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The standard magnetorotational instability (SMRI) with a magnetic field component parallel to the
rotation axis is widely believed to be responsible for the fast accretion in astronomical disks. In
conventional base flows with a Keplerian profile or an ideal Couette profile, most studies focus on
axisymmetric SMRI, since excitation of nonaxisymmetric SMRI in such flows requires a magnetic
Reynolds number (Rm) more than an order of magnitude larger. Here, we report that, in a magnetized
Taylor-Couette flow, nonaxisymmetric SMRI with an azimuthal mode numberm ¼ 1 can be triggered by a
free-shear layer in the base flow at Rm≳ 1, the same threshold as for axisymmetric SMRI. Global linear
analysis reveals that the free-shear layer reduces the required Rm, possibly by introducing an extremum in
the vorticity of the base flow. Nonlinear simulations validate the results from linear analysis and confirm
that a novel instability recently discovered experimentally [Wang et al., Nat. Commun. 13, 4679 (2022)] is
the nonaxisymmetric m ¼ 1 SMRI. Our finding has astronomical implications as free-shear layers are
ubiquitous in celestial systems, such as the disk-star boundary layer, the solar tachocline, and the edge of
planet-opened gaps in protoplanetary disks.
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The magnetorotational instability (MRI), a linear mag-
netohydrodynamic (MHD) instability in a differentially
rotating conductive flow with a magnetic field, is thought
to be the main cause of turbulence that leads to outward
transport of angular momentum and inflow of mass (accre-
tion) in astronomical disks [1–5]. An MRI-active accretion
disk consists of partially or fully ionized and magnetized
plasma [6] orbiting a compact massive object such as a
black hole or protostar. Outside of the innermost stable
circular orbit, such flow has a Keplerian angular velocity
profile ΩðrÞ ∝ r−3=2, with r being the radial distance from
the central object. Among astrophysically relevant variants
of MRI, the “standardMRI” (SMRI) with an axial magnetic
field [2–4] is ofmost interest, due to its theoretical simplicity
and relative ease of experimentation compared to radial or
toroidal magnetic fields. SMRI is insensitive to radial
boundary conditions (BCs), which is particularly important
for accretion disks as the radial boundaries are generally
uncertain and uncontrolled. Given a finite magnetic diffu-
sivity η and an appropriate length scale L, SMRI requires a
magnetic Reynolds number Rm≡ΩL2=η≳ 1. It also
requires a moderate magnetic field: VA ≲ ΩL, where VA ¼
B=

ffiffiffiffiffiffiffi

μ0ρ
p

is the Alfvén speed based on the field strength B,
vacuum permeability μ0, and mass density ρ. These char-
acteristics distinguish SMRI from inductionless variants of

MRI that persist in the zero-Rm limit provided that dimen-
sionless numbers scaling with B2=η remain nonzero (e.g.,
Elsässer numberΛ ¼ V2

A=ηΩ or squared Hartmann number
Ha2 ¼ V2

AL
2=ην) [7–10]. These inductionless variants

require field strengths, field geometries, and shear profiles
not characteristic of most accretion disks [11,12].
Although the Event Horizon Telescope has captured

images of black-hole accretion disks that align with general
relativistic MHD simulations [13,14], the presence of SMRI
and other astrophysical instabilities cannot be directly
confirmed through observation due to the telescope’s limited
resolution. MRI experiments are thus necessary, which
often involve a swirling flow created in a Taylor-Couette
device consisting of two coaxial cylinders that rotate
independently to viscously drive the liquid metal between
them. Ideally, such a flow has an ideal Couette rotation
profile, ΩðrÞ ¼ aþ b=r2, with constants a and b deter-
mined by the rotation speeds of the two cylinders.According
to Rayleigh’s criterion [15], a quasi-Keplerian rotation
profile with 0 < q ¼ −ðr=ΩÞ∂Ω=∂r < 2 is linearly stable
to hydrodynamic (non-MHD) axisymmetric perturbations.
Experiments further indicate that when secondary flows due
to end effects areminimizedwith independently rotating end
caps, quasi-Keplerian hydrodynamic flows are nonlinearly
stable as well [16]. With the addition of an axial magnetic
field, SMRI has been demonstrated in a quasi-Keplerian
liquid-metal flow [17]. Previous studies of SMRI mainly
focused on its axisymmetric version. This is because,*Contact author: ywang3@pppl.gov
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although nonaxisymmetric SMRI is essential for astrophysi-
cal dynamos [18–25], it requires a higher Rm in ideal
Couette flow out of reach of current experiments [26,27],
perhaps except for the upcoming “DRESDYN-MRI”
experiment [28–32]. On the other hand, the ideal Couette
profile cannot be fully realized in an actual device with an
axial magnetic field due to end effects, and a vertical free-
shear layer [Stewartson-Shercliff layer [33–35] (SSL)] is
formed, creating a localmaximum inqðrÞ [36,37].While the
stability of the SSL has been elucidated [38,39], its impact
on SMRI, whether axisymmetric or nonaxisymmetric, has
been less studied. Although constant in the idealized
accretion disk discussed above, q likely varies with radius
in actual celestial systems. This includes disk-star boundary
layers [40,41], edges of planet-opened gaps [42,43], the
solar tachocline [44,45], and perhaps due to radial entropy
gradients [46].
Here, based on global linear analysis and nonlinear

simulations of liquid-metal Taylor-Couette flows, we report
for the first time that an SSL in a hydrodynamically stable
axisymmetric base flow can introduce nonaxisymmetric
SMRI at Rm≳ 3, a similar threshold for the axisymmetric
SMRI. The nonaxisymmetric SMRI is an axial standing
wave with an azimuthal mode number m ¼ 1, which is the
most unstable of the m ≥ 1 modes. It leads to a global
m ¼ 1 radial magnetic field Br in the midplane, which
increases significantly with Rm consistent with the recent
experimental observation [26]. Likem ¼ 0 SMRI, the SSL-
induced m ¼ 1 SMRI also gives rise to an outward flux of
axial angular momentum.
Experimental details are described elsewhere [26], andwe

only mention key points here (see Fig. 1). Theworking fluid
is a GaInSn eutectic alloy (Galinstan) [67% Ga, 20.5% In,
12.5%Sn, ρ ¼ 6.36 × 103 kg=m3, conductivity σG ¼ 3.1 ×
106 ðΩmÞ−1], liquid at room temperature. The fluid-facing
surfaces of the inner and outer cylinders have radii r1 ¼ 7.06
and r2 ¼ 20.3 cm and height H ¼ 28.0 cm. The inner
cylinder is composed of five insulating Delrin rings (green).
The outer cylinder is made of stainless steel [gray;
σs ¼ 1.45 × 106 ðΩmÞ−1]. Insulating radial BCs are thus
suitable for the experiment, which do not require a zero
radial magnetic field like conducting BCs (Supplemental
Material [47]). The upper and lower copper [σCu ¼
6.0 × 107 ðΩmÞ−1] end caps are divided into two rings at
r3 ¼ 13.5 cm. They provide inductive coupling to the fluid,
enabling the nonlinear saturation of m ¼ 0 SMRI to
detectable levels [17,50,51]. The rotation speeds of the
inner cylinder (Ω1), upper (lower) inner ring (Ω3), and upper
(lower) ring (Ω2) outer cylinder (Ω2) have a fixed ratio
Ω1∶ Ω2∶Ω3 ¼ 1∶0.19∶0.58, which, togetherwith two 1-cm
stainless steel flanges attached to the inner cylinder, help
minimize the hydrodynamic Ekman circulation [52]. Six
coils provide a uniform axial magnetic field Bi ≤ 4800 G
through the rotating liquid metal. Hall probes on the inner
cylinder measure the local radial magnetic field BrðtÞ in the

midplane (z=H ¼ 0.5) at various azimuths. Dimensionless
measures of the rotation and field strength are the magnetic
Reynolds number Rm ¼ r21Ω1=η and the Lehnert number
B0 ¼ Bi=r1Ω1

ffiffiffiffiffiffiffi

μ0ρ
p

, which are varied in the ranges
Rm≲ 4.5 and B0 ≲ 1.2. Here ν and η are the kinematic
viscosity and magnetic diffusivity of Galinstan, and the
magnetic Prandtl number Prm ¼ ν=η ¼ 1.2 × 10−6. For
each run, the device first spins up for 2 min. Bi is then
imposed, and the flow relaxes into a statistically steady
MHD state within 2 sec.
Our simulations use the open-source code SFEMaNS to

solve the Maxwell and Navier-Stokes equations for incom-
pressible flows in a fluid-solid-vacuum domain similar to
our experiments. Details on the code and mesh setup are
available elsewhere [17,26,53]. The main limitation of
our simulations is the Reynolds number, which is Re ¼
r21Ω1=ν ∼ 103, compared to Re ∼ 106 in the experiment.
We conducted two types of simulations: “3D” nonlinear
simulations with m ¼ 0–31 modes, run to the saturated
MHD state for comparison with experimental results across
a range of Rm and B0 values; and “2Dþ 1” linear
simulations that were first run to axisymmetric MHD
saturation with an SSL (m ¼ 0 only, Bi > 0), then activated
m ¼ 1 terms to simulate the exponential growth phase
under realistic axial boundary conditions. For comparison,
we also performed “1D” global linear analyses using the
open-source code DEDALUS [54]. Since DEDALUS allows
only one nonperiodic dimension, these calculations assume
eigenmodes ∝ exp½ið−ωtþmφþ nπz=HÞ�: i.e., periodic

FIG. 1. Sketch of the Taylor-Couette cell used in the experi-
ment. It has three independently rotatable components: the inner
cylinder (Ω1), outer-ring-bound outer cylinder (Ω2), and upper
(lower) inner rings (Ω3). The contour plot shows the φ-averaged
shear profile q, in the statistically steady MHD state at Rm ¼ 4
and B0 ¼ 0.2 from 3D simulation. The cylindrical coordinate
system used is shown in yellow. The ΩðrÞ averaged between the
two horizontal dashed lines is the base flow for calculating the
growth rate of the m ¼ 1 SMRI in Fig. 2.
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in z with a wavelength λz ¼ 2H=n, n being an even
number, and a base flow with angular velocity depending
on radius only, ΩðrÞ. Here ω ¼ ωr þ iωi, with ωr and ωi
being the eigenmode’s real angular frequency and growth
rate. Other details of the linear analysis are given in
Supplemental Material [47].
As depicted in the color plot in Fig. 1, an SSL forms at

the joints of the end cap rings after the imposition of the
magnetic field, appearing as a local maximum in qðrÞ. This
corresponds to a local minimum in the flow’s vorticity,
ξðrÞ ¼ ð2 − qÞΩ. In our linear analysis, the base flow ΩðrÞ
is vertically averaged between the two dashed lines to
avoid hydrodynamic instabilities (Fig. S1 in Supplemental
Material [47]). As shown in Fig. 2, in such a hydrody-
namically stable base flow, the ðm; nÞ ¼ ð1;�2Þ modes
become unstable for Rm≳ 3.5 and 0.05≲ B0 ≲ 0.3, con-
firming that it is the m ¼ 1 SMRI. Near the onset, the real
part ωr of the unstable m ¼ 1 mode’s frequency coincides
with ΩðrÞ at the SSL [the location of the local maximum in
qðrÞ], implying the m ¼ 1 SMRI originates from the latter.
Notably, although the mode remains stable (ωi < 0) at
Rm < 3.5, a moderate magnetic field leads to an enhanced
ωi that persists in the small-Rm limit. This indicates the
presence of an inductionless [55] branch of the SSL-
induced m ¼ 1 SMRI, which scales with the Hartmann
number Ha instead of B0 [Fig. S2(b) in Supplemental
Material [47] ]. Details will be reported in a future
publication. For the same base flow, the (0,2) mode
(m ¼ 0 SMRI) requires Rm≳ 3 and 0.05≲ B0 ≲ 0.3, a
parameter space very close to the m ¼ 1 SMRI [Fig. S2(a)

in Supplemental Material [47] ]. SMRI modes with m ≥ 2
are stable for Rm ≤ 100, making them difficult to excite in
any existing experiments. Also, the n ¼ 2mode is the most
unstable among all n values All results do not differ
significantly for insulating and conducting radial BCs. In
contrast, no local extrema exist in the qðrÞ or ξðrÞ of an
ideal Couette profile having the same Ω2=Ω1 (Fig. S1 in
Supplemental Material [47]), and the corresponding m ¼ 0
and m ¼ 1 SMRI requires Rm≳ 10 and Rm≳ 25, respec-
tively, as shown in Fig. S3 in [47]. Compared to the ideal
Couette profile, the reduction in the minimum Rm required
for m ¼ 0 SMRI is due to the higher q (ratio of shear to
rotation) in the SSL [56]. On the other hand, it is most

FIG. 2. Criterion for nonaxisymmetric SMRI: normalized
growth rate ωi=Ω1 of the ðm ¼ 1; n ¼ �2Þ modes calculated
by linear analysis with insulating radial BCs in the Rm − B0

plane. The black curve encloses the unstable region (m ¼ 1
SMRI). The green star indicates the case of eigenfunction
comparisons between linear analysis and 2Dþ 1 simulation
shown in Fig. 3.

FIG. 3. Global m ¼ 1 SMRI structures at Rm ¼ 4 and
B0 ¼ 0.1. Poloidal cross-sectional views of eigenfunctions for
the superposition of ðm ¼ 1; n ¼ �2Þ modes in velocity field (a)
and magnetic field (c) from 1D linear analysis. (b),(d) Corre-
sponding projections of the full u⃗ and B⃗ perturbations on ðm ¼ 1;
n ¼ �2Þ modes from 2Dþ 1 linear simulation with realistic
boundary conditions. Curves with arrows represent the poloidal
streamlines or field lines constructed from the radial and axial
components, and the linewidth is proportional to the local
strength of the in-plane velocity and magnetic fields. Color plots
show the azimuthal component.
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likely that the reduction in Rm for m ¼ 1 SMRI is caused
by the local minimum in the base flow’s vorticity, since no
substantial reduction of Rm is found in an ideal Couette
base flow having a larger q. The 1D linear analysis assumes
periodicity in z, unlike the simulations and the experiment
itself. Nonetheless, as shown by Fig. 3, the superposition of
the marginally unstable ð1;�2Þ eigenfunctions from 1D
linear analysis (green star in Fig. 2) agrees remarkably well
with those from the 2Dþ 1 simulation using a two-
dimensional base flow and physical end caps. This con-
firms that the m ¼ 1 SMRI exists in an actual device, in
which the axial boundaries impose a reflection symmetry
about the midplane that leads to its standing-wave structure.
Three-dimensional simulations further reveal that this
structure persists in the saturated MHD state and becomes
dominant over other nonaxisymmetric modes and compa-
rable to the axisymmetric SMRI.
Experimentally, after the imposition of the axial mag-

netic field Bi, a linear nonaxisymmetric MHD instability
with a dominant m ¼ 1 structure has recently been
observed in the measured Br at the midplane [26]. As
shown in Fig. 4, this instability’s amplitude has similar Rm
and B0 dependencies as the ðm ¼ 1; n ¼ �2Þ modes from
3D simulations: both become prominent at Rm≳ 3 and
0.1≲ B0 ≲ 0.3. In our system, the SSL becomes hydro-
dynamically unstable with n ¼ 0 once the Elsässer number
Λ ¼ B2

i =μ0ρηðΩ3 −Ω2Þ > 1 (red curve) [38]. The promi-
nent bubbles have Λ < 1, suggesting they are not SSL
instability [26]. As such, the consistency between the
experiment and the 3D simulation confirms that the
observed MHD instability is the nonaxisymmetric SMRI,
as predicted by the linear analysis.

The m ¼ 1 SMRI induces a radial angular momentum
flux via correlations between the radial and azimuthal
components of velocity or magnetic fields—i.e., Reynolds
or Maxwell stresses. Its normalized form is [5]

Fr ¼
hruruφiV
Ω2

1r
3
1

−
hrVArVAφiV

Ω2
1r

3
1

; ð1Þ

in which h…iV represents averaging over the entire fluid,
and VAr ¼ Br=

ffiffiffiffiffiffiffi

μ0ρ
p

and VAφ ¼ Bφ=
ffiffiffiffiffiffiffi

μ0ρ
p

represent the
Alfvén velocity in the radial and azimuthal directions. The
saturated ð1;�2Þ components of velocity and magnetic
fields are used to calculate Fr in Eq. (1). Figure 5(a) shows
that, for all Rm studied, the Reynolds stress is always
positive, first increasing and then decreasing with an
increase of B0. This reveals that the m ¼ 1 SMRI prompts
an outward angular momentum flux in the velocity field, as
for the axisymmetric SMRI. Unlike the amplitude of Br
[see Fig. 5(a)], the Reynolds stress does not increase
significantly with increasing Rm beyond Rm ≈ 2. This is
likely due to the fixed Re ¼ 1000 for most cases studied
here, as a case at Re ¼ 2000 (solid blue triangle) shows
a larger saturated amplitude. The enhancement of the

FIG. 4. Bubble plot of the amplitude of the saturated non-
axisymmetric Br from experiments (black) and 3D simulations
(orange). The bubble size is proportional to the amplitude.
Straight lines show constant Lehnert number B0. The red curve
represents Elsässer number Λ ¼ 1. The experimental data were
adopted from Ref. [26]. The simulation data are the volume
average of the ðm ¼ 1; n ¼ �2Þ modes in Br.
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FIG. 5. Calculated Reynolds stress (a) and Maxwell stress (b)
contributed by the ðm ¼ 1; n ¼ �2Þ mode, as a function of B0 at
various Rm from 3D simulations. Their sum is the radial angular
momentum flux via Eq. (1). The data in both panels are time and
volume averages in the saturated MHD state.
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Reynolds stress (compared to Rm≲ 1) occurs over a
broader range than that of Br; this might be caused by
residual secondary flows such as Ekman-Hartmann cir-
culation [51,57]. Similarly, as shown in Fig. 5(b), the
ð1;�2Þ modes in the magnetic field give rise to an
outward angular momentum flux in the m ¼ 1 SMRI
unstable regime at Rm≳ 3 and 0.1≲ B0 ≲ 0.3. Unlike
the Reynolds stress, the Maxwell stress varies with Rm
and B0 in much the same way as Br amplitude (Fig. 5) and
is more consistent with the growth rate shown in Fig. 2.
This suggests that the magnetic field is a better diagnostic
than the velocities because SMRI is an MHD instability,
whereas the velocity can be confounded by hydrodynamic
effects.
It has been reported that m ¼ 1 SMRI is observed in

spherical Taylor-Couette experiments using liquid sodium,
where the outer sphere is stationary and the inner sphere is
rotating [58]. Although a free-shear layer is present in those
experiments, a stationary outer sphere leads to hydrody-
namically unstable base flows that introduce other flow
modes and even turbulence, complicating the measure-
ments [59]. In particular, the frequency of the free-shear
layer in the spherical system is significantly higher than that
of the nonaxisymmetric mode, meaning that the latter is
unlikely to be excited via the nonaxisymmetric SMRI
mechanism discussed here.
To summarize, we have presented the first confirmation

of nonaxisymmetric SMRI withm ¼ 1 azimuthal structure
in liquid-metal Taylor-Couette flow using combined theo-
retical, numerical, and experimental methods. Linear
theory predicts that the m ¼ 1 SMRI can be introduced
at Rm≳ 3 via a free-shear layer in a hydrodynamically
stable base flow, which gives rise to a local minimum in the
vorticity profile. Numerical simulations confirm the theo-
retical results in an actual device with vertical end caps and
further reveal that the m ¼ 1 SMRI has a standing-wave
structure in the poloidal cross section, introducing a
prominent radial magnetic field in the midplane. It also
reveals that them ¼ 1SMRI introduces an outward angular
momentum flux in both velocity and magnetic fields, just
like the axisymmetric SMRI. By obtaining a good agree-
ment between experiments and simulations for the Rm and
B0 dependence of the amplitude of the nonaxisymmetric
radial magnetic field, the existence of m ¼ 1 SMRI is thus
confirmed. To further understand the essential physics
underlying the SSL-induced SMRI, it is beneficial to
develop a unifying theoretical framework applicable to
different base flows. Its relationship with curvature effects
[60,61] andmagnetized Rossbywave instabilities [62] with
nonzero n needs elucidation. Comparisons of its frequency
and growth rates between the two linear methods will be
conducted. Vertical Hall probe arrays will be used in the
experiment to reveal the n ¼ 2 nature of the m ¼ 1 SMRI.
Simulations using the entropy-viscosity method will
achieve Re closer to experiments [63].
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