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Abstract

The magnetorotational instability (MRI) is probably the main cause of turbu-

lence and accretion in sufficiently ionized astrophysical disks. However, despite much

theoretical and computational work, the nonlinear saturation of MRI is imperfectly

understood. In Chap. 2 and Chap. 3 of this thesis we present non-ideal magneto-

hydrodynamic simulations of the Princeton MRI experiment. In vertically infinite

or periodic cylinders, MRI saturates in a resistive current-sheet with a significant

reduction of the mean shear, and with poloidal circulation scaling as the square root

of resistivity. Angular momentum transport scales as the reciprocal square root of

viscosity but only weakly depends on resistivity. For finite cylinders with insulating

end caps, a method for implementing the fully insulating boundary condition is intro-

duced. MRI grows with a clear linear phase from small amplitudes at rates in good

agreement with linear analysis. In the final state one inflowing “jet” opposite to the

usual Ekman “jet” is found near the inner cylinder. The MRI enhances the angular

momentum transport at saturation. Under proper conditions, our experimental fa-

cility is a good platform to show that MRI could be suppressed by a strong magnetic

field.

Recently, Hollerbach and Rüdiger have reported that MRI modes may grow at

much reduced magnetic Reynolds number (Rem) and Lundquist number S in the
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presence of a helical background field, a current-free combination of axial and toroidal

field. We have investigated these helical MRI modes in Chap. 4 and Chap. 5. In

vertically infinite or periodic cylinders, resistive HMRI is a weakly destabilized hy-

drodynamic inertial oscillation propagating axially along the background Poynting

flux. Growth rates are small, however, and require large axial currents. Furthermore,

finite cylinders with insulating endcaps were shown to reduce the growth rate and

to stabilize highly resistive, inviscid flows entirely, and the new mode is stable in

Keplerian flow profiles regardless of end conditions. We also numerically investigate

a traveling wave pattern observed in experimental magnetized Taylor-Couette flow

at low magnetic Reynolds number. By accurately modeling viscous and magnetic

boundaries in all directions, we reproduce the experimentally measured wave pat-

terns and their amplitudes. Contrary to previous claims, the waves are shown to be

transiently amplified disturbances launched by viscous boundary layers rather than

globally unstable magnetorotational modes.

The experiment is complicated by the extremely large Reynolds number and by

Ekman circulation and Stewartson layers, even though the experimental apparatus

has been designed to minimize the circulation (e.g. by the use of independently con-

trolled split endcaps). Understanding the role of the boundary layers is critical to

this research. In Chap. 6 the magnetic field is found to inhibit the Ekman suction.

While we quantitatively confirmed the conclusions of Gilman et al, the finite differen-

tial rotation cannot be neglected and modifies the linear Ekman layer. The width of

the Ekman layer is reduced with increased magnetic field normal to the end plate. A

uniformly-rotating region forms near the outer cylinder. The Stewartson layer pene-

trates deeper into the fluid with larger Reynolds number and stronger magnetic field.

Furthermore a strong magnetic field leads to a steady Stewartson layer, at least in

axisymmetric configuration.
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Chapter 1

Introduction

1.1 An informal overview of accretion disks

“An accretion disk consists of gas, dust and plasmas rotating around and slowly

accreting onto a central point-like object. Accretion disks are the most efficient energy

source known to astrophysics. Whereas hydrogen fusion has a maximum efficiency

for converting rest-mass to radiation . 1%, accretion onto a black hole or neutron

star can have efficiency ∼ 5−40%. Accretion disks power many of the most luminous

and violent astrophysical sources”1, including:

• Formation of stars and planets in proto-star systems (Fig. 1.1 (a));

• Mass transfer and energetic activity in binary stars (Fig. 1.1 (b));

• Release of energy (as luminous as 1015 of Sun) in quasars (Fig. 1.1 (c)) and

Active Galactic Nucleus (AGN).

”Accretion disks around young stars, though energetically much less efficient and

luminous, are nevertheless of great interest as sites of planet formation.”1

1taken from the 2003 project proposal entitled ”Numerical and Theoretical Studies of Magne-
torotational Instability in a Gallium Disk” authored by Hantao Ji, Jeremy Goodman, James Stone
and Akira Kageyama
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Figure 1.1: Figure (a) (c) courtesy of HST; Figure (b) courtesy of Space Telescope
Science Institute, NASA.
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A long-standing puzzle to the theory of accretion disks has been to show from first

principles how they accrete [1]. Principally the shear molecular viscosity transfers

angular momentum from one fluid element to another. In almost all cases, however,

the observational inferred accretion rates are much higher than those predicted by

standard microscopic viscosities due to collisions can supply [2]. For the completeness,

we start from a minimum introduction to accretion disks here. A comprehensive

introduction to thin-disk accretion can be found in Pringle [3]. Jeremy Goodman

also has a good set of pedagogical introduction notes (unpublished) to the thin disks

[4]. Part of the following introduction is inherited and modified from those notes. For

more details, people could refer to Pringle [3] or Goodman [4].

1.1.1 Accretion2

In this section the cylindrical coordinate (r, ϕ, z) is chosen, which is aligned with the

rotation axis and mid-plane of the disk. The Keplerian rotation angular frequency is

Ω ∼ r−3/2. Axisymmetry is assumed in this whole section. Disk orbits are not quite

closed circles but gradually contracting spirals. Most of the plasma eventually ends

up on the central star or black hole, though a fraction may be expelled as a wind or

jet. This process is called accretion. The accretion rate Ṁ is defined as the integrated

mass flux across an infinite cylinder centered on the rotation axis:

Ṁ(r, t) ≡ −
∫ ∞

−∞

dz

∫ 2π

0

ρvrrdϕ , (1.1)

where ρ is the density and vr is the radial velocity. Assuming vr is a constant along

the height, Ṁ = −2πrvrΣ, where the mass per unit area is defined as:

Σ(r, t) ≡
∫ ∞

−∞

ρ(r, z)dz .

2inherited and modified from Goodman [4]
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The accretion rate Ṁ is defined in such a way that Ṁ > 0 if mass flows inwards.

1.1.2 Steady accretion and transport3

The necessity of the angular momentum transport could be demonstrated clearly in

a steady axisymmetric disk. Thus Σ = Σ(r). It also follows that Ṁ must be constant

with r in a steady disk since

−2πr
∂Σ

∂t
=
∂Ṁ

∂r
.

We can also define J̇ as the accretion rate of the angular momentum similar to Ṁ :

J̇(r, t) ≡ −
∫ ∞

−∞

dz

∫ 2π

0

ρJvrrdϕ ,

in which J is the specific angular momentum defined as:

J ≡ r2Ω .

The angular momentum in the disk between r and r + dr is 2πrJΣdr, therefore we

get:

−2πrJ
∂Σ

∂t
=
∂J̇

∂r
(1.2)

on the assumption of ∂J/∂t = 0 (This is not quite right, however on typical time

scales of the disk the variation of J could be neglected since J =
√
GMr, where G is

the gravitational constant and M is the mass of the central object of the disk). From

Eq. 1.2, we can see that the accretion rate of the angular momentum J̇ must also be

independent of r in steady state.

Part of J̇ should be the advection of angular momentum by the accreting mass

3inherited and modified from Goodman [4]
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JṀ . However there must be an additional contribution to J̇,

Γ = −J̇ + JṀ , (1.3)

to make in steady state

dΓ

dr
= Ṁ

dJ

dr
(1.4)

so that dJ̇/dr = 0. Immediately we get Γ(r) = ṀJ(r)+Γ0, where Γ0 is the integration

constant depending upon the boundary conditions at the inner edge of the disk, which

is unimportant at large radii since J increases with r.

Up to this point, we have not specified the physical details of the torque Γ but

rather simply applying the conservation of mass and angular momentum with the

assumption of steady state.

1.1.3 Effective viscosity and the α parameter4

By comparing with fluid turbulence, astrophysicists introduce an effective kinematic

viscosity ν defined as:

Γ ≡ −2πr3Σν
dΩ

dr
,

Thus in the steady state

Ṁ = −2πΣν
d ln Ω

d ln r
+

Γ0

J
, (1.5)

and Hence, except near the inner edge, in a steady Keplerian disk, we get:

Ṁ ≈ 3πνΣ .

Principally the shear molecular viscosity transfers angular momentum from one

fluid element to another. In almost all cases, however, the observational inferred ac-

4inherited and modified from Goodman [4]
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cretion rates are much higher than those predicted by standard microscopic viscosities

due to collisions can supply [2]. The effective viscosity enhanced due to turbulence

could be large enough to provide the observed accretion rates. Hence it has been ar-

gued that ν results from turbulence and/or magnetic stresses. Shakura and Sunyaev

[5] introduced the α parameter as:

τrϕ ≡ αp , (1.6)

where τij is the viscous stress tensor and p is the plasma pressure excluding the

magnetic pressure but possibly including radiation pressure. Usually this parameter

is defined alternately as:

ν = αVsH , (1.7)

in which Vs is the sound speed while the vertical scale height H is defined as:

H ≡ Vs

Ω
.

Shakura and Sunyaev [5] used dimensional analyses to postulate that α < 1. Given

the observational constrains (only on Ṁ and/or Σ), a more reasonable relation with

height average replaces Eq. 1.6:

Γ

2πr2
=

∫ ∞

−∞

αpdz ≡ ᾱ

∫ ∞

−∞

pdz . (1.8)

Local three-dimension simulation with a large plasma parameter β ≡ 8πp/ 〈B〉2,

where 〈B〉 is the volume-averaged magnetic field under the “shearing-box” geometry

show that the averaged parameter ᾱ is around 0.01 [1, 6], which is separately verified

by several groups with different codes [7–9]. Global simulations tend to have larger ᾱ

with values around 0.1, though no global simulations of MRI in truly thin disks have

been performed as yet [10, 11].
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1.1.4 α value from observation5

To measure the disk viscosity from direct astrophysical observations might be more

effective than the purely theoretical analyses [3]. However, it is basically not “possi-

ble” to explain the observations in a unambiguous way especially for disks in steady

state. The most common systems in which accretion disks exist and in which their

time-varying behavior can be studied are the cataclysmic variables, a class of binary

stars containing a white dwarf and a companion star. When modeling the outburst

of TCrB, a recurrent nova, Webbink [12] defines an effective Reynolds number Re in

the disk as:

Reν ≃ 6

(
GM

R3
d

)1/2

τν ,

where Rd is the circular orbit radius and τν = R2
d/6ν is the natural viscous time scale.

Note Reν as defined does not depend upon disk thickness or temperature, but the

inferred value of α does. Also note that Reν involves the turbulent rather than the

true viscosity, in contrast with the Reynolds number quoted in Table.1.1 later on.

The observations suggest an effective Reynolds number of the order ∼ 103. For dwarf

nova outbursts, Reν in the range 102 − 103, or α in the range 0.1 − 1 fit the data

nicely [13, 14]. Whether the viscosity remains at that level or descends to a lower

level during quiescence is still an open question [15, 16].

1.2 Two main possible mechanisms for fast accre-

tion

1.2.1 Nonlinear Hydrodynamical Instability

A long-standing puzzle to the theory of accretion disks has been to show from first

principles how the disks accrete [1]. As discussed in §1.1.3, an enhanced turbulence

5inherited and modified from Pringle [3]
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viscosity is a must. It is natural for people to relate the source of turbulence to

the famous Rayleigh’s centrifugal instability, which takes place if the specific angular

momentum decreases outward. In most astrophysical disks, which usually have Ke-

plerian rotational profile, this requirement is not satisfied. However provided a large

Reynolds number Re ≡ UL/ν (where U is the characteristic large-scale flow velocity,

L is its associated length scale and ν is the microscopic viscosity.), the differentially

rotating flow might be unstable to a nonlinear disturbance, the so-called nonlinear

hydrodynamic instability [17]. In astrophysical disks the Reynolds number is very

high. Some astrophysicists argue that disks must be very turbulent given this huge

Reynolds number. Based on old Couette experiments [18, 19], Richard and Zahn [20]

speculated an effective turbulence viscosity due to purely hydrodynamic turbulence

as:

νt = −βr3∂Ω

∂r
, β ≈ 1.5 × 10−5 . (1.9)

Scaled to the astrophysical disks, it is very important especially for the cold disks,

where the particles are too weakly ionized. This argument has been partially con-

firmed by Richard [21], though their experiment is with small gaps (△R/R 6 1/3)

and the boundary effects are not well handled (dividing the cap into two parts: the

inner one fixed to the inner cylinder, and the outer one fixed to the outer cylinder).

Other astrophysicists are not convinced considering the differences between labora-

tory flow and accretion disk flow, for example, a supersonic shear velocity and lack

of confining walls [22]. Generally this issue is still controversial [20, 23–25].

Recently our group [26] reported laboratory results on this topic. In the exper-

iment purely hydrodynamic quasi-keplerian flows with Reynolds numbers ∼ 106 are

found to be steady. Angular momentum transport rates are much smaller than the

one required in astrophysical disks after scaling the results to them. Our results ex-

clude the purely nonlinear hydrodynamic instability and imply that MRI might also

be important in poorly magnetized disks. Fig. 1.2 shows that β overlaps between
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quasi-keplerian and solid-body rotation and is much less than the specified range in

Eq. 1.9. In the figure, we gauged the systematic errors of the experiment by compar-

ing quasi-keplerian flows with solid body ones, which must be stable, for lack of free

energy.

Figure 1.2: Figure courtesy of Ji et al. Experimentally measured Reynolds stress
versus height in a quasi-keplerian profile. dashed line, estimated value of β = (1 −
2) × 10−5 from Richard and Zahn; ∗, solid rotation; 2, quasi-keplerian rotation.

1.2.2 Magnetorotational Instability

After decades of research, people come to agree that the most promising candidate

to provide fast accretion is the so-called magnetorotational instability (MRI). In the

milestone work by Balbus and Hawley [6] and its companion paper [27], accretion

disks were shown to be subject to a very powerful shearing instability imposed by a

weak magnetic field, which they called the magnetorotational instability. Although

discovered by Velikhov [28] and Chandrasekhar [29], MRI was not studied seriously

by the astrophysical community until rediscovered by Balbus and Hawley [6]. MRI
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takes place provided that the angular velocity decrease outwards, ∂Ω2/∂r < 0, and

may occur when the specific angular momentum increases outwards, ∂(r2Ω)2/∂r > 0,

which does not apply to Rayleigh’s centrifugal instability. These conditions exist

in Keplerian disks. Provided a purely axial magnetic field, a simple axis-symmetric

instability occurs. If the background field is helical (having both azimuthal and axial

component), MRI modes are overstable and the growth rate is reduced [30]. However,

it is hard to stabilize a disk totally if there is any axial field [31, 32] unless the disk

is a poor conductor, as some may be.

1.3 Basic idea of MRI

The mechanism of MRI can be explored in a simple way by imposing a weak uniform

vertical magnetic field in an axisymmetric gas disk (left figure of Fig. 1.3) [1]. The

gravitational force is balanced by the centrifugal force, which results in the fluid

equilibrium. The uniform vertical magnetic field is not involved in the force balance.

Thus it does not have any influence on the equilibrium. Given an initial perturbation

with spatial structure exp(ikz), thus a fluid element is displaced a bit inwards from

its original orbit position whereas another fluid element with phase shift k△z = π is

displaced outwards. Now consider the plane view in the right panel of Fig. 1.3. The

two mass points, having the same radius at different heights initially, are displaced

to two new separated orbits due to the perturbation. The magnetic field in the figure

is taken to be a massless spring, which connects these two mass points. If the inner

particle is rotating faster than the outer particle, which is the case in the Keplerian

disks, the string stretches and tension builds up. The tension pulls the inner particle

backward and pushes the outer particle forward. Therefore some angular momentum

is transported from the inner particle to the outer particle. The inner particle cannot

stay on the orbit and must drop down to an orbit with a smaller radius and therefore
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smaller angular momentum. At the same time the outer particle must shift to an orbit

with a larger radius and therefore larger angular momentum. The spring stretches

even further and a run-away process commences. This process is the essence of MRI.

It is essential for the magnetic field to be weak. If the magnetic field is strong

enough that the Alfvén time is smaller than the orbit time, the instability does not

grow. The above analysis also implies the system would be stable if

dΩ2

d ln r
> 0 . (1.10)

Except for some anomalous regions, Eq. 1.10 is not satisfied in almost all astrophysical

disks.

In highly conducting disks the maximum growth rate is [33]:

|ω| = −1

2

dΩ

d ln r
. (1.11)

It is surprisingly independent of the magnetic field and is recognized as the local

Oort A-value of the disk [33]. It turns out to be 3/4Ω for a Keplerian rotation. A

disk without any magnetic field or with a strong field is locally stable. However, any

weak poloidal magnetic field will ignite the instability with a maximum growth rate

independent of the field. This maximum growth rate is found to be the maximum

possible related to the differential rotation of the disk [33].

1.4 Taylor-Couette Flow

The history of Taylor-Couette Flow dates back to the 19th century. Intending to mea-

sure viscosity, Couette (1890) first tried to study flows between rotating concentric

cylinders. Rayleigh’s criterion (discussed below) was introduced in 1916 during his

study of cyclones. Taylor (1923) extended it by including viscosity, leading to quanti-
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Figure 1.3: Diagram of the simple mechanism of MRI; the left figure is a side-view
figure while the right one is a top-view figure. Initially there is a constant vertical
magnetic field in the system. After one initial perturbation, some particle are kicked
inside while other particles are kicked outside.
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tative predictions of instability in Couette flow (Taylor number: Ta was named after

him). Fig. 1.4 provides a brief idea of what Taylor-Couette flow is. If in Fig. 1.4

the cylinders were infinitely long—very easy to assume theoretically, but rather more

difficult to build experimentally—the steady-state laminar solution would be ideal

Taylor-Couette state:

Ω(r) = a+
b

r2
, (1.12)

where a = (Ω2r
2
2 − Ω1r

2
1)/(r

2
2 − r2

1) and b = r2
1r

2
2(Ω1 − Ω2)/(r

2
2 − r2

1). Rayleigh’s

criterion suggests that in the unmagnetized and inviscid limit, such a flow is linearly

axisymmetric stable if and only if the specific angular momentum increases outwards:

that is, (Ω1r
2
1)

2 < (Ω2r
2
2)

2, or equivalently, ab > 0.

The study of the magnetized Taylor-Couette flow is much later. As mentioned

before, Velikhov [28] and Chandrasekhar [29] discovered ideal MRI in the context of

magnetized Couette flow. Chandrasekhar (1961) [34] also analyzed dissipative mag-

netized Couette flow. He concentrated on magnetic stabilization of Rayleigh-unstable

flows: the critical Ta increases with B or Chandrasekhar number Q ∝ B2. On the

other hand, a vertical magnetic field may destabilize the flow, provided that the an-

gular velocity decreases outward, Ω2
2 < Ω2

1. In ideal MHD, the instability takes place

with a arbitrarily weak field [6]. A number of experiments on magnetized Couette

flow [35–38] have been performed, but MRI has never been conclusively demonstrated

in the laboratory. Recently Sisan et al [39] claimed to have observed MRI for the first

time in the laboratory. However, their experiment proceeded from a background state

that was already hydrodynamically turbulent before the field was applied. Stefani et

al also asserted that they have found the so called Helical MRI [40, 41] (discussed in

§1.7 and more details in Chapter.4 and Chapter.5) in the laboratory [42–44]. However

we challenge their arguments [45] and show that the traveling wave patterns observed

in their experiment turn out to be transiently amplified disturbances launched by

viscous boundary layers rather than globally unstable magnetorotational modes [46].
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Figure 1.4: Diagram of Taylor-Couette Flow.

1.4.1 End Effects: Ekman Circulation

Taylor-Proudman Theorem

In fluid mechanics, the Taylor-Proudman theorem (after G. I. Taylor and Joseph

Proudman) claims that in a incompressible fluid when a fluid element moves slowly

in a co-rotating frame rotating with a large Ω, the fluid velocity is uniform in the

direction of the axis of rotation. Ω must be much larger than the movement of the

fluid element so that the Coriolis force dominates the inertial terms. Considering the

inviscid Navier Stokes equations in a steady state, we get:

ρ(~v · ∇)~v = −2ρ~Ω × ~v −∇P , (1.13)

where ~v is the fluid velocity, ρ is the fluid density and P = p + ρΦ is the effective

pressure (p is the fluid pressure and Φ is the gravitational potential). If the Rossby
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number is much smaller than unity, the advective terms may be unimportant. Thus,

2ρ~Ω × ~v = −∇P , (1.14)

where ~Ω is the angular velocity vector. By taking the curl of this equation, we get

the Taylor-Proudman theorem:

(~Ω · ∇)~v = 0 . (1.15)

Note that the condition ∇ · ~Ω = 0 is used. Given coordinates in which Ωr = Ωϕ = 0

and Ωz 6= 0, the equations are simplified to:

∂~v

∂z
= 0 ,

which implies that all three components of the velocity are independent of z.

It is followed by ~Ω· Eq. 1.14:

(~Ω · ∇)P = 0 .

This implicates that the effective pressure is also independent of the height z. However

in a real laboratory Taylor-Couette experiment (such as our experiment ), some kind

of confining walls (end caps) must be present. This causes the Ekman layer, which

modifies the global poloidal circulation in the bulk via the Ekman suction. In the

interior of the fluid the radial force balance determines the radial equilibrium effective

pressure P (blue square of the right bottom part of left panel of Fig. 1.5). However,

the liquid is at rest at the end plate due to the no-slip boundary condition in the

co-rotating frame. The gradient of P becomes uncompensated unless the boundary

co-rotates with the interior fluid. A radial flow near the end plate results from this
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unbalance and is directed inward in our case (purple arrows of the right panel of

Fig. 1.5, the direction of the Ekman flow actually depends upon the angular velocity

of the boundary relative to the interior). After turning vertically along the inner

cylinder, these two inward flows converge at the mid plane and then depart toward

the outer boundary in a radial jet (blue rectangle of the right panel of Fig. 1.5) to

complete the circulation (purple circulation of the left panel of Fig. 1.5). The width

of the boundary layers (including the jet) depends on Re. Higher Re causes thinner

boundary layers [47].

Given an infinitesimal differential rotation, the Ekman layer thickness is δE =
√
ν/Ω, where ν is the kinematic viscosity. However, our experiment has a finite

differential rotation. It is more appropriate to estimate δE via the epicyclic frquency,

κ =

(
1

r3

∂J2

∂r

)1/2

, (1.16)

which is the maximum frequency of small axisymmetric inertial oscillations inside

the inviscid fluid. Hence δE represents inertial forces balanced by viscous ones. In

rigid rotation κ equals to 2Ω. Therefore we define δE =
√

2ν/κ̄, where κ̄ is the

characteristic value for κ expressed as:

κ̄ = 2

(
r4
2Ω

2
2 − r4

1Ω
2
1

r4
2 − r4

1

)1/2

. (1.17)

The corresponding time scale is the Ekman time, on order of h/(νκ̄)1/2.

Novel method to reduce the Ekman Circulation

The poloidal circulation, and especially the jet, transport angular momentum effi-

ciently and reduce the free energy available for shear-driven instabilities [47] (the blue

symbols of Figure. 1.6 deviate significantly from the ideal Couette state.). Therefore,

we will need to minimize this circulation in the MRI experiment.
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Figure 1.5: Figure courtesy of Akira Kageyama. Diagram of Ekman Circulation.

Figure 1.6: Figure courtesy of Burin et al. Azimuthal velocity vϕ vs. radius r. The
solid line indicates the ideal Couette state; the blue symbols indicate the experiment
data without any rings while the red symbols indicate the experiment data with two
differentially rotating rings.
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At least two methods have been previously used to reduce the effects of the end

caps. One method is to use a tapered section [48]. Another one is to divide the cap

into two parts: the inner one fixed to the inner cylinder, and the outer one fixed to

the outer cylinder as in Richard [21] and in Wendt [18]. Here we divide the endcaps

into several rings that rotate independently and differentially (Figure. 1.7).

Figure 1.7: Figure courtesy of Akira Kageyama. Design with split rings to remove
the Ekman Circulation.

In order to minimize the engineering challenges yet to control the flow profile as

much as possible, we divide the end caps into only two rings in our experiment but the

rings are not fixed to the cylinders as in Richard [21] and Wendt [18]. The simulation

[47] and the experimental data (the red symbols of Fig. 1.6) [49] show that, though

the rotation profile of the end caps is not the one specified in the simulation (This

difference of the rotation profile at the end caps between in the experiment and in the

simulation could possibly be explained by the wobbling of the inner cylinder in the

experimental runs due to the difficulties of aligning the inner cylinder perfectly and

non-smooth enough surfaces of the boundary walls), after the end caps are split into

only two rings, the flow profile at the mid-plane is quite close to the ideal Circular

Couette state.

Hollerbach and Fournier [50] cast doubts on our approach to reduce the Ekman

circulation by stating that in a steady rotating fluid, the jump of the rotation speed
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at the junction of the end cap rings extends deep into the bulk given a high Re. This

develops a Stewartson layer [51]. However this effect is found not to be severe in

our measurement (the red symbols of Fig. 1.6) as they claim. The azimuthal velocity

profile is quite smooth; no obvious Stewartson layer is observed. This difference could

be explained by an unstable Stewartson layer. The outer ring rotates more slowly

than the inner one (Ω4 < Ω3), hence ∂(r2Ω2)/∂r < 0 across the joint, which could

result in the Kelvin-Helmholtz instability. Also the Rayleigh’s centrifugal instability

may take place at sufficiently high Reynolds number since ∂(r2Ω)/∂r < 0. The layer

may be smoothed by localized circulation and/or turbulence from these instabilities.

More details are discussed in §6.4.

1.5 Princeton MRI Experiment

Although its existence and importance are now accepted by most astrophysicists,

MRI has yet to be clearly demonstrated in the laboratory. Recently[52, 53], we have

proposed an experimental study of MRI using a magnetized Couette flow: that is,

a conducting liquid (gallium) bounded by concentric differentially rotating cylinders

and subject to an axial magnetic field. The radii of the cylinders are r1 < r2, as

shown in Fig. 1.8; their angular velocities, Ω1 & Ω2, have the same sign in all cases

of interest to us.

The challenge for experimentation, however, is that liquid-metal flows are very far

from ideal on laboratory scales. While the fluid Reynolds number Re ≡ Ω1r1(r2 −

r1)/ν ≈ 107 can be large, the corresponding magnetic Reynolds number

Rem ≡ Ω1r1(r2 − r1)

η
≈ 20 , (1.18)

is modest or small, because the magnetic Prandtl number Prm ≡ ν/η ∼ 10−6 in

liquid metals. Standard MRI modes will not grow unless both the rotation period
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Figure 1.8: Geometry of Taylor-Couette flow. In the Princeton MRI experiment,
r1 = 7.1 cm, r2 = 20.3 cm, h = 27.9 cm. Bz ≈ 5000 Gauss and 100% run: Ω1/2π =
4000 rpm, Ω2/2π = 533 rpm.

and the Alfvén crossing time are shorter than the timescale for magnetic diffusion.

This requires both Rem & 1 and S & 1, where

S ≡ VA(r2 − r1)

η
≈ 4 , (1.19)

is the Lundquist number, and VA = B/
√

4πρ is the Alfvén speed. Therefore, Re & 106

and fields of several kilogauss must be achieved in typical experimental geometries.

Considering the aforementioned redistributing effects of the Ekman circulation

(§1.4.1) and guided by the work of Kageyama et al [47], we have constructed a

modified Taylor-Couette device having the proposed intermediary end-rings [49]. A

schematic of our experimental apparatus may be seen in Fig. 1.9. The apparatus is a

Taylor-Couette device with two intermediary end-rings at both end caps between the

inner and outer cylinders. The details about the apparatus could be found in Burin

et al. [49]. For the future gallium experiments, the outer cylinder will be composed

of stainless steel.
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Figure 1.9: Figure courtesy of Ji et al. Apparatus of the Princeton MRI experiment.

1.6 Difference of MRI between in the lab and in

the real disks

1.6.1 Ideal MRI versus non-ideal MRI

Given the magnetic Reynolds numbers Rem and Lundquist numbers S are on the

order of unity, our experiment is thought to be quite resistive. This is unlike fully

ionized accretion disks, which are taken as nearly ideal fluids (or rather plasmas)

since the astrophysical scales are enormous (Table. 1.1). Hence the turbulence in real

astrophysical disks differs considerably from that in the lab. On the other hand, cool

disks are so weakly ionized that the resistivity is enhanced by ion-neutral collisions

and MRI may be suppressed, for example, in the quiescent states of cataclysmic

variables [54] and highly possibly in protostellar disks where the exact source of the

conductivity in protostellar disks is still unclear due to dust grains [55–58]. Our

experiment provides a platform to study the turbulence of such cool and resistive
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disks, and is most applicable to those with an externally sustained magnetic field

(We know that the inner parts of many protostars could be threaded by their own

strong dipole fields.).

1.6.2 Compressible MHD versus incompressible MHD

Our experimental regime is of course incompressible while in accretion disks the sys-

tem is compressible and the shear is quite supersonic. This seems to make our exper-

iment fundementally different from the real disks. Generally speaking linear MRI is

constructed on incompressible fluid, especially with a weak field. In a ideal flow, the

wavelength of the largest growing linear modes is ∼ VA/Ω, where VA is the Alfvén

speed. If the magnetic field is so weak that the Alfvén speed is much smaller than

the sound speed Vs, the system already undergoes strongly nonlinear behavior even

though the flows are still very subsonic and incompressible. However, some peo-

ple raised concerns upon the above logic considering that at saturation the field is

amplified by MRI-driven turbulence and the Alfvén speed based on the perturbed

magnetic field is about a fixed portion of the sound speed rather than the Alfvén

speed based on the initial vertical magnetic field, i.e. 〈V 2
A〉

1/2 ∼ 0.1Vs [7, 8, 59–62].

The explicit numerical algorithms used in those simulations restrict the initial VA/Vs

to & 0.01 due to numerical stability and resolution, especially in three dimensional

calculations. The purely incompressible nature of MRI may limit the very weak ini-

tial field, especially in a resistive flow, and therefore result in a field comparable to

its initial strength VA,sat/VA,0 = constant rather than VA,sat/Vs = constant at satu-

ration. Thus our experiment provides an opportunity to study MRI saturation in a

truly incompressible system.
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1.6.3 Plasma βplasma

It is interesting to derive the relationship between the ratio λcrit/2H (where λcrit is

the critical wave length for MRI and H = Vs/Ω is the half disk thickness) and the

magnetic field strength. For a thin isothermal Keplerian disk we have [6]

VA,z

Vs
=

√
6

π

λcrit

2H
, (1.20)

or alternatively in terms of the plasma parameter β ≡ 8πρV 2
s /B

2
z ,

βplasma =
π2

3

(
λcrit

2H

)−2

. (1.21)

Thus the instability is supposed to be suppressed if the plasma parameter β is smaller

than ∼ 3.

1.6.4 Kinetic MRI

The collision-less nature of radiatively inefficient accretion flows (RIAFs) (the Coulomb

collision time of RIAFs is much longer than the accretion time), like the one around

the super massive black hole in the center of our Galaxy, makes kinetic effects impor-

tant. We should use the Vlasov equation [63] which describes the time evolution of

the distribution function of a plasma in a 6-D phase space. If the scales of interest

are much larger than the ion Larmor radius, the fast gyromotion could be averaged

to get the drift kinetic equation (DKE) [64, 65] in a 5-D phase space. The most im-

portant difference between collisionless and collisional plasmas is that the pressure is

anisotropic with respect to the magnetic field, and there is rapid thermal conduction

along the the field lines. Quataert et al [66–68] studied MRI in this regime using

a so-called Braginskii MHD method. However the liquid metal (gallium or sodium)

used in the laboratory is very collisional since the mean free path is much shorter
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than the length dimension of the experiment. Hence the MHD formalism based on a

simple fluid model is expected to be sufficient Princeton MRI experiment.

Parameters Hot Disk Cold Disk Experiment

Reynolds Number Re > 1010 > 1012 ∼ 107

Magnetic Reynolds Number Rem > 1018 . 1 20
Magnetic Prandtl Number Prm ∼ 107 < 10−8 ∼ 10−6

Plasma β = 8πPgas/B
2 ∼ 102 ∼ 103(?) ∼ 103

Table 1.1: Parameters in astrophysical disks

1.7 Other on-going experiments

Here we comment on the other related experiments.

A sodium experiment with a similar Couette geometry is on-going [69]. Its mag-

netic Reynolds number and Lundquist number are larger than ours. However, since

the end plates corotate with the outer cylinder, the Ekman circulation is not avoid-

able, leading to a poorly controlled background toroidal flow.

MRI has already been claimed to be observed in an sodium experiment in spherical

geometry [39]. The stationary outer sphere would cause the flow axisymmetrically

unstable, even before the poloidal magnetic field is imposed. The angular velocity is

not constant along the field line, which is different from in the accretion disks and is

in contrast to our design. Thus according to Ferraro’s law no laminar steady-state,

from which MRI could grow, is available. Though the angular-momentum transport

is found to be enhanced with the increased magnetic field, the magnetic modes they

observe are non-axis-symmetric, which is not consistent with the theoretical basic

of the MRI that the primary modes should be axis-symmetric if only a poloidal

field is applied. Jeremy Goodman has an analytic calculation (unpublished), which

demonstrates that the attachment of the poloidal field lines to the inner (Copper)

sphere would lead to a torque, which is already several times larger than the one
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reported by Sisan et al. [39] and claimed to be from MRI, by magnetically coupling

the fluid near the rotation axis to the inner Copper sphere even if the sodium is

set to be at rest. This is because the experiment was originally designed to study

planetary dynamos not MRI. The results are not directly related to MRI though they

are interesting and potentially important.

One of the variants of MRI, so-called “Helical” MRI (HMRI) is discovered to

grow at much reduced Rem and S in the presence of a helical background field, a

current-free combination of axial and toroidal field and thus it is thought to be easier

to realize experimentally than standard MRI [40, 41]. Recently it has been reported

to be observed in Posdam Rossendorf Magnetic Instability Experiment (PROMISE)

[42–44]. Though we confirm their results: in infinitely long or periodic cylinders

the instability survives in an inviscid fluid with arbitrarily large resistivity and the

thresholds of the onset of the instability is lowered significantly, the growth rate is

found to be on order of O(η−1). We also doubt the relevance of this new mode to

the astrophysical disks and find it less attractive for experiments. More details are in

Chap. 4 and Chap. 5.

In all experiments above, the plasma or the liquid metal is rotated by rotating

cylinders except Sisan et al. [39], in which the liquid metal is rotated by rotating the

inner sphere but still suffers the same disadvantage mentioned below. This simple

design has its disadvantages. The main one is that the equilibrium flow is controlled

almost entirely by the endcaps of the vessel. Another way to rotate a liquid metal

is to use the Lorentz force by applying a radial electric current between cylinders in

a vertical magnetic field [70–72]. Under this set-up Hartmann layers (its thickness

scales as 1/Ha, where the Hartmann number Ha = VAL/
√
νη. V aA is the Alfvén

speed, L is the characteristic length, ν is the kinetic viscosity and η is the magnetic

diffusivity) and a parallel layer along the cylinder surfaces (its thickness scales as

1/
√
Ha) need to be accounted for. With large Hartmann number (Ha) they are very
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small, so that the flow in the bulk is not affected. The experimental device adopting

this idea proposed by Velikhov is being built in Russian Research Center “Kurchatov

Institute”. However some physicists raised concerns on this strategy, noting that such

a system is not current-free. Therefore the possibility of current-driven instability and

the likely convection due to the Ohm heating both complicate the problem.

1.8 Outline of the following chapters

The main body of the thesis (Chapter. 2 - 6) is based on five papers (published or

in preparation). The first is on linear MRI and its nonlinear saturation in a periodic

cylinder; the second on the Princeton MRI Experiment; the third on Helical MRI with

vertically periodic boundary as well as vertically insulating end caps; the fourth on

the PROMISE Experiment with partially conducting boundary condition (Copper

vessel considered); the last on magnetized Ekman layer and Stewartson layer with

insulating end plates.

Chapter 2, based on [73], describes linear MRI, which serves as a benchmark of

the code, and its nonlinear saturation with vertically periodic boundary conditions.

We present non-ideal two-dimensional magnetohydrodynamic simulations of the non-

linear evolution of MRI in the experimental geometry. The simulations adopt initially

uniform vertical magnetic fields, conducting radial boundaries, and periodic vertical

boundary conditions. No-slip conditions are imposed at the cylinders. Our linear

growth rates compare well with existing local and global linear analyses. MRI satu-

rates nonlinearly with horizontal magnetic fields comparable to the initial axial field.

The rate of angular momentum transport increases modestly but measurably over the

initial state. For modest fluid and magnetic Reynolds numbers Re,Rem ∼ 102 − 103,

the final state is laminar reduced mean shear except near the radial boundaries, and

with poloidal circulation scaling as the square root of resistivity, in partial agreement
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with the analysis of Knobloch and Julien [74]. A sequence of simulations at Rem = 20

and 102 . Re . 104.4 enables extrapolation to the experimental regime (Rem ≈ 20,

Re ∼ 107), albeit with unrealistic boundary conditions. MRI should increase the

experimentally measured torque substantially over its initial purely hydrodynamic

value.

Chaper 3, based on [75], describes the simulation of Princeton MRI Experiment.

We implement the fully insulating boundary condition. The simulations mimic the

on-going experiment except that the conductivity of the stainless steel walls is ne-

glected and the simulation starts from an ideal Couette state rather than an actual

hydrodynamical equilibrium with split end caps. We have also restricted our study

to smaller fluid Reynolds number (Re) than in the experiment, but have used exactly

the same magnetic Reynolds number (Rem). MRI grows from small amplitudes at a

rate in good agreement with linear analysis. A clear linear phase is observed. MRI

saturates nonlinearly with horizontal magnetic fields as large as several percent of

the initial axial field. Surprisingly one inflowing “jet” opposite to the usual Ekman

circulation “jet” is found near the inner cylinder. Under the proper conditions, our

experimental facility is a good platform to show that MRI could be suppressed by

a strong magnetic field. The MRI enhances the angular momentum transport at

saturation. We also study the effect of the partially conducting stainless steel walls

and start the simulation from a hydrodynamic equilibrium state with an adjusted

rotation profile in order to recover the linear phase. The influences from these two

complications are minimal and some similar conclusions are achieved.

Chaper 4, based on [45], describes Helical MRI studies with both vertically peri-

odic boundary condition and insulating end caps. We confirm the results of Hollerbach

and Rüdiger [40], Rüdiger et al. [41] , calculate HMRI growth rates, and show that in

the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in

a unique direction along the axis. But we report other features of HMRI that make
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it less feasible for experiments and for resistive astrophysical disks. Growth rates

are small and require large axial currents. More fundamentally, instability of highly

resistive flows is particular to infinitely long or periodic cylinders: finite cylinders

with insulating endcaps are shown to be stable in this limit. Also, Keplerian rotation

profiles are stable in the resistive limit regardless of axial boundary conditions. Nev-

ertheless, the addition of toroidal field lowers thresholds for instability even in finite

cylinders.

Chaper 5, based on [46], describes the simulation of Germany PROMISE Exper-

iment with partially conducting boundary condition (Copper walls considered). We

investigate numerically a traveling wave pattern observed in experimental magnetized

Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling vis-

cous and magnetic boundaries in all directions, we reproduce the experimentally mea-

sured wave patterns and their amplitudes. Contrary to previous claims that the wave

patterns are due to Helical MRI, a global instability [42–44], the waves are shown

to be transiently amplified disturbances launched by viscous boundary layers rather

than globally unstable magnetorotational modes.

Chaper 6, based on [76], describes the studies of magnetized Ekman layer and

Stewartson layer. The magnetic field is found to inhibit the Ekman suction. While we

quantitatively confirmed the conclusions of Gilman et al [77–81], the finite differential

rotation cannot be neglected and modifies the linear Ekman layer. The width of the

Ekman layer is reduced with an increased magnetic field normal to the end plate. A

uniformly-rotating region forms near the outer cylinder. The Stewartson layer [51]

penetrates deeper into the fluid with larger Reynolds number and stronger magnetic

field. Furthermore a strong magnetic field leads to a steady Stewartson layer, at least

in axisymmetry.

Main conclusions and future work are summarized in Chap. 7.

Appendix A contains the new physics and all the boundary conditions imple-
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mented in ZEUS. Viscosity and resistivity have been incorporated into the code and

the code is transformed to a flux-conservative form to conserve the angular momen-

tum exactly since the angular momentum is the key issue in our project. Also no-slip

hydrodynamic boundary condition is implemented. The technical details of how to

implement (1) vertical periodic radial conducting; (2) vertical periodic radial insu-

lating; (3) vertical insulating radial conducting; (4) fully insulating; and (5) partially

conducting boundary conditions are discussed.

Appendix B contains the benchmarks against the newly added subroutine for

viscosity and resistivity as well as the comparison between the ZEUS code, which is

an astrophysical compressible ideal MHD code, and an incompressible code. For the

viscosity, a low-Re test is performed to compare with Wendl’s solution [82]. For the

resistivity a Magnetic Gauss diffusion test shows that the error scales quadratically

with cell size, as expected for our second-order difference scheme. All benchmarks

show that the modification of ZEUS is favorable and that a supersonic ideal code

could be modified to carry out subsonic diffusive simulations.
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Chapter 2

MRI in Periodic Cylinders1

It is a good starting step to study MRI in a periodic cylinder. That is: we adopt ver-

tically periodic boundary conditions for all fluid variables, with a periodicity length

Lz = 2h, where h = 27.9 cm is the actual height of the experimental flow. Such

boundary conditions are physically unrealistic, but almost all published linear anal-

yses of MRI in Couette flows have adopted them because they permit a complete

separation of variables [52, 53, 69, 83, 84]; an exception is Rüdiger and Zhang [85].

Thus by adopting periodic vertical boundaries, we are able to test our code against

well-established linear growth rates and to explore—apparently for the first time in

Couette geometry—the transition from linear growth to nonlinear saturation.

One may question the relevance of experimental to astrophysical MRI, especially

its nonlinear phases. In accretion disks, differential rotation arises from radial force

balance between the gravitational attraction of the accreting body and centrifugal

force. Thermal and magnetic energies are small compared to orbital energies, at least

if the disk is vertically thin compared to its radius. Consequently, nonlinear satura-

tion of MRI cannot occur by large-scale changes in rotation profile. In experiments,

however, differential rotation is imposed by viscous or other weak forces, and the

incompressiblity of the fluid and its confinement by a container allow radial force

1inherited and modified from Liu et al. [73]
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balance for arbitrary Ω(r). Thus, saturation may occur by reduction of differential

rotation, which is the source of free energy for the instability. In this respect, MRI

experiments and the simulations of this chapter may have closer astrophysical coun-

terparts among differentially rotating stars, where rotation is subsonic and boundaries

are nearly stress-free [86, 87].

Both in the laboratory and in astrophysics nonlinear MRI is expected to enhance

the radial transport of angular momentum. Quantifying the enhanced transport in a

Couette flow is a primary goal of the Princeton MRI experiment and of the present

chapter.

Most of the parameters of the simulations in §§2.1-2.2 are chosen to match those

of the experiment. We adopt the same cylinder radii (Fig. 2.1). The experimental

rotation rates of both cylinders (and of the endcaps) are separately adjustable, as

is the axial magnetic field. For these simulations, we adopt fixed values within the

achievable range: Ω1 = 4000 rpm & Ω2 = 533 rpm, Bz0 = 5000 G. We set the density

of the fluid to that of gallium, ρ = 6 g cm−3.

We also restrict our simulations to lower Reynolds number Re than the experi-

mental one & 106. Computations at Re & 106 are out of reach of any present-day

code and computer, at least in three dimensions; Re ∼ 106 might just be achievable

in axisymmetry, but higher-Re flows are more likely to be three-dimensional, so that

an axisymmetric simulation at such a large Re is of doubtful relevance. (The same

objection might be leveled at all of our simulations for Re≫ 103. Those simulations

are nevertheless useful for establishing scaling relations, even if the applicability of the

relations to real three-dimensional flows is open to question.) We use an artificially

large kinematic viscosity so that Re = 102 − 104.4, whereas for the true kinematic

viscosity of gallium (ν ≃ 3 × 10−3 cm2s−1), Re ≈ 107 at the dimensions and rotation

rates cited above. In defense of this approximation, we point to the fact that ex-

trapolations of Ekman-circulation rates and rotation profiles simulated at Re < 104

31



agree well with measurements taken at Re = 106 both in a prototype experiment

[47], and in the present aparatus [49]. We are able to reproduce the experimental

values of the dimensionless parameters based on resistivity: Rem ∼ 20, S ∼ 4; we

also report simulations at Rem ∼ 102 − 104. (The actual diffusivity of gallium is

η ≃ 2 × 103 cm2s−1).

Ω
Ω1

2

r2

h

Z

r1

2

R

2

B

Figure 2.1: Geometry of Taylor-Couette flow. In the Princeton MRI experiment,
r1 = 7.1 cm, r2 = 20.3 cm, h = 27.9 cm.

2.1 Linear MRI

In the linear regime, MRI has been extensively studied both locally and globally

[52, 53, 69, 83–85]. We have used these linear results to benchmark our code.

In the linear analyses cited above, the system is assumed to be vertically periodic

with periodicity length 2h, twice the height height of the cylinders. In cylindrical

coordinates, the equilibrium states are B0 = B0êz and V0 = rΩêϕ. WKB methods

describe the stability of this system very well even on the largest scales [52, 53]. Linear

modes are proportional to exp(γt− ikzz)f(krr), where γ is the growth rate, and f(x)

is an approximately sinusoidal radial function, at least outside boundary layers, whose
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zeros are spaced by ∆x ≈ π. The wavenumbers kz = nπ/h and kr ≈ mπ/(r2 − r1),

where n and m are positive integers. We will consider only the lowest value of kr

(m = 1) but allow n ≥ 1. The initial perturbation is set to an approximate eigenmode

appropriate for conducting boundary conditions:

δBz = A sin kzz
r1 + r2 − 2r

r
, δBr = kzA cos kzz

(r2 − r)(r − r1)

r
, δBϕ = 0 ,

δVz = B cos kzz
r1 + r2 − 2r

r
, δVr = kzB sin kzz

(r2 − r)(r − r1)

r
, δVϕ = 0. (2.1)

Evidently, the fast-growing mode dominates the simulations no matter which n is

used initially. Figure 2.2 compares the MRI growth rate obtained from the simulations

with those predicted by global linear analysis [53] as a function of magnetic Reynolds

number.

Figure 2.2: MRI growth rate versus Rem for conducting radial boundaries. Points:
simulations (see the comments in the main text). Curve: global linear analysis with
Re = 25, 600.

The radially global, vertically periodic linear analysis of Goodman and Ji [53]

found that the linear eigenmodes have boundary layers that are sensitive to the dis-
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sipation coefficients, but that the growth rates agree reasonably well with WKB

estimates except near marginal stability. A comparison of the growth rates found by

this analysis with those obtained from our simulations is given in Table 2.1. In the

context of the simulations, “Re = ∞” means that the explicit viscosity parameter of

the code was set to zero, but this does not guarantee inviscid behavior since there is

generally some diffusion of angular momentum caused by finite grid resolution. Nev-

ertheless, since the magnetic Reynolds number of the experiment will be about 20 and

since Re/Rem ∼ 106, these entries of the table probably most closely approximate

the degree of dissipation in the gallium experiment. In Table 2.1, the largest growth

rate predicted by the linear analysis has been marked with an asterisk (*). The sim-

ulations naturally tend to be dominated by the fastest numerical mode—that is, the

fastest eigenmode of the finite-difference equations, which need not map smoothly

into the continuum limit. Fortunately, as asserted by the Table, the fastest growth

occurs at the same vertical harmonic n in the simulations as in the linear analysis.

Rem Re n Prediction [ s−1] Simulation [ s−1]

1 41.67
2 72.71

400 400 3 77.69* 77.66
4 56.88
5 0.283
1 23.31

20 ∞ 2 32.43* 30.83
3 23.73
4 6.905

Table 2.1: Growth rates from semianalytic linear analysis vs. simulation.

2.2 Nonlinear Saturation

As noted in the very beginning of this chapter, instabilities cannot easily modify

the differential rotation of accretion disks because internal and magnetic energies are
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small compared to gravitational ones, and MRI is believed to saturate by turbulent

reconnection [88, 89]. In Couette flow, however, the energetics do not preclude large

changes in the rotation profile. As shown by Fig. 2.3, while the differential rotation

of the final state is reduced compared to the initial state in the center part of the

flow, it is steepened near the inner cylinder for |z| > 0.

Figure 2.3: Angular velocity profile before and after saturation at several heights, for
Re = Rem = 400. “Jet” is centered at z = 0 (squares).

2.2.1 Structure of the final state

For moderate dissipation (Re,Rem . 103), the final state is steady. Typical flow and

field patterns are shown in Figure 2.4. The poloidal flux and stream functions are

defined so that

V P ≡ Vrer + Vzez = r−1eϕ ×∇ Φ, BP ≡ Brer +Bzez = r−1eϕ ×∇ Ψ, (2.2)
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which imply ∇ · V P = 0 and ∇ · BP = 0. [Our velocity field is slightly compressible,

so that eq. (2.2) does not quite capture the full velocity field. Nevertheless, the error

is small, and Φ is well defined by ∇2(Φeϕ/r) = ∇ × V P with periodic boundary

conditions in z and ∂Φ/∂z = 0 on the cylinders.]

Figure 2.4: Contour plots of final-state velocities and fields. Re = 400, Rem = 400.
(a) Poloidal flux function Ψ (Gauss cm2) (b) Poloidal stream function Φ (cm2s−1) (c)
toroidal field Bϕ (Gauss) (d) angular velocity Ω ≡ r−1Vϕ (rad s−1).

The most striking feature is the outflowing “jet” centered near z = 0 in Figure 2.4.
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The contrast in flow speed between the jet and its surroundings is shown more clearly

in Figure 2.5. Figure 2.4 also shows that the horizontal magnetic field changes rapidly

across the jet, which therefore approximates a current sheet.

Figure 2.5: Radial velocity versus z for Re = 400, at several radii (cm): +, 8.42;
∗, 10.27; ×, 11.98; △, 13.70; 3, 16.87; 2, 18.98. For clarity, only half the full
vertical period (56 cm) is shown. Panel (a), Rem = 400; panel (b) Rem = 6400.

The radial flow speed in the jet scales with Rem as (Fig. 2.6),

Vjet ∝ Re−0.53
m . (2.3)

We find that the radial inward speed outside the jet scales similarly,

Vexternal ∝ Re−0.56
m ∝ η0.56. (2.4)

Mass conservation demands that VjetWjet = Vexternal(2h − Wjet), where Wjet is the

effective width of the jet. Thus we can conclude that this width is independent of

magnetic Reynolds number:

Wjet ∝ Re0m . (2.5)
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Figure 2.6: Maximum radial speed in the jet (left panel) and maximum of poloidal
stream function (right panel) vs. magnetic Reynolds number, for Re = 400. Powerlaw
fits are shown as dashed lines with slopes −0.53 [left panel, eq. (2.3)] and −0.57 [right
panel].

Additional support for this conclusion comes from the nearly equal scaling of Vr and

Φ with Rem (Fig. 2.6), which indicates that the spatial scales in the velocity field are

asymptotically independent of Rem. The toroidal flow perturbation and toroidal field

are comparable to the rotation speed and initial background field, respectively:

1.18 . max
Bϕ

Bz0
. 1.52, 0.28 . max

δVϕ

r1Ω1
. 0.56 . (2.6)

We emphasize that the scalings (2.3)-(2.6) have been established for a limited

range of flow parameters, 102 . Re,Rem . 104.4. The jet is less well defined at lower

Rem, especially in the magnetic field. Extrapolation of these scalings to laboratory

Reynolds numbers (Re & 106) is risky, and indeed our simulations suggest that the

final states are unsteady at high Re and/or high Rem (Fig. 2.7).
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Figure 2.7: Total toroidal magnetic energy vs. time at Re = 400.

2.2.2 Angular Momentum Transport

Figure 2.8 displays the radial profiles of the advective, viscous, and magnetic torques

integrated over cylinders coaxial with the boundaries:

Γadvective(r) =

∫ h

−h

dz ρr2vrvϕ , (2.7)

Γmagnetic(r) =

∫ h

−h

dz

(
−r

2BrBϕ

4π

)
, (2.8)

Γviscous(r) =

∫ h

−h

dz

[
−r3ρν

∂

∂r

(vϕ

r

)]
, (2.9)

Γtotal(r) = Γadvective(r) + Γmagnetic(r) + Γviscous(r) . (2.10)

The advective and magnetic torques vanish at r1 and r2 because of the boundary

conditions but are important at intermediate radii. All components of the torque are

positive except near r2. The total torque is constant with radius, as required in steady

state, but increases from the initial to the final state (Figure 2.8). From Figure 2.9,
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Figure 2.8: z-integrated torques versus r. Re = 400, Rem = 400. Left panel: initial
state; right: final state.

we infer the scalings

Γfinal − Γinit

Γinit
∝ Re0.5Re0m, (2.11)

at least at Re, Rem & 103. In fact, a better fit to the exponent of Re for Rem = 20

and Re & 103 would be 0.68 rather than 0.5, but the exponent seems to decrease at

the largest Re, and it is ≈ 0.5 for Rem = 400, so we take the latter to be the correct

asymptotic value.

Representative runs are listed in Table 2.2. Additional runs have been carried

out on coarser grids (smaller Nr, Nz) to check that the values quoted for the torques

are independent of spatial resolution to at least two significant figures in the laminar

cases (Re,Rem . 103) and to better than 10% in the unsteady cases where precise

averages are difficult to obtain. In the latter cases, the quoted values in the last two

columns have been averaged over radius but not over time.
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Rem Re Resolution Γinitial Γfinal ∆Γ/Γinitial

Nz ×Nr [ kg m2 s−2] [ kg m2 s−2]

10 400 200×50 8.60e2 8.60e2 0.00
20 400 200×50 8.60e2 9.02e2 0.05
50 400 200×50 8.60e2 1.12e3 0.30
100 400 200×50 8.60e2 1.35e3 0.57
200 400 200×50 8.60e2 1.50e3 0.74
400 400 200×50 8.60e2 1.57e3 0.83
800 400 200×50 8.60e2 1.57e3 0.83
1600 400 200×50 8.60e2 1.67e3 0.94
3200 400 200×50 8.60e2 1.65e3 0.92
6400 400 200×50 8.60e2 1.62e3 0.88
12800 400 228×50 8.60e2 1.62e3 0.88

400 100 200×50 3.44e3 4.45e3 0.44
400 200 200×50 1.72e3 2.58e3 0.50
400 400 200×50 8.60e2 1.57e3 0.83
400 800 200×50 4.30e2 9.70e2 1.26
400 1600 200×50 2.15e2 6.20e2 1.88
400 3200 200×50 1.08e2 3.90e2 2.63
400 6400 200×50 5.38e1 2.46e2 3.58
400 12800 228×58 2.69e1 1.55e2 4.77

20 100 200×50 3.44e3 3.44e3 0.00
20 200 200×50 1.72e3 1.72e3 0.00
20 400 200×50 8.60e2 9.02e2 0.05
20 800 200×50 4.30e2 4.95e2 0.15
20 1600 200×50 2.15e2 2.76e2 0.28
20 3200 200×50 1.08e2 1.57e2 0.45
20 6400 200×50 5.38e1 9.35e1 0.74
20 12800 228×50 2.69e1 5.75e1 1.14
20 25600 320×50 1.34e1 3.70e1 1.75

Table 2.2: Increase of total torque versus Re and Rem.

41



Figure 2.9: Increase of total torque versus (a) Rem and (b) Re. In panel (b), dashed
lines have slopes of 0.5 (Rem = 400) and 0.675 (Rem = 20).

2.2.3 Interpretation of the final state

The division of the flow into a narrow outflowing jet and a slower reflux resembles

that found by Kageyama et al. [47] in their hydrodynamic simulations [Fig. B.2]. In

that case, the jet bordered two Ekman cells driven by the top and bottom endcaps.

In the present case, however, Ekman circulation is not expected since the vertical

boundaries are periodic, and we must look elsewhere for an explanation of the final

state.

Knobloch and Julien [74, hereafter KJ] have proposed that axisymmetric MRI may

saturate in a laminar flow whose properties depend upon the dissipation coefficients ν

& η, with a large change in the mean rotation profile, Ω(r). Although this mechanism

of saturation probably cannot apply to thin disks, it is consistent with some aspects

of the final state of our Couette-flow simulations: in particular, the scalings (2.3)-

(2.4) of the poloidal velocities with Rem; and the mean rotation profile does indeed

undergo a large reduction in its mean shear, except near the boundaries (Fig. 2.3).

One prominent difference between the final states envisaged by KJ and those
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found here is the axial lengthscale. KJ assumed the final state to have the same

periodicity as the fastest-growing linear MRI mode, although they acknowledged that

their theory does not require this. In our case, the linear and nonlinear lengthscales

differ: whereas the fastest linear mode has three wavelengths over the length of the

simulation (Table 2.1), the nonlinear state adopts the longest available periodicity

length, namely that which is imposed by the vertical boundary conditions. Within

that length, the flow is divided between the narrow jet and broad reflux regions. As

discussed below, a third and even narrower reconnection region, whose width scales

differently in Rem from that of the jet itself, exists within the jet. Another possibly

important difference concerns the role of radial boundaries. KJ simply ignored these,

yet our jet clearly originates at the inner cylinder (Fig. 2.4). KJ’s theory predicts

that the poloidal flow should be proportional to Re−1/2 as well as Re
−1/2
m . Yet, we

find that Vjet actually increases with Re, roughly as Re+1/2, up to Re ∼ 103, above

which it begins to decline and the flow becomes unsteady.

The jet is probably the part of the flow that corresponds most closely to the

“fingers” envisaged by KJ. Let us at least try to understand how the quantities in

our jet scale with increasing Rem at fixed Re, even though it is more relevant to the

experiment to increase Re at fixed and modest Rem (for the latter, see below).

In steady state, the toroidal component of the electric field vanishes, Eϕ = 0,

because the flux through any circuit around the axis is constant. Consequently,

[Φ,Ψ] ≡ ∂Φ

∂r

∂Ψ

∂z
− ∂Φ

∂z

∂Ψ

∂r
= ηr

(
∂2

∂z2
+

∂2

∂r2
− 1

r

∂

∂r

)
Ψ ≡ ηr∆∗Ψ, (2.12)

The evidence from our simulations is that the peak values of Φ and Ψ scale as η1/2

and η0, respectively, in the nonresistive limit η → 0, Rem → ∞. The radial velocity

Vr = r−1∂Φ/∂z also scales as η1/2. In order that the two sides of eq. (2.12) balance,

at least one of the derivatives of Ψ must become singular in the limit η → 0. This
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appears to be the case. In fact, a comparison of the flux contours in Figures 2.4(a)

and 2.10(a) suggests that a current sheet develops at the center of the jet. This is

more obvious in the horizontal components of current density, Jr and Jϕ, whose peak

values we find to scale as ∝ η−0.46 ≈ Re
1/2
m (Figure 2.11) and the maximum toroidal

magnetic field near the current sheet scales as

Bϕ ∝ Re0.18
m ≈ Re1/6

m . (2.13)

From these scalings one infers that the width of the current sheet scales as η1/3. On

the other hand, the region defined by |Br|, |Bϕ| > |Bz| appears to have a width ∝ η0,

like that of the velocity jet. We call this the magnetic “finger” because of its form in

Fig. 2.10.

It is interesting to check whether these scalings are consistent with the observation

that the total torque (radial angular-momentum flux) appears to be asymptotically

independent of the resistivity. As η → 0, the advective torque ∝
∫
VrVϕdz tends

to zero since Vr ∝ η1/2 and Vϕ is presumably bounded by ∼ rΩ1. The viscous

contribution is always dominant near the cylinders but is reduced compared to the

initial state at intermediate radii by the reduction in the vertically-averaged radial

shear (Fig. 2.8). Since the total torque is larger in the final than in the initial state, a

significant fraction of it must be magnetic, and this fraction should be approximately

independent of η at sufficiently small η. If Br ∼ Bϕ ∝ ηx within a vertical layer

of width ∆z ∼ ηy, the torque ∝
∫
BrBϕdz ∝ η2x+y. Thus we expect y ≈ −2x. In

agreement with this, we have found that x ≈ −1/6 and y ≈ 1/3 in the current sheet,

while in the finger, x ≈ y ≈ 0.

One notices in Fig. 2.10(a)&(d) that the angular velocity is approximately con-

stant along field lines—Ω = Ω(Ψ)—as required by Ferraro’s Law when the flow is

predominantly toroidal and the resitivity small. There must therefore be an outward
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Figure 2.10: The same sequence as Fig. 2.4, but forRem = 6400, Re = 400. Symmetry
about z = 0 has not been enforced; the jet forms spontaneously at z ≈ −20, but the
whole pattern has been shifted vertically to ease comparison with Fig. 2.4.
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Figure 2.11: Maximum radial current in the current sheet (left panel) and maximum
of toroidal magnetic field (right panel) vs. magnetic Reynolds number, for Re = 400.
Powerlaw fits are shown as dashed lines with slopes 0.46 [left panel] and 0.18 [right
panel, eq (2.13)].

centrifugal force along the lines in the magnetic finger, which in combination with the

reconnection layer, presumably drives the residual radial outflow. Viscosity continues

to be essential even as η → 0 because it is then the only mechanism for communicat-

ing angular momentum between field lines, and between the fluid and the cylinders;

the distortion of the field enhances viscous transport by bringing into closer proximity

lines with different angular velocity.

To summarize, in the highly conducting limit Rem → ∞, Re =constant, there ap-

pear to be at least three main regions of the flow: (I) an “external” or “reflux” region

in which the magnetic field is predominantly axial and the velocity predominantly

toroidal, but with a small (∝ η1/2) radial inflow; (II) a “jet” or “finger” of smaller but

constant vertical width in which the fields are mainly horizontal and there is a more

rapid but still O(η1/2) flow along field lines; (III) a resistive layer or current sheet at

the center of the jet whose width decreases as η1/3, across which the horizontal fields

change sign.
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2.2.4 Simulations at small magnetic Prandtl number

In the ongoing Princeton MRI experiment, the experiment material, liquid gallium,

has kinematic viscosity ν ≈ 3×10−3 cm2 s−1 and resistivity η ≈ 2×103 cm2 s−1. The

typical dimensionless parameters are Rem ≈ 20 and Re ≈ 107 at the dimensions and

rotation speeds cited above. The magnetic Prandtl number Prm ≡ Rem/Re ≈ 10−6

is very small. Reliable simulations with Reynolds number as high as 107 are beyond

any present-day computer, and small Prm presents additional challenges for some

codes.

Although our boundary conditions are not those of the experiment, we have carried

out simulations at Rem = 20 and much higher Re in order to explore the changes

in the flow due to these parameters alone. A simulation for Re = 25600 is shown

in Figures 2.12 & 2.13. All though this is still considerably more viscous than the

experimental flow, it is clearly unsteady, like all of our simulations at Re & 3000. A

narrow jet can still be observed in the poloidal velocities, but the poloidal field is only

weakly perturbed at this low Rem: Bϕ,max ≈ 0.1Bz.

Since the Reynolds number of the experiment is much larger than that of our

simulations, we can estimate the experimental torques only by extrapolation. Ex-

trapolating according to eq. (2.11) from the highest-Re simulation in Table 2.2, one

would estimate ∆Γ/Γinitial ∼ 35 at Re ∼ 107. There are, however, reasons for cau-

tion in accepting this estimate. On the one hand, the experimental flow may be

three-dimensional and turbulent, which might result in an even higher torque in the

final state. On the other hand, the viscous torque in the initial state is likely to be

higher than in these simulations because of residual Ekman circulation driven by the

split endcaps. Nevertheless, we expect an easily measurable torque increase in the

MRI-unstable regime.
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Figure 2.12: The same sequence as Fig. 2.4, but for Re = 25600, Rem = 20. The flow
is unsteady but closely resembles steady flows at lower Re for this Rem.
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Figure 2.13: The z-averaged torques as in Fig. 2.8, but for the state shown in Fig. 2.12
(Re = 25600, Rem = 20). The radial variation of the total torque, though slight,
testifies to the unsteadiness of the flow. + , viscous torque; ∗ , magnetic torque; △ ,
advective torque; solid line, total torque.

2.3 Conclusions

In this chapter, we have simulated the linear and nonlinear development of mag-

netorotational instability in a nonideal magnetohydrodynamic Taylor-Couette flow.

The geometry matches with the experiment in preparation except in the vertical

boundary conditions, which in these simulations are periodic in the vertical (axial)

direction and perfectly conducting at the cylinders; these simplifications allow direct

comparison with previous linear studies. We have also restricted our study to smaller

fluid Reynolds number (Re), and extended it to larger magnetic Reynolds number

(Rem), than in the experiment. We find that the time-explicit compressible MHD

code ZEUS-2D, which is widely used by astrophysicists for supersonic ideal flows with

free boundaries, can be adapted and applied successfully to Couette systems. MRI

grows from small amplitudes at rates in good agreement with linear analyses under

the same boundary conditions. Concerning the nonlinear final state that results from
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saturation of MRI, we draw the following conclusions:

1. Differential rotation is reduced except near boundaries, as predicted by Knobloch

and Julien [74].

2. A steady poloidal circulation consisting of a narrow outflow (jet) and broad

inflow is established. The width of the jet is almost independent of resistivity,

but it does decrease with increasing Re. The radial speed of the jet ∝ Re
−1/2
m .

3. There is a reconnection layer within the jet whose width appears to decrease

∝ Re
−1/3
m .

4. The vertically integrated radial angular momentum flux depends upon viscosity

but hardly upon resistivity, at least at higher Rem [eq. (2.11)].

5. The final state is steady and laminar at Re,Rem . 103 but unsteady at larger

values of either parameter (Figs. 2.7 & 2.13.)

6. the final state contains horizontal fields comparable to the initial axial field for

Rem & 400, and about a tenth as large for experimentally more realistic values,

Rem ≈ 20.

We emphasize that these conclusions are based on axisymmetric simulations re-

stricted to the range 102 . Re,Rem . 104.4, and that the boundary conditions are

not realistic. This chapter is intended as a preliminary exploration of MRI in the

idealized Taylor-Couette geometry that has dominated previous linear analyses. We

have modeled many of the complexities of a realistic flow in the next chapters which

show that these may significantly modify the flow.

50



Chapter 3

Princeton MRI Experiment1

3.1 Experimental Apparatus

As introduced in §1.5, for the gallium experiment, the inner and outer cylinders

are made of stainless steel and the end plates are composed of two independently

rotating rings. The computational domain is shown in: Fig. 3.1 and the parameters

are summarized in Table 3.1. Six coils (black rectangles) with dimensions as shown

were used, with 67 turns in the two coils nearest the midplane and 72 in the rest.

They are split into two sets of three in parallel, with the upper three in serial and the

bottom three also in serial. Currents Iϕ were adjusted according to the experimental

values. The implementation of full and partially conducting boundary condition is

introduced in Appendix A.2.3. Note that in the simulations the magnetic diffusivity η

is fixed to the experimental value η = 2, 430 cm2 s−1 (Table.3.1), however the kinetic

viscosity is changeable for the purpose of extrapolation.

The measured current waveform is displayed in Fig. 3.2 for the cases of 1000 A

and 400 A. The waveform displayed has an overshoot at the early stage, a linear

decline and then a linear ramp where the controller tries to adjust the output voltage

to reach the programmed set point. This behavior is peculiar of the high current runs

1inherited and modified from Liu et al. [75]
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Figure 3.1: Computational domain for simulations of Princeton MRI experiment.
Region (I): Inner copper cylinder, angular velocity Ω1, magnetic resistivity ηI . (II):
outer copper cylinder, Ω2, ηII . (III): liquid gallium, ηGa; (IV): vacuum. Thick dash
line: insulating inner ring, Ω3. Thick dash-dot line: insulating outer ring, Ω4. Thin
dash line: middle plane. Dimensions: r1 = 7.1 cm; r2 = 20.3 cm; h = 27.9 cm;
dw = 0.9525 cm; 100% run: Ω1/2π = 4000 rpm; Ω2/2π = 533 rpm; Ω3/2π = 1820 rpm;
Ω4/2π = 650 rpm.
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Dimensions
r1 = 7.1 cm r2 = 20.3 cm
h = 27.9 cm dw = 0.9525 cm

Material Property
ρGa = 6.35 gcm−3 ηGa = 2.43 × 103 cm2s−1

Rotation Profile (100% run)
Ω1/2π = 4000 rpm Ω2/2π = 533 rpm
Ω3/2π = 1820 rpm Ω4/2π = 650 rpm

Rotation Profile (60% run)
Ω1/2π = 2400 rpm Ω2/2π = 319.8 rpm
Ω3/2π = 1092 rpm Ω4/2π = 390 rpm

Adjusted Quiet Start (§3.3) (60% run)
Ω1/2π = 2400 rpm Ω2/2π = 319.8 rpm
Ω3/2π = 1001 rpm Ω4/2π = 390 rpm

Table 3.1: Parameters used in the simulations

(left panel of Fig. 3.2). Lower currents have a much flatter waveform (right panel of

Fig. 3.2).

Figure 3.2: Figure Courtesy of Mark Nornburg. Experimental wave form of the coil
current. Left panel: Iϕ = 1000 A; right: Iϕ = 400 A.

In the simulation a wave form like in Fig. 3.3 is used to approximate the experi-

mental coil currents with ramp time tcoil = 0.2 s.

The outline of this Chapter is as follows. Section 3.2 presents the simulation

results with fully insulating boundary condition. Two simplifications are employed

in this section: (1) The conductivity of the stainless walls is ignored, that is: ηI =

ηII = ∞ (Fig. 3.1). (2) All simulations in this section start from an arbitrary ideal
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Figure 3.3: Simulated Current pattern in the external coils; the ramp time tcoil =
0.2 s; in most cases except stated explicitly, Iϕ = 1000 A.

Couette state rather than an actual hydrodynamical equilibrium state with split end

caps. Most of results presented in this section are the results of 100% run (100% of

the designed values of our experiment, see Table.3.1) except stated explicitly. We

idealize the problem further in Subsection 3.2.1 by assuming ideal Couette state at

the end caps to remove the boundary effects (equivalent to divide the end caps into

many rings). Subsection 3.2.2 mimics the Princeton MRI experiment more closely

by splitting the end caps into only two rings as in the experiment (residual magnetic

Ekman layer is present).

Section 3.3 models the problem even closer to the Princeton MRI experiment by

addressing the problem with both complications ignored in Section 3.2. Furthermore

in order to recover the linear phase, the rotation profile at the end caps is adjusted

slightly to have a small ṽr near the outer cylinder. Most of results in this section

are the results of 60% run except stated explicitly since the experiment currently can

only achieve 60% run restricted by the leakage resulted from the fast rotation. In
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both sections the rotation profile at the end caps is different from the one used in the

experiment.

3.2 Simulation with Fully Insulating Boundary Con-

dition

As a first attack, we ignore the conductivity of the stainless steel walls, but regard

them as insulating materials, that is: ηI = ηII = ∞. And please note that in this

whole section, the simulations all start from an ideal Couette state rather than an

actual hydrodynamical equilibrium state with split end caps.

As discussed in §1.4.1, The experiment is complicated by the extremely enormous

Reynolds number and by Ekman circulation and Stewartson layers [50], even though

the experimental apparatus has been designed to minimize the circulation by the

use of independently controlled split endcaps. It is known that Ekman circulation is

significantly modified when the Elsasser number [79] exceeds unity:

Λ = B2
∞/(8πρGaηGaΩ) & 1

where B∞ is the axial magnetic field far away from the end cap and Ω =
√

Ω1Ω2

is the characteristic rotation frequency. For the 100% rotation as above and with

Iϕ = 1000 A, Λ = 0.36.

3.2.1 Without Magnetic Ekman Circulation

In order to simplify the problem, in this subsection we set the rotation profile on the

end caps to Ω = a + b/r2, where a = (Ω2r
2
2 − Ω1r

2
1)/(r

2
2 − r2

1) and b = r2
1r

2
2(Ω1 −

Ω2)/(r
2
2 − r2

1). In other words the rotation profile on the end caps is ideal Couette

state to remove the boundary effects. Also this set-up provides an opportunity to

55



Rem Re n Prediction [ s−1] Simulation [ s−1]

20 6400 1 33.7(*) 33.1
20 6400 2 13.8

Table 3.2: 100% run. Growth rates from semianalytic linear analysis vs. simulation.

benchmark with a “global” linear code [73], which is periodic in vertical direction

thus also does not have the end caps effects.

In the linear regime, MRI has been extensively studied both locally and globally

[52, 53, 69, 83–85]. We have used these linear results to benchmark our code used

in Chap. 2. Linear modes are proportional to exp(γt − ikzz)f(krr), where γ is the

growth rate, and f(x) is an approximately sinusoidal radial function, at least outside

boundary layers, whose zeros are spaced by ∆x ≈ π. The wavenumbers kz = 2nπ/h

and kr ≈ mπ/(r2 − r1), where n and m are positive integers. We will consider only

the lowest value of kr (m = 1) but allow n ≥ 1. Please note here kz = 2nπ/h rather

than nπ/h used in [73] and the linear analyses mentioned above [52, 53, 69, 83–85].

This different definition of kz sets δvr = 0 and δvϕ = 0 at the end caps (z = 0, h)

but δvz 6= 0 due to the incompressibility. Therefore the “global” linear code does not

have a radial flow at the end caps (z = 0, h) as the ZEUS simulation of this situation.

A comparison of the growth rates found by this analysis with those obtained from

our simulations is given in Table 3.2. In Table 3.2, the largest growth rate predicted

by the linear analysis has been marked with an asterisk (*). The simulations naturally

tend to be dominated by the fastest numerical mode—that is, the fastest eigenmode

of the finite-difference equations, which need not map smoothly into the continuum

limit. Fortunately, as asserted by the Table, the fastest growth occurs at the same

vertical harmonic n in the simulations as in the linear analysis. And they match

nicely with 2 significant digits.
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3.2.2 Split Rings

Next we create the boundary conditions closer to the real experiment by splitting the

end caps into only two rings as in Fig. 3.1.

Linear phase

The first convincing evidence of the existence of MRI is its linear growth rate (Fig. 3.4).

Interestingly the growth rate is reduced from 33.1 s−1 to 21.7 s−1. This possibly is

due to the residual magnetic Ekman circulation, which modifies the background flow.

We note that the growth rate of the Helical MRI is even more dramatically reduced

by having insulating end caps [45], which might be the combination of both Ekman

circulation and the traveling wave-boundary interaction.

Structure of the final state

As noted in §2.1, instabilities cannot easily modify the differential rotation of accretion

disks because internal and magnetic energies are small compared to gravitational ones,

and MRI is believed to saturate by turbulent reconnection [88, 89]. In Couette flow,

however, the energetics do not preclude large changes in the rotation profile. As

shown by Fig. 3.5, the differential rotation of the final state is reduced somewhat

compared to the initial state in the interior of the flow, and steepened near the inner

cylinder.

For Re = 6400, the final state is not steady. Typical time averaged flow and field

patterns are shown in Fig. 3.6. The poloidal flux and stream functions are defined so

that

V P ≡ Vrer + Vzez = r−1eϕ ×∇ Φ, BP ≡ Brer +Bzez = r−1eϕ ×∇ Ψ, (3.1)

which imply ∇ · V P = 0 and ∇ · BP = 0. [Our velocity field is slightly compressible,
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Figure 3.4: 100% run (MRI unstable) and Iϕ = 1000 A. Br vs. time for Re = 6400,
Rem = 20 sampled outside the fluid at z = 13.95 cm, r = 25.0 cm.“Bottom end cap”
is located at z = 0. Height h = 27.9 cm. Growth rate γ = 21.7 s−1.
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Figure 3.5: 100% run. Time averaged angular velocity profile before and after sat-
uration at several heights (cm), for Re = 6400, Rem = 20. left panel: pure hydro
run; right: Iϕ = 1000 A, Λ = 0.36. solid line, initial state (ideal Couette state);
+, 0.11 cm; △, 1.31 cm; 2, 13.95 cm. “Bottom end cap” is located at z = 0.
Height h = 27.9 cm. for comparison, here a pure hydro run is also presented.

so that eq. (3.1) does not quite capture the full velocity field. Nevertheless, the error

is small, and Φ is well defined by ∇2(Φeϕ/r) = ∇ × V P with ∂Φ/∂r = 0 on the end

caps and ∂Φ/∂z = 0 on the cylinders.]

We note that the induced toroidal field is around 6% at this magnetic Reynolds

number Rem: Bϕ,max ≈ 0.06Bz. The most striking feature is the inflowing “jet”

centered near z = 13.95 cm in Figure 3.6 (see also Fig. 3.7), which is opposite to

the usual Ekman circulation [47]. It seems that the rapid outflowing “jet” found in

[73] with vertically periodic boundary condition, where the position of the “jet” is

arbitrary, is shifted to the boundary layer, near the end caps in the experiment.

This opposite oriented “jet” especially near the inner cylinder part is a direct

consequence of MRI. The use of independently controlled split endcaps without the

magnetic field would split the big two Ekman cells [47] into eight small cells, four at

the upper half and four at the bottom half (Fig. 3.8) (with a high Reynolds number,
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Figure 3.6: 100% run. Contour plots of final-state velocities and fields (MRI unsta-
ble). Re = 6400, Rem = 20. Iϕ = 1000 A, Λ = 0.36. (a) Poloidal flux function
Ψ (Gauss cm2) (b) Poloidal stream function Φ (cm2s−1) (c) toroidal field Bϕ (Gauss)
(d) angular velocity Ω ≡ r−1Vϕ (rad s−1).
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Figure 3.7: Corresponding to Fig. 3.6(b). 100% run (MRI unstable). Time averaged
vr vs. radius r on the middle plane (z = h/2). Re = 6400, Rem = 20. Iϕ = 1000 A,
Λ = 0.36.

the system is not steady). Hereafter we focus only on the upper half. The circulation

direction of the bottom four cells is opposite to the circulation direction of the corre-

sponding upper cells. This can be understood from Fig. 3.10. The ideal Couette state

causes a constant radial angular momentum flux along the radii. However the no-slip

boundary condition at the end plate, though split into two rings, would still cause a

development of the residual Ekman layer, where the velocity of the flow differs from

a pure toroidal rotation. In the bulk of the fluid the radial equilibrium pressure p0

is determined from the equation of radial force balance. However, at the end plate

the velocity of the liquid is not ideal Couette state. Where r . 10.6 cm, as the

usual Ekman circulation, the radial gradient of p0 undergoes not counterbalanced by

the sum of the centrifugal and Coriolis forces due to the rotation of the fluid with

a smaller rotation speed Ω3 than the corresponding ideal Couette rotation speed.

This extra pressure gradient forces the radial flow near the end plate. This flow is

oriented inward, i.e., from the region of higher uncompensated pressure to the region
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of lower pressure. This usual anti-clock-wise Ekman circulation arises in this region

(see Fig. 3.9). However where 10.6 cm . r . 13.7 cm, the radial gradient of p0 could

not balance the sum of centrifugal and Coriolis forces due to a larger rotation speed

Ω3 than the corresponding ideal Couette one. This leads to an anomalous clock-wise

Ekman circulation in this region, leading to the inflowing “jet” (see Fig. 3.9). The

same situation happens where 13.7 cm . r . 18.2 cm (anti-clock-wise) and where

r & 18.2 cm (clock-wise) (Fig. 3.9). We do not observe an inflowing “jet” near the

inner cylinder (r . 10.6 cm) (Fig. 3.9).

The addition of the external magnetic field (set up still in the MRI stable regime

by reducing the rotation speed, however keeping the same Elsasser number Λ) aligns

the flow along the magnetic field lines, elongate the cells vertically, which make the

cells penetrate deeper into the fluid, and lead to a more steady final state (Fig. 3.11).

Again at this time we would not observe an inflowing “jet” near the inner cylinder

(r . 10.6 cm) (Fig. 3.12). However in the MRI unstable regime with the same Λ

the scale of the middle clock-wise cell would be increased not only vertically but also

horizontally and eventually dominate the other three which retreat to the corners

if the instability is strong enough. This leads to one inflowing “jet” near the inner

cylinder (Fig. 3.7).

We note that in the MRI stable case the induced toroidal field is much weaker

(Bϕ,max ≈ 0.0036Bz compared to Bϕ,max ≈ 0.06Bz in the MRI unstable case). The

poloidal field also changes more slightly in the MRI stable case. This implication is

that the Lorentz force is much more significant in the MRI unstable case than the

MRI stable case. The Lorentz force is given by:

( ~B · ∇) ~B = Br
∂

∂r
Br +Bz

∂

∂z
Br −

B2
ϕ

r
,

in which the underlined term is much more dominant in the MRI unstable case,
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enhancing the clock-wise cells and drives the fluid flowing inward near the inner

cylinder.

Figure 3.8: 100% rotation run. Compare with Fig. 3.6 (b). Contour plots of poloidal
stream function Φ (cm2s−1) for Re = 6400 without magnetic field at different time
t [ s]. (a) t = 4.5 s, (b) t = 4.75 s.

Figure 3.9: Corresponding to Fig. 3.8. 100% rotation run. Time averaged vr vs.
radius r on the middle plane (z = h/2). Re = 6400, Rem = 20. Iϕ = 0 A, Λ = 0.
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Figure 3.10: 100% run. Two independent rotating rings generates 8 cells. solid line,
ideal Couette state; dashed line, rotation profile at the end caps.

Figure 3.11: 25% rotation run (MRI stable). Contour plots of final-state poloidal
stream function Φ (cm2s−1) for Re = 6400, Rm = 4. Left panel: Iϕ = 500 A,
Λ = 0.36; right: Iϕ = 1000 A, Λ = 1.43. Note the aligning effect of the external
magnetic field for higher Λ.
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Figure 3.12: Corresponding to Fig. 3.11. 25% rotation run (MRI stable). Time
averaged vr vs. radius r on the middle plane (z = h/2) for Re = 6400, Rm = 4. Left
panel: Iϕ = 500 A, Λ = 0.36; right: Iϕ = 1000 A, Λ = 1.43.

Another assuring evidence, that it is MRI which causes an “inflowing” jet, exists

in the simulations (§3.2) with the ideal Couette state at the end caps, which does

not have end plate effects thus does not have magnetic Ekman circulation at all

(Fig. 3.13). From Fig. 3.13, the direction (clock-wise) of circulation is opposite to

the usual Ekman circulation (anti-clock-wise) [47]. There is a clear “inflowing” jet

near the inner cylinder in this case (see Fig. 3.14). This suggests that the poloidal

circulation seen in the final state in the split-endcap cases (Fig. 3.6 (b)) is caused

mainly by saturation of MRI rather than the magnetic Ekman circulation.

Angular momentum transport

Astrophysicists are interested in the angular momentum transport due to MRI since

MRI is supposed to be the most probable mechanism to explain the fast accretion

in the astrophysical disks. Fig. 3.15 displays the r-profiles of the radial advective,

viscous, and magnetic angular momentum fluxes integrated over cylinders coaxial
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Figure 3.13: 100% rotation run (MRI unstable). Contour plots of poloidal stream
function Φ (cm2s−1) for Re = 6400 with ideal Couette state at the end caps. Iϕ =
1000 A, Λ = 0.36.

Figure 3.14: Corresponding to Fig. 3.13. 100% rotation run (MRI unstable). Time
averaged vr vs. radius r on the middle plane (z = h/2) for Re = 6400 with ideal
Couette state at the end caps. Iϕ = 1000 A, Λ = 0.36.
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with the boundaries (thus they are radial advective, viscous, and magnetic torques

respectively):

Γadvective,r(r) =

∫ h

0

dz ρr2vrvϕ , (3.2)

Γmagnetic,r(r) =

∫ h

0

dz

(
−r

2BrBϕ

4π

)
, (3.3)

Γviscous,r(r) =

∫ h

0

dz

[
−r3ρν

∂

∂r

(vϕ

r

)]
(3.4)

Γtotal,r(r) = Γadvective,r(r) + Γmagnetic,r(r) + Γviscous,r(r) . (3.5)

Figure 3.15: 100% run (MRI unstable). z-integrated radial angular momentum fluxes
versus r at saturation. Re = 6400, Rem = 20. Iϕ = 1000 A, Λ = 0.36. + , viscous
torque; ∗ , magnetic torque; △ , advective torque; solid line, total torque.

In contrast to the final state for vertically periodic boundary conditions [73], the

total radial torque is not constant with radius. Since our numerical scheme conserves

angular momentum exactly, we can infer a vertical flux arising from exchange of

angular momentum with the endcaps. From the gradients of the radial torque, we

identify four Ekman circulation cells: where dΓtotal,r/dr > 0 (< 0) , the fluid is losing

67



(gaining) angular momentum at the endcaps and the boundary-layer flow is there-

fore radially inward (outward). This is consistent with the discussion of the poloidal

circulation pattern of the flow with two split rings in §3.2.2.The radial magnetic and

advective torques vanish at r1 and r2 because of the boundary conditions but are

important at intermediate radii especially the latter, which means the middle clock-

wise cell is enhanced and transport more angular momentum. All components of the

radial torques are positive, which means that the angular momentum is transported

radially outwards.

Figure 3.16: 100% run (MRI unstable). r-integrated vertical angular momentum
fluxes versus z at saturation. Re = 6400, Rem = 20. Iϕ = 1000 A, Λ = 0.36. + ,
viscous torque; ∗ , magnetic torque; △ , advective torque; solid line, total torque.

Fig. 3.16 displays the z-profiles of the vertical advective, viscous, and magnetic

angular momentum fluxes integrated over radius (thus they are vertical advective,
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viscous, and magnetic torques respecitvely):

Γadvective,z(z) =

∫ r2

r1

dr ρr2vzvϕ , (3.6)

Γmagnetic,z(z) =

∫ r2

r1

dr

(
−r

2BzBϕ

4π

)
, (3.7)

Γviscous,z(z) =

∫ r−2

r1

dr

[
−r2ρν

∂

∂z
(vϕ)

]
(3.8)

Γtotal,z(z) = Γadvective,z(z) + Γmagnetic,z(z) + Γviscous,z(z) . (3.9)

From these two figures, we can see that the global angular momentum is entering

from the inner cylinder then most of it is flowing out from the outer cylinder while

the rest of it is flowing out at the two end caps.

Angular momentum is transported outward.

It is very interesting to derive the relationship of the total radial torque at the

inner cylinder, which is supposed to be the source of the angular momentum, with

Reynolds number Re and of the sum of total vertical torques at both endcaps with

Reynolds number Re.

From Figure 3.17 (a), we infer the following scalings (100% run, Rem = 16):

(1) Iϕ = 0 A or Λ = 0, which can be regarded as the initial state of the experiment

since the experiment would start from a purely hydrodynamical equilibrium state

(100% run, 100 . Re . 25600).

Γinitial,r(r1) ≈ 2.69 × 104Re−0.691 ; (3.10)

(2) Iϕ = 1000 A or Λ = 0.36, which can be regarded as the final state of the

experiment (100% run, 100 . Re . 25600).

Γfinal,r(r1) ≈ 1.98 × 104Re−0.639 . (3.11)
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From these two scaling laws, the MRI indeed enhances the angular momentum trans-

port at saturation, though not conclusively (see discussion below).

If Eq. 3.10 and Eq. 3.11 also work at larger Reynolds number regime, that is, the

total radial torque of the initial and final state at the inner cylinder can be calculated

by extrapolation of Eq. 3.10 and Eq. 3.11 respectively to the experimental Reynolds

number (Re ≈ 1.15 × 107, 100% run), then the total radial torque of the initial and

final state at the inner cylinder may be as large as (100% run)

Γinitial,r(r1) ≈ 0.359 Newton m

and

Γfinal,r(r1) ≈ 0.611 Newton m

respectively. Thus, the ratio of the increase of the torque over the initial torque is:

(0.611 − 0.356)/0.356 = 72%, which is quite measurable and indicates that at the

experimental Reynolds number MRI would dominate the residual magnetic Ekman

circulation in the point of view of transporting the angular momentum. There are,

however, reasons for caution in accepting this estimate. For example, the experi-

mental flow may be three-dimensional and turbulent, which might result in an even

higher torque in the final state, and both the exponents seem to decrease at larger

Reynolds number and the difference of these two exponents is small. These concerns

all make the extrapolation of Eq. 3.10 and Eq. 3.11 to the experimental Reynolds

number a bit risky. Nevertheless, we expect a noticeable torque enhancement in the

MRI-unstable regime.

From Figure 3.17 (b), we can see that: (1) At larger Reynolds number, more

angular momentum is transported vertically. This is reasonable since the Ekman

circulation is more dominant when Reynolds number is larger; (2) In the MRI stable

regime (Re . 1600), the magnetic field enhances the vertical transport of the angular
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Figure 3.17: (a) Total radial torque at the inner cylinder (b) Sum of the total vertical
torques at both endcaps versus Re. Note that in the simulations the magnetic dif-
fusivity η is fixed to the experimental value η = 2, 430 cm2 s−1 (Table.3.1), however
the kinetic viscosity is changeable for the purpose of extrapolation. In both panel,
red colors: MRI unstable; black color: MRI stable. In panel (a), dashed lines have
slopes of −0.691 (initial state) and dash-dot lines −0.639 (final state).

momentum. This is also reasonable since the magnetic field would align the flow,

thus having the cells elongating and penetrating deeper into the bulk. The middle

cells are increased vertically by the residual magnetic Ekman circulation. (3) In the

MRI unstable regime (Re & 3200), the onset of the MRI results in more angular mo-

mentum transported radially outwards thus fewer angular momentum is transported

vertically. The MRI would increase the scale of the middle cell horizontally. Therefore

it transports more angular momentum radially outwards.

Strong Magnetic Field Suppresses MRI with two split rings

MRI essentially is a weak field instability. It is characteristic of MRI for a strong

magnetic field to suppress this instability. Our experimental facility can only allow

Iϕ . 1200 A. Thus we need to try carefully to find one set of proper parameters
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under which one growing mode is present with low Iϕ while absent with larger Iϕ.

Fortunately simulations with 45% run demonstrate this property (Fig. 3.18).

Figure 3.18: 45% run. Br vs. time for Re = 6400, Rem = 7.3 sampled outside
at z = 13.95 cm, r = 25.0 cm.“Bottom end cap” is located at z = 0. Height
h = 27.9 cm. left panel: Iϕ = 750 A, growth rate γ = 1.3 s−1; right panel:
Iϕ = 1200 A, stable.

3.2.3 Summary of split rings studies

In conclusion of this section we have simulated the nonlinear development of mag-

netorotational instability in a nonideal magnetohydrodynamic Taylor-Couette flow.

The simulations mimic an on-going experiment except that the conductivity of the

stainless steel walls is neglected and the simulation is started from an ideal Couette

state rather than an actual hydrodynamical equilibrium state with split end caps.

We have also restricted our study to smaller fluid Reynolds number (Re) than in

the experiment, however we have used exactly the same magnetic Reynolds number

(Rem). MRI grows from small amplitudes at rates in good agreement with linear

analyses without the end cap effects.
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Concerning the MRI simulations with two split independently rotating rings like

the real experimental facility, we draw the following conclusions:

1. A clear linear phase is observed,

2. Differential rotation is reduced somewhat in the final state,

3. In the final state one inflowing “jet” opposite to the usual Ekman circulation

“jet” [47] is found near the inner cylinder, a direct consequence of MRI rather

than the residual Magnetic Ekman circulation (100% run),

4. The MRI enhances the angular momentum transport at saturation, though not

conclusively. (100% run),

5. The final state contains horizontal fields about 6% as large as the initial poloidal

field for Rem ≈ 20 (100% run),

6. Magnetized (Λ > 0) cases are steadier than pure hydrodynamic cases at the

same Re.

3.3 Simulation with Partially Conducting Insulat-

ing Boundary Condition with modified Quiet

Start

In this section we consider the influence from the partially conducting containers as

shown in Fig. 3.1, where ηI = ηII = ηFe = 5.73 × 103 cm2s−1 is the resistivity of the

stainless steel and ρI = ρII = ρFe = 7.8 gcm3 is the density of the stainless steel.

Since our experimental facility currently can only reach 60% run (Ω1/2π = 2400 rpm,

Ω2/2π = 319.8 rpm, Ω3/2π = 1092 rpm, Ω4/2π = 390 rpm), in this whole section

we will focus on 60% run simulations.
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3.3.1 Partially Conducting Boundary Condition

If the container is not perfectly insulating, the radial magnetic angular momentum

flux at the cylinders is no longer zero. This non-zero magnetic coupling of the fluid to

the cylinders (steel walls) can modify the background state on which the instability

grows. Thus a partially conducting boundary condition is an issue worthy of noting

[46].

Fortunately, at the frequencies relevant to Princeton MRI experiment (60% run)

(f ∼ 0.3 Hz), the skin depth of stainless steel δw =
√
ηFe/πfµ0 ≈ 22 cm, which is

much larger than the thickness of the steel vessel surrounding the gallium in the

experiment, dw ≈ 1.0 cm, so that the magnetic field diffuses rather easily into the

boundary. If one considers axial currents, the gallium and the steel wall act as

resistors in parallel; taking into account their conductivities and radial thickness,

one finds that the resistances of steel walls are much larger than the resistance of the

liquid gallium [RI : RII : RIII = 65 : 1 : 21; see Fig. 3.1 for the subscripts]. Therefore,

the currents carried by the steel walls could be neglected for the toroidal field, and

the boundary condition is very close to the perfectly insulating boundary condition

as discussed before.

The linear growth rate and saturated final state based on partially conducting

boundary condition differs slightly from the results based on perfectly insulating

boundary condition (the linear growth rate is reduced from 3.3 s−1 with perfectly

insulating walls to 3.1 s−1) with partially conducting walls, which verifies our argu-

ment.

3.3.2 Adjusted Quiet Start

In the §3.2, all simulations are started from an ideal Couette state. However with two

split end caps, this state is not the hydrodynamical equilibrium state of the system

any more. In order to start with a hydrodynamic equilibrium state, we run the code
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for 15 seconds (Basically it is Reynolds number dependent. The Ekman time is on

the order of h/(νκ̄)1/2. 15 seconds are long enough for Re = 6400 since the Ekman

time is about 0.9 seconds given Re = 6400) without the magnetic field to wait the

system to relax to an equilibrium state, just like in the experiment, after spinning the

cylinders for about 2 minutes without any magnetic field, then suddenly turning on

the magnetic field. This initial state is defined as quiet start

However, our pure hydrodynamical simulation shows that the initial equilibrium

state of a 60% run has a large ṽr near the outer cylinder which commences an initial

jump and shortens, or even eliminates the linear phase (Fig. 3.19). This simulation

result conflicts observation that the pure hydrodynamical final state has small vr

fluctuation with Reynolds number as high as 2×106 [26], thought the rotation profile

of the end caps is not the one specified in the simulation. The difference between

them might be because our simulations are 2-D and the Reynolds number is not so

high that we have a laminar boundary layer (Reynolds number of the boundary layer

Reδ =
√
Re = 80) [90], which under experimental parameters should be turbulent

(Reδ =
√
Re & 103).

In order to recover the linear phase, we adjust the rotation profile on the end caps a

bit: Ω1/2π = 2400 rpm, Ω2/2π = 319.8 rpm, Ω3/2π = 1001 rpm, Ω4/2π = 390 rpm

to have a small ṽr near the outer cylinder (Fig. 3.20).

From Fig. 3.20, we can see that the magnitude and fluctuation level of vr near the

outer cylinder is much reduced while the azimuthal velocity is still quite close to the

ideal Couette state. We will start the simulation from this state. This initial state is

thus defined as adjusted quiet start

3.3.3 Linear phase

Fig. 3.21 displays the time evolution of Br sampled outside the fluid. The linear

phase is readily apparent. The growth rate γ is reduced from 3.1 s−1 starting from
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Figure 3.19: 60% pure hydrodynamic run. Initial azimuthal and radial veloc-
ity profile of the quiet start with Ω1/2π = 2400 rpm, Ω2/2π = 319.8 rpm,
Ω3/2π = 1092 rpm, Ω4/2π = 390 rpm at several heights (cm), for Re = 6400.
Solid line, ideal Couette state; +, 1.31 cm; ∗, 2.72 cm; 2, 13.95 cm with error bars,
which is the standard time-variation. “Bottom end cap” is located at z = 0. Height
h = 27.9 cm. Left panal: Vϕ; right panel: Vr.
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Figure 3.20: 60% pure hydrodynamic run. Initial azimuthal and radial velocity
profile of the adjusted quiet start with Ω1/2π = 2400 rpm, Ω2/2π = 319.8 rpm,
Ω3/2π = 1001 rpm, Ω4/2π = 390 rpm at several heights (cm), for Re = 6400. Solid
line, ideal Couette state; +, 1.31 cm; ∗, 2.72 cm; 2, 13.95 cm with error bars,
which is the standard time-variation. “Bottom end cap” is located at z = 0. Height
h = 27.9 cm.left panal: Vϕ; right panel: Vr.
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ideal Couette state (Ω1/2π = 2400 rpm, Ω2/2π = 319.8 rpm, Ω3/2π = 1092 rpm,

Ω4/2π = 390 rpm) to 2.46 s−1 starting from the hydrodynamic equilibrium state

with adjusted rotation profile (Ω1/2π = 2400 rpm, Ω2/2π = 319.8 rpm, Ω3/2π =

1001 rpm, Ω4/2π = 390 rpm), which is reasonable, provided that the background

rotation flow profile has been modified.

Figure 3.21: 60% run (MRI unstable) and Iϕ = 1000 A. Br vs. time for Re = 6400,
Rem = 9.7 sampled outside at z = 13.95 cm, r = 25.0 cm.“Bottom end cap” is
located at z = 0. Height h = 27.9 cm. Growth rate γ = 2.46 s−1.
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3.3.4 Structure of the final state

Fig. 3.22 shows the time averaged final state after saturation. Again one inflowing

“jet” is observed though it is not as clear as Fig. 3.6 since the instability is much

weaker. The horizontal field is perturbed about 2%: Bϕ,max ≈ 0.02Bz (Rem = 9.7,

60% run).

3.3.5 Angular momentum transport

Just as in §3.2.2, Fig. 3.23 displays the r-profiles of the radial advective, viscous,

and magnetic angular momentum fluxes integrated over cylinders coaxial with the

boundaries.

Again the profile of the total radial torque verifies our discussion of the poloidal

circulation pattern of the flow (§3.2.2 and §3.2.2). Comparing to the initial state,

which is before the magnetic field is applied (left panel of Fig. 3.23), the radial

advective and viscous torques of the final state, especially the former, are significantly

increased at intermediate radii (right panel of Fig. 3.23), which means the middle

clockwise cell is even enhanced by the magnetic field and transports more angular

momentum. All components of the radial torques of the final state are positive except

near r2. Note how small the radial magnetic torque is compared to the total torque.

This indicates that for the 60% runs the influence of the magnetic field is negligible.

Most of the angular momentum is possibly transported by the residual magnetic

Ekman circulation rather than MRI.

Fig. 3.24 displays the z-profiles of the vertical advective, viscous, and magnetic

angular momentum fluxes integrated over radius.

Again from these two figures, the global angular momentum is still transported

from the inner cylinder to the outer cylinder and little is transported to the end

caps, which is the same as the runs starting from an initial Couette profile and with

perfectly insulating boundaries on all sides.
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Figure 3.22: 60% run (MRI unstable) and Iϕ = 1000 A. Contour plots of final-state
velocities and fields. Re = 6400, Rem = 9.7. (a) Poloidal flux function Ψ (Gauss cm2)
(b) Poloidal stream function Φ (cm2s−1) (c) toroidal field Bϕ (Gauss) (d) angular
velocity Ω ≡ r−1Vϕ (rad s−1)
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Figure 3.23: 60% (MRI unstable) and Iϕ = 1000 A. z-integrated radial angular
momentum fluxes versus r. Re = 6400, Rem = 9.7. Left panel: initial state (Λ = 0);
right: final state (Λ = 0.59). + , viscous torque; ∗ , magnetic torque; △ , advective
torque; solid line, total torque.

Figure 3.24: 60% run (MRI unstable) and Iϕ = 1000 A. r-integrated vertical angular
momentum fluxes versus z. Re = 6400, Rem = 9.7. Left panel: initial state (Λ = 0);
right: final state (Λ = 0.59). + , viscous torque; ∗ , magnetic torque; △ , advective
torque; solid line, total torque.
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The left panel of Fig. 3.25 shows that for 60% runs even at the highest Reynolds

number simulated, the magnetic field scarcely affects the total torque, and to the

extent that there is an effect, it is a slight reduction. This implies that for the 60% runs

the angular momentum transport in the system is mostly due to the residual magnetic

Ekman circulation rather than MRI. However for 100% runs similar conclusions as in

§3.2.2 are deduced, though the exponent of the initial state is increased from −0.691

to −0.665. Therefore a even smaller difference of the exponents is observed.

Combining the analysis of §3.2.2, we can summarize the conclusions about the

angular momentum transport as follows: (a) At the Reynolds number Re available

to the simulations and for the 60% runs, linear MRI can be seen at early times, but

the contribution of MRI-driven turbulence (or circulation) to angular-momentum

transport cannot be seen unambiguously in the final state. (b) 100% runs are more

favorable in observing the angular momentum transport enhanced by MRI, though

not conclusively.

3.3.6 Summary of adjusted quiet start studies with partially

conducting boundary condition

In conclusion, in this section we have simulated the nonlinear development of mag-

netorotational instability in a nonideal magnetohydrodynamic Taylor-Couette flow.

The simulations mimic an on-going experiment and include the conductivity of the

stainless steel walls and start the simulation from an adjusted quiet state with split

end caps. We have also restricted our study to smaller fluid Reynolds number (Re)

than in the experiment, however we have used exactly the same magnetic Reynolds

number (Rem).

We derive the following conclusions:

1. The stainless steel wall is not important in this experiment.
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Figure 3.25: The same as Fig. 3.17. But the simulated results in this figure start from
an hydrodynamical equilibrium state with adjusted rotation profile at the end caps,
which is different from Fig. 3.17. Again in the simulations the magnetic diffusivity η
is fixed to the experimental value η = 2, 430 cm2 s−1 (Table.3.1), however the kinetic
viscosity is changeable for the purpose of extrapolation. In panel (a), dashed lines
have slopes of −0.665 (initial state) and dash-dot lines −0.639 (final state).
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2. A linear phase is recovered after the rotation profile is adjusted and the growth

rate is reduced due to the adjusted background state (60% run).

3. In the final state one inflowing “jet” is also observed near the inner cylinder but

not so clearly due to a weaker instability (60% run).

4. Angular momentum is transported outward. Compared to the initial hydrody-

namic equilibrium state, the radial advective and viscous torques of the final

state are significantly increased at intermediate radii, which is resulted from

the enhanced middle cell. The middle cell is enhanced horizontally by MRI,

vertically by the residual magnetic Ekman circulation.

5. The angular momentum transport is dominated by the residual magnetic Ekman

circulation at least for 60% run with the Reynolds number accessible in the

simulations. 100% runs are more favorable in observing the angular momentum

transport enhanced by MRI.

6. The final state contains horizontal fields about 2% as large as the initial poloidal

field for 60% run, Rem ≈ 9.7.
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Chapter 4

Helical MRI1

As discussed in §1.4.1, the challenge for experimentation, however, is that liquid-metal

flows are very far from ideal on laboratory scales. The experiment is complicated by

this extremely large Reynolds number including Ekman circulation and Stewartson

layers [50] even though the experimental apparatus has been designed to minimize

the circulation (e.g. by the use of independently controlled split endcaps).

Recently, Hollerbach and collaborators (Fig. 4.1) have discovered that MRI-like

modes may grow at much reduced Rem and S in the presence of a helical background

field, a current-free combination of axial and toroidal field [40, 41].

B(0) = B(0)
z

(
ez + β

r1
r

eϕ

)
, (4.1)

in cylindrical coordinates (r, ϕ, z), where B
(0)
z and β are constants. (When it will

not cause ambiguity, we will omit the superscript (0) from B and Bz hereafter.)

Henceforth, “standard MRI” (SMRI) will refer to cases where the β = 0, and “helical

MRI” (HMRI) to modes that require β 6= 0. In centrifugally stable flows—meaning

that d(r2Ω)2/dr > 0, where Ω = V
(0)
ϕ /r is the background angular velocity—SMRI

exists only when Rem and S exceed thresholds of order unity [52, 53]. Remarkably,

1inherited and modified from Liu et al. [45]
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however, HMRI may persist in such flows even as both parameters tend to zero,

though not independently: more precisely, the thresholds are ≪ 1 and would vanish

as long as Re is above a critical value. In a fixed geometry and flow profile, the resistive

limit may be approached theoretically by increasing η with all other parameters held

constant. The growth rate of inviscid HMRI is then ∝ η−1 so that the hydrodynamic

case is approached continuously. The special case of toroidal-only magnetic field

(β = ∞) is stable [91].

Bz

Bt

R1
R2

Ω1
Ω2

Z

R

h

Figure 4.1: Diagram of Helical MRI. The radial boundaries are assumed to be elec-
trically conducting while the vertical boundaries are assumed to be electrically insu-
lating.

Our own interest in HMRI stems as much from astrophysical as from experimental

considerations. Accretion disks composed of substantially ionized plasma tend to be

in the ideal MHD limit: Rem ≫ 1 and S ≫ 1; also Prm ≫ 1. The disks around

protostars, in which planets form, are cool and very weakly ionized, however. If

their ionization fractions followed thermal equilibrium, such disks would be far too

resistive for SMRI, but the actual resistivity is uncertain because it involves stellar
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X-rays and other non-thermal sources of ionization, as well as recombination rates

that are sensitive to the unknown abundance of small dust grains [56, 92]. The fluid

Reynolds number of protostellar disks is in any case very large, Re ∼ 1012, and

therefore Prm is surely even smaller than in liquid metals.

A novel feature of the background state for HMRI is that there is a uniform

axial flux of angular momentum carried by the field, rT
(mag)
ϕz = −rBϕBz/µ0 and

an associated axial Poynting flux Ω times this. In an infinite or periodic cylinder,

the question of the sources and sinks of these axial fluxes need not arise, but in an

experimental device, a torque is exerted by the axial field on the radial sections of the

coil that complete the circuit containing the axial current. Related to this perhaps,

the dispersion relation for linear modes is sensitive to the sign of the axial wavenumber

(kz), and the instabilities of axially infinite or periodic cylinders are travelling rather

than standing waves, as noted by Knobloch [30, 93]. This begs the question what

should happen to the modes in finite cylinders, a question that has motivated much

of our analysis.

Even the analysis for periodic cylinders implies two practical difficulties for an

HMRI experiment. First, as will be seen, the typical growth rates tend to be smaller

than those of SMRI except in regimes where SMRI would also be unstable. This is

largely a consequence of looking for HMRI at lower rotation rates; when normalized to

the rotation rates of the cylinders, the growth rates of HMRI and resistive SMRI can

be comparable. In practice, the ease with which growth can be discerned probably

depends less upon the ratio γ/Ω of growth rate to rotation rate than upon γtE, where

tE is the Ekman circulation time. Since ΩtE ∝ Re1/2, Ekman circulation may be

more problematic at the lower Reynolds numbers where HMRI is unstable but SMRI

is not. A second difficulty is the axial current needed for the required toroidal fields

tend to be quite large: I[ kA] = 5Bϕr[kG-cm]. This is partly offset by the low Re and

Rem needed for HMRI, which permits a radially compact apparatus. Despite these
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difficulties, experimental verification of HMRI has already been claimed in a recent

paper[42].

4.1 Periodic cylinder

4.1.1 Linear theory for periodic cylinder

All magnetic fields are expressed as Alfvén speeds, in other words, units such that µ0 =

1/ρ are used. Upper-case letters are used for the background magnetic field (4.1) and

velocity V = rΩ(r)eϕ, and lower-case (b,v) for perturbations. Frequently occurring

derivatives are abbreviated by ∂†r ≡ ∂r + r−1, D ≡ ∂r∂
†
r + ∂2

z . Incompressibility

allows the use of stream functions for the poloidal components: vr = ∂zφ, vz = −∂†rφ,

br = ∂zψ, bz = −∂†rψ; note that these definitions differ by factors of r from the usual

ones. The linearized inviscid MHD equations

Ḃ + V · ∇B − B · ∇V = η∇2B ,

V̇ + V · ∇V + ∇
P

ρ
+ B × (∇ × B) = 0 .

then become, since Bz and rBϕ are constant,

(∂t − ηD)br − Bz∂zvr = 0 , (4.2)

(∂t − ηD)bθ − 2r−1Bθvr − brrΩ
′ − Bz∂zvθ = 0 , (4.3)

∂†rbr + ∂zbz = 0 , (4.4)

∂tvr − 2Ωvθ + ∂r

(
ρ−1p+Bθbθ

)
+ 2r−1Bθbθ +Bz(∂rbz − ∂zbr) = 0 , (4.5)

∂tvθ + r−1(r2Ω)′vr −Bz∂zbθ = 0 , (4.6)

∂tvz + ∂z

(
ρ−1p+Bθbθ

)
= 0 , (4.7)

∂†rvr + ∂zvz = 0 . (4.8)
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Eliminating vz between (4.7) & (4.8) leads to

∂2
z

(
ρ−1p+Bθbθ

)
= ∂†r∂tvr ,

which can be used to eliminate p from (4.5), and if one also eliminates bz using (4.4),

the result is:

(∂t − ηD)ψ = Bz∂zφ , (4.9)

(∂t − ηD)bϕ = ∂z

(
2Bϕ

r
φ+Bzvϕ + rΩ′ψ

)
, (4.10)

∂tDφ− 2Ω∂zvϕ = Bz∂zDψ − 2Bϕ

r
∂zbϕ , (4.11)

∂tvϕ + r−1(r2Ω)′∂zφ = Bz∂zbϕ . (4.12)

The underlined terms above are negligible in the resistive limit, where b scales ∝ η−1

compared to v. Neglecting these terms has been shown to suppress SMRI [53, 94],

but not HMRI as will be seen.

Taking another time derivative of (4.11) and eliminating ∂tvϕ via (4.12) yields

(
∂2

tD + κ2∂2
z

)
φ = Bz∂z∂tDψ + 2

(
ΩBz∂

2
z −

Bϕ

r
∂z∂t

)
bϕ , (4.13)

in which κ2 ≡ r−3d(r2Ω)2/dr2 is the square of the epicyclic frequency. As η → ∞,

(4.13) reduces to
(
∂r∂

†
r + ∂2

z

)
∂2

t φ + κ2(r)∂2
zφ = 0 . (4.14)

4.1.2 WKB for infinite or periodic cylinders

If we take the gap to be narrow, d ≡ r2 − r1 ≪ r, then it is reasonable to treat

r, Bz,Ω, rΩ′ = 2RoΩ, and r−1(r2Ω)′ = 2(1+Ro)Ω = κ2/2Ω as constants, and to look

for perturbations ∝ exp(ikrr + ikzz − iωt). The Rossby number Ro ≡ 1
2
d lnΩ/d ln r
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has been introduced. In this case one expects to have WKB solutions with D replaced

by −(k2
r + k2

z) ≡ K2, where the total wavenumber K = O(d−1).

When applied to (4.14) (i.e. for η → ∞) these prescriptions yield the dispersion

relation for hydrodynamic inertial oscillations (hereafter IO),

ω2
IO = κ2 k2

z

k2
r + k2

z

where κ2 =
1

r3

d

dr
(r2Ω)2 = 4(1 +Ro)Ω2. (4.15)

IO exist only in the Rayleigh-stable regime κ2 > 0, Ro > −1, and their frequencies

lie between 0 and κ.

HMRI occurs at finite η when Bϕ/r ≡ ωθ is comparable to kzBz ≡ ωz. Define

ωη ≡ ηK2 and µ ≡ kz/|K| ∈ [−1, 1]. The dispersion relation corresponding to the

system (4.9)-(4.12) is then

0 = s4 + 2ωηs
3 +

[
ω2

η + 4µ2ω2
θ + 2ω2

z + µ2κ2
]
s2

+ 2
[
2ωηµ

2ω2
θ + ωηω

2
z + ωηµ

2κ2 − 4iµ2ωθωzΩ
]
s

+
[
ω2

ηµ
2κ2 − 4iωηωθωzµ

2Ω(2 +Ro) + ω4
z + 4µ2ω2

zΩ
2Ro

]
, (4.16)

where the complex growth rate s ≡ −iω has been used so that the coefficients are all

real except for those linear in ωθ. It is instructive to consider the limit in which ωη is

much larger than all of the other frequencies, including ω:

s2 + ω2
IO + 2ω−1

η

[
s3 + (2µ2ω2

θ + ω2
z + ω2

IO)s− 2iωθωzµ
2Ω(2 +Ro)

]
≈ O(ω−2

η ) .

(4.17)

The replacement µ2κ2 → ω2
IO emphasizes that ω ≈ ±ωIO in this limit. The roots are

ω ≈ ∓ωIO + iω−1
η

[
±2ωθωzω

−1
IOµ

2Ω(2 +Ro) −
(
2µ2ω2

θ + ω2
z

)]
+O(ω−2

η ) , (4.18)

the bivalent signs being correlated. The other two roots of (4.16) represent rapidly
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decaying magnetic perturbations, s ≈ −ωη.

We conclude that in highly resistive flow, HMRI reduces to a weakly destabilized

inertial oscillation. In the present inviscid approximation, instability persists to ar-

bitrarily large resistivity, though with reduced growth rate. Furthermore, we note

from (4.18) that instability [i.e. ℑ(ω) > 0] occurs only if the bivalent signs are chosen

so that ΩBϕBzkz/ℜ(ω) < 0, which implies that the unstable mode propagates axially

with the same sense as the background Poynting flux. [From (4.15), the group veloc-

ity ∂ℜ(ω)/∂kz and phase velocity ℜ(ω)/kz have the same sign.] Although we have

derived this propagation rule in the resistive limit, numerical evidence indicates that

it is true of the full dispersion relation (4.16), as demonstrated by Figure. 4.2.

In terms of the original variables, the approximate growth rate ((4.18)) is

Real(s) ≈ k2
z

K2

B2
z

µ0ρη

[
2 +Ro√
1 +Ro

( |Bθ/Bz|
Kr

)
− 1 − 2

( |Bθ/Bz|
Kr

)2
]
. (4.19)

Here K = (k2
r + k2

z)
1/2, and for application to our experiment,

kr →
π

r2 − r1
r̄ → r1 + r2

2
kz →

nπ

h
.

With our dimensions, krr̄ ≈ 1.04π, so the above becomes, roughly,

660B2
z

n2

n2 + 4.5

[( |Bθ/Bz|
π
√

4.5n2 + 1.1

)
2 +Ro√
1 +Ro

− 1 − 2

( |Bθ/Bz|
π
√

4.5n2 + 1.1

)2
]

s−1 ,

where Bz is in Tesla.

Instability requires the square brackets in (4.18) to be positive, whence

2(µωθ)
2 ± 2 +Ro√

1 +Ro
ωz(µωθ) + ω2

z < 0 .

The inequality is possible if and only if the discriminant of the lefthand side, regarded
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(a) Growth rate γ = ℑω vs. wave number kz (b) Real frequency ωr = ℜω vs. wave Number kz

Figure 4.2: Selected roots of full dispersion relation (4.16) for η = 2, 000 cm2 s−1

[gallium], r1 = 9 cm, r2 = 11 cm, vertical periodicity 2h = 16 cm, Ω1 = 100 rpm,
Ω2 = 68.1 rpm, Bz = 500 G, Bϕ = 10 kG at r = (r1 + r2)/2. The two rapidly damped
modes are omitted.

as a quadratic equation in µωθ, is positive:

(2 +Ro)2

1 +Ro
ω2

z − 8ω2
z > 0 ,

which translates to

Ro < 2(1 −
√

2) ≈ −0.8284 or Ro > 2(1 +
√

2) ≈ 4.8284 . (4.20)

Thus, within WKB, at least for highly resistive but inviscid flow (Rem, S → 0+,

Re → ∞), the Keplerian value Ro = −3/4 is excluded, as of course is uniform

rotation (Ro = 0). We say “of course” because, the background being current free,

the only source of free energy is the shear.

Recently Rüdiger and Hollerbach [95] show that if at least one of the boundaries

is sufficiently conducting, the HMRI does exist even for rotation profiles as flat as
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Keplerian, which conflicts with the above conclusions. The loophole they have found

is a small one, and unlikely to be important in astrophysics. However, it might be

achieved in a low-plasma-beta but highly resistive (weakly ionized) plasma. Under

the parameters used in the preprint [95] (Rem = 0, S = 0, Prm = 0 but finite

Re), the authors are indeed taking the diffusivity to infinity. Note however that the

combination Ha2/2Re = (VA)2/(2Ωη), which is the Elsasser number. The authors

consider Ha and Re to be constant as Prm → 0; thus if we think of Ω and ν as fixed,

then the Alfven speed must scale like
√
η as η → ∞. So, the authors are considering a

limit in which the Alfven speed is infinitely larger than the rotation speed but poorly

coupled to the flow, whereas in this chapter we were thinking of the resistive limit as

one in which the field strength and rotation speed were held fixed as the diffusivity

became infinite (Rem = 0.1, S = 0.03). In the language of the WKB analysis, the

resistive frequency ωη ≫ Ω while the Alfvenic frequencies ωz and ωθ are of order
√
ωηΩ. From Eq. 4.16, the WKB HMRI growth rate has a finite nonzero value if the

limit is taken in this way.

4.1.3 Numerical results for wide gaps in periodic cylinders

We have adapted a code developed by [53] to allow for a helical field. Vertical peri-

odicity is assumed, but the radial equations are solved directly by finite differences

with perfectly conducting boundary conditions. The underlined terms in eqs. (4.9)-

(4.12) are retained, and viscous terms are added although their influence is small at

Reynolds numbers of interest. The code reproduces published results for marginal

stability [40, 41]. Table 4.1 compares the predictions of the WKB dispersion relation

(4.16) with those of this code (labeled “Global”). The agreement is reasonably good,

considering the crudeness of the WKB approximation. No unstable modes are found

for the parameters of Figure 4.2 at Ro(r1) ≥ −0.80: the Keplerian value Ro = −0.75

is stable.
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Astrophysical disks correspond to very wide gaps, r2−r1 ≫ h, as well as Keplerian

rotation. Given (Rem, S) = (0.1, 0.03) and r2/r1 = 2.0, 2.83, 5.0, the maximum

unstable Rossby numbers at the inner cylinder are found to be Ro(r1) = −0.88,

−0.92, and −0.95, respectively, from our radially global linear code. We conjecture

that Keplerian flows—more precisely, flows in which 0 ≥ Ro ≥ −3/4 at all radii—are

stable for all gap widths. It would be interesting to prove this.

We have also estimated a few growth rates with our nonlinear, compressible non-

ideal MHD code [73], which is a modified version of the astrophysical code ZEUS2D

[96]. In this case, we use the wide-gap geometry of the Princeton MRI experiment

[52, 53], except that the computation uses periodic vertical boundaries: r1 = 7.1 cm,

r2 = 20.3 cm, h = 27.9 cm, Ω1 = 400 rpm, Ω2 = 53.3 rpm, Bz = 500 G, Bϕ(r1) =

1 kG; the material properties are again based on gallium: η ≈ 2000 cm2 s−1, ν ≈

3 × 10−3 cm2 s−1. The growth rate and real frequency from the ZEUS2D simulations

are respectively 1.06 s−1 and 3.93 s−1, compared to 1.05 s−1 and 3.89 s−1 from the

linear code. WKB yields (γ, ωr) = (0.41, 3.90) s−1—not an accurate result for the

growth rate, but considering the width of the gap, the agreement is pleasing.

The growth rates in Table 4.1 are of order 1 s−1, as compared to ∼ 30 s−1 for

SMRI in this geometry at the full rotation rate and field planned for the Princeton

experiment [73]: Ω1 = 4, 000 rpm, Ω2 = 533 rpm, Bz = 5 kG, and Bϕ = 0.

4.2 Finite cylinder with insulating end caps

4.2.1 Finite cylinders: a perturbative approach

In finite nonperiodic cylinders with insulating or partially insulating endcaps, the

MHD eigenfunctions are intrinsically two dimensional: they are not separable in r

and z. (Separability could be achieved with perfectly conducting endcaps, but then

the axial field would be attached to them. This would allow the boundary to exert
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Table 4.1: Comparison between WKB and numerical growth rates in a vertically
periodic Couette flow with the parameters of Figure 4.2 except for a nonzero viscosity
like that of gallium: ν = 3.1 × 10−3. The mode number n ≡ kzh/π.

n WKB γ [s−1] WKB ωr [s−1] Global γ [s−1] Global ωr [s−1]

1 0.1612 0.9443 0.0965 1.4004
2 0.3911 1.9182 0.3465 2.5164
3 0.5878 2.7084 0.6031 3.2638
4 0.7387 3.2646 0.7907 3.7094
5 0.8356 3.6221 0.8960 3.9549
6 0.8805 3.8366 0.9339 4.0799
7 0.8829 3.9565 0.9241 4.1352
8 0.8543 4.0166 0.8831 4.1512
9 0.8049 4.0400 0.8227 4.1451

magnetic forces on the fluid, which seems undesirable and in any case is experimentally

less realistic than insulating endcaps.) The purely hydrodynamic problem for η = ∞

is separable, however, if viscosity is neglected so that we may assume no-slip boundary

conditions. This suggests a perturbative expansion of the eigenvalue problem in η−1—

more properly, (Rem, S) → (ǫRem, ǫS), with ǫ a small parameter. The cylinders

themselves are assumed infinitely long and perfectly conducting; although this is not

realistic, it does not result in any attachment of the field to the boundaries, and

it allows the magnetic field more easily to be matched onto vacuum solutions that

decay as |z| → ∞ in the regions above and below the fluid. The underlined terms in

equations (4.9)-(4.12) will be neglected because they contribute to the eigenfrequency

only at O(η−2) and higher orders.

We begin with the zeroth-order problem, i.e. for η = ∞. As noted above, the

hydrodynamic boundary conditions

φ = 0 on r = r1, r2 and on z = 0, h , (4.21)

and inertial-mode equation (4.14) are separable, so we look for an eigenmode of the
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form

φ(t, r, z) = e−iωtϕ(r) sin kz, k = n
π

h
≡ kn . (4.22)

The radial function ϕ(r) satisfies

d2ϕ

dr2
+

1

r

dϕ

dr
+

[
k2

(
4a2

ω2
− 1

)
+

1

r2

(
4abk2

ω2
− 1

)]
ϕ = 0 , (4.23)

assuming a Couette profile Ω(r) = a + br−2 so that κ2 = 4aΩ, which is satisfied by

the Bessel functions Jν(pr) & Yν(pr) if

ν2 ≡ 1 − 4abk2

ω2
, p2 ≡ k2

(
4a2

ω2
− 1

)
. (4.24)

We may thus solve this problem exactly. However, for qualitative information, we

notice that if we multiply (4.23) by r it becomes

d

dr

(
r
dϕ

dr

)
+

[
1

ω2

(
4a2k2r +

4abk2

r

)
−

(
1

r
+ k2r

)]
ϕ = 0 .

This is the same form as the Sturm-Liouville problem

d

dr

(
P (r)

dϕ

dr

)
+ [λR(r) −Q (r)]ϕ = 0 ,

ϕ(r1) = 0, ϕ(r2) = 0,

where

P (r) = r,

R(r) = 4a2k2r +
4abk2

r
> 0,

Q(r) = k2r +
1

r
> 0,

λ = 1/ω2.
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Therefore λ is real and positive ([97, Chapter X]); consequently the frequencies ω

which we seek are all real. Furthermore λR− Q must be positive somewhere within

the flow, whence ω2 < max[4aΩ(r)/(1+ k−2r−2)]. There are no modes which grow in

time. Thus we conclude that, all inviscid axisymmetric modes are neutrally stable in

the limit of infinite resistivity. The coefficient R(r) = Ψ(r), the Rayleigh discriminant,

so this result is to be expected.

We may arrange for φ(r1) = 0 by taking

ϕmn(r) ≡ Jν(pr1)Yν(pr) − Yν(pr1)Jν(pr). (4.25)

Since we also require φ(r2) = 0, the determinant

∆(ω, k) ≡ Jν(pr1)Yν(pr2) − Jν(pr2)Yν(pr1) (4.26)

must vanish. The condition ∆ = 0 defines a discrete set of eigenfrequencies ω1,n >

ω2,n > . . . > ωmn . . . > 0 for each k = kn. Let φm,n be the complete eigenfunction

(4.22) corresponding to a given kn & ωm,n. We define an inner product [here φmn is

defined by (4.22) with ϕ(r) → ϕmn(r)]

〈φm′n′, φmn〉 ≡
h∫

0

dz

r2∫

r1

rdr φ̄m′n′φmn, (4.27)

where the overbar denotes complex conjugation. The eigenfunctions are orthogonal

in the sense that 〈φmn, κ
2φm′n′〉 = 0 if ω2

mn 6= ω2
m′n′.

To get the O(η−1) corrections to ωmn, we must express the magnetic perturba-

tions ψ and bϕ appearing on the righthand of (4.13) in terms of the zeroth-order

eigenfunctions φmn. Neglecting the time derivative in (4.9) yields

Dψ = −η−1Bz∂zφmn. (4.28)
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To get bϕ from (4.10), we first use (4.12) to write vϕ ≈ (2a/iωmn)∂zφmn, so that

bϕ ≈ −2η−1D−1
T

(
Bϕ

r
∂zφmn +

iaBzk
2
n

ωmn
φmn

)
. (4.29)

Note that we have replaced ∂2
z with −k2

n; we may similarly replace any even power

of ∂z but not an odd power, which changes a sin knz to a multiple of cos knz. The

operator D−1
T is the inverse of D with the boundary conditions appropriate to bϕ,

which are different from those of φ [eq. (4.21)]:

∂†rbϕ = 0 at r = r1, r2 and bϕ = 0 at z = 0, h. (4.30)

Using (4.28) & (4.29) to eliminate Dψ and bϕ from (4.13) results in

(
∂2

tD + κ2∂2
z

)
φ =

− iωmnη
−1

[
(knBz)

2 + 4

(−iBϕ

r
∂z +

ΩBzk
2
n

ωmn

)
(−D−1

T )

(−iBϕ

r
∂z +

aBzk
2
n

ωmn

)]
φmn .

(4.31)

On the righthand side of (4.31), the eigenmode and eigenfrequency have been

evaluated to zeroth order in η−1. On the lefthand side, we must consider that ω →

ωmn+δω and φ→ φmn+δφ, where δω and δφ are of first order in η−1. We may obtain

an expression for δω by taking the inner product of (4.31) with φmn and replacing

i∂t → ωmn + δω on the lefthand side. The single term involving δφ at O(η−1) is

〈φmn, (κ
2 − ω2

mnD)δφ〉, and this vanishes upon integration by parts. On the right

side, it is convenient to define the self-adjoint operator

H ≡ 2

(
−Bϕ

r
i∂z +

aBzk
2
n

ωmn

)
= H†. (4.32)
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At last, then,

− 〈φmn, Dφmn〉 δω =

− i

2η

[
(knBz)

2 〈φmn, φmn〉 −
〈
Hφmn, D

−1
T Hφmn

〉
− 2bBzk

2
n

ωmn

〈
φmn, r

−2D−1
T Hφmn

〉]
.

(4.33)

Now D and D−1
T are negative-definite operators. Therefore, the only term that can

make a positive contribution to the growth rate ℑ(δω) is the last term on the righthand

side, and specifically the part of H involving Bϕ∂z since ab > 0.

To evaluate δω from (4.33), we need explicit expressions for D and D−1
T . The first

is easy enough: it follows from (4.14) that Dφmn = −(k2
nκ

2(r)/ω2
mn)φmn. For D−1

T ,

we construct the eigenfunctions of D with the boundary conditions (4.30):

Dχjn(r, z) = −(q2
j + k2

n)χjn(r, z), (4.34)

χjn(r, z) ≡ Rjn(r) sin knz , kn = n
π

h
, (4.35)

where Rjn =





J0(qjr1)Y1(qjr) − Y0(qjr1)J1(qjr), if qj 6= 0;

r−1 if q0 = 0;

(4.36)

and qj satisfies J0(qjr1)Y0(qjr2) − Y0(qjr1)J0(qjr2) ≡ 0 . (4.37)

When applied to χjn, D−1
T → (q2

j + k2
n)

−1. An arbitrary function f(r, z) can be

expanded in these eigenfunctions, so that

D−1
T f(r, z) = −

∑

n

∑

j

(q2
j + k2

n)−1 〈χjn, f〉
〈χjn, χjn〉

χjn(r, z) . (4.38)

The important point is that D−1
T turns a function proportional to sin knz into another

such. Therefore, 〈φmn, D
−1
T ∂zφmn〉 = 0, and so the part of H involving r−1Bϕi∂z
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does not contribute to the expression (4.33) for the first-order eigenfrequency. This,

however, was the only term that might have made for a positive growth rate. We

conclude that at O(η−1), HMRI does not grow in finite cylinders with insulating

endcaps.

The same perturbative method could have been used for periodic vertical bound-

ary conditions; φmn and χjn would have involved exp(ikzz) instead of sin knz. The

term involving r−1Bϕi∂z in eq. (4.33) would then have contributed to the growth rate

with the same sign as −(kz/ωmn)ΩBϕBz. Evaluating this term, we conclude that in

highly resistive periodic flows, (i) unstable modes propagate axially in the direction

of the background Poynting flux—as found in WKB; and (ii) the instability occurs

only if β > akzr/ωmn somewhere within the gap. Given the upper bound on ω2
mn

noted above, it follows that β2 > min[4a/Ω(r)].

We have written MATLAB procedures to evaluate eq. (4.33). The results confirm

our conclusions above. When periodic boundary conditions are used, the perturbative

result matches the growth rate found from our radially global linear code to three

digits in sufficiently resistive cases: e.g., γ = 1.89×10−3Ω1 in the Princeton geometry

with Rem = 0.1, S = 0.043, Ω2/Ω1 = 0.1325, β = 2. But when insulating endcaps

are imposed, the perturbative estimate of the growth rate is always negative.

4.2.2 Finite cylinders: modified WKB analysis

Here we analyze finite cylinders by approximations that do not require large resistiv-

ity: by a variant of WKB, and by direct axisymmetric numerical simulations, which

will be described in the next subsection.

In the modified WKB approach, perturbations are again assumed to vary as

exp(ikr + st) with a common complex growth rate s ≡ −iω and radial wavenum-

ber kr = π/(r2 − r1), but the vertical dependence is treated differently. With the t

and r dependence factored out, the linearized equations of motion reduce to homoge-
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neous ordinary differential equations with coefficients independent of z. Elementary

solutions of these equations exist with exponential dependence on z; however, since

the vertical boundaries are not translationally invariant, the wavenumber kz needs not

be real, and growing modes can be linear combinations of the elementary exponential

solutions with the same ω but different kz. The vertical magnetic boundary condi-

tions require the fields to match onto a vacuum solution that decays exponentially as

|z| → ∞ in the space r1 ≤ r ≤ r2 between the extended conducting cylinders:

z = 0 : φ = bϕ = 0, ∂zψ = |kr|ψ; z = h : φ = bϕ = 0, ∂zψ = −|kr|ψ. (4.39)

We search iteratively for such modes as follows. Given a trial value for s, the dis-

persion relation (4.16) has six roots—in general complex—for the vertical wavenum-

ber, which can be regarded as algebraic functions of the growth rate: {kz,α(s)},

α ∈ {1, . . . , 6}. We seek a mode in the finite cylinder of the form

q(t, r, z) ≡ [φ, vϕ, ψ, bϕ]T = est+ikrr
6∑

α=1

Yαqα exp(ikz,αz). (4.40)

Each term in the sum above is the elementary solution corresponding to a particu-

lar root kz,α(s), with qα a 4-component column vector; these elementary solutions

are superposed with constant weights {Yα}. Substitution into the boundary condi-

tions (4.39) yields a sixth-order homogeneous linear system for the {Yα}. Nontrivial

solutions exist only if the determinant D(s) of this system vanishes. The equation

D(s) = 0 is transcendental and we cannot solve it analytically, but a numerical non-

linear zero-finding algorithm recovers the roots for s.

We have checked this procedure by replacing (4.39) with periodic boundary con-

ditions and comparing the results with direct solutions of the dispersion relation

(4.16). Also, we find reasonably good agreement with growth rates determined from

ZEUS2D simulations of a narrow-gap configuration with insulating boundaries (see
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below). However, for sufficiently large resistivity, no roots with positive ℜ(s) are

found, in agreement with the perturbative results of Section 4.2.1.

4.2.3 Finite cylinder: nonlinear simulation

For the ZEUS2D simulations, we represent the poloidal magnetic field at z ≤ 0

and z ≥ h by flux functions Ψ±(r, z) satisfying brer + bzez = r−1eϕ × ∇Ψ and

∇ × b = 0. The latter implies r∂r(r
−1∂rΨ)+∂2

zΨ = 0, which is solvable by separation

of variables since we require Ψ = 0 on the vertically extended conducting cylinders.

The elementary solutions are

Ψk(r, z) ∝ re−k|z−z0| [Y1(kr1)J1(kr) − J1(kr1)Y1(kr)] ,

for an infinite discrete set of nonnegative values of k determined by Ψk(r2, z) =

0. At each endcap, we match the vertical field bz protruding from the fluid with

a superposition of vacuum solutions of this form, and thereby obtain a boundary

condition relating bz and br. Of course bϕ = 0 at these boundaries since the current

along the axis is constant.

We have performed simulations with insulating endcaps for the parameters of

Figure 4.2. We find a complex growth rate s ≈ 0.51 + 4.18i s−1, as compared to s ≈

0.37 + 3.68i s−1 from the modified WKB approach (4.39)-(4.40) above. Considering

the approximate nature of the latter approach, the agreement is satisfactory. We

have also carried out ZEUS2D simulations with insulating endcaps in the wide-gap

experimental geometry [(r1, r2, h) = (7.1, 20.3, 28) cm]. Here we find a growth rate

∼ 0.27 s−1, as opposed to ∼ 1.06 s−1 with periodic boundaries. We conclude that

insulating endcaps lower the growth rate, even in flows of moderate (Rem, S).

A limitation of our direct simulations is that since we use explicit time stepping,

we cannot explore very large resistivities [73]. The modified WKB approach does not
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suffer from any restriction on η, but it is not trustworthy for wide gaps. The con-

cordance between the two approaches where both are applicable—namely for narrow

gaps and moderate (Rem, S)—inclines us to trust results obtained from one of these

approaches in regimes where the other is not applicable. In particular, the modified

WKB method predicts that highly resistive flows are completely stable in finite cylin-

ders, at least for narrow gaps. The perturbative analysis of Section 4.2.1 reaches the

same conclusion for gaps of any width, but that analysis is valid at O(η−1) only.

4.3 Discussion

We have analyzed the linear development of helical magnetorotational instability in

a non-ideal magnetohydrodynamic Taylor-Couette flow, paying particular attention

to the effects of the axial boundary conditions. A number of complementary approx-

imations and numerical methods have been used.

For infinitely long or periodic cylinders, we confirm that there is an axisymmetric

MHD instability that persists to smaller magnetic Reynolds number and Lundquist

number in the presence of both axial and toroidal background magnetic field than the

standard MRI that exists for axial field alone. The new mode is an overstability and

propagates axially in the direction of the background Poynting flux −rΩBϕBz/µ0. In

highly resistive flows, the new mode is a weakly destabilized hydrodynamic inertial

oscillation. Growth depends also on the ratio of shear to rotation, i.e. Rossby number:

for all aspect ratios r2/r1 that we have explored, and certainly for narrow gaps, the

Keplerian Rossby number is stable.

We have also considered finite cylinders with insulating endcaps, which are closer

to experimental reality but which do not permit traveling modes that propagate indef-

initely along the axis. Astrophysical disks also have limited vertical thickness. These

boundary conditions reduce the growth rate of the helical mode, and stabilize highly
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resistive flows entirely, at least in the absence of viscosity and viscous boundary-layer

effects.

Here some comments are in order regarding a recent paper that claims to have

observed HMRI in the Potsdam PROMISE experiment [42]. It is reported that when

the axial current lay in the range where HMRI was expected (based on an analysis

of infinite cylinders), persistent fluctuations were measured by ultrasonic velocimetry

that appeared to form axially travelling waves, consistent with expectations for HMRI.

These claims do not necessarily contradict our analysis. An exponential growth

rate has not been reported, which would have been a clear signature of a discrete

linear unstable mode. Rather than a global instability, we suspect that the observed

fluctuations represent excitation by processes outside our inviscid analysis, followed

by transient magnetic amplification as the disturbances propagate along the axis.

This is what one might expect, given an appropriate source of excitation, when the

local WKB dispersion relation predicts instability but the boundary conditions are

not compatible with a global mode. Data given in [42] clearly show vibrations at

the rotation frequencies of the cylinders themselves; these or other experimental im-

perfections might have excited the waves, although the peaks in the temporal power

spectrum attibuted to the waves appear to be broader than those at the cylinder

frequencies and are distinct from them. Further evidence that may bear on the

excitation mechanism comes from another recent publication [98], which reports nu-

merical axisymmetric simulations for parameters approximating the experiment but

for both axially infinite (actually periodic) and finite cylinders. External vibrations,

roughness, and magnetic interaction with the boundary need not exist in the simu-

lations, but since no-slip conditions are applied at the endcaps, which rotate as in

the experiment, viscous boundary layers should exist in the finite cylinders. In [98],

a clear vertically travelling mode is seen in the infinite cylinders, but in the finite

ones, the velocity fluctuations, though sustained, appear to be unsteady and to have

104



a fluctuating spatial pattern. At the Reynolds numbers where these fluctuations were

reported, Re ≥ 900, Ekman circulation in purely hydrodynamic simulations by [47]

was also unsteady.

The above speculations aside, the fact remains that the inviscid analyses of the

present chapter do not apply to situations where viscosity may be important, as they

probably are in the PROMISE experiment. Viscous effects must be included to model

such experiments reliably. On the other hand, viscous boundary layers lead to an

exchange of angular momentum between the fluid and its container. Such exchanges

are not expected to be important in astrophysical disks, so it may be appropriate to

neglect viscosity when one is interested in astrophysically important modes.

Thus the relevance of HMRI to astrophysical disks is questionable, although it

may be relevant to stellar interiors and jets, where the magnetic geometry and the

Rossby number may be more favorable. Also, HMRI may have theoretical signif-

icance that goes beyond its direct applications. It is not understood why linearly

and axisymmetrically stable rotating flows are often also nonlinearly and nonaxisym-

metrically unstable, especially since subcritical transition does occur at some Rossby

numbers [99]. The fact that even a very poorly coupled magnetic field can sometimes

linearly destabilize such flows hints that it might also affect nonlinear transition.
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Chapter 5

Germany PROMISE Experiment1

5.1 Experimental apparatus

The Potsdam Rossendorf Magnetic Instability Experiment (PROMISE) group have

claimed to observe HMRI experimentally [42–44]. PROMISE facility is a cylin-

drical vessel made of copper (Fig. 5.1). The vessel is filled with the liquid alloy

Ga67In20.5Sn12.5. The dimensions are: r1 = 4.0 cm, r2 = 8.0 cm and h = 40.0 cm.

The inner cylinder and outer cylinder are rotating differentially with Ω1/sπ = 3.6 rpm

and Ω2/sπ = 0.972 rpm. The bottom endcap is co-rotating with the outer cylinder

while the top endcap is stationary. More details of the facility could be found in

Stefani et al. [42].

At magnetic and flow parameters where linear analysis predicts instability, per-

sistent fluctuations were measured that appeared to form axially traveling waves,

consistent with expectations for HMRI. Similar behavior has been seen in nonlinear

numerical simulations that approximate the experimental conditions, including realis-

tic viscous boundary conditions for the velocities, but simplified ones for the magnetic

field: perfectly conducting cylinders, and pseudo-vacuum conditions at the endcaps

for which br = bϕ = ∂zbz = 0 at both the end caps z = 0, h (where br, bϕ and bz

1inherited and modified from Liu et al. [46]
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are the induced magnetic field components), when present [44, 98]. Both axially pe-

riodic and finite cylinders showed unsteady flow, the former case being more regular.

However, the nonlinear simulations in [44, 98] used somewhat different values for the

cylinder rotation rates and other parameters than those reported in [42].

Figure 5.1: Figure courtesy of Stefani et al. ”Sketch (left) and photograph (right) of
the PROMISE facility. V - Copper vessel, I - Inner cylinder, G - GaInSn, U - Two
ultrasonic transducers, P - Plexiglass lid, T - High precision turntables, M - Motors,
F - Frame, C - Coil, R - Central rod. The dimensions are in mm.”2

In Chap. 4, however, we have raised doubts about both the experimental realiz-

ability of HMRI and its astrophysical relevance[45]. Finite cylinders with insulating

endcaps were shown to reduce the growth rate and to stabilize highly resistive flows

entirely, at least inviscid ones.

Here we report nonlinear simulations with the ZEUS-MP 2.0 code [100], which is

a time-explicit, compressible, astrophysical ideal MHD parallel 3D code, to which we

have added viscosity, resistivity (with subcycling to reduce the cost of the induction

equation), and vacuum boundary conditions, for axisymmetric flows in cylindrical

coordinates (r, ϕ, z)[73]. The parameters of PROMISE as reported in or inferred

from [42] are used: gallium density ρ = 6.35 g cm−3, magnetic diffusivity η = 2.43 ×
2excerpt from the caption of Fig. 1 of Stefani et al. [42]
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103 cm2 s−1, magnetic Prandtl number Prm ≡ ν/η = 1.40 × 10−6; Reynolds number

Re ≡ Ω1r1(r2 − r1)/ν = 1775; axial current Iz = 6000 A; toroidal-coil currents

Iϕ = 0, 50, 75, 120 A; and dimensions as in Fig. 5.2. The finite conductivity and

thickness of the copper vessel are allowed for (ηCu = 1.335 × 102 cm2s−1), and this

noticeably improves agreement with the measurements compared to previous linear

calculations with radially perfectly conducting, axially periodic boundaries [42, 43].

Please note the difference of the direction of Ω, Bz and Bϕ (components measured in a

right handed coordinate system) between this chapter, where they are all assumed to

be positive, and the experimental setup presented in [42], where they are all negative

(private communication). The direction of the traveling wave depends on the sign of

the Poynting flux defined as −rΩBϕBz/µ0 [45]. Thus the direction of the traveling

wave reported here is opposite as reported in [42].

5.2 The necessities of Partial Conducting Bound-

ary in PROMISE

At the low frequencies relevant to PROMISE (f ∼ 0.01 Hz), the skin depth of Copper

δw =
√
ηCu/πfµ0 ≈ 19 cm, which is much larger than the thickness of the copper

vessel surrounding the gallium in the PROMISE experiment, dw ≈ 1.0 cm, so that

the magnetic field diffuses rather easily into the boundary. On the other hand, if one

considers axial currents, the gallium and the copper wall act as resistors in parallel;

taking into account their conductivities and radial thickness, one finds that their

resistances are comparable [RI : RII : RIII = 3 : 1 : 9; see Fig. 5.2 for the subscripts].

Therefore, the currents carried by the copper walls could be important for the toroidal

field, and a perfectly insulating boundary condition is also inappropriate.

We have adapted a linear axisymmetric code developed by [45, 53] to allow for

a helical field. Vertical periodicity is assumed, to allow separation of variables, but
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Figure 5.2: Computational domain for simulations of PROMISE experiment. Region
(I): Inner copper cylinder, angular velocity Ω1. (II): outer copper cylinder and bottom
endcap, Ω2. (III): liquid gallium; (IV): vacuum. Thick dashed line: insulating upper
endcap, Ω = 0. Dimensions: r1 = 4.0 cm; r2 = 8.0 cm; h = 40.0 cm; dwI = 1.0 cm;
dwII = 1.5 cm; Ω1/2π = 3.6 rpm; Ω2/2π = 0.972 rpm. The exact configuration of
the toroidal coils being unavailable to us, six coils (black rectangles) with dimensions
as shown were used, with 67 turns in the two coils nearest the midplane and 72 in
the rest. Currents Iϕ were adjusted to reproduce the reported Hartmann numbers
Ha ≡ B0

zr1/
√
ρµ0ην.
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the full viscous and resistive radial equations are solved using finite differences, and

a variety of radial boundary conditions can be imposed. For perfectly conducting

boundaries and Iϕ = 75 A, where [42] report persistent waves, our code indeed finds

a complex growth rate: s ≈ 0.0057 + 0.057i s−1. But for insulating boundaries, the

same parameters yield stability.

This analysis points to the need for boundary conditions that accurately represent

the influence of the copper vessels on the field. In the linear code just mentioned,

we use the thin-wall approximation of [101], which in effect treats the cylinders as

insulating for the poloidal field but conducting for the toroidal field. The errors of

this approximation increase with the ratio of wall thickness to gap width, which is

not very small (≈ 0.25) in our case. Growth is predicted, but at a smaller rate than

for perfectly conducting walls, s ≈ 0.0052 + 0.056 i s−1. The insensitivity of the

imaginary part to the magnetic boundaries supports the interpretation that these

modes are hydrodynamic inertial oscillations weakly destabilized by the helical field

[45].

In our nonlinear simulations, we include the copper walls (regions I and II) in the

computational domain (Fig. 5.2), but not the external coils themselves, whose induc-

tive effects are therefore neglected. Outside the walls (region IV) we match onto a

vacuum field Bext = ∇Ψ vanishing at infinity. This is relatively straightforward in

spherical geometry (used by many geodynamo experiments) because Laplace’s equa-

tion separates. Our case is more difficult, because while Laplace’s equation separates

in cylindrical coordinates when the boundary is an infinite cylinder, it does not fully

separate outside a finite cylinder. Therefore we use an integral formulation that does

not assume separability. The idea, called von Hagenow’s method [102], is to find a

surface current on the boundary that is equivalent to the current density in the inte-

rior as the source for Bext via the free-space Green’s function. The surface current is

obtained by first solving the Grad-Shafranov equation [103, 104] in the interior with
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conducting boundary conditions, a problem that is separable in our case and is solved

efficiently by combining FFTs along z with tridiagonal matrix inversion along r.

5.3 Results and Discussion

We start with purely hydrodynamic (unmagnetized) simulations. For µ ≡ Ω2/Ω1 =

0.27, what we see is simply an Ekman flow driven by the top and bottom end plates.

Due to the stronger pumping at the upper, stationary lid, the two Ekman cells are

of unequal size. They are separated vertically by a narrow, intense radial outflow,

hereafter the “jet”, lying at about 11 cm above the bottom endcap. As discussed

in [47], the jet is unsteady at Re & 103; it flaps or wanders rapidly in the poloidal

plane. This has been verified by the PROMISE group (private communication). The

amplitude of the flapping is ±0.4 mm s−1.

Background states with purely axial or purely azimuthal magnetic fields are sym-

metric under reflection z → −z, but a helical field breaks this symmetry[93]. As a

result, growing modes in vertically infinite or periodic cylinders propagate axially in

a unique direction: that of the background Poynting flux −rΩBθBz/µ0 [45]. Fig. 5.3

displays vertical velocities near the outer cylinder in simulations corresponding to the

experimental runs of [42] for several values of the toroidal current, Iϕ. A wave pattern

very similar to that in the experimental data is seen. It is most obvious for Iϕ = 75 A,

just as in the experiment. Considering that we do not use exactly the same external

coil configuration as PROMISE, the agreement is remarkably good (Table. 5.1).

Interestingly, the jet becomes nearly steady when Iϕ ≥ 50 A. It is known that Ek-

man circulation is significantly modified when the Elsasser number Λ ≡ B2/(µ0ρηΩ) &

1[79]. If we use |B(r1)| for the field strength and Ω2 for Ω in this expression, then

Λ = 4.8 at Iϕ = 75 A.

On the other hand, the magnetic field clearly promotes unsteadiness in the in-
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Figure 5.3: (color). Axial velocities [ mm s−1] versus time and depth sampled 1.5 cm
from the outer cylinder, for the parameters of the PROMISE experiment with toroidal
currents Iϕ as marked. Note height increases upward from the bottom endcap. No-
slip velocity boundary conditions are imposed at the rigidly rotating endcaps, but
the steady part of the resulting Ekman circulation is suppressed in these plots by
subtracting the time average at each height. The waves appear to be absorbed near
the Ekman jet, at z ≈ 100 mm.

Calculation of [42, 43] Experiment Our Simulation

fwave/f1 ∼ 0.14 ∼ 0.15 0.15
λwave [cm] ∼ 12 6 6
vp[ mm s−1] 1.1 0.8 0.7
A[ mm s−1] unavailable & 0.4 & 0.6

Table 5.1: Comparison of results for the frequency, wavelength, axial phase speed,
and amplitude obtained from simulation and experiment for the case Iϕ = 75 A.
f1 ≡ Ω1/2π is rotation frequency of inner cylinder.
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Figure 5.4: (color). Panel (a): An extended version of the case Iϕ = 75 A shown
in Fig. 5.3 but without subtraction of the time average. The two Ekman cells are
visible as the upflow (orange) at z > 100 mm and downflow (blue) at z < 100 mm;
these are the expected directions of flow near the outer cylinder. Panel (b): The
same case again, except that after t = 360 s, the no-slip boundary condition at both
endcaps is changed to an ideal Couette profile, i.e. Ω(r) = a + br−2 with a and b
chosen to make Ω continuous at both cylinders; this eliminates Ekman circulation.
Thereafter, the wave seems to be absorbed near the bottom (z ≈ 0 mm) rather than
the jet (z ≈ 100 mm), which itself dies out after t ≈ 395 s.

terior flow. The waves seen in Fig. 5.3 are probably related to HMRI, but we do

not believe that they arise from a global instability of the experimental Couette flow.

To demonstrate this, we have repeated the third (Iϕ = 75 A) simulation shown in

Fig. 5.3 with different velocity boundary conditions. First, when we replace the

rigidly rotating endcaps with differentially rotating ones that follow the ideal angular

velocity profile of an infinitely long Taylor-Couette flow, then instead of the persistent

travelling waves seen in Fig. 5.3, we see slowly damping standing waves, which we

interpret as inertial oscillations excited by a small numerical force imbalance in the

inital conditions[45]. Second, we perform a simulation that begins with the experi-

mental boundary conditions until the traveling waves are well established, and then

switches abruptly to ideal-Couette endcaps. After the switch, the Ekman circulation

stops and the traveling waves disappear after one axial propagation time, as if they

had been emitted by the Ekman layer at the upper endcap or by the layers on the

upper part of the cylinders (Fig. 5.4). After the switch in boundary conditions but
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before the waves fully disappear, their vertical phase speed increases from −0.7 cm s−1

to −1.1 cm s−1; the latter is the speed predicted by linear analysis for axially periodic

flow [43] (Fig. 5.4). Both numerical tests support the interpretation that the wave

pattern observed in the simulation and in the experiment is not a global HMRI mode

but rather a transient disturbance that is somehow excited by the Ekman circulation

and then transiently amplified as it propagates along the background axial Poynting

flux, but is then absorbed once it reaches the jet or the bottom end cap.
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Chapter 6

Magnetic Ekman Layer1

From the discussion of the previous chapters, understanding the role of the boundary

layer is essential to this research. In order to explain how the boundary layer is affected

by the magnetic field, we present this separate chapter. This chapter concentrates

only on magnetic Ekman circulation (the rotation speed profile is chosen appropriately

so that the system is MRI stable). The liquid metal is confined in a limited region

(r1 6 r 6 r2, zmin = 0 6 z 6 zmax = h). However the cylinders are presumed

infinitely long and perfectly conducting (of course this is not realistic); these magnetic

boundary conditions prevent the field lines from attaching to the cylinders and allow

the magnetic field to be matched onto vacuum solutions easily that decay as |z| → ∞

in the regions on the top of and underneath the fluid (Fig. 6.1). It is known that

Ekman circulation is significantly modified when the Elsasser number [79] exceeds

unity:

Λ = B2
∞/(8πρηΩ) & 1 ,

where B∞ is the axial magnetic field far away from the end cap and Ω = Ω2 rather

than
√

Ω1Ω2 used in Chap. 3. is the characteristic rotation frequency. The Elsasser

number Λ is a dimensionless parameter that measures the relative importance of

1inherited and modified from Liu et al. [76]
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the magnetic field. The implementation of the radial conducting, vertical insulating

boundary condition is introduced in Appendix.A.2.3.

B

B
2r

1r

dw

Z

Z

Ζ

R

I

I II

II

V

VII

II

h

III IV

III IV

Figure 6.1: Computational domain for studies of magnetic Ekman layer. Region (I):
Perfect conducting inner cylinder, angular velocity Ω1, infinitely long. (II): Liquid
metal, ρ ≈ 6.0 cm2 s−1, η ≈ 2.0 × 103 cm2 s−1. (III): Perfectly insulating inner
ring, Ω3, extends to infinity; (IV): Perfectly insulating outer ring, Ω4, extend to
infinity; (V): Perfectly conducting outer cylinder, Ω2, infinitely long. Thin dash
line: the middle plane. Bz is the initial background vertical uniform magnetic field.
Dimensions are: r1 = 7.1 cm, r2 = 20.3 cm, h = 27.9 cm, dw → ∞ except stated
explicitly. Ω1, Ω2, Ω3, Ω4 and Bz are adjusted accordingly.

6.1 Standard Magnetic Ekman Layer with infinites-

imal differential rotation2

This section is inherited and modified from Jeremy Goodman’s notes (unpublished).

The imposition of no-slip conditions at finite endcaps introduces important com-

plications to the basic state, including Ekman circulation and Stewartson layers [51].

There has been research done in the past considering the MHD Ekman layers (or

2inherited and modified from Jeremy Goodman’s unpublished notes
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Ekman-Hartmann layers as sometimes refered to in the literature) [77, 78, 80, 81].

However there has been little work aside from Pariev [90] on differential rotation, and

even less on Stewartson layers [51] with magnetic field.

For a first attack on this problem, the hydromagnetic Ekman boundary is set

up to study how the Ekman layer thickness and mass flux are affected by magnetic

fields. The problem treated consists of a viscous (kinetic viscosity ν), incompressible,

conducting (magnetic diffusivity η) fluid in the presence of an infinite, flat, insulating

boundary which rotates at speed Ω. Outside the boundary, the fluid rotates uni-

formly with speed Ω
′

= Ω(1 + Ro), where Ro is the Rossby number which measures

the differential rotation. A uniform magnetic field aligned with the rotation axis is

imposed. The boundary is horizontal (z = 0 plane), i.e. perpendicular to Ω = Ωez.

In the analysis of Gilman and Benton [77], an expansion in powers of Ro, together

with von Kármán similarity [105, 106], leads to an exact solution which is accurate

to first order in Ro. In the limit of Ro ≪ 1, or infinitesimal differential rotation, in-

creasing Λ results in a continuous transition between pure Ekman flow and a rotating

analog of Hartmann flow.

Here one different approach similar to the one used in §4.2.2 is presented. This

method is essentially a modified steady state WKB analysis rather than an expansion

of von Kármán similarity variables used in Gilman and Benton [77]. With the t and r

dependence factored out, the linearized equations of motion reduce to homogeneous

ordinary differential equations with coefficients independent of z. Elementary solu-

tions of these equations exist with exponential dependence on z; however, since the

vertical boundaries are not translationally invariant, the wavenumber k needs not be

real, and the final solution can be linear combinations of the elementary modes and

one particular mode, which satisfies the boundary conditions at z = ∞ but not at

z = 0. The vertical magnetic boundary conditions require the fields to match onto a

vacuum solution at the end plate.
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As in the standard Ekman problem, there is a constant pressure gradient parallel

to the boundary, which we may take in the x direction: ▽p = ρgex, where the accel-

eration g is a constant. To balance this at large z where viscosity is not important,

there is a geostrophic flow:

v → g

2Ω
ey as z → ∞ (6.1)

v → 0 as z → 0 (6.2)

so that 2Ω × v = −▽ p/ρ at large z. Henceforth we write V∞ for g/2Ω. The second

line is the no-slip condition at the boundary, which is assumed to rotate at Ω. The

velocity field v is assumed to be a function of z only, and vz = 0 at all z.

The new element in the problem is the magnetic field. We suppose that

B → B∞ez z → ∞ (6.3)

where B∞ is a constant, so that the field is perpendicular to the boundary at large

distances from it. Various boundary conditions can be applied at z = 0. For insulating

boundaries, the condition J⊥ = 0 is automatically satisfied since we assume that B is

a function of z only. Bz is independent of z as a consequence of ▽·B = dBz/dz = 0.

The Euler and induction equations reduce to (primes mean d/dz)

−2Ωvy +
B∞

4πρ
B

′

x + νv
′′

x = −g

2Ωvx +
B∞

4πρ
B

′

y + νv
′′

y = 0

B∞v
′

x + ηB”
x = 0

B∞v
′

y + ηB”
y = 0 (6.4)

This is an in-homogeneous linear system with constant coefficient. The general solu-
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tion is 


vx

vy

Bx

By




=




0

V∞

0

0




+
8∑

n=1

Cn




vx,n

vy,n

Bx,n

By,n




exp[knz] (6.5)

The first column vector on the right-hand side is the particular solution, which sat-

isfies the boundary conditions at z = ∞ but not at z = 0. The column vectors

(vx,n, . . . , By,n)T are constant, and the terms of the summation are solutions of the

homogenous version of Eqn 6.4 for g = 0. Their amplitudes {Cn} must be chosen to

satisfy the boundary condition. The 8 values of the wavenumber {kn} are the roots

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

νk2 −2Ω kB∞/4πρ 0

2Ω νk2 0 kB∞/4πρ

kB∞ 0 ηk2 0

0 kB∞ 0 ηk2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (6.6)

In term of the Alfvén speed VA = B∞/
√

4πρ, this becomes

k4[(ην)2k4 + 2ηνV 2
Ak

2 + (V 4
A + 4Ω2η2)] = 0 , (6.7)

Only the nonzero roots of this equation are of interest since they determine the

boundary-layer thickness. The quadruple root k = 0 can thus be neglected. The rest

of the roots are

k2 =
V 2

A

ην
± 2Ωi

ν
. (6.8)

The boundary-layer thickness can be singled out as δ = |R(k)|−1, which is the same

for all four roots. [”R(. . . )” means ”real part of (. . . )”.] The solutions that behave
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acceptably as z → ∞ are the ones with R(. . . ) < 0. Thus

δ = δE
1√√

Λ2 + 1 + Λ
≈ δE ×





1 − Λ/2 if Λ ≪ 1 ;

1/
√

2Λ if Λ ≫ 1 .

(6.9)

Here δE =
√
ν/Ω is the purely hydrodynamical Ekman-layer thickness. Noticeably, Λ

has nothing to do with ν. Hence even if the boundary layer were turbulent, having the

laminar viscosity ν enhanced by an effective turbulent viscosity νT and the thickness

increased by O[(νT/ν)
1/2], the magnetic field would be at least as consequential as in

the laminar case. The field would result in a more stable layer and push the onset of

turbulence to larger Reynolds numbers. In the limit of Λ → ∞, δ → √
νη/VA: this is

the Hartmann-layer thickness which does not depend upon Ω. For gallium,

Λ ≈ 3.2(
B

Tesla
)2(

1000 rpm

Ω
) . (6.10)

Adopting the parameters used in the experiment, Ω = Ω2 = 533 rpm, B = 5000 Gauss,

immediately leads to Λ ∼ 1.5. Hence the magnetic Ekman layer should be relevant

in our case.

The two “acceptable” nonzero roots of Eqn 6.8, satisfying the boundary conditions

(vx = vy = 0 at z = 0, and vx → 0 and vy → V∞ at z → ∞) for k are k± = −(kR±ikI),

where kR = δ−1 as given by Eqn 6.9, so that

vx = −V∞e−kRz sin kIz , (6.11)

vy = V∞(1 − e−kRz cos kIz) , (6.12)

where V∞ is the velocity far away from the end plate and kI is related to kR by

kI

kR
=

√
1 + Λ2 − Λ .
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The mass flux is:

ρ

∫ ∞

0

vxdz = − ρV∞δ

2
√

Λ2 + 1
≈ −ρV∞δE

2
×






1 − Λ/2 if Λ ≪ 1;

1/Λ
√

2 if Λ ≫ 1.

(6.13)

Compared to Eqn 6.9, the mass flux diminishes more rapidly than the boundary-layer

thickness as Λ → ∞.

The above theoretical results can serve to benchmark our code (Fig. 6.2). The

thickness of the layer could be refined by fitting the simulated data using Eq. 6.11

(choosing the simulated data at r = (r1 + r2)/2 to minimize the radial boundary

effects). The reciprocal of the fitted kR is the Ekman layer width. The simulated

result fits the theoretical line nicely.

Figure 6.2: The thickness of the Ekman layer δ versus Elssaser Number Λ for Re =
1600, Rem = 5, Ro = 0.01. Ω1/2π = 1000 rpm, Ω2/2π = 1000 rpm, Ω3/2π =
1010 rpm, Ω4/2π = 1010 rpm. r1 = 15 cm, r2 = 35 cm and h = 20 cm. The data
is measured at r = (r1 + r2)/2 = 20 cm. The dashed line is the theoretical result.
The solid line is the one obtained from modified ZEUS-2D simulations. Here in order
to minimize the effects of curvilinear streamlines, one larger radius is chosen. And
also in order to minimize the effect of the top end cap, one large height h≫ 10 δE is
chosen.
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6.2 Magnetic Ekman Layer with finite differential

rotation

Aside from the standard magnetic Ekman circulation (Ro ≪ 1), there is large

differential rotation in the experiment. As a further step, we develop the prob-

lem with the end plates corotating with the outer cylinder (Ω1/2π = 500 rpm,

Ω2 = Ω3 = Ω4 = 66.625 rpm). In the next section, the problem is delved further

by splitting the end plates into two rings as in the experiment. The new boundary

condition (vertically insulating finite height) introduced in §A.2.3 and benchmarked

by the above analysis is employed to explore these two problems.

The geometry models the Princeton MRI experiment (r1 = 7.1 cm, r2 = 20.3 cm,

h = 27.9 cm). There has been some analytical work done already to further the

previous studies [77] accounting for the differential rotation of the liquid in the vessel

[90] with the end plates co-rotating as a solid body with the angular velocity Ω2

while the rotational profile far from the end plate is assumed to be ideal Couette.

This section is based on the framework laid out in Pariev [90].

The Reynolds number for the flow in the Ekman layer is [90]:

Reδ ≈
r2Ω2δ

ν
≈ Re1/2 ∼ 3 × 103 , (6.14)

for 100% run in the Princeton MRI experiment. At this Reynolds number the bound-

ary layer is turbulent. However in the simulations, the Reynolds number is taken to

be 6400, thus Reδ = 80, so that in the simulations the boundary layer is laminar.

Our consideration below is grounded on the equations of laminar flows, which is also

the case in the analysis of [90].

The magnetic Reynolds number in the boundary layer based on the thickness of
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the Ekman layer is defined as:

Rmδ =
δU0

η
≈ Rem√

Re
, (6.15)

where U0 is the characteristic speed. For Re = 6400 and Rem = 2.5 realized in the

simulations, Rmδ ≈ 3.125 × 10−2, As soon as Rmδ ≪ 1 and |(Ω − Ω2)/Ω2| ≪ 1, the

following linear equation is derived [90]:

∂2ζ

∂z2
∗

− 2(Λ + i)ζ +
dω

dr∗

i

2
r∗(ζ̄ − ζ) = 0 , (6.16)

where the complex variable ζ is defined as:

ζ = uϕ − iur ,

and ζ̄ is the complex conjugate of ζ , uϕ, ur are the relative flow speed compared to

the background pure azimuthal rotating ideal Couette state, ω is normalized relative

rotation speed expressed as:

ω = (Ω − Ω2)/Ω2 ,

and r∗, z∗ are normalized by r2, δE respectively. For any given r∗, Eq. 6.16 is a forth

order linear ordinary differential equation with constant coefficients. This equation

has the solutions which have the form of ur ∝ eαz∗ , uϕ ∝ eαz∗ . It gives: [90]

α4 − 4Λα2 + (4 + 4Λ2 + 2r∗
dω

dr∗
) = 0 .

For small ω, the quantity 1 + (1/2)r∗dω/dr∗ = 1/(2Ω2r)d(r
2Ω)/dr = a/Ω2 > 0,

which is the ratio of vorticity to rotation speed. Thus, we have [90]

α1 = α
′

1 + iα
′′

1 , α2 = −α1, α3 = ᾱ1, α4 = −ᾱ1 ,
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where α
′

1 and α
′′

1 are real, and α
′

1 > α
′′

1 > 0. They are expressed as: [90]:

α
′

1 =

√√
Λ2 + 1 +

1

2
r∗
dω

dr∗
+ Λ , (6.17)

α
′′

1 =

√√
Λ2 + 1 +

1

2
r∗
dω

dr∗
− Λ . (6.18)

The boundary condition ζ → 0 for z∗ → ∞ requires that only the terms ∝ eα2z∗

and ∝ eα4z∗ would remain. The following solutions are obtained, satisfying boundary

conditions at z∗ = 0 [90]

ur = − r∗ω√
1 + 1

2
r∗

dω
dr∗

e−α
′

1
z∗ sin(α

′′

1z∗) , (6.19)

uϕ = −r∗ωe−α
′

1
z∗ cos(α

′′

1z∗) . (6.20)

The solution is oscillating and exponentially decaying to zero for z → ∞, which is

the classical picture of the Ekman layer. Hence the Ekman layer thickness δ is given

by:

δ = δE(α
′

1)
−1 = δE

1√√
Λ2 + 1 + 1

2
r∗

dω
dr∗

+ Λ

. (6.21)

The Eq. 6.19, Eq. 6.20 and Eq. 6.21 reproduce Eq. 6.11, Eq. 6.12 and Eq. 6.9 if there

is no differential rotation (dω/dr∗ → 0).

It is worth emphasizing that the above derivation is fully based on a small ω, or

(Ω − Ω2)/Ω2 ≪ 1. Such a rotation profile develops a very thin Ekman layer and the

required resolution is beyond the capability of the current ZEUS code. Given a finite

ω (Ω1 = 500 rpm > Ω2 = 66.625 rpm), putting aside the nonlinear effects due to

this finite ω which is ignored in Eq. 6.16 and following the analyses of Pariev [90], we

have the following conclusions.
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The quantity of 1 + (1/2)r∗dω/dr∗ could be expressed as with a finite ω:

1 +
1

2
r∗
dω

dr∗
=

1

(2Ωr)

d(r2Ω)

dr
,

in which the ideal Couette state is Ω = a + b/r2, a = (Ω2r
2
2 − Ω1r

2
1)/(r

2
2 − r2

1) and

b = r2
1r

2
2(Ω1 − Ω2)/(r

2
2 − r2

1). Thus the value of the quantity is dependent on radius

r, rather than a positive constant (a/Ω2) as in the limit of ω ≪ 1. At some radius r

there could exist some reason, such as, the deviation of the background flow profile

to the ideal Couette state, which causes the quantity to change sign. The negative

quality 1 + (1/2)r∗dω/dr∗ results in three sub-cases, which could be classified by the

critical Elsasser number Λcrit =
√
−1 − (1/2)r∗dω/dr∗ [90]:

(1) If Λ > Λcrit,

ur =
r∗ω

2Λcrit
(e−α3z∗ − e−α1z∗) , (6.22)

uϕ = −r∗ω
2

(e−α1z∗ + e−α3z∗) , (6.23)

where

α1 =
√

2Λ − 2Λcrit , (6.24)

α3 =
√

2Λ + 2Λcrit . (6.25)

The solution is purely exponentially decaying away from the end plate.

(2) If Λ = Λcrit, the width of Ekman layer increases to infinity.

(3) If Λ < Λcrit (relaxing the boundary condition to have finite velocity components

far from the end plate, rather than zero),

ur =
r∗ω

2Λcrit
(e−α3z∗ − cos(α

′′

1z∗)) + C2 sin(α
′′

1z∗) , (6.26)

uϕ = −r∗ω
2

(cos(α
′′

1z∗) + e−α3z∗) + C2Λcrit sin(α
′′

1z∗) , (6.27)
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where

α
′′

1 =
√

2Λcrit − 2Λ ,

and the constant C2 remains undetermined. The solution is purely oscillating, which

should be subject to the Kelvin-Helmholtz instability and should quickly evolve into

a turbulent state. However whichever case it is, the strong magnetic field causes the

Ekman layer to become thinner. More details are given by Pariev [90]. Therefore our

problem with finite ω is much more complicated than the analyses presented before

in this section, even though the nonlinear effects are not considered.

Nonlinear simulations using ZEUS with vertically insulating, radially conducting

boundary conditions have been performed for the computational domain shown as

Fig. 6.1. Dimensions are r1 = 7.1 cm, r2 = 20.3 cm and h = 27.9 cm with Re = 6400

and Rem = 2.5. The rotational profile is: Ω1/2π = 500 rpm, Ω2 = Ω3 = Ω4 =

66.625 rpm. The simulation approaches the condition of the above linear theory

except that: (1) the radial boundary condition is conducting rather than insulating(a

magnetic Ekman layer with fully insulating boundaries on all sides is the next step

for this problem and will be included in a forthcoming paper); (2) the flow profile far

away from the end plate is modified, though not significantly; thus it is not Couette

any more; (3) |(Ω−Ω2)/Ω2| ≪ 1 is not satisfied except near the outer cylinder, where

the flow is governed by the conducting boundary.

Therefore in the analysis of the nonlinear simulation results, rd = (r1 + r2)/2 is

chosen to minimize the influence of both conducting cylinders, but keeping in mind

that |(Ω(rd)−Ω2)/Ω2| = 1.08 ∼ 1 , some nonlinear effects neglected in Eq. 6.16 could

be important and the quantity 1 + (1/2)r∗dω/dr∗, which is nonlocal, could be either

positive or negative, thus complicating the problem.

The magnetic Ekman layer thickness is discerned by fitting the simulated vr ac-

cording to Eq. 6.19 on the assumption of the classical Ekman layer picture, where

α
′

1 is supposed to the reciprocal of the thickness. From Fig. 6.3, we confirm that the
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Figure 6.3: The thickness of the Ekman layer δ versus Elssaser Number Λ for Re =
6400, Rem = 2.5. Ω1/2π = 500 rpm, Ω2/2π = Ω3/2π = Ω4/2π = 66.625 rpm.
r1 = 7.1 cm, r2 = 20.3 cm and h = 27.9 cm. The data are measured at r =
(r1 + r2)/2 = 13.7 cm. The dashed line is from the linear analysis. The solid line
is obtained from modified ZEUS-2D simulations. These parameters make the MRI
stable.
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axial magnetic field does reduce the Ekman layer thickness. Though the simulated

curve does not match the theoretical result very well, it is reasonably good given the

approximations mentioned above.

For Re = 6400, the final state is not steady. Typical (instantaneous) flow and field

patterns are shown in Fig. 6.4. The poloidal flux and stream functions are defined so

that

V P ≡ Vrer + Vzez = r−1eϕ ×∇ Φ, BP ≡ Brer +Bzez = r−1eϕ ×∇ Ψ, (6.28)

which imply ∇ · V P = 0 and ∇ · BP = 0.

The most noticeable feature of the final state of the magnetic Ekman circulation

is the presence of an area of solid body rotation near the outer cylinder (Fig. 6.4

(d)). And the larger the Elsasser number is, the larger this area is; the strong axial

magnetic field squeezes the dynamically active area to the inner cylinder (Fig. 6.5).

When Λ = 1.5, almost half of the liquid metal is rotating with the outer cylinder.

6.3 Magnetic Ekman layer with two split rings

The existence of Ekman circulation alters the system profile dramatically, and it is

unfavorable for the proposed MRI experiments [47]. To minimize this circulation

in the MRI experiment, endcaps consisting of two differentially rotating rings are

proposed [47]. Though pure hydrodynamic simulations predict that an adequate

approximation to the ideal Couette profile can be obtained with a few rings, the

modification by the axial magnetic field has to be studied. The introduction of rings

complicates the problem by resulting in a so-called “Stewartson” layer [51], which lies

between the rings.

We have brought the computation closer to the experimental conditions by adding

two independent rotating rings (Fig. 6.1), where Ω1/2π = 500 rpm, Ω2/2π = 66.625 rpm,
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Figure 6.4: Contour plots of final-state velocities and fields. Re = 6400, Rem = 2.5
with Bz = 1500 Gauss or Λ = 1.09. Ω1/2π = 500 rpm, Ω2/2π = Ω3/2π = Ω4/2π =
66.625 rpm. r1 = 7.1 cm, r2 = 20.3 cm and h = 27.9 cm. (a) Poloidal flux function
Ψ (Gauss cm2) (b) Poloidal stream function Φ (cm2s−1) (c) toroidal field Bϕ (Gauss)
(d) angular velocity Ω ≡ r−1Vϕ (rad s−1).
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Figure 6.5: Azimuthal velocity vϕ versus radius r at different height with Rem = 2.5,
Re = 6400. Ω1/2π = 500 rpm, Ω2/2π = Ω3/2π = Ω4/2π = 66.625 rpm. r1 =
7.1 cm, r2 = 20.3 cm and h = 27.9 cm. solid line, ideal Couette state; + , 1.33 cm;
∗ ,2.79 cm; 2 ,13.95 cm. (a) Λ = 0; (b) Λ = 0.38; (c) Λ = 0.76; (d) Λ = 1.5.
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Ω3/2π = 227.5 rpm, Ω4/2π = 81.25 rpm. The dimensions are still r1 = 7.1 cm,

r2 = 20.3 cm, h = 27.9 cm.

For Re = 6400, the final state is not steady. Typical (instantaneous) flow and

field patterns are shown in Fig. 6.6.

Figure 6.6: Like Fig. 6.4, but with two differential rotating rings and Λ = 1.5. the
Stewartson layer is located between the rings and breaks the two big Ekman cells into
eight cells.

The following observations can be made from Fig. 6.6. With rings the Stewartson
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layer is more apparent than Ekman circulation, which has been minimized efficiently

by the use of independently rotating rings. However the split end caps break the

two big Ekman cells of the pure hydro Ekman circulation into eight cells, four at the

top half and the other four at the bottom half (Fig. 6.6 (b)) (also see the analysis

of §3.2.2 of Chap. 3). The middle four cells are the straightforward consequences of

the Stewartson layer. The axial magnetic field aligns the flow along the field lines

and elongates the cells axially. The stronger the axial magnetic field is, the more the

azimuthal speed profile deviates from ideal Couette state (Fig. 6.7). This suggests

that the Stewartson layer penetrates deeper into the fluid. Strong magnetic field

leads to a more steady final state, even though the Reynolds number is high. This

implication indicates that the strong magnetic field causes the Stewartson layer to be

steady (Fig. 3.11 of Chap. 3). The higher Reynolds number is, the more the azimuthal

speed profile deviates from ideal Couette state. This suggests the Stewartson layer

extends further into the fluid (Fig. 6.8).

6.4 Discussion

It is worth emphasizing here that the rotation profile used in the simulations of this

section (Ω1/2π = 500 rpm, Ω2/2π = 66.625 rpm, Ω3/2π = 227.5 rpm, Ω4/2π =

81.25 rpm) is different from the one used in the purely hydrodynamical experiment

with Ω4 < Ω2 [26, 49]. And the purely hydrodynamical experimental results show that

the azimuthal velocity profile is quite smooth; no obvious Stewartson layer is observed

[49], which conflicts with our simulated results here and the reports of Hollerbach and

Fournier [50]. This difference could be explained by an unstable Stewartson layer.

As mentioned before in Sec. 6.2, the sign of the quantity 1 + (1/2)r∗dω/dr∗ =

1/(2Ωr)d(r2Ω)/dr determines the structure of the flow significantly. The local value

of the quantity is highly possible to be negative since in our experiment a small
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Figure 6.7: Azimuthal velocity vϕ cm s−1 versus radius r at different height with
Rem = 2.5, Re = 6400, for differential rotation end cap rings with Ω1/2π = 500 rpm,
Ω2/2π = 66.625 rpm, Ω3/2π = 227.5 rpm, Ω4/2π = 81.25 rpm: solid line, ideal
Couette state; + , 1.33 cm; ∗ ,2.79 cm; 2 ,13.95 cm. Left panel: Λ = 0.38; right
panel: Λ = 1.5.

Figure 6.8: Azimuthal velocity vϕ cm s−1 versus radius r at different height with
Rem = 2.5, Λ = 1.5, for differential rotation end cap rings with Ω1/2π = 500 rpm,
Ω2/2π = 66.625 rpm, Ω3/2π = 227.5 rpm, Ω4/2π = 81.25 rpm: solid line, ideal
Couette state; + , 1.33 cm; ∗ ,2.79 cm; 2 ,13.95 cm. Left panel: Re = 400; right
panel: Re = 6400.
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positive a is chosen to have the system close to a marginally Rayleigh’s centrifugal

stable case and the background flow could be locally modified. The negative quantity

complicates the problem greatly, especially when Λ < Λcrit, which is usually satisfied

in the experiment. In this case the purely oscillating solution results in a vertical

shear (not necessarily confined in the boundary layer), thus is subject to the Kelvin-

Helmholtz instability and quickly evolves into a turbulent state (see details in Sec.6.2).

Moreover, at the joint of the rings, the outer ring rotates more slowly than the

inner one (Ω4 < Ω3), hence ∂(r2Ω2)/∂r < 0 across the joint. This radial shear

could also result in the Kelvin-Helmholtz instability given a sufficiently high Reynolds

number. At the same time Rayleigh’s centrifugal instability could also happen since

∂(r2Ω)/∂r < 0 across the joint. Additionally we use a low Reynolds number in the

simulations so that the boundary layer is laminar (Reδ =
√
Re = 80), however, under

experimental parameters the boundary layer should be turbulent (Reδ =
√
Re &

3 × 103). Therefore an unstable Stewartson layer is highly possible. The layer may

be smoothed by localized circulation and/or turbulence from these instabilities.

Unfortunately our 2-D simulation (the same as in Hollerbach and Fournier [50])

with a relatively low Reynolds number (Re = 6400) could not resolve these issues (pos-

sibly the Rayleigh’s centrifugal instability could be resolved if the Reynolds number

is high enough since it is basically a axisymmetric mode) since the Kelvin-Helmholtz

is basically a toroidal nonaxisymmetric mode, and could possibly be the sources of

the difference between the simulated result and the experimental observation.

It is well known that surface tension at the interface between two fluids will

hinder the Kelvin-Helmholtz instability. Similarly in a homogeneous but magnetized

fluid such as ours, magnetic field tension supplies a stabilizing force, and the stability

requirement for the inviscid Kelvin-Helmholtz instability is:

△v 6 2VA
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where △v is the velocity jump and VA is the Alfvén speed. The same is true for the

Rayleigh’s centrifugal instability [34]. This could explain why the Stewartson layer

extends deeper into the bulk with a stronger magnetic field (Fig. 6.7), by suppressing

the instabilities that would otherwise tend to smooth the velocity gradient. For

example in Fig. 6.7, the △v = (Ω3−Ω4)∗rd = 210 cm s−1 while the VA is 102 cm s−1

for the left panel with Λ = 0.38 and is 204 cm s−1 for the right panel with Λ = 1.5

respectively. Therefore the left panel is a Kelvin-Helmholtz unstable case while the

right panel is a Kelvin-Helmholtz stable case.
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Chapter 7

Conclusions and Future Work1

7.1 Conclusions

In Chap. 2 and Chap. 3 of this thesis we present non-ideal magnetohydrodynamic sim-

ulations of the Princeton MRI experiment. In vertically infinite or periodic cylinders,

MRI saturates in a resistive current-sheet with a significant reduction of the mean

shear, and with poloidal circulation scaling as the square root of resistivity. Angular

momentum transport scales as the reciprocal square root of viscosity but only weakly

depends on resistivity. For finite cylinders with insulating end caps, a method for

implementing the fully insulating boundary condition is introduced. MRI grows with

a clear linear phase from small amplitudes at rates in good agreement with linear

analysis. In the final state one inflowing “jet” opposite to the usual Ekman “jet” is

found near the inner cylinder. The MRI enhances the angular momentum transport

at saturation. Under proper conditions our experimental facility is a good platform

to show that MRI could be suppressed by a strong magnetic field.

The recently reported helical MRI [40, 41] has also been investigated in Chap. 4

and Chap. 5. In vertically infinite or periodic cylinders, resistive HMRI is a weakly

destabilized hydrodynamic inertial oscillation propagating axially along the back-

1contribution also from Jeremy Goodman and Hantao Ji
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ground Poynting flux. Growth rates are small, however, and require large axial cur-

rents. Furthermore, finite cylinders with insulating endcaps were shown to reduce the

growth rate and to stabilize highly resistive, inviscid flows entirely, and the new mode

is stable in Keplerian flow profiles regardless of end conditions. We also numerically

investigate a traveling wave pattern observed in experimental magnetized Taylor-

Couette flow at low magnetic Reynolds number. By accurately modeling viscous

and magnetic boundaries in all directions, we reproduce the experimentally measured

wave patterns and their amplitudes. Contrary to previous claims [42–44], the waves

are shown to be transiently amplified disturbances launched by viscous boundary

layers rather than globally unstable magnetorotational modes.

The roles of boundary layers, which are critical to this project, such as the mag-

netic Ekman layer and Stewartson layer [51], are also studied in Chap. 6. The mag-

netic field is found to inhibit the Ekman suction. While we quantitatively confirmed

the conclusions of Gilman and Benton [77], Loper [78], Gilman [79], Benton and Chow

[80], Gupta [81], the finite differential rotation cannot be neglected and modifies the

linear Ekman layer. The width of the Ekman layer is reduced with increased mag-

netic field normal to the end plate. A uniformly-rotating region forms near the outer

cylinder. The Stewartson layer penetrates deeper into the fluid with larger Reynolds

number and stronger magnetic field. Furthermore a strong magnetic field leads to a

steady Stewartson layer, at least in axisymmetric configuration.

This thesis work shows that in a laboratory Taylor-Couette experiment the bound-

ary layer usually plays an important role, even dominating the bulk fluid through Ek-

man circulation and/or magnetic-boundary interactions. Most astrophysical studies

model only large-scale phenomena insensitive to the boundary conditions. However

one can not usually understand the physics of a laboratory Taylor-Couette experiment

correctly without elaborating boundary effects since the laboratory flows are usually

subsonic, and sometimes also sub-Alfvénic, the bulk fluid communicates easily with
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the boundary. On the other hand, in order to apply knowledge we learnt from lab

experiments to astrophysics, we need to filter out the effects due to boundaries. This

process in general is not a trivial one when attempted through theory and experi-

ment. Simulations can be a powerful tool to pin down exactly what parts are due

to boundary and what parts are due to genuine physics we intend to study. A good

example is Helical MRI.

This thesis work also illustrates the value of interplay between experiment, simu-

lation and analytic insight. In all above studies, comparison of models and measure-

ments will be used to validate our theoretical tools, which we will apply to nonlinear

saturation of resistive MRI in astrophysical systems. Theoretical modeling has al-

ready played a major role in the design of the MRI experiment, and the physics of

these modes and boundary layers may be of interest for fluid dynamics and geophysics

as well as astrophysics.

7.2 Future Work

7.2.1 Performance Improvement of the current code

The most powerful computers today are clusters where hundreds to thousands of

processors are inter-connected. In the spirit of ZEUS, the current code, the modified

ZEUS-MP 2.0, is implemented as a SPMD (Single Program, Multiple Data) parallel

code using the Message Passing Interface (MPI) to carry out interprocessor communi-

cation. The finite-difference scheme requires data at multiple mesh points to evaluate

the gradient, divergence and Laplacian operators. When those operations are per-

formed along processor boundaries, we need to exchange data between neighboring

processors. Too much communication overhead would reduce the parallel efficiency

and thus is not favored. This issue is commonly known as scalability, which is typi-

cally assessed by measuring the reduction in CPU time for a given quantity of work as
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this is distributed among an increasing number of processors. Generally, scalability

involves a number of factors, though parallelism is a leading one. The comprehensive

discussion of scalability is beyond the scope of this thesis work; however better scal-

ability is crucial for computations with strong magnetic field, high Reynolds number

and/or three dimensions since higher resolution and thus a larger number of pro-

cessors, is necessary. We have used several methods including Non-blocking message

passing, which allows interprocessors data exchange to proceed simultaneously with

computational operations, and message packing techniques, which assembles lots of

short messages into one long messages to decrease the number of messages, to im-

prove the scalability of the current code. However it is not yet maximumly optimized.

Some performance improvement could be achieved with more effort.

Efficient scalable solver of the Grad-Shafranov Equation

The solution of the Grad-Shafranov equation [103, 104] with conducting boundary

condition as part of von-Hagenow method [102] is a key ingredient of the imple-

mentation of fully insulating and partially conducting boundary conditions (see also

§A.2.3). In the current code this equation is solved by combining FFTs along z with

tridiagonal matrix inversion along r. Though the method used now is efficient, it

is not well scalable. In a larger system, the Multigrid method is said to be scale

better since ideally the required number of iterations for convergence of a Multigrid

solver can be virtually independent of the problem size. Therefore the performance

of the current code could be improved by employing such a method. Good parallel

solvers satisfying the scalability requirement could be found in the PETSc package

[107–109]. PETSc is a suite of data structures and routines for the scalable (parallel)

solution of scientific applications modeled by partial differential equations. It provides

many parallel solvers including Multigrid and Incomplete Cholesky Conjugate Gradi-

ent (ICC-CG) methods. As most parallel packages the data array used by PETSc is
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divided along the first dimension of the data cube, which is sometimes called “slab”

decomposition. Generally, the data is preprocessed from a general “block” domain

decomposition to a “slab” decomposition before calling the PETSc routines. After

this operation is completed, the “slab” decomposition of the data is transformed back

to “block” decomposition in the postprocessing stage. Also note that PETSc is writ-

ten in C language, and its FORTRAN version is also available but with less and

worse functionality. PETSc routines must be called cautiously when they are called

from a FORTRAN main program due to the different memory structures between C

and FORTRAN. The codes based on PETSc using Multigrid or ICC-CG methods are

ready; however significant effort is expected to debug them.

Implicit method to evolve the resistive term of the Induction Equation

ZEUS is an explicit MHD code. The diffusion term of the Induction equation is

handled by an ohmic term added to the electromotive force in accord with the Con-

strained Transport algorithm [110], which preserves ∇ · ~B = 0 (see §A.1.1). However

in an explicit diffusion scheme, the Courant-Friedrichs-Lewy (CFL) stability condi-

tion limits the time step to tiny in the very resistive limit (see §A.1.2). The current

code uses the SubCycling technique to reduce the computation cost. Though this

technique is efficient for the simulations discussed in this thesis work, it is not effi-

cient enough for more demanding simulations like the ones with higher resolution.

Implicit methods are essentially the best choice for the diffusive computations.

The Induction equation is:

∂ ~B

∂t
= ∇× (~V × ~B)︸ ︷︷ ︸

1

+ η△ ~B︸ ︷︷ ︸
2

.

We can handle the first term just following the explicit method used in ZEUS: MOC-
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CT scheme [111]. The second term:

∂ ~B

∂t
= η△ ~B , (7.1)

is a simple diffusion equation. As stated before, the best way to handle this diffusion

equation is an implicit method.

The difficulties associated with this equation are: (1) this equation being a vec-

tor equation; (2) the divergence-free nature of the magnetic field, which could be

manipulated by using vector potential.

Assuming axisymmetry, the toroidal component of Eq. 7.1 is:

∂Bϕ

∂t
= η(△ ~B)ϕ . (7.2)

As for the poloidal magnetic field components, we introduce the vector potential ~A,

satisfying:

~B = ∇× ~A .

Since it is axisymmetric, ~A only has one independent component Aϕ. Performing the

curl operation on the Eq. 7.1, we get:

∂Aϕ

∂t
= η(△ ~A)ϕ , (7.3)

and

Bz =
1

r

∂

∂r
(rAϕ) ;

Br = −1

r

∂

∂z
(rAϕ) . (7.4)

We can see that rAϕ = Ψ, which is the flux function discussed in previous chapters.

Given the flux function at the inner cylinder, we can get the flux function Ψ from the
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known magnetic field as:

Ψ(z, r) =

∫ r

r1

r
′

Bz(z, r
′

)dr
′

+ Ψ(z, r1) . (7.5)

The computation of this flux function at the inner cylinder is not trivial for the fully

insulating and partially conducting boundary conditions, which could be efficiently

handled by the von-Hagenow method (see §A.2.3).

The mathematical nature of Eq. 7.2 and Eq. 7.3 is essentially the same. We can

regard them as:

∂u

∂t
= η(△u) , (7.6)

which could be efficiently solved by an implicit solver based on ILU-ICC or Multigrid

methods. Again these solvers could be found in PETSc package. Some tentative

coding is completed. However some significant effort is needed to debug the codes.

7.2.2 Work to be done

The Princeton MRI experiment has already had some initial magnetized results. Com-

parison between the simulated results and experimental results would be very exciting.

The simulation results are very important to explain and model the experimental data

since the experimental diagnostics are limited or inaccessible to some regions of the

experimental facilities.

Though the MRI is primarily an axisymmetric mode, the toroidal mode could be

generated due to the large Reynolds number (Re ∼ 107, 100% run), for example in

the purely hydrodynamical experiment with the outer cylinder stationary [112]. The

Kelvin-Helmholtz instability discussed in §6.4 is essentially a toroidal mode, which

can only be resolved in 3-D calculations. Furthermore possible turbulence cannot be

investigated appropriately without 3-D computations. The unexpected m = 1 mode

of the helical MRI observed in the Germany PROMISE experiment [42] also requires
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3-D simulations. These concerns show that 3-D simulations of both Princeton MRI

and Germany PROMISE experiments are possibly important. Though ZEUS-MP 2.0

is a 3-D code, the 3-D fully insulating boundary condition needs substantial work.

Boundary Element Method (BEM) [113, 114] or the methods proposed in Alouges

[115], Xu et al. [116] could be possible solutions.

It is not understood why linearly and axisymmetrically stable rotating flows with

low Reynolds number are often also nonlinearly and nonaxisymmetrically unstable

when Reynolds number is large enough, especially since subcritical transition does

occur at some Rossby numbers [99]. The fact that even a very poorly coupled mag-

netic field can sometimes linearly destabilize such flows hints that it might also affect

the nonlinear transition. Thus nonlinear hydrodynamical instability simulation with

magnetic field is also a meaningful follow-up of this thesis work, though simulations

with a large Reynolds number are required to step into this subcritical transition

regime.

The flexibility of controlling the flow profile at the endcaps makes our experimental

facilities a good platform to study the magnetized Ekman layers. However at our best

knowledge no theoretical analysis of the magnetized Ekman layer with two split rings

has been done yet. Thus the interplay between experiment, theory and simulation of

the magnetized Ekman layer could be an interesting topic for further understanding

the role of the boundary layers in the experiments.
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Appendix A

ZEUS code and Modifications1

To confirm astrophysical MHD codes in a laboratory configuration is one of the de-

clared aims of the Princeton experiment. Probably the most widely utilized astro-

physical MHD code is ZEUS [96, 111], which has several versions. The simulations in

this thesis were performed using modified ZEUS-2D and modified ZEUS-MP 2.0 [100],

which were devised for compressible, ideal-MHD flow with various simple boundary

conditions: periodic, outflow, inflow, reflecting.

ZEUS, like most astrophysical MHD codes, would not be the first choice to sim-

ulate an incompressible Taylor-Couette flow. However, after resistivity, viscosity,

and appropriate boundary conditions are incorporated into ZEUS, it is found to be a

sturdy and flexible testbed for the subsonic flows of interest. It reproduces the growth

rates predicted for incompressible flow (Chap. 2), and agrees with hydrodynamic lab-

oratory data [49]; MHD data are still on the way.

All fluids in nature are compressible. Incompressibility is a property obtained

in the limit of M → 0, where M ≡ Vflow/Vsound is the Mach number. From hydro-

dynamics, the density changes of an ideal gas with fixed total volume generally are

proportional to M2 when M < 1. A compressible isothermal equation of state, with

a sound speed chosen to enforce the maximum M ≤ 1/4, was employed in ZEUS and

1contribution also from Jeremy Goodman, James Stone, Steve Jardin and Hantao Ji
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quantitative agreement with incompressible codes at the few-percent level (§B.3) was

achieved.

Both ZEUS-2D and ZEUS-MP 2.0 provide the options of Cartesian (x, y), spher-

ical (R, θ), or cylindrical (z, r) coordinates. Cylindrical coordinates are used in this

thesis. ZEUS-2D retains the azimuthal components of velocity (vϕ) and magnetic

field (Bϕ) although all quantities are assumed independent of the azimuth angle ϕ.

We used ZEUS-MP 2.0, a 3-D code, with the assumption of axisymmetry.

A.1 New Physics: Explicit Viscosity and Magnetic

Resistivity

A.1.1 General Hydromagnetic Equations

For completeness, we start from the general hydromagnetic equations based on the

single-fluid model governing compressible hydromagnetic flow without bulk viscosity.

Navier-Stokes equation:

ρ
D~V

Dt
=

1

c
~j × ~B + σ ~E −∇P + ρν ▽2 ~V +

1

3
ρν ▽ (▽ · ~V ) (A.1)

Ohm’s law:

1

η
( ~E +

~V

c
× ~B) = ~j (A.2)

Conservation of mass:

∂ρ

∂t
+ ∇ · ρ~V = 0 (A.3)

Ampére’s law:

∇× ~B =
4π

c
~j +

1

c

∂ ~E

∂t
(A.4)
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Divergence-free condition:

∇ · ~B = 0 (A.5)

Faraday’s law:

∇× ~E = −1

c

∂ ~B

∂t
(A.6)

Gauss’s law:

∇ · ~E = 4πσ (A.7)

Here ~V is the fluid velocity, ~B is the magnetic field, ~E is the electric field,

D/Dt ≡ ∂/∂t+ ~V ·∇ and ρ, ν, η are density, kinetic viscosity and magnetic diffusivity

respectively. Also σ and j are the free charge density and free current density, c is

the speed of light, and P is the effective pressure including the gravity.

In the MHD regime, the equations are simplified to

ρ
D~V

Dt
= −▽ P +

1

4π
(▽× ~B) × ~B + ρν ▽2 ~V +

1

3
ρν ▽ (▽ · ~V ), (A.8)

Dρ

Dt
+ ρ▽ ·~V = 0, (A.9)

∂ ~B

∂t
= ∇× (~V × ~B) + η▽2 ~B, (A.10)

▽ · ~B = 0. (A.11)

The system of equations is closed with a equation of state P = ρV 2
s , where Vs is the

constant sound speed.

Viscosity and resistivity have been incorporated into the code. In order to conserve

angular momentum exactly, we cast the azimuthal component of the Navier-Stokes
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equation in conservative form:

∂L

∂t
+

∂

∂z
(VzL+ Fz + Jz) +

1

r

∂

∂r
(rVrL+ rFr + Jr) = 0 . (A.12)

In Eq. A.12, L = rVϕ, and Fr and Fz are the viscous angular-momentum fluxes per

unit mass

Fz = −ν ∂L
∂z

, Fr = −νr2 ∂

∂r

(
L

r2

)
, (A.13)

while Jr and Jz are the magnetic angular-momentum fluxes per unit mass

Jz = −rBθBz

µ0ρ
, Jr = −rBθBr

µ0ρ
. (A.14)

In the spirit of ZEUS, the viscous part of Eq. (A.12) is implemented as part of the

“source” substep. The original ZEUS implements the magnetic part of Eq. (A.12) in

the Lorenz force step in a nonconservative form. It has been changed to a conservative

form for this thesis work.

In accord with the Constrained Transport algorithm [110], which preserves ∇· ~B =

0, resistivity is implemented by an ohmic term added to the electromotive force, which

becomes

E = ~V × ~B − η∇× ~B . (A.15)

A.1.2 Stability: New Time Step2

This section is following the framework of Stone and Norman [96, 111].

An explicit code like ZEUS must restrict the time step to satisfy the Courant-

Friedrichs-Lewy (CFL) stability condition. Physically, this condition can be under-

stood as limiting the distance that information can travel in one time step via waves

or fluid motion to be smaller than one grid spacing. We must choose the largest time

2following the idea of Stone and Norman [96, 111]
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step possible such that the CFL condition is satisfied in every cell. Thus, in ZEUS

we choose the explicit time step using [96, 111]

∆t = C0/[max(δt−2
1 + δt−2

2 + δt−2
3 + δt−2

4 + δt−2
5 )]1/2 .

The maximum is taken over all zones. C0 is a safety factor (called the Courant

number, typically C0 ≈ 0.5) and the various limiting time steps are defined as

δt1 = [min(∆x1, ∆x2)]/Vs, (A.16)

δt2 = ∆x1/(v1 − vg1), δt3 = ∆x2/(v2 − vg2), (A.17)

δt4 = min(
∆x1

4C2∆v1
,

∆x2

4C2∆v2
), (A.18)

δt5 = [min(∆x1, ∆x2)]/VA, (A.19)

where the minimum is taken over all grid zones, Vs is the sound speed and ∆x1,

∆x2, v1, v2, vg1, vg2 are the cell sizes, velocities, and grid velocities. In our case

the 1, 2 directions are z and r. Note that metric factors need to be considered if

the coordinate system is curvilinear. C2 is the dimensionless coefficient of artificial

viscosity [96] and VA is the local Alfvén speed.

The inclusion of explicit viscosity and magnetic resistivity introduces diffusion to

the Navier-Stokes and induction equations. For stability, explicit diffusion schemes

are limited to time steps

δt6 = [min(∆x1, ∆x2)]
2/2ν , (A.20)

δt7 = [min(∆x1, ∆x2)]
2/2η . (A.21)

The time step is therefore chosen to

∆t = C0/[max(δt−2
1 + δt−2

2 + δt−2
3 + δt−2

4 + δt−2
5 + δt−2

6 + δt−2
7 )]1/2 .
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The codes are benchmarked in Appendix.B.

A.2 New Boundary Conditions

As mentioned before, the original ZEUS code only allows very simple boundary con-

ditions: periodic, outflow, inflow, reflecting—but not no-slip. For our problem, the

boundary layer plays an important role, even dominating the bulk fluid through

Ekman circulation and/or magnetic-boundary interactions. Most astrophysical sim-

ulations model only large-scale phenomena insensitive to the boundary conditions.

However one can not usually simulate the physics of a laboratory Taylor-Couette

experiment correctly without implementing accurate boundary conditions since the

laboratory flows are usually subsonic, and sometimes also sub-Alfvénic, the bulk fluid

communicates easily with the boundary. The boundary conditions are chosen to

“resemble” the physics at the boundary. ZEUS uses two “ghost zones” as a sup-

plement to implement the boundary condition (Fig. A.1). Additionally ZEUS uses a

staggered mesh, defining some variables at the center of the cell and some at the inter-

face/vertices of the cell (Fig. A.2). This has significant implications for the boundary

conditions. In the following, several boundary conditions already implemented in

ZEUS are introduced.
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Figure A.1: Computing mesh with ghost zones used in ZEUS. Solid lines are the“a”
mesh, dashed lines are the “b” mesh. The thick solid lines are the real boundary, at
which the flux function at the boundary ΨB is defined. There are two “ghost zones”
outside every boundary.
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Figure A.2: Positions at which variables are defined. Solid lines are the “a” mesh,
dashed lines are the “b” mesh. Ψ is the flux function discussed in the text. The
pressure P , the density ρ, the azimuthal magnetic field Bϕ and the azimuthal velocity
vϕ are defined at the center of the cell. The vertical magnetic field Bz, the vertical
velocity vz and the radial current density jr are defined at the bottom interface of
the cell. The radial magnetic field Br, the radial velocity vr and the vertical current
density jz are defined at the left interface of the cell. The azimuthal current density
jϕ and the flux function Ψ are defined at the vortex of the cell.
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A.2.1 General Boundary Conditions

The general boundary condition with moving boundaries are [117]

d~n

dt
= ~n× [~n× (∇~v) · ~n] , (A.22)

~n · [(ρ~v)i − (ρ~v)e] = u(ρi − ρe) , (A.23)

~n× ( ~Bi − ~Be) =
4π

c
~j∗ − u

c
( ~Ei − ~Ee) , (A.24)

~n · ( ~Bi − ~Be) = 0 , (A.25)

~n× ( ~Ei − ~Ee) =
u

c
( ~Bi − ~Be) , (A.26)

~n · ( ~Ei − ~Ee) = 4πσ∗ , (A.27)

1

c
~j∗× < ~B >av +σ∗ < ~E >av −~n(P i − P e) = 0 , (A.28)

where qi and qe represent the values of q in the interior and in the exterior respectively,

~n is the normal unit vector directed into the interior, u = ~v · ~n is the normal velocity

at the boundary, σ∗ =
∫ δ

0
σds is the surface charge, and ~j∗ =

∫ δ

0
~jds is the surface

current.

Obviously, the assumption of finite surface charge σ∗ and surface current~j∗ implies

infinite values for σ and ~j at the boundary.

Eq. A.22 to Eq. A.28 are derived by integration (
∫ δ

0
ds) of Eq. A.1 to Eq. A.7

across the boundary layer, where the thickness of the boundary layer δ is taken to be

negligible. The equations of state and conservation of mass are trivially satisfied.

Since the boundary wall in the Princeton MRI experiment is fixed and impene-
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trable, u = ~v · ~n = 0, which simplifies the boundary conditions to

~n× ( ~Bi − ~Be) =
4π

c
~j∗ , (A.29)

~n · ( ~Bi − ~Be) = 0 , (A.30)

~n× ( ~Ei − ~Ee) = 0 , (A.31)

~n · ( ~Ei − ~Ee) = 4πσ∗ . (A.32)

These are the usual electromagnetic boundary conditions commonly found in the

electrodynamic textbooks. In the MHD regime and with ~j∗ and σ∗ vanishing at the

insulating boundary, we get [113, 114]:

~B|wall continuous .

This is the usual magnetic boundary condition for laboratory Taylor-Couette exper-

iment simulations with an insulating boundary.

A.2.2 Hydrodynamic Boundary Conditions3

The hydrodynamic (HD) boundary condition is relatively simple since the fluid is

confined inside the solid boundaries unlike the magnetic field, which usually leaks out

and extends to infinity. The most frequently used HD boundary condition is the so-

called no-slip boundary condition. No-slip means the fluid element at the boundary

is at rest in the rotating frame, thus stationary with respect to the rotating boundary.

~v|wall = 0 (A.33)

In the rotating frame, both normal and tangential velocities should be zero. The

boundary conditions are straightforward to implement in ZEUS by setting the normal

3thanks to Jeremy Goodman for this point
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components of the velocity to zero at the boundary while setting the normal and

tangential components in the ghost zones equal to the corresponding negative values

of their images in the active zones.

A.2.3 Electromagnetic (EM) Boundary Conditions

The electromagnetic boundary conditions are determined by the magnetic diffusivity

of the wall material, ηw. We consider here three typical cases:

• perfectly conducting walls: ηw → 0 ;

• insulating walls: ηw = ∞ ;

• partially conducting walls: finite ηw .

Vertically Periodic and Radially Conducting Boundary Condition4

The periodic boundary condition was implemented in the original ZEUS. The simplest

EM boundary condition is the perfectly conducting boundary condition (Fig. A.3).

Initially one vertical uniform magnetic field is imposed while the conducting walls

are rotating in the azimuthal direction. Applying the ideal Ohm’s law inside the

conducting wall

~E + ~v × ~B = 0 for η = 0 ,

gives

~E × ~n = 0

since all components of the velocity and the magnetic field are zero except the az-

imuthal component of the velocity and the vertical component of the field. Thus, the

tangential electric field inside the conducting wall vanishes. The interface condition

for the electric field Eq. A.31 implies that the tangential electric field in the fluid also

4thanks to Jeremy Goodman for this point
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Figure A.3: Diagram of Vertically Periodic and Radially Conducting Boundary Con-
dition. There is an externally imposed vertical constant magnetic field B0. .
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vanishes at the wall:

~E × ~n|wall = 0 . (A.34)

Combining with Faraday’s Law gives

∂

∂t
( ~B · ~n) = 0 → ~B · ~n = C , (A.35)

where C is a constant determined by the initial condition, zero in this case. Using

Ohm’s law at the wall with Eq. A.33 and Eq. A.35, with C = 0, we obtain

(~j × ~n)|wall = 0 . (A.36)

This relationship means that the tangential components of the current density van-

ish at the wall. The wall condition for the current density can be transferred to a

condition for the magnetic field with the help of Ampére’s law. Eq. A.36 then reads

(∇× ~B) × ~n|wall = 0. (A.37)

In our specific case this yields

∂(rBϕ)

∂r
= 0 , (A.38)

Br = 0 . (A.39)

The vertical magnetic field Bz in the ghost zones is set equal to the corresponding

values of its images in the active zones, to set jθ|wall = 0.

Vertically Periodic and Radially Insulating Boundary Condition5

This section is inherited and modified from Jeremy Goodman’s notes (unpublished).

5inherited and modified from Jeremy Goodman’s unpublished notes
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In insulating walls there is no electric current. Therefore, no current can enter

the wall, so the normal component of the current density in the fluid vanishes at the

wall:

~j · ~n|wall = 0 . (A.40)

Assuming axisymmetry and current-free outside the fluid, we get

Bϕ =
C

r
for r 6 r1 and r > r2 , (A.41)

where C is a constant determined by the initial condition. Without any axial back-

ground current, this constant is zero.

The other two poloidal components are more complicated to determine. The

perturbed quantities are presumed to be vertically periodic, both in the interior and

exterior. If the vertical solution possess multiple vertical modes, then a Fourier trans-

formation is needed:

~B(r, z) =
∞∑

n=−∞

~Bn(r) exp (iπnz/h) . (A.42)

The periodicity length is chosen to be 2h. Hereafter, a single value of vertical

wavenumber k ≡ πn/h > 0 is assumed. Negative values of k can be handled by

taking complex conjugates.

With axisymmetry, it is most advantageous to represent ~B by a flux function in

the outside vacuum region:

Br = −r−1∂zΨ , (A.43)

Bz = r−1∂rΨ , (A.44)

r∂r(r
−1∂rΨ) + ∂2

zΨ = 0 . (A.45)
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The elementary solution of Eq. A.45 is

Ψk(r, z) = exp (ikz)r[αkI1(kr) + βkK1(kr)] , (A.46)

where I1 and K1 are modified Bessel functions and αk and βk are constant coefficients.

Since K1(x) is singular as x → 0 and approaches (π/2x)1/2 exp (−x) for x≫ 1, while

I1(x) is well-behaved as x→ 0 but I1(x) ≈ (2πx)−1/2 exp (x) for x ≫ 1,

αkn
= − B

(n)
r (r1)

ikI1(kr1)
, βkn

= 0 for r 6 r1 , (A.47)

βkn
= − B

(n)
r (r2)

ikK1(kr2)
, αkn

= 0 for r > r2 . (A.48)

Therefore αk and βk are determined by the radial component of the field at the

cylinders. Once these components are determined for k > 0, the components of

B
(n)
r (r) and B

(n)
z (r) can be calculated in the ghost zones using Eq. A.43, Eq. A.44,

and Eq. A.46.

The above analysis is justified only in a continuous system, not on a discrete grid.

In a discrete grid, like the staggered mesh used in ZEUS, the flux function Ψ is defined

at the vertices of the cell (Fig. A.2), which are shifted from the cell interface at which

Br and Bz are defined (Fig. A.2).

As soon as Br(r, z) are known at discrete values of z on the boundaries, B
(n)
r (r1)

are calculated from Br(r1, zm) with the usual FFT routines,

B(n)
r (r) =

1

N

N−1∑

m=0

Br(r, zm)e±i2πnm/N , zm = z0 +m∆z ,

so that the inverse transform is

Br(r, zm) =
N−1∑

n=0

B(n)
r (r)e∓i2πnm/N .
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In either case, kn = πn/h for 1 6 n 6 N/2.

After the Fourier coefficients of B
(n)
r (r) and B

(n)
z (r) are computed, complex conju-

gation is used to determine those for N/2 + 1 6 n < N : B
(N−n)
r (r) = [B

(n)
r (r)]∗. The

n = 0 case is a special case. Since the magnetic field is divergence-free, the radial mag-

netic field Br cannot have a nonzero vertical mean: Ψk=0(r) = 1
2
r2Bz,0 for all r, where

Bz,0 is the imposed uniform external field. The case n = N/2 (Nyquist frequency) is

more subtle since its coefficient should be real. Instead of Br(r, z) = r−1∂Ψ/∂z, in a

finite difference approximation we have

Br(r, zm) =
Ψ(r, zm+1/2) − Ψ(r, zm−1/2)

r∆z
.

For a given Fourier component Ψk(r, z) ∝ exp(ikz), the finite-difference operator

becomes

2i sin(k∆z/2)

∆z

instead of ik. The Fourier components B
(n)
r and Ψ(n) are related by this factor. At the

Nyquist frequency where k∆z = π, this factor is imaginary with the value of 2i/∆z.

However since Ψ is defined at a different location from Br, there is a shift ∆z/2

between them so B
(n)
r and Ψ(n) are also connected by a phase factor exp(ik∆z/2).

Since this factor is i at the Nyquist frequency, its product with the factor from the

difference operator turns out to be real.

Vertically Insulating and Radially Conducting Boundary Condition for

bounded cylinder6

This section is inherited and modified from Jeremy Goodman’s notes (unpublished).

In order to study magnetic Ekman layer problems, one may choose boundary

conditions intermediate between fully conducting and fully insulating boundaries

6inherited and modified from Jeremy Goodman’s unpublished notes
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(Fig. A.4). Specifically, the radial boundaries are taken infinitely long and perfectly

conducting while the endcaps are taken perfectly insulating, so the magnetic field is

current-free at the top and bottom of the end caps:

Br = 0, ∂r(rBφ) = 0 @ r = r1, r2 ∀z , (A.49)

∂rBz − ∂zBr = 0 @ {(r, z) : r1 < r < r2 , z < zmin or z > zmax} . (A.50)

These boundary conditions imply that the total magnetic flux
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Figure A.4: Diagram of the system with Vertically Insulating and Radially Conduct-
ing Boundary Condition.

Ψ0 ≡ 2π

r2∫

r1

Bz rdr (A.51)

is independent of z. To satisfy this requirement in a numerical implementation, it is
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most convenient to express ~B by a flux function in the vacuum region:

Br = −r−1∂zΨ, Bz = r−1∂rΨ, Bφ = 0; (A.52)

r∂r

(
r−1∂rΨ

)
+ ∂2

zΨ = 0. (A.53)

Eq. A.53 has the elementary solution

Ψk(r, z) = re−k|z−z0| [αkJ1(kr) + βkY1(kr)] , z0 ≡ zmin or zmax, (A.54)

where J1 and Y1 are Bessel functions, αk and βk are constant coefficients, and k ≥ 0.

From Eq. A.49,

k [αkJ1(kr1) + βkY1(kr1)] = 0,

k [αkJ1(kr2) + βkY1(kr2)] = 0, (A.55)

⇒ D(k) ≡ k2 [J1(kr1)Y1(kr2) − J1(kr2)Y1(kr1)] = 0. (A.56)

Eq. A.56 has distinct solutions 0 = k0 < k1 < k2 < . . ., where k0 = 0 is a unique case:

Ψ0(r, z) = α0r
2 + β0 ∀ z < zmin or z > zmax. (A.57)

After k ∈ {kn} is computed from Eq. A.56, αn/βn can be calculated from either of

the two conditions Eq. A.55. However, the normalization α2
k + β2

k is arbitrary since

Eq. A.53 is linear.
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The vacuum field can be expressed as an expansion of the orthogonal functions

Ψ(r, z) =

∞∑

n=0

cnΨkn
(r, z) , (A.58)

cn = N−1
n

r2∫

r1

Bz(r, z0)∂rΨkn
(r, z0) dr . (A.59)

The normalization constant is Nn, which is derived to be

Nn =
1

2

{
[∂rΨkn

(r2, z0)]
2 − [∂rΨkn

(r1, z0)]
2} , (A.60)

following Eq. §11.4.2 of Abramowitz and Stegun, Handbook of Mathematical Func-

tions. This formula applies even for n = 0, when it reduces to N0 = 2α2
0(r

2
2 − r2

1).

Henceforth, α0 = 1 and β0 = 0 is chosen, without loss of generality.

The total flux of the elementary solution Eq. A.54 is

2π

r2∫

r1

∂rΨkn
(r, z) dr = 2π [Ψk(r2, z) − Ψk(r1, z)] .

Due to Eq. A.55, this flux should be zero for n > 0. However, Ψ0 involves a nonzero

flux and, with α0 = 1, c0 = Ψ0/2π(r2
2 − r2

1) is deduced.

At the endcap z = z0, Bz is defined at the cell interface, r ∈ {r 1

2

, r 3

2

, . . . , rjmax − 1

2

}.

The formula Eq. A.59 for cn approaches:

cn = N−1
n

jmax∑

j=1

Bz(rj− 1

2

, z0) [Ψkn
(rj , z0) − Ψkn

(rj−1, z0)] . (A.61)

Note that this expression is exact if Bz is regarded as constant along each cell edge.

The infinite sum in Eq. A.58 is exactly equal to Ψ(r, z) in the vacuum regions. Plainly,

a finite value nmax needs to be chosen to truncate the series. In practice, nmax =

jmax − 1 is taken so that there are exactly as many coefficients {cn} as there are cells.
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In order to increase the accuracy of the evaluation of Eq. A.61, which is critical

for the success of this method, Gauss-Legendre integration is employed to evaluate

Eq. A.61 .

Fully Insulating Boundary Condition for bounded cylinder7

Credited to von Hagenow [102], this section is inherited and modified from the class

note of Stephen C. Jardin’s course, entitled “Computational Methods in Plasma

Physics”.

For the fully insulating boundary condition, the magnetic field needs to be matched

onto a vacuum field vanishing at infinity. This is fairly straightforward in spherical

geometry (such as that of many geodynamo experiments) because Laplace’s equation

is separable. Our case is more complex because while Laplace’s equation is uncou-

pled in an infinite cylinder, it is not fully separable outside a finite cylinder. Hence,

an integral formulation that is not based on separability is needed. The approach,

named after von Hagenow [102], is to determine a surface current at the boundary

that amounts to the whole current density inside as the source of the outside field

using the free-space Green’s function. The surface current is calculated by solving

the Grad-Shafranov equation [103, 104] inside with conducting boundary conditions,

which is separable in our case. The problem can be worked out efficiently via a fast

Fourier transformation along z and tridiagonal matrix inversion along r.

As usual the flux function Ψ, defined at the vertices, is introduced such that

~B = ▽ϕ×▽Ψ+Bϕϕ̂ is the magnetic field. More explicitly, assuming axis-symmetry:

Bz = −1

r

∂

∂r
Ψ, Br =

1

r

∂

∂z
Ψ . (A.62)

7credit to von Hagenow [102], inherited and modified from the class note of Stephen C. Jardin’s
course, entitled “Computational Methods in Plasma Physics”
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The flux function Ψ is the solution of the Grad-Shafranov equation [103, 104]

△∗Ψ = rjϕ (A.63)

or, in cylindrical coordinates,

r
∂

∂r

1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
= rjϕ , (A.64)

where jϕ = (▽× ~B)ϕ is the toroidal current density and △∗ is the Grad-Shafranov

operator. Given the basic physical variables in ghost zones, the system can be time

advanced using Eqs. A.8 - A.11 and Eq. A.62.

To this point, Ψ has been presumed to be known on the boundary of the compu-

tational domain as well as inside the ghost zones. It is not trivial to calculate Ψ on

the boundary and inside the ghost zones in the presence of the external current Ii in

discrete conductors located at rc
i , z

c
i as shown in Fig.A.5 (green points).

The Green’s function of the operator △∗ is known to be

G(r, z; r
′

, z
′

) = 2

√
rr′

k
[(2 − k2)K(k2) − E(k2)] , (A.65)

where K(k2) and E(k2) are complete elliptic integrals of the first and second kind.

The argument k2 is defined as

k2 =
4rr

′

[(r + r′)2 + (z − z′)2]
,

which can be found in Jackson’s Classical Electrodynamics as the vector potential due

to an axisymmetric current source. Therefore, the Green’s function G(r, z; r
′

, z
′

) and
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Figure A.5: Schematic Diagram of von Hagenow Method. Green points: external
current coils; red colors: induced currents inside the fluid; blue dashed lines: surface
current.
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the flux function Ψ(r, z) satisfy

△∗G(r, z; r
′

, z
′

) = rδ(r − r
′

)δ(z − z
′

) , (A.66)

△∗Ψ(r, z) = rjϕ(r, z) , (A.67)

△∗Ψ(r, z) =

Nc∑

i=1

rIiδ(r − rc
i )δ(z − zc

i ) in vacuum . (A.68)

The appropriate form of Green’s theorem is

▽·[Ψ 1

r2
▽G(r, z; r

′

, z
′

)−G(r, z; r
′

, z
′

)
1

r2
▽Ψ] =

1

r2
Ψ△∗(r, z; r

′

, z
′

)− 1

r2
G(r, z; r

′

, z
′

)△∗Ψ .

(A.69)

By integrating Eq.A.69 over the whole space, choosing the observation point (r
′

, z
′

),

Ψ at (r
′

, z
′

) is obtained as

ΨB(r
′

, z
′

) =

∫

fluid

G(r, z; r
′

, z
′

)jϕ(r, z)drdz +

Nc∑

i=1

G(rc
i , z

c
i ; r

′

, z
′

)Ii , (A.70)

where the right hand side of Eq. A.70 is composed of two parts: the contribution

from the fluid currents and the contribution from the external currents. If the com-

putational domain has N cells in each direction, the first part is approximately

N∑

i=1

N∑

i=1

G(ri, zj; r, z)jϕ(ri, zj)∆r∆z , (A.71)

where the double sum in Eq.A.71 is extremely time-consuming.

In order to speed up the calculation, we introduce a function U(r, z) that satisfies

the same differential equation as Ψ in the interior, but vanishes on the boundary:

△∗U = △∗Ψ = rjϕ ,

U = 0 on boundary .
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The form of Green’s theorem needed now is

▽·[U 1

r2
▽G(r, z; r

′

, z
′

]−▽·[G(r, z; r
′

, z
′

)
1

r2
▽U ] =

1

r2
U△∗G(r, z; r

′

, z
′

)− 1

r2
G(r, z; r

′

, z
′

)△∗U .

(A.72)

By placing the observation point (r
′

, z
′

) a tiny displacement ǫ away from the

computational boundary, integrating Eq.A.72 over the computational domain, and

employing Gauss’s theorem, the following expression is obtained for ǫ→ 0:

∫

fluid

G(r, z; r
′

, z
′

)Jϕdrdz =

∫

boundary

dl

r
G(r, z; r

′

, z
′

)
∂U

∂n
. (A.73)

The right hand side of Eq.A.73 requires substantially less effort to evaluate than does

the sum in Eq.A.71. The solution U can be obtained by a fast direct elliptic solver

within N2(4 lnN + 5) machine operations. Even with the 4N × 4N operations of

the line integral in Eq.A.73 for each boundary point, this method is still much less

expensive than the 4N3 operations required by the double sum.

Thus, the final formula to evaluate Ψ at the boundary and inside the ghost zones

is

Ψ(r
′

, z
′

) =

∫
dl

r
G(r, z; r

′

, z
′

)
∂U

∂n
+

Nc∑

i=1

G(ri, zi; r
′

, z
′

)Ii . (A.74)

Partially Conducting Boundary Condition for bounded cylinder8

8

It is difficult to implement the partially conducting boundary condition in a

bounded cylinder for the reason stated in §A.2.3. The implementation of full in-

sulating, no-slip boundary condition and proper treatment of the electromotive force

and Lorentz force (discussed in Sec. A.3) forms the foundation for implementation of

this boundary condition.

The extra difficulty due to metallic walls is that the hydrodynamical boundary, the

8thanks to Hantao Ji for initializing and encouraging me about this point
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fluid-wall interface, is separated from the electromagnetic boundary, the wall-vacuum

interface. Therefore the computational domain for the Navier-Stokes equation is dif-

ferent from that for the induction equation. The metallic walls are rotating rigidly, so

the velocity in the walls is determined. But the magnetic field is evolving dynamically

inside this partially conducting walls.

The computing grid should therefore be set up carefully to have the boundary

between the wall and fluid (hereafter inner boundary) lie exactly on the a-mesh of

the staggered mesh used in ZEUS [96, 111].

For the Navier-Stokes equation, the boundary is the inner boundary. In the spirit

of ZEUS, two artificial ghost zones just beyond the inner boundary are introduced

to implement the no-slip boundary condition. Thus the implementation of the hy-

drodynamic boundary condition requires the velocity in these ghost zones to be set

up accordingly (§A.2.2). However, those ghost zones are also the dynamical zones

for the evolution of the magnetic field and the advection terms. Therefore after the

Navier-Stokes equation step, these two ghost zones should be set to satisfy that the

walls are rigidly rotating.

For the induction equation, the boundary is the outer surface of the walls (here-

after outer boundary), at which the full insulating boundary condition discussed in

Sec. A.2.3 should be applied. Exactly at the inner boundary, there is an ambiguity

as to whether to use ηwall or ηfluid in Ohm’s law, the practice shows it is better to use

the smaller of them.

A.3 Boundary Condition for the Interpolated Phys-

ical Variables9

9thanks to James Stone for reminding me of this point
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When the electromotive force and Lorentz force terms are manipulated, the inter-

polated velocity and field components are required. ZEUS uses the more stable

and robust Method of Characteristics (MOC) to calculate the interpolated values.

Consequently the boundary values for those interpolated variables need to be set as

well. The general principle is the same as before, “to resemble the physics on the

boundary”. For example, for the full Insulating boundary condition, the perturbed

azimuthal magnetic field at the boundary should vanish. But Bϕ is defined at the

cell centers. Therefore the perturbed Bϕ must be set to zero at the boundary rather

than interpolated, which usually would give out a nonzero Bϕ at the boundary, to

satisfy that the boundary is magnetically stress free.

A.4 Partially Conducting Boundary Condition for

unbounded cylinder10

This section is based on the framework laid out in page. 37 of Müller and Bühler

[101]. In the linear axisymmetric code used for benchmarking ZEUS, the partially

conducting boundary condition described in this section is used.

In most Taylor-Couette laboratory experiments the container walls consist of

metallic material with a finite magnetic diffusivity ηw. The analysis of this section

depends on the assumption that the wall thickness dw is small compared to the gap

width r2 − r1, dw/(r2 − r1) ≪ 1 (Fig. A.3).

The Ohm’s law may be applied inside and outside the liquid-solid boundary

~E × ~n+ (~v × ~B) × ~n = ηj × ~n .

10following the analysis of page.37 of Müller and Bühler [101]
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We get

~E × ~n+ (~v · ~n) ~B − ( ~B · ~n)~v = ηj × ~n ,

in both sides of the liquid-solid boundary. The surface charge vanishes at the liquid-

solid interface, hence the electrical field across this interface is continuous. Combining

~v · ~n = 0 and the magnetic field is also continuous, we get at the wall boundary

η~j × ~n|wall = ηw
~jw × ~n|wall .

Assuming axisymmetry, Ampére’s law implies that the normal derivative of the

induced azimuthal magnetic field is continuous:

η
1

r

∂

∂r
(rBϕ)|wall = ηw

1

r

∂

∂r
(rBϕ,w)|wall .

In case of thin walls, the induced azimuthal magnetic field in the wall may be

expanded in a Taylor series to approximate the gradient. We treat the outer boundary

as an example; the inner boundary is similar, although signs differ:

1

r

∂

∂r
(rBϕ,w) =

routsideBϕ,outside − rinsideBϕ,inside

1
2
[(rinside + dw)2 − r2

inside]
.

Bϕ,outside and Bϕ,inside, routside = r2+dw and rinside = r2 are the values at the outer and

inner surface of the outer container wall. Since there are no currents in the vacuum

region outside the outer wall, the induced azimuthal field remains zero, Bϕ,outside = 0.

The boundary condition for the induced azimuthal magnetic field can therefore be

expressed as

1

r

∂

∂r
(rBϕ) +

ηw

η

rinsideBϕ

1
2
[(rinside + dw)2 − r2

inside]
= 0 .

We reach the final form of the boundary condition by scaling r to the gap width
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r2 − r1
1

r

∂

∂r
(rBϕ) + c

Bϕ

r2 − r1
= 0 ,

where the wall conductance parameter c is

c =
ηw

η

2r2(r2 − r1)

((r2 + dw)2 − r2
2)

≈ ηw

η

(r2
2 − r2

1)

[(r2 + dw)2 − r2
2]
.

This parameter describes the ratio of the electrical resistances of the wall and the

fluid.

We have adapted a linear axisymmetric code developed by [45, 53] to allow for

a helical field. Vertical periodicity is assumed, to allow separation of variables, but

the full viscous and resistive radial equations are solved using finite differences, and

a variety of radial boundary conditions including this partially conducting boundary

condition have been implemented [46].

171



Appendix B

Benchmark of the modified ZEUS

code

B.1 Code Tests (1) - Wendl’s Low-Re Solution

At Re ≪ 1 and Rem = 0, poloidal flow is negligible and the toroidal flow is steady.

The value of Vϕ satisfies

ν(▽2 − 1

r2
)Vϕ = 0. (B.1)

Wendl [82] has given the analytic solution of this equation for no-slip vertical bound-

aries co-rotating with the outer cylinder. This serves as one benchmark for the viscous

part of our code; note that the vertical boundary conditions differ from those used in

the simulations of §2.

Figure B.1 compares results from ZEUS-2D with the analytical result. The maxi-

mum relative error is less than 3%. We have also calculated the viscous torque across

the mean cylinder (r = (r1+r2)/2). Wendl’s solution predicts −1.5004×109 g cm2 s−2,

and our simulations yield −1.5028 × 109 g cm2 s−2.
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Figure B.1: Radial profile of the azimuthal velocity for Re = 1.
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B.2 Code Tests (2) - Magnetic Diffusion

If the fluid is constrained to be at rest, then the toroidal induction equation becomes

∂Bϕ

∂t
= η

(
∂2Bϕ

∂r2
+

1

r

∂Bϕ

∂r
− Bϕ

r2
+
∂2Bϕ

∂z2

)
(B.2)

An exact solution compatible with our boundary conditions is:

B = êzB
0
z + êϕ

B0
ϕ

r
cos(kz) exp(−ηk2t) (B.3)

where k is the wave number, and B0
z and B0

r are constants. A comparison of the

theoretical and simulated results shows that the error scales quadratically with cell

size, as expected for our second-order difference scheme (Table B.1).

Rem Resolution Decay Rate [s−1] Exact Rate [s−1] Error (%)

400 100x100 382.52642 392.26048 2.482
400 50x50 352.76963 391.87454 9.979
100 100x100 1533.6460 1569.0419 2.256
100 50x50 1420.4078 1567.4982 9.384

Table B.1: Magnetic Diffusion Test.

B.3 Comparison with an Incompressible Code

ZEUS-2D is a compressible code. However our experimental fluid, gallium, is nearly

incompressible at flow speeds of interest, which are much less than its sound speed,

2.7 km s−1. As mentioned before, we can approximate incompressible flow by using a

subsonic Mach number, M < 1. However, since ZEUS is explicit, M ≪ 1 requires a

very small time step to satisfy the CFL stability criterion. As a compromise, we have

used M = 1/4 (based on the inner cylinder) throughout all the simulations presented

in this dissertation. We assume an isothermal equation of state to avoid increases in
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M by viscous and resistive heating; the nonlinear compressibility and thermodynamic

properties of the actual liquid are in any case very different from those of ideal gases,

for which ZEUS was written. Figure B.2 compares results obtained from ZEUS-

2D with simulations performed by Kageyama et al. [47] using their incompressible

Navier-Stokes code.

Figure B.2: Comparison with incompressible code at Re = 1600 : (a) Contours of
toroidal velocity from an incompressible code of Kageyama (b) Results from ZEUS-2D
with M = 1/4.
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