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Unlike other electrostatic waves, quasi-electrostatic lower hybrid (ES-LHDW) has a capability of generating density
fluctuations (δne) almost in phase with fluctuations in the electric field (δEY). By examining each term of the electron
momentum equation, we will try to understand why δne and δEY are almost in phase.

Figure 1 shows the geometry of the local theory for lower hybrid drift waves. The subscript 0 indicates equilibrium
quantities. The model is in the ion rest frame and electrons have velocity (ue0) on the x-z plane. The equilibrium
magnetic field is along the z direction and the density gradient direction is along the y direction. The wave vector
(k) lies on the x-z plane due to our assumption of negligible ky. Thus, our theoretical model is local and valid only
when the wavelength of the LHDW is much smaller than the thickness of the current sheet in the y direction [1].
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FIG. 1. Geometry of the local theory. We are working in the ion rest frame with the z direction toward the equilibrium
magnetic field (B0) and the y direction along the density gradient direction. Due to the force balance, the equilibrium electric
field E0 is also along the y direction. The equilibrium electron flow velocity ue0 and wave vector k reside on the x-z plane.
The angle between k and B0 is given by θ.
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The ion force balance along the y direction give us

en0E0 = Ti0
dn0

dy
= ϵn0Ti0, (1)

where n0 is the equilibrium density, Ti0 is the equilibrium ion temperature, and ϵ = (dn0/dy)/n0 is the inverse of the
density gradient scale. The zeroth order electron momentum equation gives us

−en0(E0 − ue0xB0) = Te0
dn0

dy
, (2)

where ue0x is the x component of the equilibrium electron flow velocity and Te0 is the equilibrium electron temperature.
Then, the equilibrium electric field is

E0 =
Ti0

Te0 + Ti0
ue0xB0. (3)

The inverse of the gradient scale is given by

ϵ =
eue0xB0

Te0 + Ti0
. (4)

The first order electron momentum equation is given by

imen0 (ω − k · ue0)ue1 = ik ·Pe1 + en0(E1 + ue1 ×B0 + ue0 ×B1) + e(E0 + ue0 ×B0)ne1 −Re1, (5)

where Pe1 is the perturbed electron pressure tensor and Re1 is the perturbed resistivity. We will work with the x
component of the electron momentum equation. The x component of the first-order electron momentum equation is
[2]

imen0 (ω − k · ue0)ue1x = ik⊥(n0T
⊥
e1 + Te0ne1) + en0(E1x +B0ue1y − ue0zB1y)−Re1x, (6)

where T⊥
e1 is the perturbed perpendicular electron temperature and k⊥ is the perpendicular (x) component of k. With

6, ne1 can be expressed as

ne1

n0
=

ie

k⊥Te0
E1x +

me (ω − k · ue0)

k⊥Te0
ue1x +

[
ieB0

k⊥Te0
ue1y −

ieue0z

k⊥Te0
B1y

]
− T⊥

e1

Te0
− iRe1x

k⊥n0Te0
. (7)

Based on the origin of each term, we will call 5 terms on the right hand side (RHS) the electric field, inertial, Lorentz
force, temperature, and resistivity term, respectively.

By using the linear relation for the mode with the maximum growth rate, each term on RSH can be expressed in
terms of δEY with a complex coefficient. After defining each coefficient as A1 to A5, we have ne1/n0 =

∑5
n=1 AiδEY.

By examining each complex coefficient, we can figure out which term contributes to anomalous resistivity. To have
anomalous resistivity, the sum of 5 complex coefficients needs to have a sizable real component; if it has a dominant
imaginary component, two fluctuations become out of phase (either 90◦ or 270◦) such that after averaging over the
wave period the anomalous effect disappears. Thus, among those 5 complex coefficients, we need to identify which
coefficient has a sizable real component.

Among these 5 terms, the Lorentz force term is the key for anomalous resistivity; as demonstrated in Fig. 2, only
the Lorentz force (LF, green arrow) term has a sizable real component. The temperature term (Te1, black arrow) also
contributes to anomalous resistivity by reducing the imaginary component, which comes mostly from the electric field
( E1x, red arrow) term. As indicated by the blue arrow (

∑
Ai), the theory expects that the phase difference between

δne and δEY is 30◦, which is verified by laboratory measurements.
This means that the positive correlation between δne and δEY is caused by compression by the Lorentz force. To

be more specific, it is the (ieB0/k⊥Te0)ue1y term; the magnitude of the ue1y term is larger than the B1y term by more
than two orders of magnitude, as ES-LHDW generates a relatively weak perturbation in the magnetic field.

We need to understand why the ue1y term can be out of phase with E1x. Ordinarily, ue1y is in phase with E1x, since
it is driven by E×B. For LHDWs, however, there is additional terms in the y component of the electron momentum
equation associated with E0 and B0. The y component of the Eqn. 5 is

imene0 (ω − k · u0)u1y = ene0(E1y −B0ue1x − ue0xB1z + ue0zB1x) + e(E0 − ue0xB0)ne1. (8)
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FIG. 2. Demonstration of the complex coefficient in the complex plane. Theory expects the phase difference between δne

and δEY is 30◦, as shown in the blue arrow, which is the sum of 5 complex coefficients. The electric field term (red) has a
dominant positive imaginary component, while the temperature term (black) has a dominant negative imaginary component.
Contributions from both inertia and resistivity terms to the total coefficient (blue) is negligible. The Lorentz force (LZ) term
is the only term that has a significant real component, which drives anomalous resistivity.

When ω has no imaginary component and ne1 is out of phase with E1, it is hard to balance the imaginary part from
the ne1 term unless E0 − ue0xB0 = −Te0ue0xB0/(Te0 + Ti0) is negligible; the inertial term on the left hand side is
typically small. Thus, it is natural that when there is enough free energy source (ue0x), ω has a sizable imaginary
part and ne1 has a sizable real part to balance this equation. Thus, an unstable (growing) ES-LHDW mode is closely
related to the physics of anomalous resistivity.

When B0 ≪ 1, this argument becomes irrelevant; this is related to stable ES-LHDW in low βe plasma. It is also
true that Ti ≫ Ti is unfavorable to the growth rate of ES-LHDW. For high β plasmas, the mode becomes EM-LHDW
and the stability of the EM-LHDW is usually dominated by the parallel force balance. We will discuss the dynamics
of LHDW in more detail in a future publication.
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