relation in terms of the Reynolds stress rather than

the viscous stress, balancing the ~j × ~B force with the inertial force due to the instability.

We can replace νr∆Ω/w2
l , the viscous force associated with the shear layer, with the char-

acteristic inertial force r2∆Ω2/wl to find that
√
B0Lw

3/4
l /(4πρηr∆Ω)1/4 is constant for the

shear layer mediated by Reynolds stress. We note the appearance of the Elsasser number

in this expression instead of the Hartmann number, suggesting that wl ∼ Λ−1/3 in the

presence of the Kelvin-Helmholtz instability. The shear layer width versus Λ−1/3 is plotted

in Figure 5.20. This scaling eliminates the differences between the 0.25 rpm and 0.5 rpm

measurements at the midplane, and the measurements lie roughly along a line, suggesting

that this scaling is capturing some of the physics. But this is a simplistic model and leaves

out several potentially very important effects, including the changing Reynolds stress with

changing mode structure, and the influence of viscous stress for small shear layer widths.
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Figure 5.19: wl versus B0 in the Λ ≫ 1 regime. “Initial” values are the values before the
onset of instability, and “final” values are the values at saturation of the instability.
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5.3.2 Azimuthal mode number

The azimuthal mode number m is determined by the phase of the oscillating velocity mea-

sured by two identically aimed tangential transducers located at θ = π/2 and θ = π at

the midplane of the experiment. Because the mode structures tend to be dominated by a

single azimuthal mode number, the mode number can often be determined rather easily by

inspection of the timeseries, as in Figures 5.21 and 5.22.

A more formal approach to determining the azimuthal mode number uses the auto-

correlation of one of the channels, v1 ⋆ v1 or v2 ⋆ v2, and the cross-correlation between the

two channels, v2 ⋆v1, where v1 is the velocity from the transducer with θ = π/2, and v2 from

the transducer with θ = π. For a mode with a single dominant azimuthal mode number, the

auto-correlation time τac is the time for the mode to rotate by 2π/m radians, so the phase

speed dΘ/dt = 2π/mτac. The cross-correlation time τcc is the time for the mode rotate by

π/2 radians, so the phase speed dΘ/dt = π/2τcc. Equating the phase speeds, we find m in

terms of τac and τcc,

m =
4τcc
τac

(5.1)

An example of the auto-correlation and cross-correlation functions for these measurements

in shown in Figure 5.23. The measured correlation times and the associated azimuthal

mode numbers for several rotation rates and magnetic fields are in Table 5.1.

It is important to note that since the cross correlation function is periodic with period

τac, it is not possible to distinguish m = 4τcc/τac from m = 4(τcc +nτac)/τac = 4τcc/τac +4n,

where n is any integer. We can only determine the azimuthal mode number modulo 4, so,

for example, the same phase differences that would arise from a signal with m = 2 could

also arise from a signal with m = 6.

But we have faith in the reported azimuthal mode numbers. As will be shown later,

simulations and theory suggest strongly that the saturated mode number near Λ = 1 is

m = 1. And the increase in mode number with increasing Λ at a single rotation rate can be

tracked with increasing B0, showing an increase in rotation frequency roughly proportional

to the increase in m.
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Figure 5.21: Raw velocity timeseries for split-unstable configuration with Ω1 = 0.5 rpm.
Velocities are measured at r = 17 cm by two tangential transducers located at the midplane
at θ = π/2 (blue) and θ = π (red). The phase of the two signals is an indication of the
azimuthal mode number.
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Figure 5.22: Raw velocity timeseries for split-unstable configuration with Ω1 = 0.25 rpm.
Velocities are measured at r = 17 cm by two tangential transducers located at the midplane
at θ = π/2 (blue) and θ = π (red). The phase of the two signals is an indication of the
azimuthal mode number.
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wl [cm]
Shot Ω1 B0 Λ τac τcc m z = 14.5 cm z = 3 cm
number [rpm] [G] [s] [s] initial final initial final

1221 1 130 0.77 N/A N/A 1 N/A N/A N/A N/A
1193 1 290 3.8 428 99 1 N/A N/A N/A N/A
1215 1 720 24 331 81 1 N/A N/A N/A N/A

1198 0.5 120 1.3 418 98 1 3.3 7.1 N/A N/A
1207 0.5 170 2.8 540 125 1 2.9 5.3 N/A N/A
1208 0.5 230 4.9 817 197 1 2.5 3.8 N/A N/A
1206 0.5 290 7.6 920 225 1 2.0 3.4 N/A N/A
1209 0.5 430 17 660/300 160 1/2 1.5 3.2 N/A N/A
1210 0.5 570 31 339 170 2 1.4 2.7 N/A N/A
1200 0.5 720 48 198 141 3 1.3 2.3 N/A N/A

1227 0.25 86 1.4 N/A N/A 1 N/A N/A N/A N/A
1228 0.25 190 6.5 558 270 2 2.7 3.8 1.2 2.4
1233 0.25 290 15 605 293 2 2.2 3.1 0.9 1.8
1231 0.25 430 34 348 252 3 1.5 2.4 0.8 1.6
1232 0.25 570 61 233 228 4 1.3 1.9 0.7 1.4
1229 0.25 720 96 235 238 4 1.2 1.5 0.7 1.2
1235 0.25 800 120 172 41 5 1.1 1.3 0.7 1.1

Table 5.1: Characteristics of the Kelvin-Helmholtz instability in the Λ ≫ 1 regime for several
different rotation speeds in the split-unstable configuration. τac is the auto-correlation
time for a velocity measurement at r = 17 cm from a single tangential transducer, and τcc
represents the peak in the cross correlation between the measured velocity at r = 17 cm
for two tangential transducers located at θ = π and θ = π/2 at the midplane. Correlation
times marked ‘N/A’ correspond to marginally unstable shots in which the signals were too
weak for a proper correlation analysis. Shot 1209 featured two mode numbers of nearly
equal amplitude. The underlined quantities indicate the dominant τac and m.
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5.3.3 Mode structure

The mode structures for the high-Λ scenarios accessed at the slowest rotation speeds, shown

in Figures 5.24 and 5.25, are much richer than the mode structures at higher speeds. The

progression to larger azimuthal mode number with increasing Λ is evident. The presence of

additional harmonics is also clear, particularly for the cases with Ω1 = 0.5 rpm.

The mode structures for Ω1 = 0.25 rpm are shown at the midplane, z = 14.5 cm, but

also closer to the endcaps, at z = 3 cm, where those measurements are available. Even

though the shear layer widths differ significantly at these different axial locations, the mode

structures remain unchanged, with the exception that the measurements near the endcaps

suffer from a bit less measurement noise. This is a further testament to the elongated and

invariant nature of the unstable modes in the axial direction, and suggests that the effective

shear layer width that dictates the dynamics of the instability may be an axial average.

5.3.4 Reynolds stress

In contrast to the mode structure at marginal stability where the vr and vθ components of

the unstable mode are π/2 radians out of phase with each other, the mode structures in the

Λ ≫ 1 regime have significant in-phase components or vr and vθ, producing a measurable

contribution to the Reynolds stress. The Reynolds stress component 〈ṽr ṽθ〉 in this regime

are plotted in Figure 5.26. All show a positive Reynolds stress, indicating positive radial

angular momentum transport. For the Ω1 = 0.5 rpm case, there is a clear trend toward an

increase in the magnitude and a decrease in the width of the peak of the Reynolds stress,

except for the anomalous case with Λ = 7.6. The Ω1 = 0.25 rpm case seems to show an

increase in the Reynolds stress from the smallest Λ case to the higher Λ cases, with a hint

of a decrease in the Reynolds stress for the highest Λ. While the noise in the measurement

makes this drop uncertain, such a drop may not be entirely unexpected as the viscous stress

becomes more important with decreasing layer width at large Λ.
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Figure 5.25: Measured mode structures for split-unstable configuration with Ω1 =
0.25 rpm and various B0. All contour plots of velocity share a common color scale.
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versus applied magnetic field for the split-unstable configuration with Ω1 = 0.25 rpm.

5.3.5 Trend toward restabilization

The lower left corner of Figure 5.3 seems to show a trend toward lower power in the unstable

mode with increasing magnetic field in the high-Λ regime. Those results may be somewhat

suspect, as the measurements are of a mixture of the vr and vθ components less than 1.5 cm

from the outer cylinder and more than 5 cm from the radial location of the shear layer. To

gain a better picture of the potential restabilization, the power in the dominant vr frequency

band at r = 14 cm is plotted for the split-unstable configuration with Ω1 = 0.25 rpm in

Figure 5.27. Here again there is a trend toward decreasing fluctuation amplitude with larger

applied magnetic field, indicative of a restabilization with strong magnetic field, although

the measurement is complicated by changing mode structure with increasing B0.



Chapter 6

Linear stability of a free shear layer

This chapter examines calculations of the linear stability of a free shear layer in the geometry

of the experiment. The global linear stability code described in Appendix D is used for

these calculations. The code assumes an infinitely long device, and finds eigenmodes of the

linearized, nonideal, incompressible MHD equations with a fixed azimuthal mode number

m and axial wavenumber k, but with arbitrary variation of the eigenmode in r. It allows

an axisymmetric, axially independent background azimuthal flow with arbitrary variation

in r, and a spatially uniform background axial magnetic field B0.

The background rotation profile for these studies is of the form

Ω(r) = a1 tanh

(

r − rl
wl

)

+ a2, (6.1)

where rl is the radius of the center of the shear layer, wl is the characteristic width, approxi-

mately half the width of the shear layer, and a1 and a2 are normalized such that Ω(r1) = Ω1

and Ω(r2) = Ω2:

a1 =
Ω1 − Ω2

tanh [(r1 − rl)/wl] − tanh [(r2 − rl)/wl]
,

a2 = Ω2 − a1 tanh [(r2 − rl)/wl] . (6.2)

Example rotation profiles for various shear layer half widths are shown in Figure 6.1.

This chapter will examine two hydrodynamic instabilities as competitors for the free en-

ergy in the shear layer. The first section discusses the Kelvin-Helmholtz instability, driven

116
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Figure 6.1: Example background rotation profiles for various values of the shear layer half
width, wl, with Ω1 = 10 rpm, Ω2 = 0, r1 = 7.06 cm, r2 = 20.3 cm, and rl = 14 cm. The
ideal Couette profile for this configuration is shown for comparison.

by the flow shear. The Kelvin-Helmholtz instability is a very common instability, and there

has been considerable effort devoted to understanding it. Drazin and Reid [1981] gives

a good summary of the instability in the 2-D planar geometry, with references to more

detailed studies in specific geometries, including one to an early numerical study with a hy-

perbolic tangent shear layer [Betchov and Szewczyk, 1963]. It is useful to summarize some

of the characteristics of the Kelvin-Helmholtz instability in 2-D planar flow, as our results in

cylindrical geometry will share many features. Free shear layers are inviscidly unstable for

wavenumbers smaller than some critical wavenumber, with the critical wavenumber scaling

as 1/wl. The most unstable wavenumber also scales as 1/wl, and the growthrate scales as

∆v/wl, where ∆v is the velocity change across the layer. The constants of proportionality

depend on the geometry in which the shear layer is contained and the specific shape of the

shear layer. The addition of viscosity to the problem limits the range of unstable wavenum-

bers for small Re = ∆vwl/ν. In this section, the linearly unstable Kelvin-Helmholtz modes

of the free shear layer are examined in the limit that k = 0 and m 6= 0. Comparisons of the
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linearly unstable modes to the mode structures observed in the experiment provide strong

evidence that it is a Kelvin-Helmholtz instability that drives the large velocity fluctuations

observed at the midplane of the experiment.

The second section examines the centrifugal instability as a competitor to the Kelvin-

Helmholtz instability for the free energy of the shear layer. The centrifugal instability is

driven by a negative specific angular momentum gradient rather than by the velocity shear

itself. The centrifugal instability may be stabilized by eliminating the negative specific

angular momentum gradient. It has long been known that an axial applied magnetic field

of sufficient strength may also stabilize the centrifugal instability [Chandrasekhar, 1961,

Donnelly and Ozima, 1960, 1962, Donnelly and Caldwell, 1964]. The second section exam-

ines the linearly unstable eigenmodes of the centrifugal instability in the limit that k 6= 0

and m = 0. It is shown that the expected stabilization of the centrifugal instability scales

with the observed appearance of the Kelvin-Helmholtz instability, suggesting that it is a

competition between these two instabilities that determines the threshold for the appearance

of the unstable Kelvin-Helmholtz modes in the experiment.

6.1 Kelvin-Helmholtz instability

Calculations of the Kelvin-Helmholtz instability were performed with the following param-

eters:

Ω1 = 0.05 − 800 rpm = 5.24 × 10−3 − 83.8 rad/s, ν = 2.98 × 10−3 cm2/s,

Ω2 = 0 rpm = 0 rad/s, η = 2.57 × 103 cm2/s,

r1 = 7.06 cm, ρ = 6.36 g/cm3,

r2 = 20.3 cm, B0 = 0 Gauss,

rl = 14 cm, wl = 0.05 − 14 cm,

k = 0 cm−1, m = 0 − 8,

N = 8000 grid cells, Conducting boundaries.
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Setting k = 0 in these calculations guarantees that the centrifugal instability will have no

influence on the results. Note that when k = 0, vr and vθ satisfy the incompressibility

equation, so there is no perturbed vz. Also, although we set B0 explicitly to 0, the velocity

is coupled to the magnetic field only through a term that goes as kvA, so the magnetic field

has no effect on the evolution of the velocity when k = 0.

6.1.1 Growth rates

As shown in Figure 6.2, the Kelvin-Helmholtz modes become unstable below a critical shear

layer width. Starting from the right of the figure, as the shear layer width is decreased, the

m = 1 mode is the first to be destabilized at wl = 6 cm. The m = 2 mode is destabilized

next at wl = 5 cm, and with decreasing layer width its growth rate surpasses that of the

m = 1. The m = 3 mode is next to be destabilized at wl = 4 cm, eventually reaching an

even larger growth rate. This pattern continues for increasing azimuthal mode number.

The critical shear layer width is consistent over a broad range of rotation speeds. The

growth rate of the modes scales linearly with the rotation rate in the region of experimental

interest, as shown in Figure 6.3. The Kelvin-Helmholtz instability is viscously stabilized for

slower rotation rates than those investigated experimentally, Ω1 = 0.05 − 0.10 rpm.

6.1.2 Eigenmodes

The unstable eigenmodes are shown in Figure 6.4. Each marginally stable eigenmode ex-

hibits a high degree of symmetry, but the modes take on more of a spiral structure as the

shear layer width is decreased. Some of these modes bear a striking similarity to the mode

structures observed in the experiment. Direct comparisons are made in Figure 6.5.

Stream functions

Because there is no axial velocity, it is possible to define a stream function in the r−θ plane

for the eigenmodes of this instability,

~v = ∇× ~ψ, where ~ψ = ψz ẑ. (6.3)
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Figure 6.4: Linear eigenmodes of the Kelvin-Helmholtz instability.
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Figure 6.5: Comparison of experimentally measured saturated mode structures and Kelvin-
Helmholtz linear eigenmodes. All computed eigenmodes have arbitrary amplitudes and
were computed with Ω1 = 10 rpm. All experimental measurements were measured in the
split-unstable configuration, and are in units of cm/s. Top: m = 1. Experimental
measurement with Ω1 = 400 rpm, B0 = 4000 Gauss, and Λ = 1.9. Middle: m = 2.
Experimental measurement with Ω1 = 0.25 rpm, B0 = 290 Gauss, and Λ = 15. Bottom:
m = 3. Experimental measurement with Ω1 = 0.25 rpm, B0 = 430 Gauss, and Λ = 34.
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From the definition, we see that

vr =
1

r

∂

∂θ
ψz, and vθ = − ∂

∂r
ψz, (6.4)

so we can calculate ψz one of two ways:

ψz = − ir
m
vr, or ψz = −

∫ r2

r1

drvθ, (6.5)

where the calculation by the first method is simplified since the eigenmodes have a single

azimuthal mode number.

The stream functions for the modes shown in Figure 6.4 are plotted in Figure 6.6. Note

that the stream lines become more skewed as the shear layer thickness decreases.

Reynolds stress

The skewed stream lines for narrow shear layer widths represent correlations between the

vr and vθ velocity components, which give a positive contribution to the Reynolds stress

component associated with radial angular momentum transport: ṽrṽθ. The correlation can

be better examined by considering the phase difference between the two components as a

function of radius, as demonstrated below.

The azimuthally averaged Reynolds stress at a given radius is

〈ṽrṽθ〉 =
1

2π

∫ 2π

0
dθṽrṽθ. (6.6)

For the complex-valued vr and vθ produced by the global stability code,

ṽr = Re{vr} = |vr| cos(mθ + φvr), ṽθ = Re{vθ} = |vθ| cos(mθ + φvθ
), (6.7)

where φvr and φvθ
are the arguments of vr and vθ, respectively. Substituting these into the

expression for the Reynolds stress,

〈ṽrṽθ〉 =
1

2π

∫ 2π

0
dθ [|vr| cos(mθ + φvr)|vθ| cos(mθ + φvθ

)] ,

=
1

4π
|vr||vθ|

∫ 2π

0
dθ [cos(φvr − φvθ

) + cos(2mθ + φvr + φvθ
)] . (6.8)
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Figure 6.6: Contour plot of the stream function for the Kelvin-Helmholtz eigenmodes of a
free shear layer shown in Figure 6.4. Red indicates positive values (counterclockwise flow),
and blue indicates negative values (clockwise flow).
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The second cosine term integrates to zero over a full period in θ, leaving

〈ṽr ṽθ〉 =
1

2
|vr||vθ| cos(φvr − φvθ

). (6.9)

The average contribution to the Reynolds stress at a given radius therefore depends on the

phase difference between the vr and vθ components. When the components are π/2 out of

phase, there is no net contribution to the Reynolds stress. And when they are perfectly in

phase (or perfectly out of phase), there is the maximal possible contribution for fixed |vr|

and |vθ|.

Plots of the velocity magnitudes, velocity phase differences, and the azimuthally aver-

aged Reynolds stress component 〈ṽrṽθ〉 are shown in Figure 6.7, where the velocities have

been normalized so that
∑N

j=0 |vr,j|2 +
∑N

j=0 |vθ,j|2 = 2N2, where N is the number of grid

cells. In the case of large wl, the phase difference nearly everywhere is ±π/2 except at

the center, where |vθ| goes to zero. So there is a negligible contribution to the Reynolds

stress. In contrast, in the case of smaller wl, the Reynolds stress is peaked at middle of the

shear layer where vr and vθ are nearly in phase, and where the magnitude of each veloc-

ity component is also significant. The peak value of the Reynolds stress for the unstable

Kelvin-Helmholtz eigenmodes with various wl and m is shown in Figure 6.8. There is an

increase for all m with decreasing wl below the wl required for instability.

The forcing of the azimuthal velocity due to this component of the Reynolds stress is

∂

∂t
vθ = −1

r

∂

∂r
(r〈ṽrṽθ〉). (6.10)

A positive radial gradient leads to local deceleration of the fluid, while a negative radial

gradient leads to local acceleration. So the effect of the Reynolds stress for the eigenmodes

in Figure 6.7 with wl = 3 cm and wl = 1 cm would be to decelerate the faster-rotating fluid

on the inside of the shear layer, and to accelerate the slower-rotating fluid on the outside

of the shear layer, leading to a decrease in the shear with an increase in the layer width.
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Figure 6.7: Magnitude and phase differences of vr and vθ and the associated azimuthally
averaged Reynolds stress component 〈ṽrṽθ〉 for three values of wl with Ω1 = 10 rpm and
m = 1. Top: wl = 6 cm, middle: wl = 3 cm, bottom: wl = 1 cm. The black horizontal
lines indicate a phase difference of π/2, where there is no net contribution to the Reynolds
stress.
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Kelvin-Helmholtz eigenmodes with Ω1 = 10 rpm and various m and wl. All eigenvectors
have been normalized so that
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j=0 |vr,j|2 +
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grid cells.
.
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6.1.3 Effect of geometry on Kelvin-Helmholtz instability

The progression of maximally unstable azimuthal mode numbers m with decreasing wl is a

global effect and is dependent on the geometry of the experiment. As shown in Figure 6.9, in

the large gap limit, where r1 ≫ r2 − r1, small azimuthal mode numbers are destabilized for

nearly the same critical wl. Because the wavenumber goes as m/rl, it is only for much larger

mode numbers that the azimuthal wavenumber is comparable to the shear layer width. The

separation of the critical rl for destabilization of any azimuthal mode therefor occurs for

m ∼ O(10).

In contrast, increasing the gap width r2 − r1 compared to the experimental geometry

still results in separation of the critical wl for the small azimuthal mode numbers, but in

this case the m = 1 is not the first to be destabilized with decreasing wl. Instead, m = 2 is

the first to be destabilized, followed by increasing larger azimuthal mode numbers. Nowhere

is m = 1 the most unstable mode.

6.1.4 Summary of Kelvin-Helmholtz instability

• Shear layers of sufficiently narrow width are destabilized by Kelvin-Helmholtz modes:

– Critical shear layer width is independent of Ω1 for speeds of interest.

– m = 1 destabilized first, at wl = 6 cm; higher mode numbers require more shear.

– Growth rates scale linearly with Ω1 for speeds of interest: Re{γ} ≈ 0.13Ω1 for

m = 1 and wl = 3 cm.

• Eigenmodes are strikingly similar to those observed in the experiment.

• Increasing shear layer width associated with increasingly skewed stream functions,

larger contributions to the Reynolds stress.

• Reynolds stress associated with eigenmodes would act to smooth out the shear layer.
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Figure 6.9: Effect of geometry on Kelvin-Helmholtz instability. Only the cases with positive
growth rates Re{γ} are plotted. Both figures are produced with Ω1 = 10 rpm and Ω2 =
0 rpm. Top: r1 = 107.06 cm, r2 = 120.30 cm, and rl = 114.0 cm. Bottom: r1 = 1.06 cm,
r2 = 26.30 cm, and rl = 14.0 cm.
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6.2 Centrifugal instability

Calculations of the centrifugal instability in the shear layer background rotation profile were

performed with the following parameters:

Ω1 = 0.05 − 2000 rpm = 5.24 × 10−3 − 209.4 rad/s, ν = 2.98 × 10−3 cm2/s,

Ω2 = 0 − 1200 rpm = 0 − 125.7 rad/s, η = 2.57 × 103 cm2/s,

r1 = 7.06 cm, ρ = 6.36 g/cm3,

r2 = 20.3 cm, B0 = 0 − 20000 Gauss,

rl = 14 cm, wl = 1, 3, 6 cm,

k = 0.001 − 1000 cm−1, m = 0,

N = 8000 grid cells, Conducting boundaries.

6.2.1 Unstable modes

In contrast to the Kelvin-Helmholtz modes, the modes of the centrifugal instability have

m = 0 but finite k. As shown in Appendix D, vr and vθ are in phase in ẑ. So the average

value of the Reynolds stress term is

〈ṽr ṽθ〉 =
k

2π

∫ 2π

0
dzRe{vr}Re{vθ} sin2(kz) =

Re{vr}Re{vθ}
2

. (6.11)

The velocity components and average Reynolds stress term are plotted for a linear

eigenmode of the centrifugal instability in Figure 6.10, with the normalization as for the

Kelvin-Helmholtz eigenmodes satisfying
∑N

j=0 |vr,j|2 +
∑N

j=0 |vθ,j |2 = 2N2, where N is the

number of grid cells.

Note that the velocity components for the centrifugal eigenmode are much more tightly

confined to the shear layer than they were for the Kelvin-Helmholtz eigenmode. But the

effect on the Reynolds stress is similar. The Reynolds stress is peaked in the middle of the

shear layer, and the gradients of the Reynolds stress indicate that this linear eigenmode

would act to smooth out the shear and broaden the layer.



132

6 8 10 12 14 16 18 20 22
r [cm]

−0.5

0.0

0.5

1.0

1.5

2.0

v r
, 
v θ

, 
<
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Figure 6.10: Velocity components vr and vθ and average contribution to the Reynolds stress
component 〈ṽrṽθ〉 versus radius for the most unstable centrifugal instability eigenmode with
Ω1 = 100 rpm, Ω2 = 0 rpm, wl = 3 cm, and B0 = 0.

6.2.2 Stabilizing effect of magnetic field

Calculations were made with fixed Ω2 = 0 and varying Ω1, k, and B0, with some of the

results shown in Figure 6.11. The centrifugal instability can be stabilized by a sufficiently

strong magnetic field, with a stronger magnetic field required for larger values of Ω1.

Critical magnetic field

To gain a more systematic understanding of the magnetic field required to stabilize the

centrifugal instability, each of the curves in Figure 6.11 is parametrized by 3 values: kpeak,

the most unstable k; kmax, the maximum unstable k defined as the k where the curve crosses

the Re{γ} = 0 axis; and the peak growth rate, the value of Re{γ} at k = kpeak.

These values were determined by using the peak growth rate computed by the eigenvalue

solver for a given k as an input to two function optimization routines, one to find the peak

of the spectrum in k and another to find the zero-crossing. The peak-finder searched over
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Figure 6.11: Effect of a magnetic field on centrifugal instability of a free shear layer. The
plots are of the peak growth rate for several values of k and B0, for wl = 3 cm and Ω2 = 0.
Top: Ω1 = 1 rpm. Bottom: Ω1 = 400 rpm. A stronger magnetic field is required to stabilize
more-highly-sheared rotation profiles. In later analysis, kpeak and the peak growth rate refer
to k and Re{γ} at the peak of these curves, and kmax refers to the k at which the function
crosses the Re{γ} = 0 axis on the right of the figure.
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Figure 6.12: Plots of kpeak, kmax, and peak Re{γ} versus B0 for various values of Ω1. Plots
are arranged in pairs, with the first plot at each speed showing the critical k values, and
the second plot showing the growth rate. The vertical lines are drawn at Λ = 1.
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Figure 6.13: Magnetic field required to reduce the centrifugal instability growth rate to val-
ues of 0.75, 0.5, 0.25, and 0.1 of Ω1, versus Ω1. The solid black line shows the experimentally
determined value of the onset of the Kelvin-Helmholtz instability, Λ = 1.

a wide range of wavenumbers, k = 0.01 − 1000 cm−1, with the initial guess of k provided

in the input file, typically 0.1 cm−1. The root finder used to find kmax operated over the

range k = kpeak − 1000 cm−1. Convergence with these values was normally acceptable,

although values near marginal stability sometimes failed to converge correctly and required

manually-adjusted initial values in the search for kpeak for correct convergence.

The quantities are plotted versus B0 for several values of Ω1 in Figure 6.12. While there

is a rather broad transition in B0 from maximal instability to stability, the required B0 for

this transition scales as
√

Ω1.

This can be seen more clearly by looking at the scaling of several characteristic values

of Re{γ}/Ω1 as a function of B0, shown in Figure 6.13. The value of B0 for each of these

values scales as
√

Ω, with larger B0 causing more complete stabilization.
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6.2.3 Stabilizing effect of background rotation

Background rotation can also have a stabilizing effect on the centrifugal instability. To

examine this effect, calculations were made with varying amounts of ∆Ω = Ω1 − Ω2, Ω2,

and k. Some of the results for fixed ∆Ω are shown in Figure 6.14. The background rotation

has an effect similar to the effect of the magnetic field, stabilizing the centrifugal instability,

with more background rotation required to stabilize more strongly sheared rotation profiles.

Critical background rotation

An analysis similar to the magnetic field case was performed to determine kpeak, kmax, and

the peak Re{γ} for varying values of ∆Ω and Ω2. The results for a few values of ∆Ω are

shown in Figure 6.15.

The background rotation acts to stabilize the instability, like the magnetic field does,

but the transition region is sharper than it was for the magnetic field stabilization. Also, in

this case the critical value for the stabilizing quantity, Ω2,crit, scales linearly with the shear

∆Ω.

This scaling can be seen by examining the trend of the characteristic values of Re{γ}/∆Ω

as a function of Ω2, shown in Figure 6.16, where the scaling Ω2 ∼ ∆Ω is clear.

6.2.4 Mixed magnetic field and background rotation

The effect of combined background rotation and magnetic field was examined for a fixed

Ω2 = 100 rpm, with varying ∆Ω and B0. The results are most easily visualized as a contour

of the normalized peak growth rate Re{γ}/∆Ω, shown in Figure 6.17.

For the case with background rotation, a certain amount of shear is required to generate

the instability, ∆Ωcrit = 130rpm for Ω2 as shown in the figure. There is a sharp transition

above ∆Ωcrit to a region where B0,crit ∼
√

∆Ω, as if there were no background rotation

at all, likely due to the sharp cutoff from stability to instability seen earlier with just

background rotation. By ∆Ω ∼ 220 rpm, the stability curves of the case with Ω2 = 0 and

with Ω2 = 100 rpm are nearly indistinguishable.
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Figure 6.14: Effect of background rotation on centrifugal instability of a free shear layer.
The plots are of the peak growth rate for several values of k and Ω2 for wl = 3 cm and
B0 = 0. Top: ∆Ω = 10 rpm. Bottom: ∆Ω = 400 rpm. More background rotation is
required to stabilized more-highly-sheared rotation profiles.
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Figure 6.15: Plots of kpeak, kmax, and peak Re{γ} versus Ω2 for various values of ∆Ω. Plots
are arranged in pairs, with the first plot at each speed showing the critical k values, and
the second plot showing the growth rate. The vertical lines are drawn at Ro = 2.35.
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Figure 6.17: Contours of normalized growth rate for varying ∆Ω and B0. Top: Ω2 = 0.
Bottom: Ω2 = 100 rpm. The black dots indicate the points where calculations were made.
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6.2.5 Nonaxisymmetric centrifugal instability

Up until now, the Kelvin-Helmholtz instability was investigated with k = 0, and the cen-

trifugal instability was investigated with m = 0. With both nonzero k and nonzero m,

effects of both instabilities may be present. Figure 6.18 compares the stabilizing effects of

B0 and Ω2 with various values of k and with a fixed ∆Ω for m = 0 and m = 1. At large k,

the behavior of the centrifugal instability remains mostly unchanged, with only a marginal

decrease in the growth rate of the mode. But at small k, the behavior is very different. In

the axisymmetric case, the growth rates in all cases go to zero. In the nonaxisymmetric case,

the growth rates converge to a constant nonzero value as the Kelvin-Helmholtz instability

dominates in this region.

The transition from centrifugal instability to Kelvin-Helmholtz instability with decreas-

ing k can be visualized by considering the contributions of each of the velocity components

to the incompressibility equation,

∇ · ~v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ

∂θ
+
∂vz

∂z
= 0. (6.12)

For the pure Kelvin-Helmholtz instability, the flow associated with the mode is entirely

in the r − θ plane, so the vz contribution to the incompressibility equation is zero. But

for Taylor vortices characteristic of the the centrifugal instability, the contribution of the

vz term in the incompressibility equation is comparable to the vr term [Taylor, 1923]. By

summing the magnitude of each of the terms of the incompressibility equation across all

grid cells and comparing them to each other, we have a measure of the relative contribution

of the centrifugal instability and the Kelvin-Helmholtz instability for each unstable mode.

Results of this procedure are shown in Figure 6.19, showing a transition from the centrifugal

instability to the Kelvin-Helmholtz instability for k ∼ 0.1 − 0.01 cm−1 for all values of the

applied field.

The transition may also be visualized by comparing the unstable mode structures, shown

in Figure 6.20. With decreasing k, the mode transitions from the nonaxisymmetric centrifu-

gal instability, localized in the region the shear layer, to a mode that is indistinguishable
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Figure 6.18: Effect of stabilizing forces on nonaxisymmetric centrifugal instability. Top:
Ω1 = 400 rpm and Ω2 = 0, for various values of B0. Bottom: Ω1 − Ω2 = 400 rpm and
B0 = 0, for various values of Ω2. In both plots, solid lines indicate computations with
m = 0, and dashed lines indicate computations with m = 1.
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term is summed across all grid cells, and the relative contributions of the two terms are
compared.
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from the pure Kelvin-Helmholtz instability with k = 0.

6.2.6 Effect of geometry and layer width

All of the centrifugal instability results thus far have been for wl = 3 cm. More limited

calculations have been carried out for wl = 1 cm and wl = 6 cm with m = 0. In both cases

B0,crit and Ω2,crit for restabilization follow the constant Λ and constant Ro scaling, as for

wl = 3 cm, although the magnitude of each quantity required for stabilization changes with

wl. Calculations have also been performed in the PROMISE-2 geometry (see Appendix E

for more details), showing the effect of a different radial shear layer position rl. For the

case with background rotation, Ω2,crit ∼ rl∆Ω/wl. The scaling with magnetic field is less

certain because of the combination of the gradual stabilization with increasing B0 and the

small range of wl and rl investigated. The scaling seems to be B0,crit ∼ r
3/4
l

√
∆Ω/w

1/3
l .

The exponent on wl is particularly uncertain, lying somewhere between 1/4 and 1/2 with

a slight residual dependence on ∆Ω, suggesting that this functional form may be an over-

simplification.

Local dispersion relation with B0 = 0

The scalings listed above can be compared in some limits to the local, axisymmetric dis-

persion relation, derived in Ji et al. [2001],

[

(γ + νk2)(γ + ηk2) + (kzvA)2
]2 k2

k2
z

+ κ2(γ + ηk2)2 +
∂Ω2

∂lnr
(kzvA)2 = 0, (6.13)

where the epicyclic frequency κ is defined by κ2 = (1/r3)∂(r4Ω2)/∂r = 4Ω2 + ∂Ω2/∂ ln r

and k is the total wavenumber, k2 = k2
z + k2

r . (Note that this definition of k in the local

dispersion relation is different from that used elsewhere throughout this chapter, where

k = kz and the modes have arbitrary radial dependence.)

In the absence of a magnetic field, Equation 6.13 reduces to

(γ + νk2)2
k2

k2
z

+ κ2 = 0. (6.14)
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Figure 6.20: Mode structures for the transition from the nonaxisymmetric centrifugal in-
stability to the Kelvin-Helmholtz instability with decreasing k, with m = 1, Ω1 = 400 rpm,
Ω2 = 0, wl = 3 cm, and B0 = 0. Each pair of vr and vθ share a common colorscale, allowing
comparison of the relative magnitudes of the two velocities.
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We can rewrite κ in terms of Ω2 and ∆Ω, using Ω = Ω2 + ∆Ω/2 and ∂Ω/∂r = −∆Ω/2wl,

κ2 = 4

[

Ω2 +
∆Ω

2

]2

− rl
wl

[

Ω2 +
∆Ω

2

]

∆Ω. (6.15)

This leads to the dispersion relation

γ = −νk2 +
kz

k

√

−4

[

Ω2 +
∆Ω

2

]2

+
rl
wl

∆Ω

[

Ω2 +
∆Ω

2

]

. (6.16)

If we neglect the νk2 term, which will be small for the rotation rates that we consider, this

dispersion relation has roots for

− 4Ω2
2 +

(

rl
wl

− 4

)

∆ΩΩ2 +

(

rl
2wl

− 1

)

∆Ω2 = 0. (6.17)

With the additional assumption that wl ≪ rl, the solution to this equation suggests that

Ω2,crit ∼ rl∆Ω/wl, (6.18)

which is consistent with the results observed over a narrow range in the global analysis.

It is interesting that Equation 6.16 suggests that there are some situations in which the

addition of a small Ω2 results in an increase in the growth rate, with additional Ω2 again

resulting in stabilization. Since kr and kz tend to remain unchanged by Ω2, the trend in

the growth rate is determined entirely by the expression under the square root. In the limit

of small Ω2 relative to ∆Ω, again neglecting the viscous damping, the change in the growth

rate is

γ

γΩ2=0
= 1 +

Ω2

∆Ω

rl − 4wl

rl − 2wl
. (6.19)

So for small shear layer widths satisfying wl < rl/4, the addition of a small Ω2 results in

further destabilization of the centrifugal instability. This effect can be seen to a limited

extent for wl = 3 cm in Figure 6.15, and can be seen more clearly for wl = 1 cm in

Figure 6.21.

Local dispersion relation with Ω2 = 0

The local dispersion is more complicated and somewhat less useful with B0 6= 0 and Ω2 = 0

because both kz and kr are functions of B0, as shown in Figure 6.12. But, we will make an

attempt to glean some useful information from it anyway.
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Figure 6.21: Plots of kpeak, kmax, and peak Re{γ} versus Ω2 for ∆Ω = 200 rpm and
wl = 1 cm. The vertical line is drawn at Ro = 2.35.

Starting with Equation 6.13, we will neglect the 4Ω2 contribution to κ2, keeping only

the ∂Ω2/∂ ln r = −(rl/2wl)∆Ω2 contribution. This is justifiable in the limit that wl ≪ rl/2.

We can separate the ∆Ω terms and the B0 terms on opposite sides of the dispersion relation,

rl
2wl

∆Ω2 =

[

(γ + νk2)(γ + ηk2) + (kzvA)2
]2

(γ + ηk2)2 + (kzvA)2
k2

k2
z

. (6.20)

We now choose to investigate the condition for marginal stability, γ = 0, further simpli-

fying the equation to

rl
2wl

∆Ω2 =

[

νηk4 + (kzvA)2
]2

η2k4 + (kzvA)2
k2

k2
z

. (6.21)

We can invoke the ordering η2k2 ≫ v2
A ≫ νηk2, noting that k and kz are of the same

order, to eliminate the νηk4 term from the numerator of the right hand side, and the

(kzvA)2 term from the denominator. This ordering is at least marginally satisfied even

for the strongest fields and smallest wavelengths relevant to our problem. The resulting

equation is

rl
2wl

∆Ω2 =
k4

zv
4
A

η2k4

k2

k2
z

, (6.22)



148

which gives the relation between B0 and ∆Ω at marginal stability,

B2
0

4πρη
√

rl/2wl∆Ω

kz

k
= 1. (6.23)

So the critical B0 for marginal stability scales as

B0,crit ∼
√
η

√

k

kz

(

rl
wl

)1/4 √
∆Ω. (6.24)

The scaling with ∆Ω matches that found from the global calculations. The different scal-

ing with rl and wl compared to the global calculations must be explained by a changing

eigenmode structure which would lead to a dependence of k/kz on rl and wl.

6.2.7 Summary of centrifugal instability

• Shear layer rotation profiles are vigorously unstable to the centrifugal instability.

• Like the Kelvin-Helmholtz eigenmodes, eigenmodes of the centrifugal instability act

to flatten the shear layer.

• Instability can be suppressed by a magnetic field, with the magnetic field required for

stabilization B0,crit ∼
√

∆Ω.

• Instability can also be suppressed by background rotation, with the critical back-

ground rotation Ω2,crit ∼ ∆Ω.

• With both background rotation and magnetic field, ∆Ω must be greater than a certain

value for a given Ω2 for instability. But for ∆Ω above that value, stabilization by the

magnetic field occurs as if Ω2 = 0, with B0,crit ∼
√

∆Ω.

6.3 Comparison to experimental results

To explain the observations of the Kelvin-Helmholtz instability in the experiment, I propose

a model of competition between the Kelvin-Helmholtz and centrifugal instabilities for the

free energy in the shear layer.
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For the shear layer widths observed experimentally 1 , in the absence of an applied

magnetic field or background rotation, the centrifugal instability has growth rates of order

∆Ω, but the Kelvin-Helmholtz instability only has a growth rate of order 0.1∆Ω. The

centrifugal instability grows and removes free energy from the shear layer. These relatively

high-kz modes are confined near the endcaps, allowing the flow near the midplane of the

experiment to remain quiet.

As magnetic field or background rotation are introduced, the growth rate of the cen-

trifugal instability is suppressed, eventually becoming comparable to the growth rate of the

Kelvin-Helmholtz instability. The scalings for the damping of the centrifugal instability,

constant Λ with magnetic field and constant Ro with rotation, match the experimental

observations for the appearance of the Kelvin-Helmholtz instability.

Also note the similarity of the sharp transition to B0,crit ∼
√

∆Ω above ∆Ωcrit for the

linear calculations in the mixed magnetic field and background rotation case (shown in

Figure 6.17) and of the experimental results of the Kelvin-Helmholtz destabilization of a

Stewartson layer with ∆Ω < ∆Ωcrit by an applied magnetic field (shown in Figure 5.9). In

both cases, the sharp change in the growth rate of the centrifugal instability near Ω2,crit

results in the background rotation Ω2 < Ω2,crit having a negligible effect on the magnitude

of the applied magnetic field required to stabilize the centrifugal instability and to allow

the growth of the Kelvin-Helmholtz instability.

In the case of cyclonic flow with Ω1 = Ω3 = 0 and Ω2 = Ω4 6= 0, the centrifugal

instability is always suppressed because the gradient in specific angular momentum is pos-

itive everywhere. The Kelvin-Helmholtz instability in this case has no competition, and

so it would be expected to be generated in the absence of overall background rotation or

1Because the peak growth rate for the Kelvin-Helmholtz instability scales as rl∆Ω/wl whereas the peak

growth rate for the centrifugal instability scales only as
p

rl/wl∆Ω, the Kelvin-Helmholtz instability will

grow faster than the centrifugal instability for a sufficiently small wl. An estimate of the critical wl by

extrapolating the growth rates computed for each instability at larger wl suggests that the Kelvin-Helmholtz

instability will dominate for wl < 0.4 cm. While this is narrower than any wl observed experimentally, it

is not unreasonably small and could exist at large Ha near the endcaps. In this situation, the Kelvin-

Helmholtz instability may grow first with a large m. But it is expected that the effect of the instability

would be to increase wl, ultimately producing the competition between the centrifugal instability and the

Kelvin-Helmholtz instability described here.
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applied magnetic field. This is consistent with the experimental observation of vigorous

Kelvin-Helmholtz instability in the cyclonic regime.

During the initial growth of the Kelvin-Helmholtz instability, the shear layer may be

quite thin, encouraging the growth of higher-m modes that are more unstable for small

values of wl. As the instability smooths out the shear layer and decreases the free energy,

low-m modes are more unstable, leading to the observation of the m = 1 mode in the

experiment with Λ ∼ O(1). Because the Kelvin-Helmholtz mode has a small k (k = 0 in

the computations), the mode can extend to fill the volume of the experiment, driving strong

fluctuations at the midplane even though the rotation profiles there are locally stable to

this instability.

For Λ ≫ 1, the reinforcement due to Hartmann currents can be very strong so that the

shear layer stays relatively narrow even when there are velocity fluctuations of order the

background velocity due to the Kelvin-Helmholtz instability. In this case, the shear layer

remains most unstable to larger-m modes even at saturation.

This theory of competition between the Kelvin-Helmholtz and centrifugal instabilities

is consistent with most of the experimental observations. It should be noted, though, that

in the case of MRI-like runs with varying inner ring speed, there did seem to be a region

with Ω3 near Ω4 and Ω2 where B0,crit ∼
√

Ω1 − Ω3 rather than B0,crit ∼
√

Ω3 − Ω4. In cases

with particularly strong Ekman flow relative to the shear between the endcap rings, the

effect of the Ekman flow on the shear layer may be more important than the effect of the

centrifugal instability.
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Conclusion

The implementation and operation of the UDV diagnostic has provided measurements of

fluid velocities in the Princeton MRI experiment, allowing experiments related to the behav-

ior of mean sheared velocity flows in the presence of a magnetic field and their relationship

to the search for the MRI, and of the stability of free shear layers generated by shear at the

axial boundaries of the experiment. Each of these topics is summarized separately below.

7.1 Magnetorotational instability

Mechanical improvements to the experiment have allowed operation in the region of the

critical Rm expected for generation of the MRI, yielding measurements up to 70% of the

maximum experimental design speed. It was found that the normalized saturated azimuthal

velocity vθ/v1 at a point is constant for a given vA/v1 below the critical Rm for MRI. It

is expected that the growth and saturation of the MRI would lead to deviations from this

scaling, although no such deviations beyond the drifts that occur below the critical Rm have

been detected. If the most recent MHD simulations of the experiment are to be believed,

the change in the azimuthal velocity due to the MRI may be too small to distinguish from

the otherwise gradual drifts with changes in rotation rate [Gissinger et al., 2012].
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7.1.1 Future work

Determine mechanism controlling behavior of vθ in the absence of the MRI

The experimentally determined behavior of the saturated azimuthal velocity with applied

magnetic field in the absence of the MRI has so far not been explained. An identification of

the mechanism producing that scaling would be both interesting and necessary to interpret

any deviations from that scaling that may be caused by the MRI.

In the Λ ∼ O(1) regime where these measurements are made, inertial forces arising

from the rotation and ~j × ~B forces are comparable. So the azimuthal velocity in the bulk

of the flow will be determined by a combination of viscous, inertial, and Lorentz forces.

Simulations have shown that the application of a magnetic field in this limit acts directly

on the flow via the Lorentz force, but also indirectly via magnetic braking of the rotation-

induced Ekman flow [Liu, 2008b, Szklarski and Rüdiger, 2007, Khalzov et al., 2010]. The

exact balance of these effects is likely to be dependent on geometry and boundary conditions.

There is experimental evidence that modifying the boundary by altering the flow path

through the holes in the endcaps or by perturbing the relative height of the endcaps may

have an effect on the azimuthal velocity measured at a point. But the measured scaling of

the effect of the magnetic field remains consistent for each boundary situation. So although

these quirks of the experimental boundary condition do affect the flow, the behavior that

vθ/v1 is constant for constant vA/v1 is relatively robust.

Attempts to recreate the experimentally determined threshold through simulation have

so far been unsuccessful, though the reason is unclear. The scaling has been observed

experimentally only over a relatively small range of Reynolds number in the experiment,

down to Re ≈ 2 × 106. This is substantially larger than the simulations, which are limited

to Re ∼ O(104). So the discrepancy may be due to a difference in Reynolds number,

which is not unreasonable since viscosity plays an important role in the force balance of the

boundary layers through which the rotating components communicate with the fluid.

This is an area that would best be explored through further nonlinear MHD simulations.

Simulations with larger Re, while computationally expensive, may be necessary to more
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closely match the operational regime of the experiment. The velocities measured in the bulk

of the fluid are very quiet at saturation and do not seem to have significant 3-D features,

so 2-D simulations may be sufficient to recreate the dynamics observed in the experiment.

But the experimental measurements do not rule out 3-D effects at the boundaries, such as

turbulence in the boundary layers, that may affect the coupling between the bulk of the

fluid and the boundaries. If 2-D simulations at large Re fail to reproduce the experimental

observations, this might be an indication that 3-D effects in some part of the flow play an

important role.

Find robust, experimentally measurable signature of MRI

It may be helpful to find a more sensitive indicator of the MRI than measurement of the

fluid velocities. Simulations have predicted a small change, ∼ 2%, of the azimuthal velocity

due to the MRI [Gissinger et al., 2012]. This change would be at the limit of what is

currently measurable with the UDV diagnostic. And, in general, the imperfect bifurcation

from Ekman circulation observed in simulations is problematic because it suggests that

the change in almost any measurable quantity will be a gradual one, making a thorough

understanding of the global behavior of the fluid in the absence of the MRI of the utmost

importance.

Some have suggested supplementing the viscous drive of the fluid with additional body

forcing, such as through ~j× ~B forcing from an externally imposed radial current. This could

result in a larger saturated amplitude of the MRI eigenmode, potentially leading to a larger

vr that may be measurable. But this would be a fundamental change to the design of the

experiment, and would require the expected behavior of the MRI to be entirely reanalyzed.

Other options include direct measurements of the torque at the outer cylinder to detect

the enhanced angular momentum transport due to the MRI, or internal magnetic diagnostics

to measure the associated Maxwell stress. But again, for the small saturated amplitudes of

the instability that are expected, an understanding of the behavior of these quantities in

the absence of the MRI is necessary in order to claim that any change from that behavior



154

is a sign of the MRI.

Here, again, simulations can play an important role. Not only could they be useful to

understand the expected effect of the MRI on measurable quantities in the experiment. But

they may also be useful to direct efforts to maximize the saturated amplitude of the MRI

eigenmode. Different configurations of endcap ring speeds, for example, could lead to a

larger saturated amplitude or a sharper transition from the residual Ekman flow.

Mechanical improvements to allow higher Rm operation

Improvements in the mechanical apparatus up to this point have produced useful measure-

ments at 65% of the maximum design speed, with brief runs up to 75% of the maximum

design speed. These speeds produce an Rm slightly larger than the computationally deter-

mined threshold for the MRI at ∼ 60% of the maximum design speed.

Further improvements in the mechanical apparatus are necessary to generate Rm signif-

icantly greater than the critical Rm. The mechanical complexity of the experiment makes

for slow progress in this area. Mechanisms for reducing the complexity have been proposed,

including electromagnetic coupling of drives to the rotating components to eliminate the

shaft seals, but such deviations from the current approach would be a major undertaking.

The easiest mechanical improvements that could be made to the experiment concern the

interface between the lip seals and the shafts. The lip seals ride on a chromed surface on the

shafts. The surface in many places has worn at the contact point with the lip seal, leading

to irregularities in the shaft diameter. This makes the behavior of the seals particularly

dependent on their precise axial location along the shaft. It might be beneficial to machine

down these sealing surfaces, re-chrome them, grind them to the precise specified diameter,

and polish them to minimize seal friction.

It is likely that further weaknesses in the design of the experiment will be exposed

at higher rotation speeds. One of the biggest challenges of high speed operation is the

increased fluid pressure, which may reach up to 350 psi at the outer cylinder at full speed

operation. Problems related to these high pressures, including difficultly maintaining the
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relative axial position of rotating components and damage to seal assemblies, have already

been uncovered and addressed. But more problems may arise with increasing speed. Future

experimenters should be aware of the potential problems presented by these high pressures.

7.2 Kelvin-Helmholtz instability of free shear layers

We have presented results showing a minimum Λ = B2
0/4πρη∆Ω and a maximum finite

Ro = ∆Ω/Ω2 for the observation of the Kelvin-Helmholtz instability of a free Shercliff layer

and Stewartson layer, respectively. We have explained these observations in terms of a

competition for the free energy of the shear layer between the centrifugal instability and

the Kelvin-Helmholtz instability. This result is interesting first since the vast majority of

the work on the Kelvin-Helmholtz destabilization of free shear layers has been done at the

threshold of viscous stabilization, with small Ro or small Re, and, perhaps more interest-

ingly, because the Kelvin-Helmholtz instability is observed throughout the fluid volume even

when there is no evidence of the shear layer only a few centimeters from the boundary. In

contrast to the eigenmodes of the centrifugal instability, which remain confined to the shear

layer, the small radial wavenumbers and even smaller axial wavenumbers for the Kelvin-

Helmholtz eigenmodes allow them to fill the volume of the experiment. The eigenmodes

of the Kelvin-Helmholtz instability produce a positive contribution to the radial angular

momentum transport through their associated Reynolds stress, leading to the measured

broadening of the free shear layers observed when Λ ≫ 1.

It is interesting to compare our observations to axisymmetric simulations of the ex-

periment [Hollerbach and Fournier, 2004, Liu, 2008b]. They predicted that the free shear

layers generated at the axial boundaries would be Kelvin-Helmholtz unstable. The Kelvin-

Helmholtz instability, it was thought, would limit the extension of the shear layer. This

is likely correct, although it was not predicted that the unstable Kelvin-Helmholtz modes

would still be present throughout the fluid volume even as the shear layers were limited to

a region near the boundary.

The generation of the Kelvin-Helmholtz instability by 3-D MHD simulations [Gissinger et al.,
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2012] should be viewed as a great success of the agreement between simulation and experi-

ment. The threshold and eigenmode structures for the instability match very well with the

experimental observations. The largest discrepancy between experiment and simulation is

that the simulations predicted that the free shear layer would penetrate much more deeply

than the experimental observations show. Perhaps this is because the numerical simulations

are typically limited to Reynolds numbers several orders of magnitude smaller than in the

experiment. Indeed, the shear layer was observed to penetrate deeply into the fluid during

very slow rotation giving Re ∼ 103, in the range of the computations.

The success of simulations in this case lends confidence to the results from 3-D MHD

simulations that explained the observations of unstable nonaxisymmetric modes in a spher-

ical Couette experiment as Kelvin-Helmholtz instability of free shear layers at the tangent

cylinder[Hollerbach, 2009, Gissinger et al., 2011], even though the experimental results were

initially presented as evidence of the MRI [Sisan et al., 2004].

7.2.1 Future work

Effects of axial variation

The linear stability analysis assumed that the background flow was axially uniform and

that the unstable modes were also axially uniform (k = 0). The real experiment is bounded

axially, leading to an axial variation of the shear layer width as well as axial variation of

the unstable mode structure, since the mode amplitude is forced to zero at the boundaries

by the no-slip boundary condition.

Details of the effect of axial variation are currently unknown, and would probably be

best explored through further 3-D nonlinear MHD simulations. Topics of particular interest

are the additional damping of the instability due to magnetic coupling with the no-slip axial

boundary layer, as well as the selection of a dominant azimuthal mode number in a shear

layer with axially varying width, and hence axial variation in the locally most-unstable

azimuthal mode number.



157

Effect of large-scale poloidal circulation

There is experimental evidence that the large-scale poloidal flow associated with Ekman

circulation can be an additional factor in disrupting the shear layer, inhibiting the ap-

pearance of the Kelvin-Helmholtz instability. 2-D nonlinear MHD simulations have shown

that this flow can indeed have an effect on the shear layer [Spence et al., 2012], though

these simulations could not generate the Kelvin-Helmholtz instability because they were

axisymmetric.

Since there is a small base of experimental measurements relevant to this subject, it

would be useful to carry out further experiments in the regime where large-scale poloidal

circulation is expected to be most important, with Ω3 near Ω4, but Ω1 ≫ Ω3. It might also

be interesting to investigate the role of poloidal circulation in the cyclonic configuration,

where there will be no effect of the centrifugal instability and where poloidal circulation

would be the principle mechanism for disruption of the free shear layer.

Further simulations would also be helpful here. While 2-D simulations have shown effects

on the shear layer, 3-D simulations would be capable of generating the Kelvin-Helmholtz

instability and would provide a better comparison for the experimental measurements.

Stabilization of instability with very large magnetic field

Experimental measurements have hinted at a stabilization of the Kelvin-Helmholtz insta-

bility with vary large applied magnetic field strengths (Λ ≫ 1). Such an effect might be

expected, both because the magnetic field will act to damp axial variations in the motion

that occur between the unstable eigenmode and the no-slip axial boundary condition, and

because the Kelvin-Helmholtz instability will be viscously stabilized for very narrow shear

layer widths.

At the slowest rotation rates studied, Ω1 = 0.25 rpm, the steady state magnetic fields

applied were not large enough to stabilize the instability. It is possible that at even slower

rotation rates it could be restabilized, although this would also be entering a regime where

viscous effects become important even in the absence of a magnetic field. Measurements
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using the UDV system would be challenging because of the very small fluid velocities, but

it is possible that meaningful measurements could be made.

Again, this is an area where 3-D nonlinear MHD simulations could provide interesting

information. Most of the work so far has focused on reproducing the minimum B0 for

appearance of the Kelvin-Helmholtz instability because of the relevance to the experimental

measurements, but simulations addressing a maximum B0 should also be possible.

Measurement of instability in PROMISE-2 geometry

It would be very interesting to attempt to generate this Kelvin-Helmholtz instability in the

PROMISE-2 experiment, a cylindrical Taylor-Couette MHD experiment with split endcaps

similar to our own but with a slightly different geometry. The brief calculations presented

in Appendix E indicate the experimental parameters that we would expect to generate

the instability in that device. In particular, the effect of the larger relative height of that

experiment might shed some light on some of the open questions concerning axial variation

of the instability.



Appendix A

Parameters and dimensionless

numbers used in this thesis
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Table A.1: Symbols used in this thesis

Symbol Description

r1 Inner cylinder radius

r2 Outer cylinder radius

h Experiment height

Ω1 Inner cylinder rotation rate

Ω2 Outer cylinder rotation rate

Ω3 Inner ring rotation rate

Ω4 Outer ring rotation rate

∆Ω Change in angular velocity across ring gap, ∆Ω = Ω3 − Ω4

v1 Azimuthal velocity at inner cylinder

v2 Azimuthal velocity of outer cylinder

B0 Applied magnetic field strength

vA Alfvén speed, vA = B0/
√

4πρ

ρ Density of fluid

ν Kinematic viscosity of fluid

η Magnetic diffusivity of fluid

rl Radial location of a free shear layer

wl Half-width of a free shear layer

m Azimuthal mode number

k Axial wavenumber
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Table A.2: Dimensionless numbers used in this thesis

Symbol Definition Description

Re
Ω1r1(r2 − r1)

ν

Reynolds number: ratio of inertial force to vis-
cous force in the momentum equation

Rm
Ω1r1(r2 − r1)

η

Magnetic Reynolds number: ratio of induction
to resistive dissipation

Pm
ν

η

Magnetic Prandtl number: ratio of viscous to
resistive dissipation

Λ
B2

0

4πρη(Ω3 − Ω4)
Elsasser number: ratio of ~j × ~B force to inertial
force in the momentum equation

Ha
B0(r2 − r1)√

4πρην

Hartmann number: square root of the ratio of
~j × ~B force to viscous force in the momentum
equation

Ro
Ω3 − Ω4

Ω2

Rossby number: ratio of the inertial force to the
Coriolis force in the momentum equation



Appendix B

UDV beam geometry

transformations

Two principle angles are used to describe the direction of the centerline of an ultrasound

beam emitted by a UDV transducer. The first angle, A, describes the opening half-angle

of a cone centered on the radial unit vector and with its vertex at the transducer location

at the outer cylinder. The second angle, B, describes the angular position of the centerline

of the ultrasound beam on the surface of that cone. B = 0 for the beam traveling on the

top-most trajectory on the cone, B = 90◦ for the right-most trajectory, and B = −90◦ for

the left-most trajectory.

As illustrated in Figure B.1, at a distance d along the beam, the beam will have traveled

the following distances in each of the Cartesian coordinate directions:

∆x = d cosA,

∆y = d sinA sinB,

∆z = d sinA cosB.

(B.1)

The transformation of this point to cylindrical coordinates can be accomplished by noting

that r2 = (∆y)2 + (r2 − ∆x)2, where r2 is the radius of the transducer face (typically the

outer cylinder radius), and that sin θ = ∆y/r:
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Figure B.1: Geometry for transformation of UDV signals into cylindrical coordinates. The
centerline of the ultrasound beam lies on a cone centered on a purely radial vector with
an opening half-angle A and with its apex at the transducer location at the outer cylinder.
The angle B describes the beam’s angular location on the surface of the cone, with B = 0
corresponding to the trajectory confined in the r − z plane with increasing z along the
length of the beam, and B increasing as the beam moves clockwise from the perspective of
an observer at the outer cylinder, facing inward.
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m	
��ement

point

Figure B.2: Geometry of the projection of the centerline of the transducer beam onto the
r − θ plane.

r =

√

d2 sin2A sin2B + (r2 − d cosA)2,

θ = arcsin

[

d sinA sinB

r

]

= arcsin

[

d sinA sinB
√

d2 sin2A sin2B + (r2 − d cosA)2|

]

,

z = d sinA cosB.

(B.2)

We now know the location of each measurement in cylindrical coordinates. But we also

wish to determine the unit vector û in the direction of the beam in cylindrical coordinates at

an arbitrary point along its path. We need to know this so that we can correctly determine

the contribution from each of the velocity components on the measured velocity, vudv = ~v ·û.

We can express û in the form

û =
ar̂ + bθ̂ + cẑ√
a2 + b2 + c2

. (B.3)

We will find a, b, and c by considering a movement of an infinitesimal distance l along

the ultrasound beam at a distance d. The distance moved in the ẑ direction gives c =

l sinA cosB. The length of the projection of this movement into the r − θ plane, l′ =
√
a2 + b2, can be found by solving l2 = a2 + b2 + c2 = (l′)2 + (l sinA cosB)2, yielding

l′ =
√

l2 − l2 sin2A sin2B.

The contributions to l′ by the r̂ and θ̂ components depend on ξ, the angle between the

projection of the beam into r − θ plane and the radial unit vector at the distance d. An
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illustration of the projection of the UDV beam onto the r− θ plane is shown in Figure B.2.

The geometry shows us that

ξ = π − (π/2 − θ) − (π/2 − α) = θ + α, (B.4)

where α is the angle between the projection of the beam in the r − θ plane and the radial

vector pointing at the UDV transducer:

tanα = ∆y/∆x ⇒ α = arctan(tanA sinB). (B.5)

Once we know ξ, we can find a and b by noting that a = −l′ cos ξ and b = l′ sin ξ. Since

the sum a2 + b2 + c2 = l2, we divide each component by our original infinitesimal distance

to yield the normalized components of the unit vector,

û = −
[

√

(1 − sin2A cos2B) cos ξ

]

r̂+

[

√

(1 − sin2A cos2B) sin ξ

]

θ̂+[sinA cosB] ẑ. (B.6)

Two other useful quantities that are readily found by algebra are the distance d that

must be traveled along the beam to reach a radius r,

d =
r2 cosA−

√

r2(sin2A sin2B + cos2A) − r22 sin2A sin2B

sin2A sin2B + cos2A
, (B.7)

and the minimum radius through which the beam passes

rmin =

∣

∣

∣

∣

∣

r2 sinA sinB
√

sin2A sin2B + cos2A

∣

∣

∣

∣

∣

. (B.8)



Appendix C

Equations of incompressible,

nonideal MHD

We wish to find the equations of nonideal, incompressible MHD. We start with three of

Maxwell’s equations plus Ohm’s law in CGS units:

∇× ~E = −1

c

∂ ~B

∂t
Faraday’s law, (C.1)

∇× ~B =
1

c

∂ ~E

∂t
+

4π

c
~j Ampère’s law, (C.2)

∇ · ~B = 0 No monopoles, (C.3)

4πη

c2
~j = ~E +

1

c
~v × ~B Ohm’s law, (C.4)

where η is the magnetic diffusivity in units of cm2/s. We make the normal MHD assumption

that the displacement current is zero, leading to a simplified version of Ampère’s law

∇× ~B =
4π

c
~j. (C.5)

Induction equation

If we take the curl of Equation C.4, substitute for ∇× ~E in Equation C.1, and then substitute

for ~j from Equation C.5, we find

− 1

c

∂ ~B

∂t
= ∇×

[

4πη

c2
~j − 1

c
~v × ~B

]

= ∇×
[

η

c
∇× ~B − 1

c
~v × ~B

]

. (C.6)
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We can now rearrange the equation and make use of the vector identity ∇×(∇× ~B) = −∇2 ~B,

when ∇ · ~B = 0,

∂ ~B

∂t
−∇×

(

~v × ~B
)

= η∇2 ~B. (C.7)

This is the magnetic field induction equation in nonideal MHD. In the incompressible limit,

where

∇ · ~v = 0, (C.8)

the induction equation can be rewritten

∂ ~B

∂t
+ (~v · ∇) ~B − ( ~B · ∇)~v = η∇2 ~B. (C.9)

Momentum equation

The momentum equation is found by considering Newton’s second law, m~a = ~F , for a

fluid element, including pressure forces, electromagnetic ~j × ~B forces, and forces due to the

divergence of the viscous stress,

ρ

(

d~v

dt

)

= −∇p+
~j × ~B

c
+ µ∇2~v, (C.10)

where ρ is the fluid density, µ is the dynamic viscosity, and p is the hydrodynamic pressure.

We now expand the convective derivative d/dt = ∂/∂t+ ~v · ∇ and divide by ρ to find

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+

1

ρc
~j × ~B + ν∇2~v, (C.11)

where ν = µ/ρ is the kinematic viscosity in units of cm2/s.

We can make a substitution for ~j in the ~j × ~B term using Ampère’s law

1

ρc
~j × ~B =

1

4πρ

(

∇× ~B
)

× ~B =
1

4πρ

[

−
(

∇ ~B
)

· ~B +
(

~B · ∇
)

~B
]

=
1

4πρ

[

−1

2
∇ ~B2 +

(

~B · ∇
)

~B

]

, (C.12)

leading to a new form for the momentum equation

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p− 1

8πρ
∇ ~B2 +

1

4πρ

(

~B · ∇
)

~B + ν∇2~v. (C.13)
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Finally, we can rewrite the momentum equation using a combined hydrodynamic and mag-

netic pressure P = p+ ~B2/8π.

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P +

1

4πρ

(

~B · ∇
)

~B + ν∇2~v. (C.14)



Appendix D

Global linear stability code

This chapter describes the development of a computer code to solve the linearized, non-

ideal, incompressible MHD equations with zeroth-order azimuthal velocity and axial mag-

netic field in a cylindrical geometry that is periodic in the axial and azimuthal directions.

This work follows a similar approach to that used to examine the MRI in Goodman and Ji

[2002], though the approach here is more general, allowing nonaxisymmetric modes, ar-

bitrary background azimuthal velocity distributions, and being capable of solving for all

eigenmodes of the system, not only the fastest-growing eigenmode.

D.1 Linearized equations

We start with the equations of incompressible, nonideal MHD, summarized here from Equa-

tions C.9, C.14, C.3, and C.8, where a dot over a quantity represents a derivative with

respect to time, ∂/∂t.

~̇B + ~v · ∇ ~B − ~B · ∇~v = η∇2 ~B, (D.1)

~̇v + ~v · ∇~v +
1

ρ
∇P −

~B · ∇ ~B

4πρ
= ν∇2~v, (D.2)

∇ · ~B = 0, (D.3)

∇ · ~v = 0. (D.4)
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We assume a background state with zeroth-order ~B = B0ẑ and ~v = rΩ(r)θ̂. First order

quantities will be denoted by a δ.

We define two radial derivative operators, ∂r ≡ ∂
∂r and ∂†r ≡ ∂

∂r + 1
r . The combination

∂r∂
†
r = ∂2

∂r2 − 1
r2 + 1

r∂r.

Radial component of the induction equation

The radial component of the induction equation is

Ḃr + vr∂rBr +
vθ

r
∂θBr + vz∂zBr −Br∂rvr −

Bθ

r
∂θvr −Bz∂zvr

= η

(

∇2Br −
2

r2
∂θBθ −

1

r2
Br

)

. (D.5)

After linearization, keeping only 1st-order quantities, this becomes

δḂr + Ω∂θδBr −B0∂zδvr = η

[(

∂r∂
†
r +

1

r2
∂2

θ + ∂2
z

)

δBr −
2

r2
∂θδBθ

]

. (D.6)

Azimuthal component of the induction equation

The azimuthal component of the induction equation is

Ḃθ + vr∂rBθ +
vθ

r
∂θBθ + vz∂zBθ +

vθ

r
Br −Br∂rvθ −

1

r
Bθ∂θvθ

−Bz∂zvθ −
vr

r
Bθ = η

(

∇2Bθ +
2

r2
∂θBr −

1

r2
Bθ

)

. (D.7)

After linearization, this becomes

δḂθ + Ω∂θδBθ −B0∂zδvθ − δBrr∂rΩ = η

[(

∂r∂
†
r +

1

r2
∂2

θ + ∂2
z

)

δBθ +
2

r2
∂θδBr

]

. (D.8)

Axial component of the induction equation

The axial component of the induction equation is

Ḃz + vr∂rBz +
vθ

r
∂θBz + vz∂zBz −Br∂rvz −

1

r
Bθ∂θvz −Bz∂zvz

= η

[

1

r
∂r + ∂2

r +
1

r2
∂2

θ + ∂2
z

]

Bz. (D.9)

After linearization this becomes

δḂz + Ω∂θδBz −B0∂zδvz = η

[

∂†r∂r +
1

r2
∂2

θ + ∂2
z

]

δBz . (D.10)
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Radial component of the momentum equation

The radial component of the momentum equation is

v̇r + vr∂rvr +
vθ

r
∂θvr + vz∂zvr −

v2
θ

r
+

1

ρ
∂rP

− 1

4πρ

(

Br∂rBr +
Bθ

r
∂θBr +Bz∂zBr −

B2
θ

r

)

= ν

(

∇2vr −
2

r2
∂θvθ −

1

r2
vr

)

. (D.11)

After linearization this becomes

δv̇r + Ω∂θδvr − 2Ωδvθ + ∂r
δP

ρ
− B0

4πρ
∂zδBr

= ν

[(

∂r∂
†
r +

1

r2
∂2

θ + ∂2
z

)

δvr −
2

r2
∂θδvθ

]

. (D.12)

Azimuthal component of the momentum equation

The azimuthal component of the momentum equation is

v̇θ + vr∂rvθ +
vθ

r
∂θvθ + vz∂zvθ +

vθvr

r
+

1

ρ

1

r
∂θP

− 1

4πρ

[

Br∂rBθ +
Bθ

r
∂θBθ +Bz∂zBθ +

BθBr

r

]

= ν

(

∇2vθ +
2

r2
∂θvr −

1

r2
vθ

)

. (D.13)

After linearization this becomes

δv̇θ + δvr∂
†
r(rΩ) + Ω∂θδvθ +

1

r
∂θ
δP

ρ
− B0

4πρ
∂zδBθ

= ν

[(

∂r∂
†
r +

1

r2
∂2

θ + ∂2
z

)

δvθ +
2

r2
∂θδvr

]

. (D.14)

Axial component of the momentum equation

The axial component of the momentum equation is

v̇z + vr∂rvz +
vθ

r
∂θvz + vz∂zvz +

1

ρ
∂zP

− 1

4πρ

[

Br∂rBz +
Bθ

r
∂θBz +Bz∂zBz

]

= ν

[

1

r
∂r + ∂2

r +
1

r2
∂2

θ + ∂2
z

]

vz. (D.15)
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After linearization this becomes

δv̇z + Ω∂θδvz + ∂z
δP

ρ
− B0

4πρ
∂zδBz = ν

[

∂†r∂r +
1

r2
∂2

θ + ∂2
z

]

δvz. (D.16)

Constraint equations

The equation of incompressibility, ∇ · ~v = 0 is

∂†rδvr +
1

r
∂θδvθ + ∂zδvz = 0, (D.17)

and ∇ · ~B = 0 is

∂†rδBr +
1

r
∂θδBθ + ∂zδBz = 0. (D.18)

D.2 Forms of perturbations

These linearized equations will be evaluated to find modes with an arbitrary radial depen-

dence that grow exponentially with a growth rate γ, and that vary periodically in θ̂ and

ẑ with mode numbers m and k, respectively1 . The equations suggest the phase relation

between the various components in ẑ, leading to the following forms for the first-order

perturbations:

δBr/
√

4πρ = Re{βr(r)e
γt+imθ cos kz}, δvr = Re{φr(r)e

γt+imθ sin kz},

δBθ/
√

4πρ = Re{βθ(r)e
γt+imθ cos kz}, δvθ = Re{φθ(r)e

γt+imθ sin kz},

δBz/
√

4πρ = Re{βz(r)e
γt+imθ sin kz}, δvz = Re{φz(r)e

γt+imθ cos kz},

δP/ρ = Re{Π(r)eγt+imθ sin kz}. (D.19)

The quantities β, φ, and Π are complex, holding information about both the magnitude

and phase of these components as functions of r. Following the convention common in

harmonic analysis, the real parts of the perturbed forms are evaluated to find physically

1The linearized quantities have a time behavior that goes as eγt. Comparing to the time behavior

for the form of a wave traveling in the positive direction, ei(~k·~x−ωt), we see that Re{γ} = Im{ω}, and

Im{γ} = −Re{ω}. So the growth rate of the mode is given by Re{γ}, and the oscillation frequency is given

by −Im{γ}.
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meaningful quantities. Because the equations are linear, we are justified in dropping the

‘Re’ when rewriting the equations in terms of these perturbed quantities. Note that we

have made use of the Alfvén speed vA = B0/
√

4πρ:

γβr + imΩβr − kvAφr = η

[(

∂r∂
†
r −

m2

r2
− k2

)

βr −
2im

r2
βθ

]

, (D.20)

γβθ + imΩβθ − kvAφθ − r(∂rΩ)βr = η

[(

∂r∂
†
r −

m2

r2
− k2

)

βθ +
2im

r2
βr

]

, (D.21)

γβz + imΩβz + kvAφz = η

[(

∂†r∂r −
m2

r2
− k2

)

βz

]

, (D.22)

γφr + imΩφr − 2Ωφθ + ∂rΠ + kvAβr = ν

[(

∂r∂
†
r −

m2

r2
− k2

)

φr −
2im

r2
φθ

]

, (D.23)

γφθ + imΩφθ + φr∂
†
r(rΩ) +

im

r
Π + kvAβθ = ν

[(

∂r∂
†
r −

m2

r2
− k2

)

φθ +
2im

r2
φr

]

, (D.24)

γφz + imΩφz + kΠ − kvAβz = ν

[(

∂†r∂r −
m2

r2
− k2

)

φz

]

, (D.25)

∂†rφr +
im

r
φθ − kφz = 0, (D.26)

∂†rβr +
im

r
βθ + kβz = 0. (D.27)

D.3 Reduced set of equations

We can reduce the set of equations by applying the operator ∂†r to Equation D.23, (im/r) to

Equation D.24, and −k to Equation D.25, and then summing the equations. The following

relations are useful in casting some of the terms into the correct form for elimination by the

constraint equations:

1

r
∂r∂

†
r = ∂†r∂r

1

r
− 2

r3
+

2

r2
∂r, (D.28)

∂†r
1

r2
=

1

r2
∂†r −

2

r3
. (D.29)

The following constraint equation is then produced:

im

(

2Ω

r
+ 2∂rΩ

)

φr − ∂†r (2Ωφθ) +

(

∂†r∂r −
m2

r2
− k2

)

Π = 0. (D.30)
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Figure D.1: Radial grid used for the discretization of the linearized MHD equations. There
is one ghost zone outside of each boundary, which is used to specify the boundary conditions.
The grid is equally spaced in x = ln r.

We will solve the system of equations formed by Equations D.20, D.21, D.23, D.25, and

D.30 for the quantities βr, βθ, φr, φθ, and Π. βz and φz can be found from ∇ · ~B = 0 and

∇ · ~v = 0 if desired.

D.4 Discretization

Again following Goodman and Ji [2002], we use a radial grid that is equally spaced in

x = ln r, as shown in Figure D.1. The radial derivatives can be written in terms of the

new coordinate x: ∂r = (1/r)∂x and ∂2
r = −(1/r2)∂x + (1/r2)∂2

x. This means that ∂r∂
†
r =

(1/r2)∂2
x − (1/r2) and ∂†r∂r = (1/r2)∂2

x.

The equations are evaluated with second-order centered differences. The quantity βr,j

indicates the value of βr at the jth grid cell. ∆x indicates the size of the grid step.

The following finite difference equations are found:

γβr,j = −
(

2η

r2j ∆x
2

+
η

r2j
+
ηm2

r2j
+ ηk2 + imΩj

)

βr,j +
η

r2j ∆x
2
(βr,j+1 + βr,j−1)

− 2imη

r2j
βθ,j + kvAφr,j, (D.31)
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γβθ,j = −
(

2η

r2j ∆x
2

+
η

r2j
+
ηm2

r2j
+ ηk2 + imΩj

)

βθ,j +
η

r2j ∆x
2
(βθ,j+1 + βθ,j−1)

+

[

Ωj+1 − Ωj−1

2∆x
+

2imη

r2j

]

βr,j + kvAφθ,j, (D.32)

γφr,j = −
(

2ν

r2j ∆x
2

+
ν

r2j
+
νm2

r2j
+ νk2 + imΩj

)

φr,j +
ν

r2j ∆x
2
(φr,j+1 + φr,j−1)

+

[

2Ωj −
2imν

r2j

]

φθ,j − kvAβr,j −
1

2rj∆x
(Πj+1 − Πj−1) , (D.33)

γφθ,j = −
(

2ν

r2j ∆x
2

+
ν

r2j
+
νm2

r2j
+ νk2 + imΩj

)

φθ,j +
ν

r2j ∆x
2
(φθ,j+1 + φθ,j−1)

+

[

2imν

r2j
− 2Ωj −

1

2∆x
(Ωj+1 − Ωj−1)

]

φr,j − kvAβθ,j −
im

rj
Πj , (D.34)

0 =

[

2imΩj

rj
+

im

rj∆x
(Ωj+1 − Ωj−1)

]

φr,j −
2Ωj

rj
φθ,j

− 1

rj∆x
(Ωj+1φθ,j+1 − Ωj−1φθ,j−1) −

[

2

r2j ∆x
2

+
m2

r2j
+ k2

]

Πj

+
1

r2j ∆x
2

(Πj+1 + Πj−1) . (D.35)

D.5 Boundary conditions

Boundary conditions are implemented by a set of constraint equations at the inner and

outer cylinders.

D.5.1 Velocity boundary conditions

The hydrodynamic boundary conditions on φr and φθ are satisfied by φr = 0 (no inflow) and

φθ = 0 (no slip) at the boundary. There is a further no-slip constraint on φz. Because φz is

not being solved for in the equations, this is satisfied by setting ∂†rφr = 0 at the boundary,

implying φz = 0 by the incompressibility constraint. Since we have already specified that

φr = 0, this means that ∂rφr = 0 as well.
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In the code, the constraints on φr are specified by setting the values in the ghost zones

φr,js−1 = 0, φr,js =0, (D.36)

φr,je+1 = 0, φr,je =0, (D.37)

φθ,js−1 + φθ,js =0, (D.38)

φθ,je+1 + φθ,je =0. (D.39)

D.5.2 Magnetic boundary condition: perfectly conducting

For this boundary condition, we consider the radial boundaries to be perfectly conducting

cylinders, rotating at a fixed speed. We make use of the general boundary condition for a

fluid with a moving interface [Stix, 1992],

n̂×
(

~Ef − ~Ec

)

=
~v · n̂
c

(

~Bf − ~Bc

)

= 0 for ~v · n̂ = 0. (D.40)

where n̂ is the unit vector normal to the conductor, pointing into the fluid, and ‘f ’ and ‘c’

indicate fluid and cylinder values. Since the velocity at the boundary is purely azimuthal,

where the normal vector is radial, this states that the tangential component of the electric

field across the boundary is continuous.

For stationary conductors, the internal electric field is zero. But we are considering a

moving conductor, in which an electric field can be generated to balance ~v × ~B in Ohm’s

law:

~E +
1

c
~v × ~B =

4πη

c2
~j = 0 for η = 0. (D.41)

We note that ~v = rΩθ̂, and ~B = B0ẑ, so the electric field in the conductor will be purely in

the r̂-direction, and ~E × n̂ = 0. So, we still find that the tangential electric field is zero at

the boundary. To find the implications of this on the magnetic field, we dot Faraday’s law

with n̂:
(

∇× ~E
)

· n̂ = −1

c

∂ ~B · n̂
∂t

. (D.42)

The curl of ~E in the n̂ comes purely from the tangential components of ~E, which we have

shown are zero. We find that ∂Br/∂t = 0, so Br is invariant in time. Since our initial

condition is Br = 0, we find βr = 0 at the boundary.
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To find the condition on Bθ, we cross Ohm’s law with n̂:

4πη

c2
~j × n̂ = ~E × n̂+

1

c
~v × ~B × n̂ = 0. (D.43)

Both terms on the right hand side are 0 at the boundary. We showed previously that the

tangential electric field, ~E×n̂, is zero. The ~v× ~B×n̂ term is 0 because ~v is purely azimuthal,

and Br = 0, so ~v × ~B can only be in the radial (normal) direction. This means that there

is no tangential component of the current density, ~j × n̂, at the boundary. From Ampère’s

law, this implies that the tangential component of the curl of B is 0:

(

∇× ~B
)

× n̂ = 0. (D.44)

Evaluating the axial component of the curl of ~B, we see

1

r

∂

∂r
(rBθ) −

1

r

∂Br

∂θ
= 0. (D.45)

Since Br = 0 at the boundary, we find the boundary condition on Bθ, ∂/∂r(rBθ) = Bθ +

r∂/∂rBθ = 0. Written in terms of our perturbed quantities and logarithmic coordinate x:

βθ +
∂

∂x
βθ = 0. (D.46)

The equations describing the boundary condition for the magnetic field are therefore

βr,js−1 + βr,js =0, (D.47)

βr,je+1 + βr,je =0, (D.48)

βθ,js−1 −
(1 + ∆x/2)

(1 − ∆x/2)
βθ,js =0, (D.49)

βθ,je+1 −
(1 − ∆x/2)

(1 + ∆x/2)
βθ,je =0. (D.50)

D.5.3 Magnetic boundary condition: perfectly insulating2

In the MHD approximation, Ampère’s law is

∇× ~B =
4π

c
~j. (D.51)

2Thanks to Jeremy Goodman for guidance in implementing this boundary condition.
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In the insulating region outside the fluid, the current density is zero, so the magnetic field

can be written in terms of a scalar potential

~B = ∇Φ. (D.52)

Since ∇ · ~B = 0, we know that ∇2Φ = 0. In cylindrical coordinates, this means

[

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2

]

Φ = 0. (D.53)

If we assume a form for Φ that goes as Φ(r, θ, z) = ei(mθ+kz)Φ̃(r) this yields a differential

equation in Φ̃

d2

dr2
Φ̃ +

1

r

d

dr
Φ̃ −

(

m2

r2
+ k2

)

Φ̃ = 0. (D.54)

This equation is satisfied by modified Bessel functions

Φ̃(r) = AinIm(kr) +AoutKm(kr). (D.55)

Because Km(kr) → ∞ as kr → 0 and Im(kr) → ∞ as kr → ∞, Aout = 0 in the inner

region, and Ain = 0 in the outer region.

Φ̃(r) =















AinIm(kr), r ≤ r1,

AoutKm(kr), r ≥ r2.

(D.56)

We evaluate ∇Φ to find the components of the field

Br =
∂Φ

∂r
= ei(mθ+kz)















kAin

[

Im+1(kr) + m
kr Im(kr)

]

, r ≤ r1,

kAout

[

−Km+1(kr) + m
krKm(kr)

]

, r ≥ r2,

(D.57)

Bθ =
1

r

∂Φ

∂θ
=
im

r
ei(mθ+kz)















AinIm(kr), r ≤ r1,

AoutKm(kr), r ≥ r2.

(D.58)

We now match the insulating solution to the magnetic field value just inside the bound-

ary to find Ain and Aout. Once those constants are known, the value of the magnetic field
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in the ghost zone can be calculated. Note also the special case when m = 0, where Bθ = 0

at the boundary:

βr,js−1 − βr,js

[

Im+1(krjs−1) + m
krjs−1

Im(krjs−1)
]

[

Im+1(krjs) + m
krjs

Im(krjs)
] =0, (D.59)

βr,je+1 − βr,je

[

−Km+1(krje+1) + m
krje+1

Km(krje+1)
]

[

−Km+1(krje) + m
krje

Km(krje)
] =0. (D.60)

For m 6= 0:

βθ,js−1 − βθ,js

rjs

rjs−1

Im(krjs−1)

Im(krjs)
=0, (D.61)

βθ,je+1 − βθ,je

rje

rje+1

Km(krje+1)

Km(krje)
=0. (D.62)

For m = 0:

βθ,js−1 + βθ,js =0, (D.63)

βθ,je+1 + βθ,je =0. (D.64)

D.6 Solving the equations

The problem is to solve a system of 5N equations, where N is the number of grid cells

including ghost zones. The equations can be cast in the form of a generalized eigenvalue

problem

A · x = γB · x, (D.65)

where γ is the eigenvalue; x is the eigenvector made up of the components βr, βθ, φr, φθ,

and Π at each grid cell; A is a band-diagonal matrix of bandwidth 15 that is made up of the

terms in the linearized equations and constraint equations; and B is a diagonal matrix with

a 1 corresponding to the position of the time evolution equation for each of the quantities

βr, βθ, φr, and φθ in the fluid, and a 0 at the position of each boundary condition equation

and each constraint equation on Π.
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Two methods are used to solve this generalized eigenvalue problem. The first solves

the full problem for all eigenvalues and eigenmodes. Because resolutions of a few thousand

grid cells are sometimes necessary to fully resolve boundary layers, the calculation of all the

eigenvalues and eigenmodes can take a long time. A second method can be used to solve for

a subset of the eigenvalues and eigenmodes, saving time in the calculation. In both cases

the eigenvalues and eigenmodes that are found are sorted are stored in a NetCDF-4 file for

later analysis.

D.6.1 Full solution

The full solution method uses a call to the LAPACK routine ZGGEV [Anderson et al., 1999]

The routine does not take advantage of the banded nature of the problem and takes in

(5N)2 complex values describing the matrices A and B, and requires additional memory

allocation for its work. This is not a very efficient mechanism, requiring large amounts of

both time and memory, as shown in Figure D.2. On the order of 20-30% of the eigenvalues

are spurious, with infinite eigenvalues. These eigenvalues are rejected before saving the

results.

D.6.2 Subset of eigenvalues with ARPACK

The code has the option to use the ARPACK routine ZNAUPD to find a subset of the eigen-

values [Lehoucq et al., 1998]. This routine supplies a reverse-communication interface for

the iteration algorithm, requesting calls to the BLAS routine ZGBMV [Dongarra et al., 1990]

and the LAPACK routine ZGBTRS to do its work. Both of these routines can operate on

compressed banded matrices, requiring less memory than the method for the full solution

to the eigenvalue problem. ARPACK is a library that can be used to find a number of ex-

tremal eigenvalues meeting several different possible criteria: smallest magnitude, largest

magnitude, largest real part, smallest real part, largest imaginary part, or smallest imag-

inary part. We are most often interested in the largest growing modes, so at first glance

it should be as easy as using the ARPACK routine to find the modes with the largest real
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Figure D.2: Execution time and memory scaling for several different modes of operation of
the global eigenvalue code. Solving the full problem for all eigenvalues becomes prohibitively
difficult for large numbers of grid cells. Using the ARPACK subroutines results in dramatically
more efficient operation, at the cost of increased complexity in setting up the problem.
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part. Unfortunately, the ZNAUPD routine can only directly solve for the eigenvalues with

largest real part if the matrix B in the generalized eigenvalue problem is positive definite.

In our case, it is positive semi-definite (made up of ‘1’s and ‘0’s on the diagonal), and so

we are forced to use the routine in shift-invert mode, where a set of eigenvalues λ are found

that are related to the original eigenvalues of the problem by λ = 1/(γ − σ), where σ is a

user-specified shift. This can be rewritten

λ =
1

γ − σ
=

Re{γ − σ} − iIm{γ − σ}
|γ − σ|2 . (D.66)

The choice of σ, the eigenvalue shift, is very important for correct behavior of the ARPACK

routine, since it determines which part of the eigenvalue spectrum will be returned. We are

interested in the eigenvalue with the largest real part of γ. To select the largest-growing

eigenvalue γ, we can ask for the eigenvalue λ with the largest magnitude, for a shift σ with

a very large real part, much larger than its imaginary part or either part of γ. In other

words, σ = Re{σ}(0) + ǫIm{σ}(1), and γ = ǫRe{γ}(1) + ǫIm{γ}(1) where ǫ is a small number,

and the superscripts (0) and (1) denote zeroth- and first-order quantities, respectively. In

this case, the magnitude of λ, neglecting second-order terms, is

|λ| =
1

√

(γ − σ) (γ∗ − σ∗)
≈ 1
√

(Re{σ})2 − 2Re{σ}Re{γ}
, (D.67)

which is maximized for the largest Re{γ}.

We are guaranteed to get the largest growing eigenvalue if we choose a very large,

real σ. Unfortunately, as the value σ gets farther from the eigenvalues of interest, the

routine becomes much more inefficient, leading to increased computation time and larger

errors in the computed eigenvalues. So, σ is chosen by an iterative technique, using a σ

with a very large real part at first to make sure we find the fastest-growing eigenvalue,

and then adjusting the value closer to the eigenvalue of interest. The initial value σ0 =

5|Ω1|+ 5|Ω2| − im(Ω1/2 + Ω2/2), since the largest growth rate and frequency of any mode

are expected to be of order Ω1 in the absence of very large Alfvèn frequencies and since a

Doppler shift of order mΩ̄ is expected. The problem is solved first with a relatively large

tolerance of 10−2. Next, a new value of σ1 is determined based on the largest-growing
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computed eigenvalue γ0, σ1 = 0.1σ0 + 0.9γ0, and the tolerance is halved. This process

is repeated four times, and the resulting σ is then used to solve the problem at machine

tolerance.

Using the ARPACK subroutine results in greatly improved performance, as shown in Fig-

ure D.2. But there is a danger of picking eigenvalues from the incorrect part of the spectrum

with a bad choice of σ. And even if σ is picked correctly for the fastest growing eigenvalue,

asking for n eigenvalues by this technique may not return the fastest-growing n eigenvalues.

If, for example, the second-fastest growing eigenvalue has a very different imaginary part

from the fastest-growing eigenvalue, the routine may return the fastest-growing eigenvalue

followed by a different slower-growing eigenvalue with an imaginary part closer to that of

the fastest-growing eigenvalue. Because of this, it is advisable to verify some of the runs

with the results of a full eigenvalue calculation to ensure that the relevant parts of the

spectrum are being returned.

D.6.3 Convergence

Convergence of computed eigenvalues with increasing grid resolution was tested both in

order to validate the ARPACK solver and to find the optimum grid resolution for computations.

The results of a convergence test using the marginally stable MRI eigenmode from the first

part of the “Test problems” section are shown in Figure D.3. Results from the full eigenvalue

solution and from the ARPACK method are very consistent with each other up to the largest

resolution at which it was reasonable to calculate the full solution, with the error in each

dropping as 1/N2, as should be expected for second-order centered differences. The error

for the ARPACK solution eventually levels out, suggesting an intrinsic error in the eigenvalue

solver. 2000-8000 grid cells are typically used for the computations in this work.
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grid cells is shown.
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D.7 Test problems

D.7.1 Magnetorotational instability

The code was used to solve the problem of the marginally unstable eigenmode in an ideal

Couette background from Goodman and Ji [2002] with the following parameters:

Ω1 = 2720 rpm = 284.84 rad/s, ν = 3.2 × 10−3 cm2/s,

Ω2 = 328.4 rpm = 34.39 rad/s, η = 2.0 × 103 cm2/s,

r1 = 5 cm, ρ = 6.0 g/cm3,

r2 = 15 cm, B0 = 3000 Gauss,

k = 2πn/h = 2π ∗ 0.5/10 cm = 0.314 cm−1,

N = 4000 grid cells, Insulating boundaries.

Axisymmetric modes

The spectrum of eigenvalues for the axisymmetric case, m = 0, is shown in figure D.4. The

marginally stable eigenmode is shown in Figure D.5. The mode found here is a match to

that shown in Figure 2(b) of Goodman and Ji [2002].

The unstable mode has a kr such that a half-wavelength of the mode spans the gap be-

tween the two cylinders, with boundary layers at the interfaces with the cylinder walls. The

other, damped modes of the system are modes with increasing kr as they are increasingly

damped. A few examples of the damped eigenmodes are shown in Figure D.6.

Nonaxisymmetric modes

It is also possible to examine nonaxisymmetric eigenmodes with these parameters. The

spectrum of eigenvalues for m = 1 is shown in Figure D.7. The nonaxisymmetric modes

in this case are all damped. Typical eigenmodes of this problem are shown in Figure D.8.

The velocity components of these eigenmodes have a relatively large kr and are confined in

an envelope localized at some radius. The oscillation frequency −Im{γ} is Doppler shifted



186

−80 −70 −60 −50 −40 −30 −20 −10 0 10
Re[γ] [1/s]

−10

−5

0

5

10

-I
m

[γ
] 

[1
/s

]

Figure D.4: Spectrum of 1000 eigenvalues for axisymmetric MRI problem. Eigenvalue with
a slightly positive growth rate and zero frequency corresponds to the marginally unstable
MRI mode.
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Figure D.5: Marginally unstable axisymmetric MRI mode. Compare to Figure 2(b)
from Goodman and Ji [2002].

by the rotation frequency at that radius. The magnetic components have a larger length

scale, and often have tails that extend far beyond the localized velocity fluctuations.

D.7.2 Basic waves in narrow-gap limit

With a very narrow gap, such that r1 ≫ r2 − r1, the effects of the curvature terms in the

linearized equations can be neglected (kr ≫ 1/r). In this case, a local dispersion relation

can be derived, as in the axisymmetric dispersion relation derived in Ji et al. [2001]:

[

(γ + νk2)(γ + ηk2) + (kzvA)2
]2 k2

k2
z

+ κ2(γ + ηk2)2 +
∂Ω2

∂lnr
(kzvA)2 = 0, (D.68)

where the epicyclic frequency κ is defined by κ2 = (1/r3)∂(r4Ω2)/∂r = 4Ω2 + ∂Ω2/∂ ln r

and k is the total wavenumber, k2 = k2
z + k2

r . (Note that this definition of k in the local

dispersion relation is different from that used elsewhere throughout this chapter, where

k = kz and the modes have arbitrary radial dependence.)
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Figure D.6: Typical damped modes of the axisymmetric MRI problem. The modes fill the
space between the two cylinders with different values of kr.
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Figure D.8: Typical damped nonaxisymmetric modes for the MRI problem. Modes have a
relatively large kr and are confined to an envelope localized to a particular radius.
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The lowest-order effects of a nonaxisymmetric correction to this dispersion relation are

a Doppler shift to the frequency (γ → γ − imΩ) and an additional contribution to the

wavenumber k2 → k2
r + k2

z +m2/r2. We can compare the behavior of eigenmodes in this

narrow-gap limit to the local dispersion relation. We do this below for two of the basic

waves of rotating MHD systems: Alvén waves and inertial waves.

Alfvén waves with Pm = 1

Eigenvalues and eigenmodes were calculated in the narrow-gap limit for the case with an

applied magnetic field but no rotation with the following parameters:

Ω1 = 0 rpm = 0 rad/s, ν = 1.0 × 10−4 cm2/s,

Ω2 = 0 rpm = 0 rad/s, η = 1.0 × 10−4 cm2/s,

r1 = 20.2 cm, ρ = 6.36 g/cm3,

r2 = 20.3 cm, B0 = 1000 Gauss,

k = 2πn/h = 2π ∗ 500/100 cm = 31.4 cm−1, m = 1,

N = 2000 grid cells, Conducting boundaries.

The eigenmodes of this system are Alfvén waves with varying values of kr are shown in

Figure D.9.

The dispersion relation with no rotation in the narrow gap limit reduces to

γ = −(νk2 + ηk2) ± i

√

k2
zB

2
0

4πρ
− 1

4
(νk2 − ηk2)2. (D.69)

Because Pm = ν/η = 1 here, the second term under the square root is zero. To compare

the calculated eigenvalues to this dispersion relation, the value of kr must be determined,

with all other parameters having already been specified as inputs to the calculation. kr is

found by finding the peak in the spatial Fourier spectrum of the eigenmode between the

two cylindrical walls. The dispersion relation of the computed eigenvalues and eigenmodes

is compared to the local dispersion relation in Figure D.10.
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Figure D.9: Alfvén wave eigenmodes with Pm = 1 in a narrow gap. Modes with several
different values of kr are shown. Note the two primary polarizations of the wave: one with
perturbations primarily in vr and br, and the other with perturbations primarily in vz and
bz.



193

1000 2000 3000 4000 5000
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

R
e
{
γ
}

1e3

1000 2000 3000 4000 5000
kr  [1/cm]

−4

−3

−2

−1

0

1

2

3

4

Im
{
γ
}

1e3
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indicate the calculated eigenvalues, with kr determined from finding the peak in the spatial
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Alfvén waves with Pm = 0.1

The same problem in the previous case was evaluated with all parameters the same except

for different values of ν and η to yield Pm = ν/η = 0.1:

Ω1 = 0 rpm = 0 rad/s, ν = 3.4 × 10−2 cm2/s,

Ω2 = 0 rpm = 0 rad/s, η = 3.4 × 10−3 cm2/s,

r1 = 20.2 cm, ρ = 6.36 g/cm3,

r2 = 20.3 cm, B0 = 1000 Gauss,

k = 2πn/h = 2π ∗ 500/100 cm = 31.4 cm−1, m = 1,

N = 2000 grid cells, Conducting boundaries.

Because the second term under the square root of Equation D.69 is no longer zero, Im{γ}

goes to zero for a sufficiently large kr. The dispersion relation of the computed eigenmodes

was calculated as before, and is shown in Figure D.11.

Inertial waves

Eigenvalues and eigenmodes were calculated in the narrow-gap limit for the case with back-

ground solid body rotation but no background magnetic field with the following parameters:

Ω1 = 400 rpm = 41.9 rad/s, ν = 1.0 × 10−5 cm2/s,

Ω2 = 400 rpm = 41.9 rad/s, η = 1.0 × 10−5 cm2/s,

r1 = 20.2 cm, ρ = 6.36 g/cm3,

r2 = 20.3 cm, B0 = 0 Gauss,

k = 2πn/h = 2π ∗ 50000/100 cm = 3141.6 cm−1, m = 1,

N = 2000 grid cells, Conducting boundaries.

The eigenmodes of this system are inertial waves with varying values of kr and are shown

in Figure D.12.
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Figure D.11: Dispersion relation of Alfvén waves with Pm = 0.1 in a narrow gap. The
dots indicate the calculated eigenvalues, with kr determined from finding the peak in the
spatial Fourier spectrum for each eigenmode. The lines indicate the solution to the local
dispersion relation. Note that there is some deviation of the calculated eigenvalues from
the local dispersion relation, most likely due to errors in determining kr.
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The dispersion relation with no applied field in the narrow gap limit reduces to

γ = νk2 − imΩ ± i
2Ωkz

k
, (D.70)

where the −imΩ term represents the Doppler shift of nonaxisymmetric modes.

As before, kr for each mode was found from the peak in the spatial Fourier transform

so that the calculated eigenvalues could be compared to the local dispersion relation. The

result is shown in Figure D.13.
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Figure D.12: Inertial wave eigenmodes in a narrow gap with several different values of kr.
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Figure D.13: Dispersion relation of inertial waves in a narrow gap. The dots indicate the
calculated eigenvalues, with kr determined from finding the peak in the spatial Fourier
spectrum for each eigenmode. The black lines indicate the solution to the local dispersion
relation. Note that there is some deviation of the calculated eigenvalues from the local
dispersion relation because of errors in calculating kr. Note also the branch at Im{γ} = 0,
which are zero-frequency Alfvén waves that are completely decoupled from the inertial waves
since B0 = 0.



Appendix E

Free shear layer instabilities in the

PROMISE-2 geometry

In this appendix, we give a shortened treatment of linear stability of a free shear layer

in the geometry of the PROMISE-2 experiment Stefani et al. [2009], with r1 = 4.0 cm,

r2 = 8.0 cm, and rl = 5.6 cm. The model shear layer rotation profiles in this geometry

are shown in Figure E.1. The PROMISE-2 experiment was designed for much lower speed

operation than the MRI experiment, with a maximum Ω1 = 10 rpm. Calculations will

be performed assuming that only an axial field is applied, even though PROMISE has the

capability of applying an azimuthal field, as well. These calculations are identical to those

performed in Chapter 6, so we will not reproduce much of the discussion of the physics, and

will instead show the results and provide some commentary on the comparison between the

two geometries.

E.1 Kelvin-Helmholtz instability

The calculations of the Kelvin-Helmholtz instability were performed with the following

parameters:

199



200

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
r [cm]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ω
 [

ra
d
/s

]

Ω1  = 10 rpm = 1.05 rad/s Ideal couette
wl: 2 cm

wl: 1 cm

wl: 0.5 cm

wl: 0.1 cm

Figure E.1: Profiles of Ω for linear stability calculations of a free shear layer in the
PROMISE-2 geometry

Ω1 = 0.05 − 10 rpm = 5.24 × 10−3 − 1.05 rad/s, ν = 2.98 × 10−3 cm2/s,

Ω2 = 0 rpm = 0 rad/s, η = 2.57 × 103 cm2/s,

r1 = 4.0 cm, ρ = 6.36 g/cm3,

r2 = 8.0 cm, B0 = 0 Gauss,

rl = 5.6 cm, wl = 0.05 − 2 cm,

k = 0 cm−1, m = 0 − 8,

N = 8000 grid cells, Conducting boundaries.

Growth rates for the Kelvin-Helmholtz instability for varying wl are shown in Figure E.2.

Note that in this geometry, the m = 1 and m = 2 modes are destabilized almost simulta-

neously, suggesting that the eigenmode at marginal stability at higher rotation rates may

be m = 2 or may have a strong m = 2 component. Also note that viscous stabilization is

important for Ω1 < 1 rpm, demonstrated further in Figure E.3. PROMISE-2 often runs

with Ω1 < 1 rpm. The eigenmodes at marginal stability at these slower rotation rates would
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Figure E.2: Unstable growth rates of the Kelvin-Helmholtz instability with different wl in
the PROMISE-2 geometry, all with Ω2 = 0. Top left: Ω1 = 10 rpm. Top right: Ω1 = 1 rpm.
Bottom: Ω1 = 0.25 rpm.

most likely have a larger m, since the lower-m modes may be viscously stabilized.

The marginal eigenmodes, with wl = 1.5 cm, are shown for m = 1 and m = 2 in

Figure E.4. They look very similar to the marginal eigenmodes in the Princeton MRI

experiment geometry, with 2 or 4 symmetrical circulation cells filling the radial gap.
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Figure E.3: Growth rate of the Kelvin-Helmholtz versus Ω1 in the PROMISE-2 geometry
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Figure E.4: Marginal eigenmodes of the Kelvin-Helmholtz instability in the PROMISE-2
geometry with wl = 1.5 cm and Ω1 = 10 rpm. Top: m = 1. Bottom: m = 2. The
velocity scales are the same for each pair of vr and vθ, allowing comparisons of the relative
magnitude of each velocity component.
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E.2 Centrifugal instability

Calculations of the centrifugal instability were performed with the following parameters:

Ω1 = 0.1 − 20 rpm = 1.05 × 10−2 − 2.09 rad/s, ν = 2.98 × 10−3 cm2/s,

Ω2 = 0 − 30 rpm = 0 − 3.14 rad/s, η = 2.57 × 103 cm2/s,

r1 = 4.0 cm, ρ = 6.36 g/cm3,

r2 = 8.0 cm, B0 = 0 − 2000 Gauss,

rl = 5.6 cm, wl = 0.1, 0.5, 1 cm,

k = 0.001 − 1000 cm−1, m = 0,

N = 8000 grid cells, Conducting boundaries.

As in the MRI geometry, the addition of B0 or nonzero Ω2 for constant Ω1 − Ω2 leads to

damping of the centrifugal instability, as shown in Figure E.5. As before, these curves are

parametrized by a kpeak and peak Re{γ}, giving the coordinates of the peak of the growth

rate curve, as well as a kmax which gives the largest unstable k. These parameters are

plotted versus B0 for various Ω1 in Figure E.6, and versus Ω2 for various ∆Ω in Figure E.7.

As in the case of the Princeton MRI experiment geometry, the transitions occur at a

constant Λ in the case with B0 6= 0 and Ro in the case with Ω2 6= 0. The scaling of

the geometrical dependence discussed in Chapter 6 leads to roughly the same Ω2,crit and

B0,crit in the PROMISE-2 geometry as in the Princeton MRI experiment geometry, since the

effects due to the change in rl and the change in the required wl for the Kelvin-Helmholtz

instability nearly cancel each other.

E.3 Summary

If provisions could be made to measure the azimuthal and/or radial velocity, we would

expect the Kelvin-Helmholtz instability to be measurable in the PROMISE-2 experiment

with Ω1 = 10 rpm, Ω2 = 0, and an axial magnetic field larger than B0,crit ∼ 600 Gauss. As
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Figure E.6: Plots of kpeak, kmax and peak Re{γ} versus B0 for various values of Ω1 in the
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the k values, and the second plot showing the growth rate. The vertical lines are drawn at
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in the Princeton MRI experiment, we would also expect vigorous instability in the cyclonic

regime, with Ω1 = 0.

At the fastest Ω1 for the PROMISE-2 experiment, we would expect the mode at marginal

stability to have an m = 1 or m = 2 structure, or possibly a combination of the two, since

both are destabilized nearly simultaneously with decreasing shear layer width. The faster

growth rate of the m = 2 mode in the unstable regime may make its appearance more likely.

At slower rotation rates, larger-m modes may always be the most unstable because of the

viscous stabilization of the smaller-m modes.

It would be interesting to see the effect on the appearance of the Kelvin-Helmholtz

instability of the relatively large height of the PROMISE-2 experiment compared to the

Princeton MRI experiment, in particular whether axial variation of the eigenmode could

be observed in that geometry. It might also be interesting to observe the effect of the az-

imuthal magnetic field that is available in PROMISE-2 on the instability. In this case, we

would expect significant damping of the Kelvin-Helmholtz instability because of its non-

axisymmetric structure. Perhaps a regime could be accessed in which both the centrifugal

instability and the Kelvin-Helmholtz instability are damped by the applied magnetic field,

allowing very deep penetration of the free shear layer even for a modest Λ.
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sults of a modified PROMISE experiment. Astron. Nachr., 329(7):652–658, 2008. DOI:

10.1002/asna.200811023.

F. Stefani, G. Gerbeth, T. Gundrum, R. Hollerbach, J. Priede, G. Rüdiger, and J. Szklarski.
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