
nature communications

Article https://doi.org/10.1038/s41467-022-32278-0

Identification of a non-axisymmetric mode
in laboratory experiments searching for
standard magnetorotational instability
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The standard magnetorotational instability (SMRI) is a promising mechanism
for turbulence and rapid accretion in astrophysical disks. It is a magnetohy-
drodynamic (MHD) instability that destabilizes otherwise hydrodynamically
stable disk flow. Due to its microscopic nature at astronomical distances and
stringent requirements in laboratory experiments, SMRI has remained
unconfirmed since its proposal, despite its astrophysical importance. Here we
report a nonaxisymmetric MHD instability in a modified Taylor-Couette
experiment. To search for SMRI, a uniformmagnetic field is imposed along the
rotation axis of a swirling liquid-metal flow. The instability initially grows
exponentially, becoming prominent only for sufficient flow shear and mod-
erate magnetic field. These conditions for instability are qualitatively con-
sistent with SMRI, but atmagnetic Reynolds numbers below the predictions of
linear analyses with periodic axial boundaries. Three-dimensional numerical
simulations, however, reproduce the observed instability, indicating that it
grows linearly from the primary axisymmetric flow modified by the applied
magnetic field.

Astronomical accretion disks consist of gas or plasma orbiting a
compact massive object such as a black hole or protostar, and slowly
spiraling inward (accreting) by surrendering orbital angular momen-
tum to other material in the disk or in an outflow1. Driven by gravity,
the angular velocity profile in a Keplerian flow has a decaying power-
law dependence on the cylindrical radius, Ω(r)∝ r−q, with q = 3/2.
According to Rayleigh’s criterion2, purely hydrodynamic rotation
profiles with 0 < q < 2 (“quasi-Keplerian”) are linearly stable to axi-
symmetric perturbations, and apparently linearly and nonlinearly
stable nonaxisymmetrically as well3,4, at least without complications
such as thermal effects or interactions with dust5. Therefore, hydro-
dynamicmodes cannot excite the turbulence required to explain rapid
accretion6,7. The standard magnetorotational instability (SMRI)—a
unique magnetohydrodynamic (MHD) instability in a conducting
Keplerian flow in the presence of an axial magnetic field—is thus
regarded as one of themost promisingmechanisms for unraveling the

origin of turbulence in accretion disks3,8,9, apart from possible rapid
accretion due to laminar magnetized winds10. Unlike the SMRI that
requires only the magnetic field parallel to the rotation axis, other
versions of MRI involving azimuthal fields have been found and
experimentally demonstrated: helical MRI (HMRI) and azimuthal MRI
(AMRI)11,12. While their existence is intriguing, these instabilities are
inductionless, incapable of generating and sustaining the needed
magnetic field. They also require steeper-than-Keplerian rotation
profiles (q > 3/2), hence are unlikely to be relevant to most astro-
physical disks13.

Unlike other fundamental plasma processes such as Alfvén
waves14–16 and magnetic reconnection17–19 which have been detected
and studied in space and in the laboratory, SMRI remains unconfirmed
long after its proposal8,20,21 other than its analogs22–25, despite its
widespread applications in modeling including recent black hole
imaging26. Due to its microscopic nature and the limitations of
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telescope resolution, SMRI cannot be captured by current astronom-
ical observations. SMRI is also proposed27,28 to be realized in a terres-
trial Taylor–Couette experiment, which consists of two independently
rotating coaxial cylinders that viscously drive the liquidmetal between
them to a quasi-Keplerian flow with a magnetic Reynolds number lar-
ger than unity. However, as the axial boundaries (endcaps) of a con-
ventional Taylor–Couette cell are bound either to the inner cylinder or
to the outer cylinder, their motions do not match the viscously driven
flow profile in the bulk. Ekman circulation is thus excited, entailing ∂Ω/
∂z ≠0 along the axial z-direction and some turbulence that prevent the
detection of SMRI29,30.

Here, we report a laboratory experiment searching for SMRI using
a specially designed Taylor–Couette cell. The cell’s copper-made
endcaps can rotate independently31, which provide a quiescent quasi-
Keplerian flow in the bulk region despite that the shear Reynolds
number exceeds a million3,4,32, as well as their inductive coupling with
the fluid33–36. Through magnetic field measurements, we identify a
global MHD instability occupying the entire bulk region, which exists
only at sufficiently large rotation rates and intermediatemagnetic field
strengths, in line with typical requirements for SMRI from linear the-
ories. The instability is nonaxisymmetric with a dominant m = 1 mode
in the azimuthal direction, which spontaneously breaks the rotational
symmetry possessed by the system. Our numerical simulations
reproduce the experimentally observed instability and further reveal
that it develops from an axisymmetric base flow modified by the
applied magnetic field.

Results
We denote the radius of the inner and outer cylinders as r1 = 7.06 cm
and r2 = 20.3 cm, and their height asH = 28 cm. The aspect ratio of the
cell is thus Γ ≡H/(r2 − r1)≃ 2.1, which is deliberately designed to be
large to ensure the magnetic diffusion time is longer than the rota-
tion period and the Alfvén crossing time, and thus help excite
SMRI27,28. The upper and lower sealing endcaps are split into two rings
at r3≃ (r1 + r2)/2. The angular velocities of the inner cylinder, inner
rings, outer rings and outer cylinder are, respectively, Ω1, Ω3, Ω2 and
Ω2. The corresponding frequencies and their differences are denoted
as fi ≡Ωi/2π and fij ≡ (Ωi −Ωj)/2π, respectively. For all results descri-
bed here, Ω1:Ω2:Ω3 = 1: 0.19: 0.58, generating a shear flow similar to
what was studied previously36. A set of six copper coils provides a
uniform axial magnetic field Bz. The local radial magnetic field Br(t) is
measuredbyHall probes installed on the surface of the inner cylinder
at various azimuths and heights. Dimensionless measures of rotation
and field strength are the magnetic Reynolds number Rm= r21Ω1=η
and the Lehnert number B0 =Bz=ðr1Ω1

ffiffiffiffiffiffiffiffiffi

μ0ρ
p Þ, which are varied in the

ranges 0.5≲ Rm≲ 4.5 and 0.05≲ B0≲ 1.2, respectively. The magnetic
Prandtl number is Pm = ν/η = 1.2 × 10−6 for the working fluid GaInSn
eutectic alloy (galinstan). Here, μ0 is the vacuum permeability and ν,
η, and ρ are, respectively, the kinematic viscosity, magnetic diffu-
sivity and density of galinstan. The device spins for 2min (several
Ekman times) to ensure a relaxed hydrodynamic flow before the
introduction of Bz.

A representative time series of the imposed magnetic field Bz(t) is
shown in Fig. 1a, increasing from zero to 2100G in less than one sec-
ond. The corresponding Br(t) measured in the midplane is shown in
Fig. 1b, which first increases synchronouslywith Bz(t), then saturates to
a statistically stationary state. An intriguing finding is a strong oscil-
lation in Br(t), which emerges at t≃ 125.6 s and saturates after
t≃ 127.0 s. Such an instability appears to be global as it is well corre-
lated at different heights. Figure 1c shows the spectrogram of Br(t)
using a one-second moving window, where all frequencies are shifted
by − f1 relative to the lab frame. The transient power at low frequency
(f≲ 5Hz) isbelieved tobedue to amodificationof thebaseflowcaused
by the imposed magnetic field. As indicated by the horizontal lines,
energy of the instability appears between the machine-induced

frequencies f12 and f13, and has amaximum value at f≃ 17.5Hz. This is a
general feature of the instability at different Rm and B0, namely, its
frequency is between the rotation frequencies of the inner rings and
outer cylinder. We then define the normalized strength of the
instability as

χðtÞ=
Z 0:95f 12

1:05f 13

PBð f Þdf
" #

1
2

=hBz ðtÞi, ð1Þ

where PB(f) and 〈Bz(t)〉 are, respectively, the power spectrum of Br(t)
and the mean value of Bz(t) sampled in a moving one-second window.
As shownby the vertical line in Fig. 1d, themeasured χ(t) starts to grow
about 0.3 s after the imposition of Bz, and then saturates. Such a
growth-saturation process agrees well with the evolution of Br(t)
shown in Fig. 1b. The initial growth of χ(t) is well described by an
exponential, indicating linear instability27,28.

We also conduct three-dimensional (3D) numerical simulations
using the open-source SFEMaNS code, which solves coupled Maxwell
and Navier–Stokes equations using spectral and finite-element
methods37. It contains 32 Fourier modes in the azimuthal direction.
Similar to the experiment, the entire simulation process consists of
two stages. In the first hydrodynamic stage, simulations are run to
reach a relaxed hydrodynamic state without the external magnetic
field, starting from an initial piecewise solid-body condition that fol-
lows the angular speed of the endcaps and two cylinders. In the second
MHD stage, the external magnetic field is imposed and lasts until a
saturated MHD state is achieved. The main difference between simu-
lation and experiment is the viscous Reynolds number Re= r21Ω1=ν,
which is on the order of 106 in the experiment but only 1000 in our
simulations. The relatively large viscosity (low Re) in simulation gives
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Fig. 1 | Characterization of the instability. a Time series of the imposedmagnetic
field Bz(t) at Rm= 3 and B0 = 0.2. b–d Corresponding time series of the measured
radial magnetic field Br(t) (b), the spectrogram of Br(t) (c) and the instability
amplitude χ(t) (d) in the midplane. The horizontal lines from top to bottom in (c)
represent f1, f12, and f13, respectively. The solid line in (d) shows an exponential fit,
χðtÞ ~ expðγtÞ to the data points with γ = 1.8 s−1. The vertical line through the four
panels indicates the time when the instability starts to grow.

Article https://doi.org/10.1038/s41467-022-32278-0

Nature Communications |         (2022) 13:4679 2



rise to thick residual Ekman layers at the endcaps, which drive non-
axisymmetric hydrodynamic modes in the bulk (see “Flow character-
ization in 3D simulation” in “Methods”). It was found numerically that
these modes’ amplitudes decrease with increasing Re38,39, so they are
undetected in the experiment. In the simulated radial magnetic field,
we also observe instability similar to that in the experiment. The
instability occupies the whole radial extent and rotates as a solid body
(see Supplementary Movie 1), which is distinct from the
Stewartson–Shercliff layer (SSL) instability, as the latter concentrates
near r≃ r3 and has a spiral structure35,40–42. Due to the residual hydro-
dynamic modes, our 3D simulation cannot always reproduce the
exponential growth of the instability seen in the experiment. None-
theless, when only a singlem = 1 mode is allowed in an otherwise two-
dimensional (2D) simulation, an exponential growth is observedwith a
growth rate behaving similar to that in the experiment (see below).

The normalized amplitude of the mth azimuthal Fourier mode
〈∣am∣〉/Bz averaged in the saturated MHD state are shown in Fig. 2a. For
Rm= 1, all the 〈∣am∣〉/Bz from the experiment are negligibly small and
thus the instability is absent. The 〈∣a2∣〉/Bz at Rm= 1 from simulation is
believed to be due to the residual hydrodynamic modes at low Re38,39.
For Rm ≳ 3, the experimental 〈∣a1∣〉/Bz dominates, indicating that the

instability is nonaxisymmetric and mainly at m = 1. Similar results are
also obtained from simulations, namely, the nonaxisymmetric ampli-
tudes increase for Rm ≳ 3, andm = 1 dominates for Rm ≳ 4. At the onset
of the instability (Rm= 3) in simulation, the m = 2 mode is the stron-
gest, which could result from the interaction between the instability
and the residual hydrodynamic modes.

Figure 2b shows a comparison between the phaseθ1(t) of them = 1
mode from experiment and simulation in the saturated MHD state. All
θ1(t) arewell described by linear functions, θ1(t)/(2π) = f0t (color-coded
lines), where f0 is the characteristic frequency of the m = 1 mode. At
Rm= 1, f0 = 5.4Hz in the experiment is different from f0 = 6.1Hz in the
simulation. This discrepancy is caused by the Re difference between
experiment and simulation,whichgives rise todifferent hydrodynamic
modes that are the main contributor to them = 1 mode at low Rm. For
Rm ≳ 3, on the other hand, f0 from experiment agrees well with that
from simulation, suggesting that the frequency of the instability is
insensitive to Re. The frequency f0 = 17.5 Hz for Rm= 3 from experi-
ment is also consistent with the characteristic frequency of the
instability seen in Fig. 1c.

A “bubble plot” of the instability strength in the Ω1-Bz plane is
shown in Fig. 3. The diameter of the experimental bubbles (black)
denotes χ from Eq. (1) with a typical time window of 10 s in the satu-
rated MHD state while their numerical counterpart (orange) follows
the time average of the standard deviation of Br among azimuths.
Overall agreement between experiment and simulation is excellent,
namely, the instability becomes particularly pronounced only for
Ω1 ≳ 1500 rpm (Rm ≳ 3) and 1800≲Bz≲ 2800G. The red curve shows
the boundary for SSL instability in the midplane, which is stable on its
left and unstable on its right. The SSL instability is nonaxisymmetric
and develops from a free SSL spanning the entire vertical extent
around r≃ r334,40,41 (see “Characterization of the Stewartson-Shercliff
layer instability” in “Methods”). In particular, the SSL instability is
inductionless and thus can be excited in the limit of small Rm. For
example, for Ω1≲ 1000 rpm (Rm≲ 2), larger bubbles appear on the
right of the red curve, indicating that the SSL instability is excited. On
the other hand, the large bubbles in the upper middle area are far to
the left of the red curve and require Ω1 ≳ 1500 rpm (Rm ≳ 3), implying
that the identified instability is distinct from the SSL instability. In the
presence of a weak magnetic field (Bz≲ 1200 G), the bubbles from
simulation are larger than their experimental counterpart. We believe
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Fig. 2 | Azimuthal structure of the instability. a Normalized mode amplitudes
〈∣am∣〉/Bz in the experiment (solid bars) and simulation (crosshatching bars), as a
function of azimuthal mode numberm for different values of Rm with a fixed
B0 = 0.2. Measurements weremade in themidplane of the inner cylinder. Error bars
show the standard deviation. b Time evolution of the phase θ1(t)/(2π) of the m = 1
mode in the corotating frame of the inner cylinder. The lines show a linear fit, θ1(t)/
(2π) = f0t, to the data points with f0 = 22.8Hz (black), f0 = 17.5 Hz (red), f0 = 6.1 Hz
(green) and f0 = 5.4Hz (blue).

Fig. 3 | Shear andmagneticfielddependenceof the instability.Bubbleplot of the
instability strength from experiments (black bubbles) and 3D simulations (orange
bubbles) in theΩ1-BzplanewithRm shownon the right. Thedata are obtained in the
midplane and at the inner cylinder surface. The red curve represents the boundary
for SSL instability. The straight lines show the contours of a constant B0. The black
bubble under the white star corresponds to the case shown in Fig. 1.
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that this is due to the residual hydrodynamic modes in these simula-
tions, for which a weak field acts as a passive tracer.

Discussion
The abovemeasurements reveal a globalMHD instability in amodified
liquid-metal Taylor–Couette experiment. The instability grows expo-
nentially and becomes particularly pronounced once the radial shear
rate is sufficiently large and the imposed axial magnetic field is mod-
erate, consistent with typical requirements for SMRI in this
system27,28,36,43. On the other hand, it is nonaxisymmetric with a domi-
nant m = 1 azimuthal structure, which contradicts the prediction of
linear theories for SMRI with an axial magnetic field in an ideal Couette
flow between infinitely long cylinders: the SMRI should be axisym-
metric at onset27,28. The instability also has minimum requirements for
rotation (Ω1 ≳ 1500 rpm) and magnetic field (Bz ≳ 1800G) smaller than
predictions for SMRI basedon localWentzel–Kramers–Brillouin (WKB)
analysis or global linear calculation (see “Linear theory predictions of
SMRI” in “Methods”), implying that either it is not SMRI or the linear
theories are not capable enough to describe our system without
including its closed geometry and complex boundary conditions.
Experiment and simulation generally agree as to the characteristic
frequency, azimuthal structure, and distribution of amplitudes in the
Ω1 − Bz plane. The instability is distinct from the hydrodynamic Ray-
leigh instability (see “Characterization of hydrodynamic Rayleigh
instability” in “Methods”) and the SSL instability, which are often pre-
sent and sometimes mistaken for SMRI in previous experiments44,45.
Even with conductive endcaps, our 3D simulation nonetheless shows
that the induced azimuthalmagnetic fieldBϕ is still less than 15% of the
applied axial magnetic field (see “Azimuthal magnetic field” in “Meth-
ods”). Furthermore, it is found that most Bϕ is mainly concentrated in
the region near the endcaps rather than the bulk region where the
observed instability is located. As a result, the instability is alsounlikely
to be the nonaxisymmetric AMRI or HMRI, which require a pure or
predominant azimuthal magnetic field46.

While we are currently unable to pinpoint the fundamental cause
for the observed instability, our "2-mode” simulations nonetheless
provide a phenomenological description of its generationmechanism:
it develops from an axisymmetric base flow modified by the applied
magnetic field. In these simulations, only m =0 and m = 1 modes are
kept, and all the m ≥2-mode amplitudes are set to zero. In the first
hydrodynamic stage, a 2D flow is relaxed to a steady state from an
initial piecewise solid-body rotation, where them = 0mode can evolve
freely and the amplitude of the m = 1 mode is set to a negligibly small
value (~ 10−20) at each time step.When an axialmagnetic field is applied
in the second MHD stage, both m = 0 and m = 1 modes can evolve
freely.

Figure 4a shows the time series of the dimensionless amplitudeA0

of them =0mode in the velocity field from the 2-mode simulations. As
separated by the vertical line, A0 (black curve) saturates at the end of
thefirst stage at tΩ1 = 400, indicating that a hydrodynamic steady state
is reached.When the axialfield is turnedon (B0 > 0), there is a transient
variation in A0, followed by a new MHD steady state. The red curve
shows a continuation of the hydrodynamic evolution (B0 = 0) for
comparison. Because the amplitude of the m = 1 mode is very small
(see Fig. 4b) in the simulation time span, there is no coupling between
the two modes in the second stage. The initial rapid variation of A0

after the impositionofmagneticfield is causedby themagnetizationof
the residual hydrodynamic modes36. It is found that under the influ-
ence of the imposed magnetic field, the A0 value in the final steady
state of the second stage is different from that in the relaxed hydro-
dynamic state of the first stage, indicating that the base flow is mod-
ified by the applied magnetic field36. Figure 4b shows the
corresponding time evolution of the amplitude A1 of the m = 1 mode.
As shown by the black curve, A1 in the first stage is negligibly small, as
expected. OnceA1 is allowed to evolve in the secondMHD stage, it first

rapidly increases to ~ 3 × 10−17 at tΩ1≃ 410 in all cases. Such an increase
is a numerical self-adjustment to adapt to the sudden change of mode
number, therefore is irrelevant to the physical flow dynamics. Similar
to the amplitude of the instability identified in the experiment shown
in Fig. 1d, A1 grows exponentially in the final steady state of the second
stage, A1 ~ e

γ0tΩ1 , with γ0 being the dimensionless growth rate. The
amplitude of the m = 1 mode in the magnetic field also has an expo-
nential growth with a growth rate the same as that in the velocity field.

As shown by black squares in Fig. 5a, the hydrodynamic case
(B0 = 0) in our 2-mode simulation has a growth rate of γ0 = 0.0175 > 0,
indicating that the m = 1 mode is unstable to the relaxed 2D hydro-
dynamic state in the first stage. This is as expected because non-
axisymmetric modes are found in the relaxed hydrodynamic state of
the 3D simulation. The value of γ0 at B0 = 0 thus can be taken as a
benchmark, and deviations from it in other B0 > 0 cases are caused by
MHDeffects. It is found that γ0 from simulation is notmonotonic inB0,
but rather is maximized at an intermediate field strength, as is char-
acteristic of the instability observed in our experiment. For compar-
ison, we also plot the corresponding γ0 from experiment, which is
determined by the growth of χ(t) at the beginning stage (t≲ 127 s) after
the external magnetic field is imposed (see Fig. 1d). Because non-
axisymmetric hydrodynamic modes are squeezed to regions adjacent
to the endcaps and thereby are absent in the bulk region of the
experiment, γ0 increases from zero with B0. Except for this difference,
the experiment agrees quite well with the simulation, including that γ0
has a non-monotonic dependence on B0 and becomes significantly
large for 0.15≲ B0≲0.3. Similarly, Fig. 5b shows that at fixed B0 = 0.2,
γ0 fromboth 2-mode simulations (black squares) and experiments (red
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circles) is largely enhanced for Rm ≳ 3, consistent with the amplitude
of the instability identified at saturation (see Fig. 3). Again, the positive
γ0 at Rm≲ 2 in the simulation is mainly caused by the residual
hydrodynamic modes, which are not present in the experiment and
thus γ0≃0. All these findings indicate that in the presence of suffi-
ciently large shear and a moderate axial magnetic field, the mean axi-
symmetric flow is driven into a new state at which nonaxisymmetric
modes become linearly unstable. This mechanism exists only in
bounded systems like our experiments and may not apply to a real
accretion disk, where the Kepler flow is hardly affected by instabilities
or turbulence in it.

Further investigations are needed to fully understand the repor-
ted instability, including its fundamental cause from first principles,
saturation mechanism, transition to turbulence, and responses to
different radial boundary conditions and geometric confinements.
Different components of the velocity and magnetic fields inside the
liquid-metal flow will be measured using Ultrasonic Doppler Veloci-
metry and Hall probe arrays, which help to better resolve its spatial
structures and relationship to local angularmomentum transport, and
thus further determine its identity. It is also worth examining its pos-
sible connection to thenonaxisymmetric SMRI in a narrow-gap annular
cylinder observed recently by an incompressible linear theory47. The
possibility of nonaxisymmetric global instabilities due to unstable
Alfvén continuum will also be investigated48. Numerical simulations

with a higher Re closer to the experimental setup should be explored,
perhaps with an entropy-viscosity method in SFEMaNS49.

Methods
Taylor–Couette cell
Details about the device used in this experiment have been described
elsewhere34, and here we only mention some key points. As shown in
Fig. 6, the inner cylinder is composed of five Delrin rings (green) and
two stainless steel caps (cyan) that compress them axially. The upper
(lower) stainless steel caphas a 1 cmprotruding rimon its top (bottom)
side, respectively, whichhelp to further reduce the Ekmancirculation4.
The outer cylinder ismade of stainless steel. The endcaps between the
two cylinders are made of 1-inch-thick silver-plated copper and split
into two rings at r3 = 13.5 cm. The upper and lower inner rings are
bound together, while the upper and lower outer rings are bound to
the outer cylinder. Driven by three independent motors, the inner
cylinder, inner rings, and outer-ring-bound outer cylinder can rotate
independently.

This Taylor–Couette cell has three unique features for the
experiment reported here. First, the gap between the inner and outer
cylinders is purposelymadewide, which corresponds to a small aspect
ratio Γ that helps to excite the SMRI according to theoretical
predictions28. Second, the independently rotatable endcap rings
reduce Ekman circulation that could destabilize the desired quasi-
Keplerian profile3,31. For a conventional Taylor–Couette cell, the end-
caps are either bound to the inner cylinder or to the outer cylinder,
which leads to a boundary condition different from the flow profile in
the bulk. As a result, the Ekman circulation is inevitably excited and
highly disturbs the bulk flow 3,29, which likely overwhelms signals from
the SMRI. In our cell, the inner rings rotate at anangular speedbetween
that of the inner andouter cylinders, thereby significantly reducing the
velocity discontinuity at the endcap. Consequently, the Ekman circu-
lation in our cell is significantly reduced, allowing the flow in the bulk
to approach a quasi-Keplerian profile3,4,32,50. Finally, the conducting
copper endcaps significantly enlarge the magnetic stress within the
boundary layer attached to them, which reinforces the differential
rotation in the bulk flow33–36.

Measurement of local magnetic field
The local magnetic field is measured by high-precision Hall probes
(Allegro MicroSystems, A1308 series) with an accuracy of 0.5 G. A Hall
probe is a device whose output voltage is directly proportional to the
magnetic field through it. As shown by arrows in Fig. 7, the Hall probes
are mounted at the surface of the three Delrin rings in the middle and
orientated outwards to measure the radial magnetic field Br. Six Hall
probes (red arrows) are placed in the upper 1/4 plane (z = 7 cm). Six
Hall probes (blue arrows) are placed in the midplane (z =0 cm) with a
same azimuthal distribution. One probe (green arrow) is placed in the
lower 1/4 plane (z = −7 cm). An Arduino-based system containing
analog-to-digital converter (ADC) chips and amicro SD card is used to
measure and record the voltage signals from Hall probes with a sam-
pling rate ~ 175Hz. The Arduino system is placed in a container along
with a 9 V battery that powers it and the Hall probes. This container is
bound on top of the inner cylinder and thus corotates with it.

Characterization of nonaxisymmetric modes
We fit the time series of the radial magnetic field at different azimuths
Br(θ, t) to the azimuthal Fourier series,

Brðθ,tÞ=a0ðtÞ+ ∑
N

m= 1
amðtÞ cosðmθ+θmðtÞÞ, ð2Þ

where a0(t), am(t), and θm(t) are fitting parameters. In Eq. (2), the
absolute value ∣a0(t)∣ describes the amplitude of the axisymmetric
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Fig. 5 | Comparison of the m = 1 mode growth rate in simulation and experi-
ment. a Normalized growth rate γ0 of them = 1 mode from the 2-mode simulation
(black squares) and the experiment (red circles and blue triangles), as a function of
B0 at a fixed Rm. b Corresponding γ0 as a function of Rm at fixed B0 = 0.2.
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mode, while ∣am(t)∣ and θm(t) describe the amplitude and phase of the
mth azimuthal mode. Since there are only six sensors in the midplane,
we set N = 2 for data from the experiment, which leaves residuals an
order ofmagnitude smaller than the smallest mode amplitude. For the
simulations, we adopt N = 10, and the amplitude of the residuals rela-
tive to Bz is less than 10−5. Before fitting, a bandpass filter with a pass-
band 1.05f13 ≤ f ≤ 0.95f12 is applied to the experimental data in order
to remove themechanical signals (Fig. 1c). Supplementary Fig. 1 shows
an example of the measured radial magnetic field variations as a
function of azimuth angle θ from the experiment (Supplementary
Fig. 1a) and simulation (Supplementary Fig. 1b). As shown by the solid
lines, the data points are well described by Eq. (2) with N = 2 for
experiment and N = 10 for simulation.

Linear theory predictions of SMRI
The axisymmetric (m = 0) SMRI in our system has been extensively
studied by local Wentzel–Kramers–Brillouin (WKB) analysis27 and
global linear analysis28. Bothmethods assumenochange in baseflow in
the axial direction, therefore donot include the conducting andno-slip
boundary conditions in real experiments and nonlinear simulations.
The global linear analysis assumes that the base flow has a Couette
profile. The base flow shear in theWKBmethod is the geometric mean
of theCouetteflow shears of the inner andouter cylinders. As shown in
Fig. 8, predictions of m =0 SMRI from WKB method (blue curve) and
global linear analysis (green curve) are very similar, both requiring
Bz ≳ 5000G and Ω1 ≳ 4500 rpm (Rm ≳ 9). This is higher than the para-
meter space explored in current experiments and simulations, as
shown by the bubbles, concentrated in the region of Bz≲ 5000G and

Ω1≲ 2500 rpm (Rm≲ 5). In particular, as shown by the magenta curve,
the prediction for the m = 1 SMRI from global linear analysis requires
even higher flow shear (Ω1 ≳ 12,000 rpm or equivalently Rm≳ 24) and
magnetic field strength (Bz ≳ 18,000G).

Characterization of the Stewartson–Shercliff layer instability
As shown in Fig. 9, the Stewartson–Shercliff layer (SSL) is a local free
shear layer with q > 2 that originates from the junction of the inner and
outer rings, where substantial shear occurs due to velocity dis-
continuities. The flow in SSL is Rayleigh and Kelvin–Helmholtz
unstable, entailing nonaxisymmetric modes. For a fixed shear (Rm),
the vertical extent of the upper and lower SSLs monotonically
increases with the applied magnetic field strength, until they merge in
the midplane. It has been shown that for a “split” configuration with
Ω3 =Ω1 and insulating endcaps, the two SSLs reach the midplane once
the Elsasser number

Λ=
B2
z

μ0ρηðΩ3 �Ω2Þ
ð3Þ

is greater than unity, causes nonaxisymmetric fluctuations there40,41.
Because the SSL is inductionless, Eq. (3) is valid in the small Rm limit40.
Despite the use of conductive copper endcaps and different rotation
speed ratios in our experiments, we find Eq. (3) works remarkably well
for the onset of SSL instability in themidplane with Rm≲ 2 (see Fig. 3).
At the same time, our simulation also shows that the two SSLs reach
themidplane only for Λ ≳ 1.6 for all Rm values studied here, consistent
with experimental results. For example, as shown in Fig. 9, at Rm=4
the two SSLs merge in the midplane only for B0 ≳0.4, which corre-
sponds to Λ ≳ 1.64.

Characterization of hydrodynamic Rayleigh instability
To excite the hydrodynamic Rayleigh instability, an angular velocity
ratio Ω1 : Ω3 : Ω2 = 1 : 0.507 : 0.05 called Rayleigh unstable config-
uration is adopted, as Rayleigh’s criteria demands Ω2=Ω1 ≤ r21 =r

2
2 ’

0:12 for theRayleigh instability2. The valueofΩ3 is chosen such that the
Ekman circulation is still suppressed. In the experiment, a weak Bz
acting as passive tracers to the hydrodynamic flow is imposed, and we
use the measured Br(t) to characterize the hydrodynamic instability.
Similar to the procedure discussed in the main text, a relaxed hydro-
dynamic flow is achieved before the imposition of Bz.

Fig. 6 | Sketch of the Taylor–Couette cell used in the experiment. The cell has
three independently rotatable components: the inner cylinder (Ω1), outer-ring-
bound outer cylinder (Ω2), and upper/lower inner rings (Ω3). This plot was created
by the authors and previously published34.

Fig. 7 | Arrangement of Hall probes at the inner cylinder surface. The color-
coded arrows represent the position of Hall probes in the lower (green), middle
(blue), and upper (red) horizontal planes. The numbers represent the azimuth
difference between two adjacent probes.
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Supplementary Fig. 2a shows the measured normalized power
spectrum PBð f Þ=B2

z of Br(t) at the angular velocity ratio used in the
main text. The data are obtained in the frame corotating with the inner
cylinder. The vertical lines indicated the machine-induced frequency,
at which the power is irrelevant to the flow dynamics. Because the
imposed magnetic field is weak, MHD effects are minute and thereby
themeasured Br(t) represents hydrodynamic properties of the flow. As
expected, the power over the whole frequency range is small, indi-
cating that the flow is hydrodynamically stable. Supplementary Fig. 2b
shows the measured power spectrum at the Rayleigh unstable

configuration. Compared with Supplementary Fig. 2a, the power
spectrum in Supplementary Fig. 2b has significant power at f/f1 ≲ 0.2.
Such a low-frequency power is believed to be from the hydrodynamic
Rayleigh instability, which has a frequency spectrum distinct from the
instability (0.42≲ f/f1≲0.81) discussed in the main text.

Using Eq. (2), mode decomposition of hydrodynamic Rayleigh
instability in the azimuthal direction is also performed. Supplementary
Fig. 3 shows the measured normalized mode amplitude 〈∣am∣〉/Bz as a
function ofmode numberm. Beforefitting, we applied a low-pass filter
with a cutoff frequency 0.2f1 to the measured Br(t) at different azi-
muths. The discretization of ADC chips gives rise to an accuracy of
0.5 G for the measured Br(t), which is about 0.1% of the imposed Bz in
experiments with Rayleigh unstable configuration. Segments with a
variation less than 0.5 G in the filtered Br(t) are thus inaccurate and
discarded. Compared with modes of instability shown in Fig. 2a, there
are three main differences for the azimuthal modes of the hydro-
dynamic Rayleigh instability. First, the overall mode amplitudes of the
hydrodynamic instability are much smaller, indicating that at least its
time-varying part is quite weak. Second, unlike the instability reported
in the main text that only appears for Rm≳ 3, modes of hydrodynamic
Rayleigh instability at different Rm have a similar amplitude. Finally,
the dominant mode of the hydrodynamic Rayleigh instability ism =0,
in contrast to the instability reported in the main text that has a
dominant m = 1 mode. This is consistent with the typical features of
hydrodynamic Rayleigh instability in a Taylor–Couette flow, in which it
has an evolution from axisymmetric to nonaxisymmetric51,52. All these
differences further confirm that the instability reported in the main
text is unlikely to be the hydrodynamic Rayleigh instability.

Numerical methods and simulation setup
The numerical code used in the simulationhas been described in detail
elsewhere33,35,36, and only some key points are mentioned here. As in
the experiment, a cylindrical coordinate system is adopted in our
three-dimensional (3D) simulation. The origin is set at the geometric
center of the Taylor–Couette cell. Unit vectors in the radial, azimuthal
and vertical directions are denoted by er, eθ, and ez. In the simulation,
we set r2/r1 = 3, r3/r1 = 2,H/r1 = 4 and the radius of the inner cylinder rim

Fig. 9 | Characterization offlow shear. Shear profile q − 2 from 3D simulations at fixed Rm=4 and different values of B0 and Λ: (a) B0 =Λ =0 (hydrodynamic), (b) B0 = 0.2
and Λ =0.41, (c) B0 = 0.4 and Λ = 1.64. Calculations are based on time and azimuthal averages in the hydrodynamic or MHD steady state.

Fig. 8 | Comparison with linear theory predictions for SMRI. Bubble plot of the
instability strength from experiments (black bubbles) and 3D simulations (orange
bubbles) in the Ω1-Bz plane with Rm shown on the right. The data are the same as
those in Fig. 3. The blue curve represents the boundary of them =0 SMRI from the
WKB analysis, which is unstable in the parameter space it encloses. The green and
magenta curves represent the boundaries of the m =0 and m = 1 SMRI from the
global linear analysis, respectively. The red line represents Λ = 1 using Eq. (3).
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rrim=r1 = 1:15. The length, time, velocity, magnetic field and electrical
conductivity are normalized, respectively, by r1, Ω

�1
1 , Ω1r1, Ω1r1

ffiffiffiffiffiffiffiffiffi

μ0ρ
p

and σGa, where σGa is the electrical conductivity of galinstan. In order to
mimic the experiment, the whole volume is divided into three coupled
domains, including a fluid domain for galinstan, a solid domain for
endcaps and a spherical vacuum domain surrounding them.

Supplementary Fig. 4a shows the mesh allocation in a quarter of
the meridional plane, in which meshes with different colors belong to
different domains. The fluid domain has a mesh resolution of
100 × 200 triangular cells. The governing dimensionless equations are
the resistive MHD equation for an incompressible fluid, with

∂~u
∂~t

+ ~u � ~∇~u = � ~∇~p+
1
Re

~∇
2
~u + ð~∇× ~BÞ× ~B,

∂~B
∂~t

= ~∇× ð~u × ~BÞ+ 1
~σRm

~∇
2~B,

~∇ � ~u =0,

ð4Þ

where ~u, ~p, ~B and ~σ = 1 (Rm = Ω1r
2
1σGaμ0) are the dimensionless

velocity, pressure, magnetic field, and electrical conductivity in the
fluid domain, respectively.

As shown by Supplementary Fig. 4b which is an enlarged portion
of Supplementary Fig. 4a, the solid domain is further divided into two
sub-domains with one for the stainless steel rim of the inner cylinder
(yellow) and the other for the copper endcap (blue). In the solid
domain, only the induction equation in Eq. (4) for magnetic field is
evolved, where ~σ = 19:4 for copper and ~σ =0:468 for stainless steel,
respectively. The dimensionless linear velocity at the endcap bound-
aries is ~u =~reθ for 1 ≤ ~r ≤ 1:15, ~u=Ω3~r=Ω1eθ for 1:15 <~r ≤ 2 and
~u=Ω2~r=Ω1eθ for 2 <~r ≤ 3. Here ~r � r=r1 is the dimensionless radial
position.

The vacuum domain has a radius of 20r1. By introducing a scalar
potential for themagneticfieldwith ~B � ~∇ϕ, the governing equation in
the vacuum domain is

~∇
2
ϕ=0: ð5Þ

Equation (5) is a Laplace equation so its solution is uniquely deter-
mined by ϕ at the boundary of the domain. The boundary condi-
tions for Eqs. (4)–(5) are the following: No-slip boundary conditions
are applied at the fluid-solid interface; ~u= 1eθ at ~r = 1 and ~u=Ω2=Ω1eθ
at ~r =3 are adopted in the fluid domain with insulating boundary
conditions; The external magnetic field is introduced by setting the
scalar potential ϕ=B0~z at the outer boundary of the vacuum
domain. In simulation, the hydrodynamic Reynolds number is fixed
at Re � Ω1r

2
1 =ν = 1000, while the Rm and B0 are varied over their

experimentally accessible ranges. The angular speed ratio in
simulation is fixed at Ω1 : Ω3 : Ω2 = 1 : 0.58: 0.19, the same as the
experiment.

The 3D simulations presented here are more faithful to the cur-
rent experiment than our past numerical efforts. Some of the latter
were 2D and axisymmetric33,36, and therefore could not exhibit the
experimentally observed nonaxisymmetric modes. In one of our pre-
vious 3D simulations42, pseudovacuum boundary conditions were
adopted for the vertical boundaries, obviating the strong coupling
between the liquid-metal flow and conducting endcaps in the experi-
ment (at that time, the experiment had insulating endcaps). In the 3D
simulations of ref. 35, the external magnetic field was imposed at the
beginning of the first hydrodynamic stage, and the simulation only
lasted for a short period of time: long enough for the axisymmetric
mode to saturate but not for nonaxisymmetric modes to grow. We
have continued to run that simulation for a longer period of time and
found that eventually nonaxisymmetric modes became significant.
Comparedwith all our previous simulation, the simulation provided in

this work has the best consistency with our experiment. This includes
the 3D domains, the conducting boundary conditions and the way to
introduce the external magnetic field.

Flow characterization in 3D simulation
Figure 10 shows a representative radial velocity profile vr/(Ω1r1) in the
relaxed hydrodynamic state of 3D simulation. It is found that there are
nonaxisymmetric modes dominated by m = 2 in vr/(Ω1r1), which we
believe are the main cause of the positive growth rate of the m = 1
mode at B0 or low Rm in our 2-mode simulation (see Fig. 5). Similar
nonaxisymmetric structures are also found in the corresponding ver-
tical velocity profile. Such structures only exist in simulation with low
Re (Re= 1000), but are completely suppressed in our highRe (Re ~ 106)
experiments39. In addition, the frequencies of the nonaxisymmetric
hydrodynamic modes are also different from those of the instability
reported in the main text, indicating that the corresponding
mechanisms are different.

Supplementary Fig. 5a shows the azimuthally and vertically aver-
aged angular speed profile Ω(r) in the bulk region at Rm=6 and
B0 = 0.2. The origin of time (t =0) in these plots coincides with the
moment when themagnetic field is imposed in the secondMHD stage.
Three representative epochs are examined: tΩ1 = 0 corresponds to the
relaxed hydrodynamic state, tΩ1 = 30 corresponds to themomentwith
growing nonaxisymmetric MHD modes, and tΩ1 = 100 corresponds to
the saturated MHD state. Although the difference is small, the angular
speed profile is indeed modified by the imposed magnetic field. Sup-
plementary Fig. 5b shows the corresponding time evolution of q pro-
file, which also changes after applying the magnetic field, thus
confirming the modification of the base flow.

Azimuthal magnetic field
The rotating conductive endcaps drag the imposed magnetic field
lines that are static in the lab frame, inducing an azimuthal magnetic
field Bϕ in the liquid-metal flow. As shown in Supplementary Fig. 6,
the induced normalized azimuthal magnetic field Bϕ/Bz in our 3D
simulation is mainly concentrated in the region close to the end-
caps. This is as expected since the endcaps have the most influence
on the flow in contact with them. Due to the system’s reflection
symmetry about the midplane, Bϕ in the upper and lower half-
planes changes sign. Overall, Bϕ/Bz is small for all Rm and B0 studied
here, less than 0.15 in the region close to the endcap and less than
0.05 in the bulk region. Similar results were obtained for all Rm
values studied here.

Fig. 10 | Residual hydrodynamic modes in simulation. Simulated normalized
radial velocity profile vr/(Ω1r1) in the midplane. The red and blue regions represent
outward and inward flows, respectively.
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Data availability
Source data of plots in themain text are deposited in the DataSpace at
Princeton University that is available to the public via https://
dataspace.princeton.edu/handle/88435/dsp01x920g025r. All other
data that support the plots within this paper and other findings of this
study are available from the author upon reasonable request.
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