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For understanding the dissipation in a rotating flow when resonance occurs, we study
the rotating flow driven by the harmonic force in a periodic box. Both the linear and
nonlinear regimes are studied. The various parameters such as the force amplitude
a, the force frequency ω, the force wavenumber k and the Ekman number E are
investigated. In the linear regime, the dissipation at the resonant frequency scales as
E−1k−2, and it is much stronger than the dissipation at the non-resonant frequencies
on large scales and at low Ekman numbers. In the nonlinear regime, at the resonant
frequency the effective dissipation (dissipation normalised with the square of the force
amplitude) is lower than in the linear regime and it decreases with increasing force
amplitude. This nonlinear suppression effect is significant near the resonant frequency
but negligible far away from the resonant frequency. Opposite to the linear regime,
in the nonlinear regime at the resonant frequency the lower Ekman number leads to
lower dissipation because of the stronger nonlinear effect. This work implies that the
previous linear calculations overestimated the tidal dissipation, which is important for
understanding the tides in stars and giant planets.
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1. Introduction
Rotation plays an important role in engineering, geophysical and astrophysical fluid

motions. It induces inertial waves of which the Coriolis force acts as the restoring
force (Greenspan 1968). The dispersion relationship for an inertial wave is

σ =±2Ω · k
k

, (1.1)

where σ is the wave frequency, k the wavevector and Ω the angular velocity of
rotation. This expression shows that the frequency of the inertial wave is in the range
|σ |6 2Ω . An inertial wave is dispersive and its group velocity is perpendicular to its
phase velocity. An inertial wave carries energy and angular momentum in the interior
of fluid and then dissipates through viscosity. Moreover, it has helical structure,
which favours the dynamo action for generating magnetic field (e.g. Moffatt 1970a,b;
Davidson 2014; Wei 2014, etc.).
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In the geometry of an annular channel, the problem of inertial waves was studied
by Cui, Zhang & Liao (2014), and in the spherical geometry it has been extensively
studied by, among others, Hollerbach & Kerswell (1995), Rieutord & Valdettaro
(1997), Ogilvie (2005) and Tilgner (2007a). Because of the singularity of the Poincaré
equation, i.e. the governing equation of inertial waves, the inertial waves in spherical
geometry are spawned from the critical latitude and then propagate and reflect in the
thin shear layers, i.e. the wave attractors (Ogilvie 2005). In the Earth’s fluid core, the
inertial waves driven by precession are discussed by Busse (1968), Kerswell (1993),
Lorenzani & Tilgner (2001, 2003), Tilgner (2007b) and Zhang, Chan & Liao (2014).

Inertial waves can be excited by tidal forces in planetary and stellar interiors. Tides
exist widely in astronomical binary systems, e.g. the Earth and the Moon, a giant
planet and its satellite, a host star and an exoplanet, binary normal stars or white
dwarfs. In the binary system, one body (primary) is gravitationally perturbed by
the other (companion) such that the primary deforms and produces the tidal bulge
pointing to the companion. Tidal torque transfers angular momentum between the
orbital motion and the rotational motion of binaries, and dissipation in the planetary
and stellar interiors plays an important role for the angular momentum transfer. Waves
can be excited by the harmonic tidal force, i.e. the dynamical tide, and the dissipation
of these waves is very efficient because of their small scales. Particularly, the inertial
waves induced by the tidal force, i.e. the dynamical tide arising from rotation, are
discussed by Kerswell (1994), Kumar & Goodman (1996) and Ogilvie (2014). Tidally
excited inertial waves dissipate through viscosity, and the tidal dissipation becomes
very strong when resonance occurs, namely the tidal frequency is close to the
eigenfrequency of the inertial wave in the unforced rotating flow. There are infinite
inertial eigenmodes in spherical geometry and therefore the tidal resonance is prone
to occur as long as the tidal frequency is less than twice the rotation frequency. In
the nonlinear regime, i.e. with the presence of nonlinear inertial force, it was pointed
out by Tilgner (2007a) that the inertial waves can generate zonal flow. In addition,
the nonlinear wave breaking has a significant effect on the tidal dissipation (Kumar
& Goodman 1996). The nonlinear tidal flow was numerically studied by Favier et al.
(2014) with the boundary radial flow method and by Cébron & Hollerbach (2014)
with the body force method. Although the linear regime has been extensively studied,
the nonlinear regime is not well understood, e.g. the scaling law of tidal dissipation
versus Ekman number is unknown (Favier et al. (2014) studied a little about the
scaling laws, see their figure 4, but their study is at non-resonant frequencies and
the nonlinear dissipation at the resonant frequency is still unknown). In our study we
will focus on the nonlinear effect at both resonant and non-resonant frequencies.

In this short paper, we will study the rotating flow driven by the harmonic force
in a periodic box, i.e. a cubic box with a periodic boundary condition, which is
a toy model for a small piece of region in a container (for engineering) or a star
(for astrophysics). Not as in the spherical geometry, the inertial waves in a periodic
box do not reflect but propagate forwards, and hence do not focus in the thin shear
layers. In § 2 the equations are given. In § 3 the linear regime is analytically studied
and the dissipation at the resonant frequency is derived. In § 4 the nonlinear regime
is numerically studied and compared to the linear regime. In § 5 a brief summary
is given.

2. Equations
We study the rotating flow of an incompressible fluid in a periodic box with size

2πl. We use the Cartesian coordinate system (x, y, z) and the uniform rotation is
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308 X. Wei

imposed in the z direction. In the frame rotating at the angular velocity Ω =Ω ẑ, the
dimensionless Navier–Stokes equation of fluid motion reads

∂u
∂t
+ u · ∇u=−∇p+ E∇2u+ 2u× ẑ+ f , (2.1)

where length is normalised with l, time with the inverse of rotation frequency Ω−1 and
velocity with Ωl. The Ekman number E= ν/(Ωl2), where ν is viscosity, measures the
ratio of rotational time scale to viscous time scale.

The driving force is assumed to be a single travelling wave, i.e.

f =Re{ f̂ ei(k·x−ωt)}, (2.2)

where f̂ is the complex force amplitude, k the force wavevector, ω the force frequency
and Re denotes taking the real part. The tidal force exerted by the companion on the
primary is the difference between the force on any point and the force at the centre
of the primary, and the tidal potential is the superposition of spherical harmonics with
the time dependence on the Doppler-shifted frequency (Souchay, Mathis & Tokieda
2013; Ogilvie 2014). Although the total tidal force is curl-free, its contribution to the
dynamical tide is vortical because of the very slow equilibrium tide; see the details
in appendix B of Ogilvie (2005). Briefly speaking, the incompressible equilibrium
tide varies slowly and does not satisfy the hydrostatic balance such that the residual
is a vortical force that can drive the dynamical tide, e.g. the inertial waves in a
rotating fluid. In our simplified model, f corresponds to the force responsible for
the dynamical tide and it is not curl-free. On the other hand, to have the dynamical
effect on flow, the driving force f should not be curl-free (if it is curl-free then it
can be absorbed into the pressure gradient to act as an additional pressure). For the
simplicity to derive the solution in the linear regime (see § 3), we assume it to be a
helical force, i.e. ∇× f = k f where k= |k| is the force wavenumber. One may argue
that the helical force is too artificial. Here we give more explanation. Any vector
field can be decomposed into a curl-free part and a divergence-free part, i.e. the
Helmholtz decomposition. Moreover, the divergence-free part can be decomposed into
helical modes (see Waleffe 1992). Back to the driving force f , the curl-free part can
be absorbed into the pressure gradient and the divergence-free part can be expressed
as the superposition of helical forces. This is the reason that we use the helical force
for the study of tidal waves. In the spectral space the helical force satisfies

ik× f̂ = k f̂ . (2.3)

Equation (2.3) is degenerate (i.e. only two components are independent) and yields

f̂y

f̂x

= −kxky + ikkz

k2
y + k2

z

,
f̂z

f̂y

= −kykz + ikkx

k2
z + k2

x

,
f̂x

f̂z

= −kzkx + ikky

k2
x + k2

y

. (2.4a−c)

We denote the modulus of the complex force amplitude by a, i.e.

| f̂ | =
√
| f̂x|2 + | f̂y|2 + | f̂z|2 = a. (2.5)

Equations (2.4) and (2.5) then combine to yield

| f̂x| =
√

k2
y + k2

z√
2k

a, | f̂y| =
√

k2
z + k2

x√
2k

a, | f̂z| =
√

k2
x + k2

y√
2k

a, (2.6a−c)
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and, in addition, the arguments of f̂y/f̂x and f̂z/f̂x are, respectively,

π− arccos
kxky√

(k2
y + k2

z )(k2
z + k2

x)
, π+ arccos

kzkx√
(k2

x + k2
y)(k2

y + k2
z )
. (2.7a,b)

The arguments of f̂x, f̂y and f̂z themselves are insignificant for the volume integral of
energy and dissipation, but the differences between them (i.e. phase shifts) do matter,
and without loss of generality the argument of f̂x is given to be 0. Thus, (2.6) and (2.7)
give the three components of the complex amplitude f̂ , and (2.2) gives the driving
force in physical space.

The output that we are concerned with is the volume-averaged dissipation. With the
periodic boundary condition, it is proportional to enstrophy, i.e.

D= E
1
V

∫
V
|∇× u|2 dV = E

2
|ik× û|2. (2.8)

The numerical calculations are carried out with the pseudo-spectral code using fast
Fourier transformation. The resolution is checked with two methods. One is to double
the resolution until the total energy and enstrophy have no noticeable change. The
other is to see whether the energy and enstrophy spectra decay by sufficient (say, more
than 10) magnitudes. In our regime of moderate parameters, resolutions as high as
1283 are used.

3. Linear regime
In the absence of a nonlinear inertial force, we can analytically solve the linearised

Navier–Stokes equation

∂u
∂t
=−∇p+ E∇2u+ 2u× ẑ+ f . (3.1)

Because the driving force is a single harmonic (equation (2.2)), the solution to the
linear equation is assumed to be u=Re{ûei(k·x−ωt)} and p=Re{p̂ei(k·x−ωt)}. Substitution
into (3.1) yields

−iωû=−ikp̂− Ek2û+ 2û× ẑ+ f̂ . (3.2)

By performing ik× on the above equation to eliminate pressure and applying ik · û=0
(incompressible flow) and ik× f̂ = k f̂ (helical force), we derive

(ω+ iEk2)k× û= 2ikzû+ k f̂ . (3.3)

Performing again ik× on the above equation yields

k2(ω+ iEk2)û=−2ikzk× û+ ik2 f̂ . (3.4)

Combining the above two equations to eliminate ik× û, we are led to

[(2kz)
2 − k2(ω+ iEk2)2]û= ik[2kz − k(ω+ iEk2)] f̂ . (3.5)

When the driving force is absent ( f̂ = 0) and viscosity vanishes (E = 0), (3.5)
reduces to the dispersion relationship for an inertial wave, i.e. σ =±2kz/k (where the

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.267
Downloaded from http:/www.cambridge.org/core. Princeton Univ, on 27 Nov 2016 at 02:18:12, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.267
http:/www.cambridge.org/core


310 X. Wei

eigenfrequency is denoted by σ ). Because the factor [2kz− k(ω+ iEk2)] can never be
zero due to the phase shift caused by viscosity, it is cancelled and we derive

û= ik f̂
2kz + k(ω+ iEk2)

. (3.6)

Equation (3.6) is the solution to the linearised Navier–Stokes equation (3.1). By virtue
of (2.8), dissipation can be calculated as

D= E
2
|ik× û|2 = E

2
a2k4

|2kz + k(ω+ iEk2)|2 . (3.7)

Resonance occurs when the linear response (3.6) is singular with the neglect of
viscosity. In the presence of viscosity, the linear response (3.6) becomes very strong
at the frequency

ω=−2kz

k
, (3.8)

which is called the resonant frequency. Substitution of (3.8) into (3.6) leads to the
response at the resonant frequency

û= 1
Ek2

f̂ . (3.9)

Substitution of (3.8) into (3.7) leads to the dissipation at the resonance frequency

D= a2

2Ek2
. (3.10)

Therefore, the dissipation at the resonant frequency scales as

D∝ E−1k−2. (3.11)

According to (3.7), we can calculate the dissipation of the linear response. For the
linear response we fix a= 1. Firstly we study the effect of the force frequency on the
linear response. We calculate at the four Ekman numbers 10−3, 10−4, 10−5 and 10−6,
and at the fixed wavenumbers kx = ky = kz = 1. Figure 1 shows the dissipation versus
the force frequency. It is verified that the dissipation has a sharp peak at the resonant
frequency ω = −2kz/k = −2/

√
3 ≈ −1.1547. It also indicates that a lower Ekman

number corresponds to a higher peak, which is consistent with (3.11). We pick out two
representative frequencies. One frequency is ω=−1.16, which is considered to be near
the resonant frequency (e.g. at E= 10−3 the dissipation at ω=−1.16 is 24 % of the
dissipation at the resonant frequency). The other is ω=−1.2, which is considered to
be far away from the resonant frequency (e.g. at E= 10−3 the dissipation at ω=−1.2
is 0.44 % of the dissipation at the resonant frequency). In the following calculations
throughout this paper, we will often use these two representative frequencies.

Next we study the effect of the force wavenumber on the linear response. We
calculate at the four Ekman numbers as in the last paragraph and at three frequencies,
namely the resonant frequency ω = −2/

√
3, ω = −1.16 near the resonant frequency,

and ω=−1.2 far away from the resonant frequency. The resonant frequency depends
on the orientation of the wavevector. To keep the resonant frequency fixed, we keep
kx = ky = kz. Figure 2 shows the dissipation versus the force wavenumber. It is
verified that the dissipation scales as D∝ k−2 at the resonant frequency, as predicted
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FIGURE 1. (Colour online) The investigation of the force frequency in the linear regime.
The dissipation D versus the force frequency ω, for a= 1 and kx= ky= kz= 1. Black, red,
green and blue lines (from top downwards) denote, respectively, E = 10−3, 10−4, 10−5

and 10−6.
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FIGURE 2. (Colour online) The investigation of the force wavenumber in the linear regime.
The dissipation D versus the force wavenumber kx = ky = kz, for a= 1. Black, red, green
and blue lines (from bottom upwards for the straight lines) denote, respectively, E= 10−3,
10−4, 10−5 and 10−6. Solid lines denote the resonant frequency ω=−2/

√
3, dashed lines

ω=−1.16 near the resonant frequency, and dash-dotted lines ω=−1.2 far away from the
resonant frequency.

by (3.11). When the force wavenumber is sufficiently large, the dissipation at the
other frequencies converges to the dissipation at the resonant frequency. This suggests
that the dissipation at the resonant frequency is much stronger than the dissipation at
the non-resonant frequency on the large scales.

We then study the effect of the Ekman number on the linear response. Since we
know that the resonance has a striking effect on the large scales, we fix kx= ky= kz=1.
Figure 3 shows the dissipation versus E at the three frequencies. It indicates that
the dissipation at the resonant frequency scales as D ∝ E−1, as predicted by (3.11).
The dissipation at the other frequencies scales as D∝ E in the regime of low Ekman
number and converges to the dissipation at the resonant frequency in the regime
of high Ekman number. This suggests that the dissipation at the resonant frequency
is much stronger than the dissipation at the non-resonant frequencies at the low
Ekman numbers.
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FIGURE 3. The investigation of the Ekman number in the linear regime. The dissipation D
versus the Ekman number E, for a= 1 and kx= ky= kz= 1. Solid line denotes ω=−2/

√
3,

dashed line ω = −1.16 near the resonant frequency, and dash-dotted line ω = −1.2 far
away from the resonant frequency.

In addition, we also carried out the direct numerical calculations of (3.1) and the
relative error of the numerical calculations compared to the analytical results is within
0.01 %.

4. Nonlinear regime

We now numerically study the nonlinear regime, i.e. solving (2.1). Firstly we
study the nonlinear effect due to the force amplitude. We gradually increase the force
amplitude a from 1× 10−3 to 2× 10−3 and then to 3× 10−3. The stronger force drives
a stronger flow and hence higher dissipation, and so we normalise the dissipation
with a2, which reflects the nonlinear effect on the dissipation and we call D/a2 the
effective dissipation. Figure 4 shows the effective dissipation D/a2 versus time for the
three amplitudes, 1× 10−3, 2× 10−3 and 3× 10−3, at E = 1× 10−3. Three different
frequencies are studied, i.e. the resonant frequency ω=−2/

√
3≈−1.1547, ω=−1.16

near the resonant frequency, and ω=−1.2 far away from the resonant frequency. The
linear results are also shown in the figure for comparison with the nonlinear results.
Figure 4(a) shows that at the resonant frequency the effective dissipation is lower
than in the linear regime and it decreases with increasing force amplitude, namely
the stronger nonlinearity has a greater suppression effect on the effective dissipation.
It is interesting that rapid fluctuations occur with a= 1× 10−3 while the linear result
has no such fluctuations. Evidently these fluctuations arise from some instabilities
caused by the nonlinearity. They become less frequent with a= 2× 10−3 and vanish
with a= 3× 10−3. Figure 4(b) shows that near the resonant frequency this nonlinear
suppression for dissipation still exists but becomes weaker, e.g. the black line (the
linear regime) and the time average of the unsteady red line (the weakest nonlinear
regime) almost overlap. Figure 4(c) shows that far away from the resonant frequency
the nonlinear suppression is absent, namely the black, red, green and blue lines
completely overlap. This is because the flow amplitude at a frequency far away from
the resonant frequency is too small to have a strong nonlinear effect. In summary,
the nonlinear effect suppresses the effective dissipation at the resonant frequency and
this suppression effect is still significant near the resonant frequency but negligible
far away from the resonant frequency.
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FIGURE 4. (Colour online) The investigation of the force amplitude in the nonlinear
regime. The normalised dissipation D/a2 versus time at E= 1× 10−3 with kx= ky= kz= 1.
(a) The resonant frequency ω = −2/

√
3. (b) Frequency ω = −1.16 near the resonant

frequency. (c) Frequency ω = −1.2 far away from the resonant frequency. Black lines
(uppermost in (a)) denote the results in the linear regime. Red, green and blue lines (from
top downwards) denote the nonlinear regime with, respectively, a = 1 × 10−3, 2 × 10−3

and 3× 10−3.

To better understand the nonlinear effect on the dissipation, we investigate the
dependence of the dissipation on the Rossby number, which measures the relative
strength of the inertial force and the Coriolis force. The Rossby number is defined
as Ro= U/(lΩ) where U is the characteristic velocity. We take U to be the square
root of the volume-averaged kinetic energy, and under our normalisation the Rossby
number is exactly the dimensionless U, i.e.

Ro=
√

1
V

∫
u2 dV. (4.1)

For the fluctuating flows, we take the time average in the statistically steady state
(after the initial transient growth stage) to calculate Ro. Table 1 shows Ro and D/a2

versus a at the three frequencies. It indicates that at the fixed frequency the larger
force amplitude leads to a stronger nonlinearity (Ro) and hence weaker D/a2. The last
row in each block shows the ratio of the nonlinear dissipation to the corresponding
linear dissipation, which clearly reveals that the nonlinear suppression is very strong
at the resonant frequency for the large force amplitude. At the resonant frequency, the
stronger force amplitude leads to the lower ratio. When the force frequency departs
farther away from the resonant frequency, the nonlinearity becomes weaker.

Figure 5 shows the velocity structure at the resonant frequency ω =−2/
√

3. With
a=1×10−3 the main flow structure has the basic flow of kx= ky= kz=1 (figure 5a–d)
and the instabilities on top of the basic flow (figure 5e–h); with a = 2 × 10−3 the
structure of the basic flow alters due to the strong nonlinearity (figure 5i–l); and at
a = 3 × 10−3 the structure of the basic flow completely disappears and the
z-independent structure emerges (figure 5m–p).

Next we investigate the force wavenumber. In the linear regime, the dissipation
scales as k−2 at the resonant frequency and it is much stronger than the dissipation at
the non-resonant frequencies on the large scales (see figure 2). In the nonlinear
regime, figure 6 shows the dissipation versus time for the three wavenumbers,
kx = ky = kz = 1, 2 and 3, with the three frequencies as in figure 4. At the resonant
frequency (figure 6a), the higher wavenumber leads to lower dissipation, which is
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ω −2/
√

3

a 1× 10−3 2× 10−3 3× 10−3

Ro 1.59× 10−1 1.78× 10−1 2.08× 10−1

D/a2 9.39× 10−1 2.65× 10−1 7.79× 10−0

D/Dlin 0.563 0.159 0.047

ω −1.16

a 1× 10−3 2× 10−3 3× 10−3

Ro 9.19× 10−2 1.54× 10−1 1.87× 10−1

D/a2 4.33× 10−1 1.78× 10−1 8.10× 10−0

D/Dlin 1.070 0.441 0.200

ω −1.2

a 1× 10−3 2× 10−3 3× 10−3

Ro 1.56× 10−2 3.12× 10−2 4.68× 10−2

D/a2 7.29× 10−1 7.29× 10−1 7.29× 10−1

D/Dlin 1.001 1.001 1.001

TABLE 1. The nonlinear regime. The time-averaged Ro, D/a2 and D/Dlin versus ω and
a in figure 4.

consistent with the prediction in the linear regime (the solid black line in figure 2). At
the frequency near the resonant frequency (figure 6b), the higher wavenumber leads
to lower dissipation, which is also consistent with the prediction in the linear regime
(the dashed black line in figure 2). At the frequency far away from the resonant
frequency (figure 6c), the higher wavenumber leads to higher dissipation, which is
again consistent with the prediction in the linear regime (the dash-dotted black line
in figure 2).

We then investigate the Ekman number. Usually viscosity has a stabilising effect
(rigorously speaking, viscosity can be both stabilising and destabilising, e.g. in a
parallel shear flow it can destabilise the inviscid flow with parabolic profile), and
therefore, when the Ekman number decreases, the nonlinear effect becomes significant.
Figure 7 shows the dissipation versus time for the three different Ekman numbers,
i.e. 1 × 10−3, 7.5 × 10−4 and 5 × 10−4, with the three frequencies as in figure 4.
Figure 7(a) shows that at the resonant frequency the lower Ekman number leads
to lower dissipation. This is opposite to the prediction in the linear regime, namely
the lower Ekman number leads to higher dissipation at the resonant frequency, as
shown by the solid line in figure 3. A tentative interpretation is that at the resonant
frequency the lower Ekman number gives rise to stronger nonlinear suppression for
dissipation, which wins out over the linear enhancement for dissipation. Figure 7(b)
shows that near the resonant frequency the high and low Ekman numbers do not
seem to have a significant difference in respect of the time-averaged dissipation but
the lower Ekman number leads to a stronger amplitude of oscillations of dissipation,
which is presumably the instabilities caused by the stronger nonlinearity. Figure 7(c)
shows that far away from the resonant frequency the lower Ekman number leads
to lower dissipation. Moreover, the ratio of the three dissipations at E = 1 × 10−3,
7.5 × 10−4 and 5 × 10−4 is 1 : 0.75 : 0.5, which is consistent with the prediction of
D∝ E in the linear regime as shown by the dash-dotted line in figure 3. This again
indicates that the nonlinear effect is negligible far away from the resonant frequency.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

FIGURE 5. The contours of velocity in the x–z plane at y= 0 for the snapshot at time =
10 000. In each row the panels from left to right are contours of respectively u1 (a,e,i,m),
u2 (b, f,j,n), u3 (c,g,k,o) and kinetic energy (d,h,l,p). At the resonant frequency, ω=−2/

√
3

corresponding to figure 4(a). (a–d) Linear response with a = 1 × 10−3 (kinetic energy
is constant). (e–h) Nonlinear response with a = 1 × 10−3. (i–l) Nonlinear response with
a= 2× 10−3. (m–p) Nonlinear response with a= 3× 10−3.
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FIGURE 6. (Colour online) The investigation of the force wavenumber in the nonlinear
regime. The dissipation D versus time at E = 1 × 10−3 with a = 1 × 10−3. (a) The
resonant frequency ω = −2/

√
3. (b) Frequency ω = −1.16 near the resonant frequency.

(c) Frequency ω = −1.2 far away from the resonant frequency. Black (uppermost in
(a)), red (middle) and blue lines (lowermost in (a)) denote the nonlinear regime with
respectively kx = ky = kz = 1, 2 and 3. (Lines are in opposite order in (c)).
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FIGURE 7. (Colour online) The investigation of the Ekman number in the nonlinear
regime. The dissipation D versus time with a = 1 × 10−3 and kx = ky = kz = 1. (a) The
resonant frequency ω = −2/

√
3. (b) Frequency ω = −1.16 near the resonant frequency.

(c) Frequency ω=−1.2 far away from the resonant frequency. Black, red and blue lines
(from top downwards in (c)) denote the nonlinear regime at respectively E = 1 × 10−3,
7.5× 10−4 and 5× 10−4.

5. Conclusion

In this work, we study analytically and numerically the rotating flow driven by
a harmonic force. In the linear regime we analytically derive the response to the
harmonic force and the dissipation. The dissipation scales as D ∝ E−1k−2 at the
resonant frequency and D ∝ E at other non-resonant frequencies. In the nonlinear
regime we do the numerical calculations and compare with the linear regime.
It is found that the effective dissipation (D/a2) at the resonant frequency in the
nonlinear regime is lower than in the linear regime and decreases with increasing
force amplitude; however, this nonlinear suppression is negligible far away from the
resonant frequency. Opposite to the linear regime, the lower Ekman number leads to
lower dissipation at the resonant frequency because of the stronger nonlinear effect.
This nonlinear effect can be interpreted. At the resonant frequency, if the tidal force
amplitude is large enough or the Ekman number is small enough, the nonlinear
inertial force (u · ∇u) takes effect, such that the flow is suppressed, namely the flow
intensity is weaker than without the nonlinear inertial force. Hence, the dissipation,
which is equal to the enstrophy multiplied by viscosity, is also suppressed. Far away
from the resonant frequency, the tidal response is weak and therefore the nonlinear
effect is not striking.

In summary, when the frequency of the external harmonic force is close to the
negative frequency of the inertial wave in the unforced rotating flow, the dissipation
can be greatly enhanced but the stronger nonlinear effect due to the stronger force
amplitude or the lower Ekman number can suppress this enhancement; however, the
dissipation at a frequency far away from the resonant frequency is small and the
nonlinear effect is insignificant. Our numerical calculations about the nonlinear effect
on the dynamical tide imply that the previous linear calculations have overestimated
the tidal dissipation at the resonant frequency.
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