
Laboratory Study of Angular

Momentum Transport in a Rotating

Shear Flow

Ethan Schartman

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

ASTROPHYSICAL SCIENCES

APRIL 2008



c© Copyright 2008 by Ethan Schartman.

All rights reserved.



Abstract

The MagnetoRotational Instability (MRI) is widely accepted to be responsible for

the angular momentum transport in accretion disks which power some of the

most luminous objects in the universe. Conditions for instability to the MRI in

ideal MHD are: 1) an angular velocity which decreases with radius and 2) a

weak ambient magnetic field which allows the exchange of momentum between

radially-separated fluid elements. The MRI has not been conclusively detected in

the laboratory. Subcritical Hydrodynamic Instabilities have also received renewed

interest for application to cool circumstellar disks which may be too poorly ionized

to generate the MRI. Reports of purely hydrodynamic turbulence in subcritical

flows lack transport measurements to support the hypothesis that angular velocity

shear undergoes a spontaneous transition. A small aspect-ratio, wide gap circular-

Couette experiment capable of operation at Reynolds number in excess of 106 is

constructed to investigate these two mechanisms of angular momentum transport.

The apparatus consists of two concentric co-rotating cylinders. To minimize

the effect of the cylinder end caps, they are divided into nested differentially

rotatable rings. Water and a water-glycerol mix are used as working fluids to

study angular momentum transport in quasi-Keplerian flows and its scaling with

Reynolds number. When the end rings speeds are optimized, large-scale advective

transport due to the vertical boundaries is eliminated. The resulting flow is an

excellent approximation to the ideal circular-Couette profile. Measurement of the

r−φ component of the Reynolds stress using Laser Doppler Velocimetry shows no

indication of a subcritical instability. Pure hydrodynamic turbulence is an unlikely

mechanism to transport angular momentum in accretion disks.
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Chapter 1

Introduction

1.1 Accretion Disks

The angular momentum of gravitationally-interacting matter forms a centrifugal

barrier to the infall of that matter on to its center of mass. For gaseous matter

this barrier is believed to give rise to a gravitationally-bound disk structure. If

the gas continues to evolve by radiating its angular momentum and falling on

to the center of mass, the system is called an accretion disk. The accretion disk

is a central element to theories of star formation, interacting binaries, and Active

Galactic Nuclei (AGN). In star formation, the accretion disk is an intermediate

stage between the initial condensation of a diffuse cloud and a fully evolved solar

system such as our own, see Figure: 1.1. In interacting binaries the transfer of

matter from one object to the other is governed by the rate of infall from the

accretion disk which is invariably formed. The disk is therefore dynamically

important to systems such as Cataclysmic Variables, Type I supernovae and the

x-ray luminosity of Black Holes.

When the mass of an accretion disk is much less than that of the central object

1



1.1 Accretion Disks 2

Figure 1.1: Hubble Space Telescope (WFPC2) image of the protostellar disk and jet
of Herbig Haro 30. A new star is concealed by the accretion disk from which it was
formed. The disk is the dark band, light from the star is scattered by gas above
and below the plane of the disk. Photo credit: NASA and A. Watson (Instituto de
Astronomı́a, UNAM, Mexico)

Figure 1.2: Chandra ACIS X-ray image of the disk surrounding the supermassive
black hole, Sag A*, at the center of the Milky Way. Sag A* is the largest circular
white spot near the image center. The frame is 10 light years on a side. Photo
credit: NASA/MIT/PSU
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the effects of self-gravity can be neglected and radial pressure gradients are non-

existent. The orbital motion of the components of the disk is then entirely due

to the gravitational potential of the central object. The angular velocity of the

components follow the Keplerian rotation profile:

Ω ∝ r−3/2, (1.1)

and the disk is Keplerian. If the disk makes contact with the accreting object a

boundary layer which does not follow the Keplerian profile may form [Lynden-

Bell and Pringle, 1974]. This situation occurs in certain circumstellar disks and

un-magnetized neutron stars.

The orbital speeds of a Keplerian disk are supersonic RΩ(R) � cs, where R is

the radius and cs is the sound speed. Hydrostatic equilibrium[Balbus and Hawley,

1998] yields a vertical (parallel to the rotation axis) scale height for the disk:

H =
cs
Ω
. (1.2)

Therefore the disk is thin.

Abbreviated review of angular momentum transport

Accretion disks are transient structures. Disk lifetimes range from 108 years for

AGNs to 105 years for star formation[Lin and Papaloizou, 1996]. The time between

events in Cataclysmic Variables may be of order one week. The dissipation of

angular momentum causes the orbits of disk components to acquire a spiral nature.

This discussion of the accretion process uses cylindrical coordinates (r, φ, z) and

follows Shakura and Sunyaev[Shakura and Sunyaev, 1973]. In steady accretion,

the mass passing through a radius, r, of the disk is:

Ṁ = 2πΣrvr = constant, (1.3)
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where vr is an average radial velocity (vr � rΩ) and Σ =
∫
ρdz is the vertically-

integrated density of the disk.

The torque on infalling particles is:

Σ
d(Ωr2)

dt
= −Σvr

∂(Ωr2)

∂r
= −1

r

∂(r2Wrφ)

∂r
, (1.4)

where d/dt is the convective derivative andWrφ ≡ 〈uruφ−uA,ruA,φ〉 is the vertically-

integrated stress tensor containing both hydrodynamic and MHD stress. The

MHD stress has been written in terms of the Alfén speed, u2
A = B2/4πρ.

Using the constancy of Ṁ and vr < 0, integration of Equation 1.4 gives:

ṀΩr2 = −2πr2Wrφ + constant. (1.5)

Defining, ri, as the inner radius of the disk where Wrφ = 0 we determine the

constant of integration. Finally, using the Keplerian profile, Equation: 1.1 we arrive

at:

ṀΩ
(

1−
√
ri
r

)
= 2πWrφ. (1.6)

All but a fraction (∼
√
ri/ro) of the initial angular momentum of a particle is

radiated before it reaches the inner edge of the disk (the outer edge of the accretion

disk is ro).

The need for a turbulent stress

Laminar particulate viscosity can be quickly eliminated as the source of Wrφ.

Consider the viscous timescale τvisc ∼ L2/ν where L is a characteristic size and

ν is the kinematic viscosity. For ν ∼ 105cm2/s and L ∼ 1010cm [Balbus, 2003] the

timescale is about 3 × 107 which is orders of magnitude too great to explain the

variability seen in some interacting binary systems.

Accretion disks feature a positive radial gradient of angular momentum and

are therefore stable to Rayleigh’s centrifugal instability.
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Correlated fluctuations are required to transport the angular momentum,

but finding an instability to produce them remained elusive for more than two

decades. Accretion disks featuring large degrees of ionization and magnetic fields

are pervasive in astrophysics, therefore a turbulent magnetic field may produce

the required correlations. Also, terrestrial experience is that high Reynolds

number shear flow undergoes a non-linear turbulent transition. But no sat-

isfactory mechanism was known. Therefore determination of Wrφ proceeded

on phenomenological grounds, wrapping the details of the turbulence into a

dimensionless parameter, α.

Shakura and Sunyaev [Shakura and Sunyaev, 1973] argued that the magnitude

of turbulent velocities is bounded by the sound speed, cs. Velocities in excess of

the sound speed would develop shocks and rapidly dissipate to subsonic speeds.

Therefore, the turbulent stress should scale as:

Wrφ = αΣc2
s, (1.7)

where α ≤ 1. Hueso and Guillot[Hueso and Guillot, 2005] estimate that 10−4 ≤

α ≤ 0.1 based on observations of protoplanetary systems.

Subsonic fluctuations also imply that the turbulence is largely incompressible.

Hersant et al [Hersant et al., 2005] provides estimates of the Mach number for

observed circumstellar disks and finds Ma < 0.1 Accretion disks are are highly

ionized, except possibly for the quiescent phase of CVs or certain protostellar

disks.

The α model is sometimes also arrived at by an ”eddy viscosity” argu-

ment[Balbus and Hawley, 1998] which gives νT = αcsH , where H is the scale-

height of the disk and corresponds to the size of the largest eddy which will ”fit”

within the disk at some radius R, where H � R. Using a turbulent viscosity, νT ,
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the closure relation[Speziale, 1991] is:

Wrφ = −νT r
∂Ω

∂r
. (1.8)

By far the most promising candidate instability is the MagnetoRotational

Instability (MRI) in which hydrodynamically stable displacements are destabilized

by the presence of a weak ambient magnetic field. Other instabilities have

been studied but none have demonstrated a comparable capacity to generate the

correlated fluctuations required of outward angular momentum transport. Some

of these mechanisms include the Papaloizou-Pringle instability, hydromagnetic

wind, stratorotational instability, and Subcritical Hydrodynamic Instability. Recent

work by Richard and Zahn [Richard and Zahn, 1999] and Richard [Richard, 2001]

renewed interest in Subcritical Hydrodynamic Instability for application to cold

protoplanetary disks which may be too poorly ionized for the MRI.

1.2 MagnetoRotational Instability

The stability of circular-Couette flow of conducting fluid in the presence of a mag-

netic field was first investigated by Velikhov [Velikhov, 1959] and Chandrasekhar

[Chandrasekhar, 1960]. Its potential relevance to astrophysics was not appreciated

until the work of Balbus and Hawley[Balbus and Hawley, 1991]. Since the work of

Balbus and Hawley the MagnetoRotational Instability (MRI) has been the subject

of numerous analytical and numerical investigations, Reviews of that work can be

found in Balbus and Hawley [Balbus and Hawley, 1998] and Balbus [Balbus, 2003].

Simulations of Keplerian disks show that the turbulent stress produced by the MRI

is consistent with the observational requirements of α models (Equation: 1.7). It

is now widely believed to be the most important source of angular momentum

transport in accretion disks.
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The MRI is a powerful local, linear instability. The conditions for instability in

the ideal MHD limit are simply that angular velocity be a decreasing function of

radius and that a sufficiently weak magnetic field be present. To illustrate the

instability consider an inviscid, perfectly conducting plasma in orbit around a

central mass, Figure: 1.3. Angular momentum is an increasing function of radius,

whereas angular velocity is decreasing. By the frozen flux theorem [Freidberg,

1987] two fluid elements which are threaded by a magnetic field line at any time

will remain threaded by the same field line for all times. If the fluid elements

are initially at the same radius but become radially displaced from each other,

the field line must ”stretch” to accommodate the motion. The Maxwell stress

in the magnetic field then acts like a spring connecting the elements. As the

inward-displaced element acquires a larger angular velocity it is decelerated by the

stretching magnetic field. This deceleration causes it to lose angular momentum

and hence be fall further inward, reinforcing the initial displacement. In contrast,

the outward-displaced element will be accelerated by the tension in the magnetic

field. The acceleration will increase its angular momentum causing it to move to

larger radii and smaller angular velocity.

Consider a rotating shear flow in cylindrical coordinates, (r, φ, z). If an axial

equilibrium magnetic field B = B0ẑ is present and the mean flow is described by

vr = vz = 0, vφ = rΩ(r), then linearization of the ideal MHD equations leads to the

dispersion relation for the MRI [Balbus and Hawley, 1998]:

ω4 − ω2
[
κ2 + 2 (k · uA)2

]
+ (k · uA)2

(
(k · uA)2 − 2qΩ2

)
= 0, (1.9)

where the perturbations take the form exp(−iωt + ik · r), q ≡ −∂ ln Ω/∂ ln r is

the local exponent of the mean angular velocity, and the epicyclic frequency is

κ ≡ r−3∂l2/∂r = 2Ω2(2 − q). The Rayleigh criterion for centrifugal instability is

κ2 < 0, or q > 2.
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B0

B

B

Figure 1.3: A qualitative picture of the mechanism of MRI. Angular momentum
is transported ”up” a positive gradient by the stretching of a magnetic field line
threading fluid elements which are radially displaced from their equilibrium.

This dispersion relation yields the following properties of the MRI:

• For q > 0, the presence of an arbitrarily weak magnetic field yields unstable

solutions which persist in the limit B0 → 0: no magnetic field is too weak to

be dynamically unimportant.

• The fastest growth rate for any B0 is:

|ωmax| =
∣∣∣∣12qΩ

∣∣∣∣
• The perturbations generated by the MRI must remain confined to the disk

which implies that there is a minimum k parallel to B0. There is a maximum

magnetic field above which the instability is suppressed:

(k · uA)2 > 2qΩ2

• In the linear regime the instability is incompressible.

The ideal MHD version of the MRI is an appropriate approximation for the

high-temperature accretion disks which form around black holes and other
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highly energetic astrophysical systems. For some circumstellar disks, the plasma

may be too poorly ionized to employ the perfect conductivity approximation.

When resistivity and viscosity are taken into account[Sano and Miyama, 1999],

instability is no longer produced in the B0 → 0 limit. Resistivity may allow the

magnetic field to diffuse back to its equilibrium position before significant growth

occurs. Similarly, viscous effects may damp the perturbations.

1.3 Subcritical Hydrodynamic Instability

Stability to linear perturbations does not guarantee the absence of turbulence in

shear flow. Laminar pipe flow, for example, is linearly stable to small

perturbations for all Reynolds numbers [Eckhardt et al., 2007]. However, careful

experimental precautions must be exercised to achieve a laminar pipe flow at

Re ∼ 104. At higher Reynolds numbers, residual fluctuations in the flow will

always trigger a transition to turbulence. In contrast, for deliberately large

perturbations, the turbulent transition can be triggered for Re ∼ 103. The

coexistence of laminar and turbulent regimes is a hallmark of a sub-critical (also

known as bypass or finite-amplitude ) transition to instability. Another

characteristic of sub-critical turbulence is intermittency: a point in the flow will

exhibit laminar motion until a sufficiently large perturbation triggers turbulence

which then subsides or is swept away from the observation point.

In addition to pipe flow, sub-critical transition is observed in plane Poiseuille and

plane Couette flow. A transition is also observed in cyclonic circular-Couette flow

where the inner cylinder is at rest. Based on this it has been conjectured that a

sufficiently large gradient in angular velocity will produce a sub-critical

transition.

Zeldovich [Zeldovich, 1981] was the first to apply measurements from cyclonic
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circular-Couette flow to develop a model for a turbulent viscosity.His analysis did

not include the work of Wendt, and does not fit the combined data of Taylor and

Wendt. Richard and Zahn[Richard and Zahn, 1999] use the results of both Wendt

and Taylor to develop their closure. Longaretti [Longaretti, 2002] derives an eddy

viscosity from a phenomenological argument which arrives at a result which

differs from that of Richard and Zahn by a factor of 6.

The closure model of Richard and Zahn proceeds from the observations of Taylor

and Wendt (see Section: 2.1.2) that a transition to turbulence occurs in laminar

cyclonic circular-Couette flow when the Reynolds number exceeds a critical

value, Rec. According to the data of Figure: 2.6, when the ratio of gap width,

d = r2 − r1, to the average radius r̃, d/r̃ > 1/20, Rec increases like (d/r̃)2, therefore

they arrive at:

Rec = 6× 105

(
d

r̃

)2

. (1.10)

The turbulent viscosity becomes independent of the gap width and is then

determined only by the local shear:

νt = βr3

∣∣∣∣∣dΩ

dr

∣∣∣∣∣ (1.11)

Hueso and Guillot [Hueso and Guillot, 2005] estimate that to explain

protoplanetary rates of accretion β ∼ 10−5.

Richard and Zahn attempt to connect the cyclonic instability of Wendt and Taylor

to the quasi-Keplerian regime through a profile measurement made by

Wendt [Wendt, 1933] at the Rayleigh criterion for centrifugal instability:

Ω1r
2
1 = Ω2r

2
2. No torque data was available for flows with both cylinders in

rotation, but the profile shows an increase in angular momentum with radius and

a flattening of the angular velocity profile from the ideal circular-Couette solution.

Using two-component Laser Doppler Velocimetry (see Section: 3.5.1, the angular

momentum transport due to Subcritical Hydrodynamic Instability can be directly
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measured. To do this, we equate the Reynolds stress (the hydrodynamic

component of Wrφ) to a viscous flux for which the viscosity follows the

prescription of Equation: 1.11:

2πρr2〈v′rv′φ〉 = −2πρνtr
3∂Ω

∂r
. (1.12)

If the velocity components of the diagnostic are aligned with the radial and

azimuthal directions, the left-hand side can be measured directly.

1.4 Need for laboratory experiment

After the rediscovery and astrophysical application of the MagnetoRotational

Instability by Balbus and Hawley, much analytic and numerical work has

followed. That effort has shown it to be the only instability known to be capable

of producing and sustaining the stress required for astrophysically relevant

angular momentum transport, see the reviews the reviews by Balbus and

Hawley[Balbus and Hawley, 1998] and Balbus [Balbus, 2003]. Unlike many other

instabilities of astrophysical importance, such as Kelvin-Helmholtz and

Rayleigh-Taylor, the MRI has not been conclusively demonstrated on Earth.

Though its existence is not questioned by astrophysicists, production of the MRI

in the laboratory would provide a useful verification of the theory. Of greater

importance, however, is that a study of the linear growth phase and saturation of

the instability would provide much needed physical insights and useful

benchmarks against which to compare the codes used to simulate astrophysical

systems.

The MRI does not depend on the mechanism by which a flow is maintained. In

the ideal MHD limit, Equation 1.9, the instability requires only a

radially-decreasing angular velocity and the presence of a weak ambient
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magnetic field. Shear flows with the required angular velocity gradients are easily

produced by Taylor-Couette experiments in which a fluid is confined between

two concentric spinning cylinders. By employing a liquid metal as the working

fluid it may be possible for the flow to interact with an applied magnetic field to

produce the MRI. Figure: 1.4 outlines such an experiment.

Ω1Ω2

r1

r2
Gallium

B-field

Magnet 
Coils

Figure 1.4: A rotating shear flow in a liquid gallium alloy is established between
two concentric co-rotating cylinders of radii r1 and r2. Appropriate choice of
cylinder speeds Ω1,Ω2 establishes an angular velocity profile which is linearly
stable by the Rayleigh criterion but may become unstable to the MRI in the
presence of an applied axial magnetic field. The magnetic field is produced by
solenoidal coils which surround the flow.

The volume between the cylinders is filled with a liquid gallium alloy. The inner

(outer) cylinder has a radius r1(r2) and angular velocity Ω1 (Ω2). If the speeds of

the cylinders are chosen such that Ω1 > Ω2 and r2
1Ω1 < r2

2Ω2, the flow will be

linearly hydrodynamically stable, but may be destabilized by the application of a

uniform axial magnetic field. Liquid metals are viscous and resistive, and the

experimental geometry must have caps at the vertical boundaries. To determine if

there is a reasonable expectation that the MRI could be observed in a feasible

laboratory experiment, Ji et al[Ji et al., 2001] performed a linear stability analysis

based the properties of a liquid gallium alloy and an apparatus geometry where

the height of the apparatus,≈ 0.1m, is comparable to the gap between the

cylinders, r2 − r1 ≈ 0.1 m. The results of that analysis showed that an applied
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magnetic field of order 1kG could produce MRI when the Magnetic Reynolds

number satisfies:

Rem ≡
V L

η
∼ 1, (1.13)

where V and L are a characteristic velocity and length of the flow. For the

PRINCETON MRI EXPERIMENT , L = r̃ = (r2 − r1)/2 is the mid-radius of the

cylinder gap, and V = (Ω1 − Ω2)r̃2. Because the magnetic Prandtl number

Pm = ν/η ∼ 10−6 � 1, the Reynolds number of the flow must be quite large:

Re ≡ V L

ν
∼ 106. (1.14)

The proposed Reynolds number of the experiment exceeds the estimate by

Richard and Zahn of the critical Reynolds number for subcritical hydrodynamic

turbulence. Therefore, a laboratory study of the MRI is a a fortiori study of

subcritical hydrodynamic instability as well.

A wide variety of flow regimes are accessible through the choice of cylinder

speeds, these regimes are diagrammed in Figure: 1.5 for co-rotating cylinders.

The specific angular momentum is l = r2Ω. When ∂Ω/∂r > 0, ∂l/∂r > 0 the flow

is linearly stable and said to be cyclonic. When the angular velocity is constant

∂Ω/∂r = 0 no shear is available to drive non-linear hydrodynamic turbulence, nor

the MRI and the flow is solid body. The flow is anti-cyclonic when ∂Ω/∂r < 0 and is

unstable to the ideal MHD version of the MRI. Anti-cyclonic flow can be divided

in to two sub-categories. If ∂l/∂r > 0 the flow is hydrodynamically linearly stable.

It is this regime that is relevant to Keplerian disks and is therefore known as

quasi-Keplerian flow. When ∂l/∂r < 0 the flow is linearly unstable by the Rayleigh

criterion and is called centrifugally unstable flow.

A liquid metal laboratory experiment cannot ever directly access the physics of an

accretion disk. For a protoplanetary disk Re ≥ 1012[Hueso and Guillot, 2005] and

the six orders of magnitude separating the Reynolds numbers of laboratory and



1.4 Need for laboratory experiment 14

R
e 1

/1
06

Re2/106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Solid Body

Centrifugally 
   Unstable

R
ay

le
ig

h 
C

rit
er

io
n:

 q
 =

 2

Acc
re

tio
n 

Disk
s: 

q 
= 

3/
2

Cyclonic

q 
= 

1.
9

Lewis and Swinney
Prototype

Princeton MRI
  experiment

Be
ck

el
y

Richard

Wendt
Taylor

Anti-cyclonic

quasi-Keplerian

Figure 1.5: Regimes of rotating shear flow accessible to circular-Couette flow
between concentric spinning cylinders of radii r1 and r2. Axes are Reynolds
numbers based on the speed of the cylinders, Re1,2 = Ω1,2r1,2(r2 − r1)/ν. Cyclonic
flow features radially-increasing gradients of angular momentum and velocity.
Solid body rotation is the constant angular velocity state. Anti-cyclonic flow has a
radially-decreasing angular velocity. In anti-cyclonic flow the angular momentum
may either increase or decrease with radius: quasi-Keplerian refers to the former
case and includes the q = 3/2 profile of Keplerian accretion disks. When the
angular momentum gradient is negative, the anti-cyclonic flow is linearly unstable
according to the Rayleigh criterion. Also plotted are Reynolds number for select
experiments discussed in Section: 2.1.2. Adapted from Figure: 2 of [Ji et al., 2006].
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astrophysical systems cannot be significantly reduced. Accretion disks do not

have the well defined boundaries of laboratory experiments. Furthermore, the

Keplerian angular velocity profile is supported by gravity whereas lab flows are

driven by viscous or perhaps Lorentz forces. Therefore the effect of saturation

will have very different signatures: in a disk matter is transported radially inward

leaving the mean angular velocity unchanged while in the laboratory the angular

velocity profile will be modified while the mass is conserved. Finally, small scale

magnetic fields are damped by the low conductivity of liquid metals. At a

Rem ∼ 1, this restricts the MRI induced fields to approximately the size of the

experiment. In contrast, the magnetic Reynolds numbers and conductivities of

accretion disks are so large that magnetic fields are important at all scales. In

contrast, simulations have no difficulty modeling gravitationally supported flow,

nor large conductivities. While modeling turbulence at high Reynolds number is

beyond the capability of the codes, powerful insight in to the physics of accretion

disks can be achieved through the complimentary properties of experiment and

simulation. To take advantage of the collaborative possibilities with numerical

work, development of simulations of the PRINCETON MRI EXPERIMENT has

occurred alongside the development and operation of the experiment. The thesis

by Liu [Liu, 2007] details axisymmetric simulations of the MRI search with the

PRINCETON MRI EXPERIMENT . Collaboration with researchers led by Fausto

Cattaneo at the University of Chicago is also ongoing.

1.5 Outline of the present work

The remaining chapters are organized as follows.

Chapter: 2 provides a brief derivation of the Couette profile developed between

concentric spinning cylinders of infinite vertical extent. Non-ideal effects due to
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the presence of vertical boundaries are discussed. These effects are the Ekman

circulation and formation of Stewartson layers. Ekman circulation is a poloidal

circulation cell driven by the no-slip conditions present at the cylinder ends. The

circulation is an advective angular momentum transport mechanism which may

cause significant deviation from the ideal mean azimuthal velocity profile. In

rapidly rotating flows velocity discontinuities at the end caps may propagate

vertically in to the fluid bulk giving rise to a Stewartson layer. The Stewartson

layer may be subject to non-axisymmetric instability. Previous experiments from

the cyclonic, quasi-Keplerian and centrifugally unstable flow regimes are

reviewed. The experiments include work related to Sub-critical Hydrodynamic

Instability: Taylor and Wendt in the cyclonic regime and Richard in the

quasi-Keplerian regime. A brief summary of analytic and numerical

investigations of magnetized circular-Couette flow follows. Selected experiments

are briefly discussed: the stabilization of centrifugally unstable flows by large

magnetic fields and the report of MagnetoRotational Instability in a

spherical-Couette flow.

Chapter: 3 provides a thorough introduction to the mechanical design and

operation of the Princeton MRI experiment. To achieve the Reynolds number

required of a search for the MagnetoRotational Instability the maximum speed of

the inner cylinder (radius of r1 = 0.076m) is 4000rpm and that of the outer

cylinder (radius r2 = 0.203m) is 533rpm. At these speeds the pressure generated

by rotation of the Gallium alloy is ∼ 25 atmospheres. In addition the end caps of

the experiment are segmented to allow differential rotation, thereby reducing the

Ekman circulation. The unique mechanical challenges required to achieve

successful operation are described. During hydrodynamic experiments Laser

Doppler Velocimetry is used to obtain a non-invasive diagnostic of flow velocity

and fluctuations. The principle of operation of Laser Doppler Velocimetry is
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reviewed in order to understand how the mechanical design decisions of the

experimental apparatus impact the calibration and precision of the technique.

Next, a review of the magnet system which will be used to provide the excitation

field during MHD experiments and the magnetic pick-up coils which will be used

for the initial diagnostics when the experiment is filled with the Gallium alloy.

The electrically noisy environment created by the drive motors and magnet bus

current required the development of a custom amplifier-filter array for the

pick-up coil signals. The design and performance of that amplifier will be briefly

reviewed.

Hydrodynamic experiments with water and a water-glycerol mix are presented in

Chapter: 4. Evaluation of the split-ring design is presented, included mean profile

control and scaling with Reynolds number. Detailed measurement of the local

angular velocity exponent indicates that advective transport driven by large-scale

Ekman circulation may be eliminated by choice of end ring speeds. Residual

vertical transport allows the gradient of angular velocity profile to exceed the

Rayleigh criterion without exciting centrifugal instability. At Reynolds numbers

above the transition threshold proposed by Richard and Zahn we use

two-component Laser Doppler Velocimetry to directly measure the r − φ

component of the stress tensor. We find no indication of a sub-critical transition to

turbulence, nor the predicted levels of transport.

Chapter: 5 contains a summary and discussion. Technical issues associated with

the realization of a high-Reynolds number, liquid metal compatible

circular-Couette experiment are reviewed. Novel reduction of vertical transport

of angular momentum is achieved through disruption of Ekman circulation. In

contrast to previous work we found no evidence of sub-critical hydrodynamic

instability. The implication for angular momentum transport in accretion disks is

discussed. Based on terrestrial experience with the scaling of turbulent friction in
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pipe flow we argue that a purely hydrodynamic turbulence we provide limits its

relevance to astrophysical systems. Implications for MRI experiments are

discussed.

1.5.1 Notation used in this work

The PRINCETON MRI EXPERIMENT has a great deal of mechanical flexibility in

the production of a target Reynolds number. We developed an ad hoc naming

convention to distinguish operational configurations. These names often overlap

with names of physical properties we wish to produce in the flow. To avoid

confusion the configuration names are presented in a fixed width font. For

example, the Ekman configuration features the end caps of the experiment

co-rotating with the outer cylinder in order to produce a profile which is

dominated by the advective transport of angular momentum through Ekman

circulation.



Chapter 2

Circular-Couette flow

2.1 Circular-Couette Flow (unmagnetized)

The term circular-Couette flow describes the flow of an incompressible fluid

confined between nested rotating cylinders, see Figure: 2.1. The flow was first

investigated by Couette[Couette, 1888] and Mallock[Mallock, 1888] in the late

19th century as a means of measuring the viscosity of liquids. When the outer

cylinder rotates at a slower rate than the inner, such that ∂l/∂r < 0, Taylor-Couette

flow is obtained. Named in honor of G. I. Taylor[Taylor, 1923] who predicted and

experimentally confirmed that viscosity delays the onset of Rayleigh’s centrifugal

instability to finite Reynolds number. For typical Taylor-Couette experiments the

Reynolds number at the onset of instability is

Rec = (Ω1 − Ω2)c(r2 − r1)(r2 + r1)/2ν ∼ 100.Taylor-Couette flow has since been

demonstrated to be accessible to both detailed theoretical investigation and

precise experiment and has therefore become one of the most widely-studied

problems in classical fluid dynamics[Tagg, 1994].

For a fluid confined between cylinders of infinite height and without axial

gradients, angular momentum is only transported radially. Following the

19
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inner cylinderouter cylinder

r1

d

r2

Ω1

Ω2

Figure 2.1: A fluid of kinematic viscosity ν, is confined between two infinitely tall
cylinders. The cylindrical coordinates are r, φ, z. The radius of the inner (outer)
cylinder is r1 (r2), the gap width is d = r2 − r1. The rotation speed of the inner
(outer) cylinder is Ω1 (Ω2), and ∆Ω = Ω1 − Ω2. The Reynolds number of the flow
is defined as Re = ∆Ωdr̃/ν, where r̃ is some characteristic radius. In this thesis,
r̃ = (r2+r1)/2. Because Taylor-Couette flow is often studied with a stationary outer
cylinder, the Reynolds number is routinely defined as Re1 = Ω1r1d/ν [Tagg, 1994].
For physically realizable experiments, the cylinder height is h, and the aspect ratio
is Γ = h/d. Sketch after Figure: 1 of [Taylor, 1923]
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derivation in [Guyon et al., 2001], in cylindrical geometry with coordinates r,φ

and z, the constant radial flux of angular momentum is written:

∂

∂r

(
r2σφr

)
= 0, (2.1)

where σφr is the r-φ component of the viscous stress tensor:

σφr = ν

(
1

r

∂vr
∂r

+
∂vφ
∂r
− vφ

r

)
. (2.2)

The Wrφ of Section: 1.4 represents turbulent stresses due hydrodynamic and

MHD instabilities. In the non-magnetized case, Wrφ may be approximated by

replacing η in Equation: 2.2 by a turbulent viscosity, ηt, see the discussion of

subcritical hydrodynamic instability in Section: 1.3. Writing vφ = rΩ(r), with the

condition that vr ≡ 0, a solution of Equation:2.1 in powers of r gives:

Ω(r) = a+
b

r2
. (2.3)

In terms of the rotation speeds of the cylinders, Ω1,2, non-slip boundary

conditions give for the constants a and b:

a =
Ω2r

2
2 − Ω1r

2
1

r2
2 − r2

1

, b =
(Ω1 − Ω2) r2

2r
2
1

r2
2 − r2

1

. (2.4)

The centrifugal force generated by the fluid’s azimuthal velocity is balanced by

the pressure gradient:

ρrΩ2 = ∇P =
∂P

∂r
(2.5)

2.1.1 Finite height effects

All physically realizable circular-Couette experiments have a finite cylinder

height, h. Rigid plates typically form the vertical boundaries, though Wendt did

use a free surface at the upper end of his experiment. The rigid plates impose

non-slip boundary conditions on the fluid adjoining them. The influence of the

boundaries is never completely negligible even for very large aspect ratios

(Γ > 100 in Taylor’s work[Taylor, 1936], see also [Tagg, 1994]).
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Ekman circulation

At the interface of the bulk flow and viscous layer which rigidly rotates with the

cylinder end cap, the bulk flow is decelerated by the boundary while the pressure

remains vertically constant, see Figure: 2.2. This force imbalance is compensated

by a radial inflow. At the inner cylinder the radial flow becomes axial and is

accelerated as it spirals up the cylinder. In large aspect ratio devices, the Ekman

layer may detach from the inner cylinder before reaching the midplane [Coles,

2006]. In small aspect ratio devices such as our current and prototype

experiments, the Ekman layer from each end cap is expected to reach the

midplane and then form a radial jet. Note that when the end caps rotate faster

than the bulk, the end cap flow is radially outward.

A derivation of the laminar Ekman layer can be found in the appendix of

[Kageyama et al., 2004], the results are quoted here. In the limit of small

departures from solidbody rotation the thickness of the Ekman layer is:

δEkman =

√
ν

Ω
. (2.6)

For the high Reynolds number shear flows investigated here and in the prototype

experiment, the departure from solidbody rotation is not ”small”. Therefore,

Kageyama et al develop an Ekman layer thickness based upon small departures

from circular-Couette flow:

δEkman =

√
2ν

κ̄
, κ̄ = 2

(
r4

2Ω2
2 − r4

1Ω2
1

r4
2 − r4

1

)
, (2.7)

where κ̄ is a characteristic value for the epicyclic frequency.

The torque exerted by the two end caps on the bulk flow is:

Γ = 4πρ
∫ r2

r1
κδEkmanr

3 (Ωcap − Ωbulk) dr. (2.8)
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Ω1
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boundaries: Vφ = r Ω2
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bulk flow
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Figure 2.2: Ekman circulation driven by end caps co-rotating with the outer
cylinder. As a fluid element in the bulk flow adjacent to the end cap is decelerated
by the viscous boundary layer. Because the pressure remains approximately
constant across the boundary layer, the element experiences a radially-inward
force. Ultimately the drag of the end cap establishes a poloidal Ekman cell which
advects angular momentum out of the bulk flow.

Stewartson layers

The Taylor-Proudman theorem[Greenspan, 1968] is arrived at by considering the

Navier-Stokes equations in a frame rotating about the z-axis at a frequency Ω:

∂v

∂t
+ v · ∇v + 2Ωẑ× v = −∇P

ρ
+ ν∇2v. (2.9)

If the Coriolis force dominates the advective terms (the small Rossby-number

limit), the advective term can be neglected. Similarly, if viscosity is dominated by

the Coriolis force (small Ekman-number limit) the viscous term can be neglected.

With these limits, taking the curl of Equation: 2.9 we arrive at the

Taylor-Proudman theorem:

∂

∂t
(∇× v) = 2Ω

∂

∂z
v. (2.10)

Motions that are slow with respect to Ω become independent of z.

Stewartson[Stewartson, 1957] investigated theoretically the motion of a fluid

confined inside a rapidly rotating cylinder where co-axial disks nested in the end
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caps of the cylinders rotate differentially with respect to the cylinder. In

accordance with the Taylor-Proudman theorem, he found that the velocity

discontinuity of the boundary propagated vertically in to the bulk flow. This

discontinuity is now known as a Stewartson layer. At large differential rotation the

Stewartson layer becomes subject to non-axisymmetric instability [Hollerbach,

2003] similar to Kelvin-Helmholtz instability. Stewartson layers have been

observed for the co-axial disks mounted in cylinder end caps[Hide and Titman,

1967] and for a disk suspended by a thin rod in the bulk of a fluid contained in a

cylinder[Früh and L., 1999].

Hollerbach and Fournier[Hollerbach and Fournier, 2004] predicted that the

formation of Stewartson layers in the new apparatus would cause profiles of

azimuthal velocity which would be unfavorable for the production of the

MagnetoRotational Instability or complicate its observations with

Kelvin-Helmholtz instabilities.

2.1.2 Previous hydrodynamic experiments

This section briefly reviews experiments performed in circular-Couette flows

which are linearly stable by the Rayleigh criterion. A brief chronology of

Taylor-Couette experiments is included. In addition, the work of Lewis and

Swinney is also summarized. Their experiments were performed in

fully-developed turbulence in high Reynolds number centrifugally unstable flow.

Salient parameters of the experiments reviewed are included in Table: 2.1.

Brief history of Taylor-Couette experiments

This short review of work in Taylor-Couette flow follows that of Tagg [Tagg,

1994]. Liquid flow developed between rotating concentric cylinders was first
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investigated by Couette [Couette, 1888] and Mallock [Mallock, 1888] as means of

measuring viscosity. Rayleigh [Rayleigh, 1916] proved that rotating inviscid

fluids are linearly unstable when the angular momentum is a decreasing function

of radius. In 1923,Taylor [Taylor, 1923] performed an axisymmetric linear stability

analysis for the case in which the viscosity is non-zero. He determined that

viscosity delays the onset of centrifugal instability and that instability proceeds

through super-critical transitions in the flow which produce Taylor vortices. He

then experimentally confirmed the existence of this instability.

The transition to turbulence in Taylor-Couette flow proceeds through a series of

steady-state bifurcations as eigenmodes become destabilized with changes in

cylinder speeds. The bifurcations produce easily visualized changes to the flow as

vortices are added or subtracted or as azimuthal mode number increases or

decreases. The progression to the ”fully-developed” turbulent state proceeds as

the discrete spectrum of axial and azimuthal wave numbers changes to a

continuous one by broadening of the spectral lines. The process is gradual and

reversible as Reynolds number is increased.

Coles [Coles, 2006] performed a detailed study of the transitions between states,

finding more than 70 transitions in a speed range up to ten times the Reynolds

number of the first transition. An example map of the state transitions observed

by Coles is shown in Figure: 2.3, as is a photograph of ”wavy vortex” flow. Flow

states accessible by fixing the outer cylinder speed and then slowly increasing the

inner cylinder speed are diagrammed in Figure: 2.4.

The Taylor-Couette flow provides an important research tool for the study of

super critical transition. Quasi-Keplerian and cyclonic flow have been the subject

of far less investigation due their linear stability.
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Figure 2.3: Left: Observed transitions for doubly-periodic Coutte flow where the
outer cylinder is at rest. ”Number of cells” refers to circulation cells in the axial
direction, or axial wavenumber. ”Number of waves” corresponds to azimuthal
mode number. ”R” is the Reynolds number. Right: Example of 24-cell, Transition
from 5-wave to 4-wave, 24-cell flow. Note presence of Ekman effects are restricted
to the one or two cells closest to the end caps. From Coles [Coles, 2006]
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État des Lieux et Exploitation des Expériences Antérieures 3.2 Les Pionniers : F.Wendt & G.I.Taylor

Fig. 3.4: Écoulements observables dans une expérience de Couette-Taylor (Andereck et al. 1986), dans un diagramme Ri, o =
Ωi,oR

2
i,o/ν

Si les domaines linéairement instables ont fait l’objet d’études intensives, il n’en va pas de même pour les autres régimes

de rotation. La majorité des travaux sur les instabilités aux amplitudes finies se sont portées sur les écoulements de type

Poiseuille ou Couette plan, le premier possédant un régime de transition sous-critique, et le second étant linéairement

stable quel que soit le nombre de Reynolds. Pourtant, parmi les mesures expérimentales de Taylor (1933 et 1936) et

de Wendt (1936), des instabilités non-linéaires étaient déjà clairement identifiés. Mais depuis cette époque, aucune

expérience ne s’est intéressée a ce problème.

3.2 Les Pionniers : F.Wendt & G.I.Taylor

Sans doute car elles se situent historiquement aux débuts de l’exploration expérimentale du Couette-Taylor, les deux

références citées ci-dessus contiennent des informations sur une gamme de régimes de rotation bien plus large que la

majorité des travaux plus récents.

Les travaux fondateurs de Taylor contiennent de précieuses mesures dans une grande gamme de rapports d’aspects

Ri/Ro. Dans sa publications de 1936, il utilise onze différentes tailles pour le cylindre intérieur et se focalise sur la

mesure du couple exercé par le fluide (Fig. 3.5). Cependant, la technique utilisée ne permet l’accès à cette quantité

qu’avec un seul des cylindres en rotation. En effet, le couple est mesuré grâce à un système de contre-poids qui main-

tient le second cylindre au repos.
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Figure 2.4: Flow states produced in Taylor-Couette flow. From Andereck et
al[Andereck et al., 1986]

Table 2.1: Parameters of circular-Couette experiments used to investigate turbulent
flow. Abbreviations for the Regimes are: Cyc: cyclonic, qK: quasi-Keplerian, CU:
centrifugally unstable (by Rayleigh’s criterion). Quasi-Keplerian and centrifugally
unstable flows are subclasses of anti-cyclonic flow. Γ is the aspect ratio and d is the
gap width. Some of Coles’ work was performed with counter-rotating cylinders
which is indicated by the sign of theRe . N.b. Beckley defines his Reynolds number
using Re = r2

1Ω1/ν

Experimenter Γ d(mm) Remax × 104 Regime

Taylor1 770–100 1–9 10 Cyc
Wendt2 8.5–42 10–47 10 CU, qK, Cyc
Coles3 15 6.3 ±0.1 CU
Lewis & Swinney4 11.5 61 100 CU
Beckley5 2 150 438 qK, Cyc
Richard6 25 15 6 qK, Cyc
Prototype7 1 111 100 qK
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Fully developed turbulence in the centrifugally unstable regime: Lewis and

Swinney

A large body of experimental work exists for Taylor-Couette flow, which is not

relevant to the problem of angular momentum transport in accretion disks.

However, one experiment is summarized here: that of Lewis and Swinney[Lewis

and Swinney, 1999]. Their work measures properties of a rotating shear flow in

the presence of fully developed turbulence. The turbulence is driven by

Rayleigh’s centrifugal instability and so is of little use to the study of accretion

disks. Prior to the PRINCETON MRI EXPERIMENT , no detailed measurement of

transport was made in quasi-Keplerian flow. Therefore the work of Lewis and

Swinney provides some useful insights about a saturated state of hydrodynamic

turbulence. Furthermore, observations of the MagnetoRotational Instability have

been claimed for a Rayleigh-unstable (spherical-Couette) flow and Lewis and

Swinney’s work is particularly relevant when weighing those claims.

They extend the earlier work of Lathrop et al [Lathrop et al., 1992] and Smith and

Townsend[Smith and Townsend, 2006] who demonstrated that for a stationary

outer cylinder in the range 7.2× 103 < Re < 1.2× 105 the radial profile of the flow

is characterized by an inviscid core region bounded by thin boundary layers at

the cylinder walls. The outer cylinder is at rest so the global angular momentum

gradient must be negative. The negative gradients are confined to these two shear

layers. In the inviscid core, the angular momentum slightly increases with radius

but is nearly constant: they approximate the flow by vφr/(r2
1Ω1) ≈ 1/2, indicating

that the bulk flow relaxes to a state close to that of marginal centrifugal stability.

However, it appears that marginal stability is approached asymptotically. The

increase of angular momentum in the bulk decreases with Re . At Re ∼ 104 the

change is 10%, at 105 it is 2%. An advective transport that is disrupted at higher
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Reynolds number could account for this behavior.

Lewis and Swinney use buoyant particles which migrate to low pressure regions

to visualize structures within the flow. They observed stable turbulent Taylor

vortices which persist up to the highest Reynolds number examined, though for

Re > 105 they drift axially and their number is not well-defined.

Figure 2.5: Left: Velocity power spectra measured by Lewis and Swinney[Lewis
and Swinney, 1999] in a centrifugally unstable flow. The measurement was
performed on the mid-radius of the apparatus, just above the mid-height. All
peaks are close multiples of the lowest frequency. The frequency has been
normalized to the rotation frequency of the inner cylinder. Right: Scaling of
Kolmogorov (λK , squares), Taylor (λT , triangles) and dissipation (λd, circles) scales.
The separation of scales is too small to allow the formation of an inertial range.

From data provided by hot film probes at the mid-radius of their apparatus

detected the presence of azimuthal traveling waves, see Figure: 2.5. The power

spectra reveal the presence of multiple modes which are multiples of the lowest

frequency. The waves are detectable up to the highest Reynolds numbers used in

the experiment, and above Re ∼ 104 they have a nearly constant velocity. That
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angular wave speed is calculated by dividing the frequencies of the dominant

peaks by the mode number and averaging, and is found to be roughly equal to

that of the mean flow at the mid-radius:

wave angular speed ∼ Ω1r
2
1

2r̃2
. (2.11)

Finally, Lewis and Swinney measure the Kolmogorov, Taylor and dissipation

length scales of the turbulence. Their data is reproduced in the right panel of

Figure: 2.5. The scale separation is insufficient to allow the formation of an

inertial range. Extrapolating to Reynolds numbers produced in the

hydrodynamic experiments of the PRINCETON MRI EXPERIMENT ,Re ∼ 106, the

Kolmogorov scale is ≈ 4× 10−5 m.

Turbulence in the cyclonic regime: Wendt and Taylor

The works of Wendt [Wendt, 1933] and Taylor [Taylor, 1936] remain the most

precise measurements of fluid torque in the turbulent cyclonic regime.

Parameters for the two experiments are listed in Table: 2.1. The aspect ratio used

by Taylor is far greater than that of Wendt. Taylor’s end caps were fixed to the

outer cylinder, and velocity measurements indicate that near the inner cylinder,

boundary layer effects still produce a large deviation from the ideal

circular-Couette solution, Equation: 2.3. In contrast, Wendt used a split end-cap at

the base of his experiment, with one half of the cap fixed to the inner cylinder, and

other half fixed to the outer. In addition, the upper surface of the experiment was

a free surface with no cap. This produced a speed dependent aspect ratio, but was

overall less impacted by Ekman circulation.

At sufficiently large Reynolds number Taylor and and Wendt observe turbulent

transitions within their cylconic circular-Couette flows. In the left panel of Figure:

2.6 the transition Reynolds number is plotted against the experiment gap width.
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Figure 2.6: Left: Reproduced from [Richard and Zahn, 1999] Dependence of
transition Reynolds number on aspect ratio. Filled circles are Taylor’s data
[Taylor, 1936], Open circles are Wendt [Wendt, 1933]. Horizontal dashed line is
the transition Reynolds number for plane Couette flow, dashed line is proposed
gradient Reynolds number. Right: Figure reproduced from Coles[Coles, 2006].
Wendt’s measurements of torque in laminar and turbulent regimes. Height of
surface represents the ratio of measured torque to theoretical laminar torque.
Reynolds numbers of cylinders are computed using Rei,o = Ωi,or

2
i,oν
−1, subscript

refers to inner (outer) cylinder.
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2.1.3 Experiments in the quasi-Keplerian regime

Richard

Until the work of Richard[Richard, 2001], there were no experimental

observations of turbulent transition in the quasi-Keplerian regime. Using an

apparatus developed by Prigent et al [Prigent and Dauchot, 2000] Richard sought

to connect the turbulent torque measurements of Wendt and Taylor’s cyclonic

flows to the quasi-Keplerian regime.

Parameters for the experimental apparatus can be found in Table:2.1. The end

caps are divided in to two nested rings which can be fixed to the cylinders in two

ways: 1) both rings fixed to the outer cylinder, or 2) the rings are ”Split” with the

inner ring fixed to the inner cylinder and the outer ring fixed to the outer cylinder.

After demonstrating that the first option produces flow profiles heavily

influenced by Ekman circulation (similar to Taylor) the Split configuration is

adopted.

The explored Reynolds numbers and observations of turbulence are reproduced

in Figure: 2.7.

Using Kalliroscope[Dominguez-Lerma et al., 1985] Richard explored the stability

boundary for flows in his apparatus in both the cyclonic and quasi-Keplerian

regimes. The inner cylinder was painted with a fluorescent paint which glowed

for some time after a UV light source was turned off. A CCD oriented radially

measured a flux emitted by the paint and transmitted through the Kalliroscope

flakes suspended in the fluid. The Kalliroscope flakes align with the local fluid

shear. In the laminar state the flakes align with the rotation axis and therefore

block the transmission of light from the inner cylinder. When a transition occurs,

the flakes realign and light may be transmitted.

In the cyclonic regime, the transitions observed by Wendt and Taylor are
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Figure 2.7: Left: Reynolds numbers explored by Richard. Dark gray region is
linearly-unstable by Rayleigh’s criterion.The other regions are linearly-stable. In
the light gray regions Richard observes a turbulent transition. The observations
involve qualitative flow imaging with Kalliroscope and velocity measurements
using Laser Doppler Velocimetry. Right: RMS fluctuation levels in azimuthal
velocity for cyclonic flow. The top panel is normalized by mean azimuthal velocity,
the bottom is normalized by radial shear of the profile: S ≡ r∂Ω/∂r.
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reproduced and a hysteresis in transition Reynolds number is observed: in

scanning from the laminar state to turbulence the transition occurs at a higher

Reynolds number than when scanning down in Reynolds number from the

turbulent state to the laminar one. Such hysteresis is characteristic of sub-critical

transitions (see Section: 1.3). However, no information is provided about the level

of fluctuations nor their origin. Visualization studies by

Schultz-Grunow[Schultz-Grunow, 1959] indicate that surface defects may drive

the transition.

Azimuthal velocity and fluctuation levels were measured using Laser Doppler

Velocimetry (see Section:3.5.1), LDV. A transition in fluctuation levels is observed

in the cyclonic regime, as can be seen in the right panels of Figure: 2.7. In the right

panel, the upper figure presents fluctuations in azimuthal velocity normalized to

the mean velocity, which is the definition of turbulent intensity used by Lewis

and Swinney (see Section: 2.1.2).

In the quasi-Keplerian regime a transition is also observed using the Kalliroscope.

In this case, a difference in transition Reynolds number could not be determined

when scanning from the laminar to turbulent state or vice versa. Richard does not

provide fluctuation levels versus Reynolds number in the quasi-Keplerian

regime. Transport is inferred from deviation of mean flow profile from

non-turbulent state. (need to double check the private communication with Burin here)

Beckley

Beckley [Beckley, 2002] constructed a large gap, small aspect-ratio

circular-Couette apparatus to study MHD dynamo and MRI activity. The

apparatus is capable of operating in both cyclonic and anti-cyclonic regimes at

Reynolds numbers in excess of 106, see Table:2.1. The end caps of the apparatus

are fixed to the outer cylinder. He performed an angular momentum transport
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measurement in water for stable anti-cyclonic flow. The measured scaling of

applied motor torque versus Reynolds number indicate that the advection via

Ekman pumping is the dominant transport mechanism in the apparatus.

To date the experiment has not reported any MHD measurements.

Prototype of the PRINCETON MRI EXPERIMENT

The need to maximize the probability of producing the MagnetoRotational

Instability in the PRINCETON MRI EXPERIMENT while minimizing the required

volume of GaInSn placed a severe constraint on the aspect ratio of the apparatus,

Γ ∼ 1. For such a small aspect ratio, the boundary layers must have a significant

impact on the mean flow profile. A prototype experiment [Kageyama et al., 2004]

was developed to investigate the hydrodynamic properties of a Γ ∼ 1 device

using water. The kinematic viscosity of water and GaInSn are nearly equal

(νGaInSn/νwater ≈ 0.3) so the results could be expected to also hold for the liquid

metal.

The apparatus was constructed with both end caps fixed to the outer cylinder.

The caps and outer cylinder were made of Acrylic. Azimuthal velocity was

measured using Particle Tracking Velocimetry. Reflective particles entrained in

the flow were imaged with a CCD. Azimuthal velocity of the particles was

measured by dividing the distance the particle moved in a single image by the

image exposure time. The results for a flow at Re ∼ 106 are reproduced in Figure:

2.8. The measured velocity is compared to the ideal circular-Couette profile as

well as a 2-D code developed to simulate the flow in the experiment.

The observed profile and its agreement with the simulation demonstrates that this

experimental setup would be unsuitable for producing an unambiguous detection

of the MRI. There are two reasons for this: first, the sharp drop in velocity at the

inner cylinder surface indicates that that region of the flow is unstable by the
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Rayleigh criterion to centrifugal instability. The interaction of this unstable region

with an applied magnetic field could be difficult to distinguish from effects

produced by the MRI. Second, the velocity profile is significantly flattened

compared to the ideal circular-Couette profile over the bulk of the experiment

volume. Production of the MRI in a liquid metal is a balance between growth

produced by shear in the angular velocity and stabilization due to viscosity and

resistivity. The low shear bulk flow is therefore likely to be stable to the MRI.

Figure 2.8: Mean velocity profile measurement and simulation of low aspect ratio
prototype experiment with end caps fixed to the outer cylinder. From: [Kageyama
et al., 2004]

Analysis of the simulation prediction of boundary layer thickness motivated a

new prescription for the Ekman layer thickness, see Section: 2.1.1. Application of

this estimate of Equation: 2.7 for δEkman to the spin-down time of the flow yielded

good agreement with the measurement.
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2.2 Magnetized circular-Couette Flow

2.2.1 Prior experiments on magnetized rotating shear flow

This section briefly reviews existing and proposed magnetized experiments in

rotating liquid metal shear flow. The focus is primarily on circular-Couette

experiments but does include a discussion of the results from the University of

Maryland’s spherical-Couette liquid Sodium experiment, in which an observation

of the MRI has been claimed.

Donnelly and Ozima

Donnelly and Ozima [Donnelly and Ozima, 1960][Donnelly and Ozima, 1962]

confirmed the theoretical predictions of Chandrasekhar [Chandrasekhar, 1953]

and Niblett [Niblett, 1958] that a centrifugally unstable circular-Couette flow of

mercury can be stabilized by a large magnetic field. Their apparatus featured a

very narrow gap width of 2.0mm between cylinders of radii r1 = 18.0mm and

R2 = 20.0mm and height 100.0mm. The outer cylinder was held fixed by a torsion

wire which was used for torque measurement. At their maximum Reynolds

number, ≈ 3× 103, the field required for stabilization was ≈ 14kG.

The stabilization of the centrifugally unstable flow in the PRINCETON MRI

EXPERIMENT is possible only when operating very near the Rayleigh stability

limit, but is otherwise impossible: our Reynolds number are 103 larger, gap width

is > 60 times that of Donnelly and Ozima, and our largest applied magnetic field

is only 5kG.
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Maryland MagnetoRotational Instability observation

A group at the University of Maryland [Sisan et al., 2004] claim to have observed

the MagnetoRotational Instability in a spherical Couette flow. They observe

non-axisymmetric fluctuations in the radial magnetic field, B outside the spheres

which vary with applied field strength and Reynolds number. Azimuthal

velocity, as measured by ultrasonic doppler velocimetry shows a similar

oscillation. An excess of torque transmitted to the outer sphere is also measured.

The reported applied magnetic field amplitudes are too small to suppress the

MagnetoRotational Instability.

Significant details of the experiment make it difficult to attribute the observed

results solely to the MagnetoRotational Instability. Figure: 2.9 reproduces two

figures from the experiment. The first of these figures is a velocity measurement

of the flow in the absence of an applied field. The second displays as a function of

applied field the induced radial magnetic field measured outside the outer sphere

and the excess torque required to drive the inner sphere. Each of these figures will

be discussed in turn.

The specific angular momentum measured by the Maryland group is an

increasing function of radius, see the left panel of Figure: 2.9. However, the outer

sphere is at rest and Re > 105 so we expect the flow to be in a state of fully

developed turbulence. Because angular momentum is the source of free energy

for centrifugal instability the bulk of the flow should relax to a profile of

near-constant angular momentum, bounded at the walls by an unstable boundary

layer. This type of profile was measured by Lewis and Swinney, see Section: 2.1.2.

At least one unstable boundary layer must exist in this experiment: the angular

momentum of the outer sphere is identically zero and the profile must transition

to that value when it reaches the outer sphere. Because the bulk flow is not close
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to saturation, a radial advection must be present to transport the angular

momentum required to maintain the outer unstable layer. Evidence of the return

flow can be seen interior to the tangent cylinder radius (the vertical projection of

the inner sphere’s radius): the angular velocity increases radially above the

constant 30rad/s of the inner sphere and axle.

Inertial waves [Greenspan, 1968] can be excited by turbulent boundary

layers [Townsend, 1980]. If inertial waves are responsible for the azimuthal waves

observed by Lewis and Swinney, a similar phenomena may be in operation in this

experiment. Sisan hints that hydrodynamic oscillations are present, stating

”Smaller turbulent fluctuations are also observed in the magnetic field in the base

state, due to interactions between the fluid turbulence and the Earth’s relatively

weak field...”

In right panel of Figure: 2.9 an excess of torque is required to drive the inner

sphere when the oscillating radial field turns on. The shear layer ultimately

couples the flow to the boundary so in the absence of a detailed understanding of

that layer, it is premature to attribute the secular increase in torque to the action of

the MagnetoRotational Instability.

This discussion is rather speculative, but does serve to highlight the difficulties of

interpreting results that arise from a background flow which is not

well-characterized. It also highlights the truly unique experimental opportunities

that arise from the design of the Princeton MRI apparatus. By choosing the speeds

of the end-rings we will able to fine-tune transport induced by the boundaries.

Helical MRI: the PROMISE experiment

Hollerbach and Rüdiger [Hollerbach and Rüdiger, 2005] citeRudiger:2005

discovered that the presence of toroidal as well as axial component to the applied

magnetic field produced an MRI-like mode. The threshold for instability is
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Figure 2.9: Reproduced from Sisan et al [Sisan et al., 2004]. Left figure: specific
angular momentum (a), angular velocity (b) and local mean exponent of angular
velocity (inset). n.b. ζ = ∂ ln Ω/∂ ln r is opposite in sign to q employed here. The
velocity is measured along a chord in the r-φ plane and passes near (∼ 1cm) the rod
supporting the inner sphere. Right figure: Induced Br and excess torque versus
applied field. Red and orange reflect fluctuations from their means. The ”E0”
state showed significant mean amplitude: squared-average of the mean is green,
variance is blue.
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significantly smaller than is predicted for a purely azimuthal magnetic field.

The PROMISE experiment in Potsdam has claimed to observe the Helical MRI in a

circular-Couette flow[Stefani et al., 2006]. The apparatus consists of Copper

cylinders of radii, r1 = 40, r2 = 80 mm and axial extent h = 400 mm. The top end

cap of the cylinder is stationary to allow the use of Ultrasonic Doppler

Velocimetry. The bottom end cap rotates with the outer cylinder. The Ekman

circulation generated by the end caps is asymmetric about the apparatus

midplane. The applied magnetic field is of order 100 G. At Re ∼ 103 they observe

an axial traveling wave with frequency ω/Ω1 = 0.15, wavelength 6 cm and phase

velocity 0.7 mm/s.

There is some debate over whether this instability is related to the MRI at all.

Simulations by Liu[Liu, 2007], [Liu et al., 2006a] indicate the disturbances are a

weakly destabilized inertial oscillation excited by the Ekman circulation, and are

in excellent agreement with the PROMISE observations. They also find that the

effect is absent in the case where the end caps of the experiment are insulating.

Unlike the standard version of the MRI presented in Section: 1.2, the helical MRI

features a slow growth rate which is unlikely to make it relevant to accretion

disks. Lakhin and Velikhov [Lakhin and Velikhov, 2007] estimate the growth rate

to be ∼
√

Ω and also interpret the mode as a weakly destabilized inertial

oscillation rather than MRI.

PRINCETON MRI EXPERIMENT

Ji et al performed an axisymmetric WKB analysis of a proposed liquid gallium

circular-Couette experiment with small aspect ratio and wide gap geometry that

later evolved in to the present PRINCETON MRI EXPERIMENT apparatus. They

found instability to the MRI for Rem ∼ 1 and applied magnetic field Bz ∼ 5 kG.

The most unstable modes found in this analysis have wavelengths greater than
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the gap width and cylinder height. Based on this, they note that the WKB analysis

should not be trusted a priori. They extend the analysis using a global linear code

with periodic vertical boundary conditions. Their findings agreed well with the

results of the WKB analysis. A plot of regions of instability to the MRI is

reproduced from [Ji et al., 2004] in Figure: 2.10. Three regions are shown. Region I

is always unstable but can be stabilized by a suitably strong magnetic field, as

Donnelly and Ozima demonstrated. Region II is the portion of the

quasi-Keplerian regime that can be destabilized by an applied magnetic field.

Stability curves are shown for the first five axial mode numbers. Region III is

always stable.

Liu [Liu, 2007] adapted the ZEUS 2-D axisymmetric compressible MHD code to

simulate MRI in the PRINCETON MRI EXPERIMENT . He found that the MRI

could be destabilized by flows as low as 45% of the experiment design maximum

of Remax = 2× 107. The simulations of at the largest Reynolds number yet

achieved in the experiment, 60% of Remax, show the MRI has a linear phase in

which the radial magnetic field growing at ∂Br/∂t ∼ 1 G/s followed by saturation

at Br ∼ 1 G. The saturated state of the MRI is an inward-directed radial jet at the

midplane with a reconnection layer at the center of the jet. The inward flow of the

jet is opposite to that produced by Ekman circulation.

Goodman and Ji: results of global stability code confirm prior earlier results.

Several axial modes should become unstable for Princeton MRI Experiment, see

Figure: 2.10.

Liu et al[Liu et al., 2006b] ZEUS-2D simulation of Princeton MRI experiment

shows good agreement with linear analyses for growth phase of the MRI .

Nonlinear saturation occurs through an in-flow jet (opposite sense to Ekman

circulation) at the mid-plane of the experiment. Radial speed of the jet ∼ Re−1/2
m .
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Figure 1: Stability diagram in Ω1 and Ω2 for the final experimental design for axial mode numbers
based on local stability analysis.

8

Figure 2.10: MagnetoRotational Instability axial mode number which are expected
to become unstable in the presence of an axial magnetic field. From [Ji et al., 2004].
Region I is linearly unstable by the Rayleigh criterion as well as MRI unstable.
Stability can be restored by sufficiently large applied magnetic field. Region II
is linearly stable but can become unstable to the MRI for particular values of the
applied field. Region III is always stable to the MRI.
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Reconnection layer forms within the jet.

Other proposed MRI experiments

Noguchi et al performed a study of MRI stability based on the New Mexico α− ω

dynamo experiment, see section: 2.1.3 for a description. The analysis models the

effect of the Ekman circulation as a background turbulence. They conclude the

flow is more unstable to MRI than PRINCETON MRI EXPERIMENT . In initial

MHD experiments the Sodium formed an emulsification with the a mineral oil

used to heat the Sodium and prevent it from contacting the seals (unpublished).

The experiment is awaiting a solution to this technical difficulty.

Velikhov’s [Velikhov et al., 2006] performed a stability analysis for a q = 2 rotating

liquid Sodium shear flow driven by radial current. He estimates the critical

Reynolds number to be as low as 104. The radial currents required to drive the

azimuthal flow may produce a toroidal field component which is itself unstable.



Chapter 3

Experimental Apparatus

The design of the PRINCETON MRI EXPERIMENT is constrained by the need to

maximize the magnetic diffusion time of the experiment so that it is longer than

the MRI growth time while minimizing the quantity of GaInSn owing to the

metal’s expense. This optimization results in a circular-Couette experiment of

wide gap and low aspect ratio. Experiments[Kageyama et al., 2004] with a

prototype of this geometry demonstrated that the influence of the cylinder

end-caps produces a mean flow profile significantly altered by angular vertical

momentum transport, see Section: 2.1.3. Simulations indicated that dividing the

end caps into rings that rotated independent of the cylinders would establish a

favorable mean flow.

A photograph of the PRINCETON MRI EXPERIMENT experiment is show in Fig.

3.1. The circular-Couette flow is established in a fluid volume confined between

concentric co-rotating cylinders and capped at each end by two differentially

rotatable end-rings. The dimensions of the experimental volume are list in

Table:3.1 The rotating components are mechanically supported by an Aluminum

frame. The frame is hinged near the experiment center-of-mass and can be rotated

90◦ for installation of the rotating components. The magnet coils and drive motors

45
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are also mounted to the frame.

The design and construction of a circular-Couette experiment capable of

achieving Re ∼ 107, dynamic pressures of ∼ 25 atm and the peculiar constraints

required of a scientific apparatus has been a challenging and evolving

engineering task. Where it is required in order to understand the functionality of

the current apparatus some discussion of superseded designs will be made.

Figure 3.1: Left: The PRINCETON MRI EXPERIMENT just prior to gallium
operation, Right: Close-up of the experimental volume before installation of
magnet coils and stainless steel outer cylinder.
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Table 3.1: Experimental dimensions. Ring gap radius is the location of the gap
between the inner and outer end rings.

Inner cylinder radius r1 70.6mm
Outer cylinder radius r2 203.0mm
Ring gap radius r3,4 132.5mm
Gap width d = r2 − r1 132.4mm
Cylinder height h 280.0mm

3.1 Rotating Assembly

3.1.1 Cylinders and rings

The experiment outer cylinder is a pressure vessel designed to withstand 25

atmospheres in which the other rotating components are submerged. The

cylinder is formed by an annulus of cast acrylic or type 304 stainless steel capped

by two acrylic disks. The wall thickness of the acrylic annulus is 25.4 mm and

9.5 mm for stainless steel. The caps are 101.6 mm thick with the bottom cap

polished to permit the use of optical diagnostics. The caps are drawn against the

annulus by 16 stainless steel tie rods. Stress concentrations due to the tie rods that

would potentially damage the caps are borne by 25.4 mm thick by 38.0 mm wide

stainless steel rings. The rings feature electrical breaks at two points. O-rings are

used to seal the annulus to the caps.

The experiment was originally designed to use an acrylic annulus for the outer

cylinder under operation with both water and GaInSn. The wall thickness was

chosen to withstand the dynamic pressure generated by the GaInSn based on the

yield stress of the acrylic. During a peer review, a concern was raised that crazing

failure (see Fig:3.2) of acrylic can occur for stresses 1500 psi below the yield point.

The stresses developed at the interface of the outer cylinder with the end caps

was calculated to be 4300 psi while the yield strength of the acrylic is 7200 psi.
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This proximity of the crazing point to the maximum stress prompted us to

manufacture a new outer cylinder for use with GaInSn. Transparency of the outer

cylinder is not needed during liquid metal operation so stainless steel was chosen

as the replacement material.

Figure 3.2: An acrylic sight glass which has become crazed. Crazed materials have
the potential to undergo sudden ”catastrophic” failure. Photo credit: ESC plastics.

The outer cylinder assembly is supported vertically by a quick-draw bushing

which clamps to a central stainless steel axle 35 mm in diameter and 2.06 m in

length. An O-ring crushed between the bushing and bottom cap seals the joint

where the axle passes through. The center axle is hollow to accommodate

potential experimental work using a toroidal magnetic field in addition to the

vertical one. A flange-mounted ball bearing on the lower cross piece of the

experiment frame provides radial and thrust support for the outer cylinder

assembly. Vertical alignment of the outer cylinder is set by another quick-draw

bushing clamped to the center axle which rests on the flange bearing inner race.

The upper end of the outer cylinder is radially supported by a plain bearing

located between the upper axle and the axle of the upper outer ring. The bearing

also features a groove which holds the #1 seal and guarantees the seal’s

concentricity to both axles.

The inner cylinder and all of the rings are mounted to nested stainless steel axles

which pass through the outer cylinder top cap. Each ring is machined from cast

acrylic and mount via screws to a flange welded to the submerged end of the axle.
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The inner cylinder is stainless steel welded to its axle. The inner cylinder is filled

to its axle diameter with nylon to reduce the required amount of GaInSn. A lip

seal is mounted at the top end of each axle to seal against its inner neighbor. Each

axle has a 6.3 mm hole drilled 25.4 mm below the lip seal landing area to allow

fluid to fill the inter-axle gaps. The submerged, lower, end of each component is

fixed radially by a plain bearing. The lower rings were polished to allow optical

access for diagnostics.

The rings, inner cylinder and axles were static balanced during manufacture. The

upper ends of the rotating components require radial support by an external

frame, which prevented balancing of the apparatus as a unit. The ”as assembled”

balance is adequate and operation of the experiment is not limited by mechanical

vibration of rotating components.

3.1.2 Seals and Seal Cooling

Spring-energized lip seals (see Fig:3.4) are used to seal the axles to one another

where they thread out of the outer cylinder pressure vessel. The seal lips are

made of a PTFE-filled plastic and are rated to about 2 MPa, though they do not

ever experience such high pressures. The radial force applied by the seal to its

sealed surface varies with the pressure at the seal. Each seal has a fluid path that

couples it to the bulk flow at one of three radii: the inner cylinder, the ring gap or

the outer cylinder. Because the flow is pressure supported, the seal friction is

sensitive to the flow profile. This makes the torque required to rotate the

components unsuitable for measuring the viscous torque required to maintain the

flow. In other experiments [Beckley, 2002][Sisan et al., 2004] motor torque is a

primary diagnostic.

Seals #1, 2 and 3 are located radially by a thermoplastic ring: seal #1 uses Techtron
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Figure 3.3: Rotating components of the PRINCETON MRI EXPERIMENT experiment
as originally designed by Lew Morris.
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Figure 3.4: Left: Unsupported lip seal. Right: Spring energized lip seal.

HPV, the others are Acetyl Copolymer. The rings are machined for a precise fit in

to the inner diameter of the axle. O-rings are used for the static seals between the

lip seal and ring and between the ring and the axle. A stainless steel retaining ring

clamps the seal against the axle end.

Seals #4 and 5 originally used uniquely sized seals. The original seals were

abandoned because they wore out too quickly, required radial alignment

tolerances that were difficult to meet, and caused damage to the axles. Adapters

are used to allow the #3 seal to be used as replacements for the originals. The

adapter is diagrammed in Fig:3.5. The inner diameter of the larger axle is adapted

out by a sleeve. A retaining ring draws the seal against this sleeve and O-rings

provide for the static seals between the seal and sleeve, and sleeve and axle. The

sealing face is a Stainless steel annulus which is fixed to the inner axle by a shaft

clamp.

A drawback to the adapters used for seals #4 and 5 is that fluid access for cooling

the seal is limited and the use of stainless steel causes heat to buildup at the seal.

The heating of the seal causes erratic torque demands on the motors. Automatic

Transmission Fluid (ATF) is sprayed on to all the seals to reduce friction and

remove heat. In addition, Seal 5 features a large finned Aluminum heat sink to

improve cooling of the seal.

Seal #6 also required a unique mounting scheme to meet its alignment
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Figure 3.5: Adaptor for seals #4 and #5
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specification of 0.05 mm Total Indicated Runout. The outer cylinder center axle

which threads through the entire machine does not have a radial bearing and

plate combination as described in Section: 3.1.3. Instead, the seal holder has a ball

bearing mounted in it, above the seal. A slip-fit bushing adapts the outer cylinder

axle to the bearing inner diameter. The bearing outer diameter and seal share a

housing which is concentric and clamped to the lower outer ring axle.

3.1.3 Bearings

The axles supporting the end rings and inner cylinder are each aligned and

supported by two bearings. One is mounted in the submerged end of the

component to provide radial location, and the other is clamped to the axle to

carry combined thrust and radial loads.

Submerged Bearings

The submerged radial bearings are located as listed in Figure: 3.3. They are plain

type 25 mm thick, machined from Techtron HPV (PTFE-filled PolyPhenylSulfide).

The Techtron HPV was chosen for its excellent wear resistance, low sliding

friction and low absorption of water. Though they are submerged in the

apparatus’ working fluid, the clearances between bearing inner diameter and axle

are too large for the development of load-supporting hydrodynamic films. The

radial clearance is not well controlled, ranging from about 0.03 mm to 0.15 mm.

The clearance is necessary to allow the entire length of each axle to pass through

the bearing during assembly.

Owing to these clearances, the inner cylinder has a radial runout (m = 1 mode)

with minimum amplitude of 0.30 mm, based on the radial clearance of the bearing

mounted in the bottom of the inner cylinder. The upper limit for the runout was
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estimated to be a maximum of 0.76 mm from time series LDV data acquired near

the inner cylinder. See Section: 3.5.1 for details.

Radial support of the upper axle of the outer cylinder is performed by a Techtron

bearing submerged just below Seal #1. The bearing has a ring cut in to it to mount

the seal, which allows proper axle alignment for the seal to be maintained.

Combined-Load Bearings

A bearing is clamped to each axle above the point at which the axle is sealed by

its larger neighbor, see Figure: 3.3. The clamping mechanism is diagrammed in

Figure: 3.6. The axle is adapted out to the bearing inner diameter by a split

bushing. The split bushing has a shoulder to prevent the bearing from interfering

with the two-piece clamp which fixes the bushing to its axle. Axial movement in

the other direction is prevented by another two-piece clamp. The clamp assembly

provides precise radial location of the axle within the bearing and supports it

against thrust loads. The direction of the thrust load may vary with the working

fluid and the operating speed. For example, the upper outer ring and axle float in

the GaInSn when stationary, but dynamic pressure acts to draw the assembly

down into the bulk fluid volume.

The outer diameter of the combined-load bearing is captured by a 200 mm square

Aluminum plate. Each plate is threaded by four precision ground 19 mm

diameter steel rods. The plates are clamped to the rods after fine adjustment of

the vertical clearances of the submerged components. The rod-plate combination

provides thrust and radial support to the bearings. Deflection of the plate stack is

prevented by Aluminum tensioning straps which run from the frame to the rods.

The entire bearing assembly is removed from the axles and frame before

disassembly. If a seal needs to be replaced the bearings and plates above that seal

are removed to allow the seal to pass over the axles.



3.1 Rotating Assembly 55

Bearing

Seal landing
area

Submerged bearing
landing area

Su
bm

er
ge

d 
po

rt
io

n

Bearing adapter bushing
Bushing clamp

Thrust clamp

Axle

Axle flange (rings) or Inner cylinder

Figure 3.6: Diagram: clamp components and arrangement to fix ball bearings to
axle. Photo: The bearing stack portion of the frame which supports the bearings
and ensures concentricity.
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3.1.4 Dynamic Pressure

The fluid rotational profile developed in gap between the cylinders is pressure

supported:
∂P

∂r
= ρrΩ2,

where P is the pressure at radius r and ρ is the fluid density. In the absence of

vertical pressure gradients, the surfaces of the end rings which face the

experimental volume must also support this pressure. The fluid in the volumes

between the rings, and between the outer cylinder and outer ring do not have a

rotation profile identical to that of the bulk flow: this profile is approximately

solid body rotation. The pressure generated by the solidbody rotation is a small

correction to the bulk flow pressure profile. Therefore the pressures in the

non-experimental fluid volumes are approximately equal to the bulk pressure

where a vertical gap provides a link to the bulk flow. This is diagrammed in

Figure: 3.7 along with pressure profiles for an ideal circular-Couette experiment.

During the hydrodynamic experiments presented in Chapter 4, the pressures

developed across the end rings was insufficient to disrupt the experiment

operation. Interference of the rotating components were observed during

high-speed testing in water, when preparing to switch over to GaInSn operation.

As shown in Figure: 3.8, interferences of four components occurs. At the point

marked ”A”, the upper outer ring was drawn up against the outer cylinder top

cap. The deflection away from the bulk fluid occurred for two reasons. One was

that the ring was too close to the cap to allow propagation of the bulk pressure

along the entire top surface of the end ring. The second is that the equilibration

hole between the upper outer and inner rings caused the bulk of the outer ring to

experience the lower pressure of the ring gap. Blocking the equilibration hole

confirmed that this pressure differential was the cause of the problem. At the
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Figure 3.7: Pressure versus radius for ideal circular-Couette flows generated by the
MRI speed profiles.

point marked ”B”, the inner rings are being pushed against the inner cylinder by

the ring gap pressure. Here, the combined-load bearings for the inner rings had

too much axial play to maintain a proper clearance. The interference of the inner

rings with the inner cylinder could be eliminated by adjusting the vertical spacing

of the upper and lower rings. However, this would introduce interference

between other components.

To permanently fix the dynamic pressure problem, a series of holes were drilled

vertically through the end rings, as shown in Figure: 3.9. The holes are 5.10 mm in

diameter drilled at eight radii on the inner and outer end rings. The radial

spacing is approximately 34 mm. The effect of the holes on the mean rotation

profile was not measured. However, the vertical boundaries are already turbulent

and any radial circulation should be negligible due to the small flow rates

required to relieve the pressure. This was born out by observing the deposition of
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an ATF-water emulsion that formed when ATF leaked in to the vessel past a worn

seal. The pink emulsion was deposited only between the outer two holes of the

upper end ring and along the inner cylinder axle - where it was well separated

from the bulk fluid. The surface of the inner cylinder remained free of oily

deposits.

3.2 Fluids

The working fluids of the PRINCETON MRI EXPERIMENT are water,

water-glycerol mix and a gallium alloy consisting of gallium, indium and tin

which is eutectic and liquid at room temperature. The properties of the fluids are

listed in Table: 3.2. The kinematic viscosity of water at room temperature is

approximately three times that of the gallium alloy. This allows us to evaluate the

operation of the experiment and determine its suitability for a search for the MRI

in a readily available and easy to diagnose fluid. The water-glycerol mixture

allows us to decrease the Re of the experiment to overlap the highest Re

achievable in simulations of the experiment.

Table 3.2: Properties of experimental fluids

Density
(103kg/m3)

kinematic
viscosity

magnetic
diffusivity

refractive
index

Fluid (10−6m2/s) (m2/s)

water 1.0 1.0 NA 1.33
water(.25)- glycerol(.75) 1.2 15.0 NA 1.43
Ga(.67)-In(.21)-Sn(.12) 6.3 0.3 0.2 NA
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Figure 3.8: Mechanical interference due to dynamic pressure. A: Low pressure
above the outer ring causes the ring to be lifted against the outer cylinder top
cap. B: High pressure in the ring gap causes a large thrust load on the submerged
bearings which exceeds the peak torque of the inner cylinder drive.

Figure 3.9: Holes drilled vertically through end rings to relieve pressure
differential. Also visible are the solenoid coils used to produce the axial magnetic
field for MHD experiments, and the mounting brackets of the four pick-up coils
array. There is insufficient clearance between the outer cylinder end caps and
solenoid coils to accommodate installation of the diagnostic arrays after assembly.
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3.2.1 Special considerations for working with GaInSn alloy

When exposed to oxygen liquid gallium forms a protective oxide layer on its

surface. If that layer is mixed in to the bulk, the layer will break up and surround

smaller amounts of un-oxidized gallium [Morley et al., 2007]. If the process is

allowed to progress the result is a spongy metallic sludge. To prevent this from

occurring in the PRINCETON MRI EXPERIMENT oxygen levels are kept to a

minimum using positive argon pressure in the vessel and a closed-loop transfer

system to move gallium into and out of the experiment. The transfer system also

includes a weak bath of HCl to recover the gallium which is trapped by the

oxides, as well as convert some of the oxides back to pure gallium.

3.3 Stationary Components

3.3.1 Experiment Frame

The experiment frame provide mechanical support for the rotating apparatus,

motors and transmissions, seal cooling apparatus, magnet coils and diagnostics.

The frame consists of a rectangular Aluminum structure mounted to triangular

legs through two bronze bushings. The bushings allow the frame to be rotated on

to its side during assembly and disassembly. Either upright or on its side, the

frame is prevented from rotating by bolts securing it to the legs. The legs are

bolted to the lab floor. In the plane of rotation the frame assembly is stiff enough

to resist dynamic loads from the rotating components. Stiffening legs are bolted

from the top sides to the floor when running at high speed to damp vibrations

perpendicular to the plane of the legs.
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3.3.2 Magnet Coils

Six magnet coils surround the experimental volume of the rotating apparatus as

shown in Fig: 3.10. The coils are water-cooled multi-turn Copper. The two center

coils have 67 turns and the remaining four have 72 turns. The midplane of the

solenoid is coincident with the fluid midplane.

The upper three coils are wired in series, as are the lower three. The two

series-connected sets are powered in parallel by a 480VAC diode rectifier. The

coils are capacitor-bypassed to reduce current ripple from the diode’s switching.

The total bus current is measured for each experiment shot.

The rectifier current setpoint is determined by an analog voltage generated by the

PC. A dead reckoning technique is used to determine the appropriate voltage

when a new target current is required.

CL

Fluid
volume

80mm

43mm

22mm

r2
r1

rc =273.0 mm

Figure 3.10: Location of solenoid coils relative to fluid experimental volume. The
center two coils have 67 turns of 6.3x6.3 mm Cu conductor, the other 4 have 72
turns.



3.4 Drives and Control 62

3.4 Drives and Control

Each rotating component is driven by a motor mounted on the experiment frame.

Motor specifications and maximum mechanical rotation speeds are given in

Table: 3.3. Power transmission is accomplished through combinations of 1/2-inch

wide 3/8L timing belts and associated pulleys. Transmission ratios are listed in

Table: 3.4.

In the water experiments all four motors were permanent magnet DC type. The

inner cylinder was powered by a uni-directional KB Electronics KBCC-225 SCR

drive. The time constant of the KBCC-225 was modified to 0.1 s from the stock

0.2 s. The other motors were all driven by KB Electronics KBMG-212D

bi-directional SCR drives which have 0.1 s time constants. The drives are run in

open-loop mode with speed set via computer-controlled analog voltages. The

analog signals are isolated from the PC by KB and KBSI-240D isolators.

For gallium operation, the inner cylinder was upgraded to a 7.5 kW AC motor

with a Leeson SM plus Variable Frequency Drive.

Servo control of component speeds is done by a National Instruments PCI-7344

4-axis motion control card. Velocity information is supplied to the motion control

card from four 4000 count/rev incremental encoders. The control outputs of the

card are analog voltages generated by 16-Bit Digital to Analog Converters (DAC).

The full-scale swing of the DAC output is ±10 V, with a value of 32767

corresponding to +10 V. DAC limits can be set in software to match the

requirements of the motor drive. For the KBMG drives the allowed input voltage

is ±10 V, 0− 9 V for the KBCC and 0− 10 V for the Leeson. Speed and DAC

register values are recorded by the LabView-based experiment control software.

The PID loop of the PCI-7344 updates at 5 ms intervals while the response time of

the drives 0.1 s. To achieve stable operation of the experiment the PID gain
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parameters are set very low (relative to their max).

For each axis, the motion control card calculates a ”Following Error” between the

current state of the axis and its setpoint. In the MRI experiment the axis velocity is

the controlled variable of the servo loop and the Following Error is a time integral

of the velocity error. If the Following Error for an axis exceeds an user determined

threshold, that loop is terminated (”Killed”) and the output DAC is set to zero.

This shutdown will always occur when the target velocity is not reached, with

one exception. Due to the way the card stores velocities in its onboard registers,

the maximum velocity for an axis is subject to the constraint,

v ≤ (65, 536× adecel)− aaccel,

where v is the axis velocity in counts/(sample period), adecel/aaccel is the

deceleration/acceleration rate in counts/(sample period)2. If the deceleration rate

is too low the axis will not achieve its target and will not trigger a Following Error

shutdown. More information on this can be found in the National Instruments

PCI-7344 user manual.

Table 3.3: Motor mechanical specifications

Speed ratings

Component Power (kW) armature
voltage
(V)

Motor
max
(RPM)

Component
max.
(RPM)

Inner cylinder, DC 2.25 180 1750 4112
Inner cylinder, AC 7.5 230 1750 4112
Outer cylinder 0.56 90 2500 833
Inner ring 0 .75 90 2500 2500
Outer ring 0.75 90 1750 700
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Table 3.4: Pulley ratios for the MRI experiment drives

Pulleys

Component Motor Int. 1 Int. 2 Axle Ratio

Inner cylinder 40 17 40 38 2.35
Outer cylinder 16 NA NA 48 0.33
Inner ring 45 NA NA 45 1.00
Outer ring 24 60 60 60 0.40

3.5 Diagnostics

3.5.1 Laser Doppler Velocimetry

The opacity of liquid metals severely constrains the choice for non-invasive

diagnostics for measuring flow velocity.

Because of the difficulty of measuring flow velocities within a liquid metal where

optical techniques are not available, we decided to characterize the

hydrodynamic operation of the apparatus and benchmark the simulations using

Laser Doppler Velocimetry (LDV). Most of the measurements were made using a

Dantec Dynamics Flow-lite two-component model. The unit was rented from

Dantec four times between August of 2005 and June of 2006.

The first two data runs with the Dantec instrument were used to measure the

mean velocity profile to determine the effect of the choice of component speeds,

and its scaling with Re (see Chapter: 4). During the last runs the instrument was

used in coincident mode to measure radial as well as azimuthal velocities. This

provided a direct measure of the Reynolds stress, allowing us to rigorously

determine the presence of subcritical instability [Richard and Zahn, 1999], see

Section: 4.4.1.

Orientation of the LDV diagnostics relative to the experiment are diagrammed in

Figure: 3.11. The inner cylinder was painted black to prevent reflections from
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interfering with the measurement.
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Figure 3.11: Orientations of LDV diagnostics used in the hydrodynamic
experiments. In the axial orientation, 2 components of velocity were measured:
r̂ and φ̂.

Principle of Operation

LDV [Albrecht et al., 2003] uses coherent scattering of laser light from tracer

particles in a fluid to obtain a measurement of the flow velocity. The

measurement for a single velocity component is diagrammed in Fig. 3.12. A laser

beam is split into two components which are then focused to interfere coherently

in a region called the measurement volume, diagrammed in Figure: 3.13. A tracer

particle traversing the measurement volume with a velocity perpendicular to the

beam bisector will reflect a Doppler burst back to the collecting optics.

The burst is the beat frequency between the reflections ofthe two component laser

beam reflected from a particle of velocity vp. For the geometry in Figure: 3.13, the

reflected beam frequencies are Doppler-shifted:

fb ≈
vp · k̂i
λb

(v � c, c = λbfb),
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where the beam is incident with frequency fb and wavelength λb, k̂i is the

propagation unit vector of the i-th beam, i = 1 or 2. The difference frequency of

the two reflected beams is:

∆f = vp ·
k̂1 − k̂2

λb
. (3.1)

The velocity of the particle perpendicular to the beam bisector is simply the

product of the difference frequency with the fringe spacing of the interfering

beams:

vp⊥ = ∆f · dfringe,

Where dfringe = λb/|k̂1 − k̂2|

Because the cosine is even about the origin, only the magnitude of the particle’s

velocity is measured. To obtain the direction of propagation, an offset frequency

may be introduced on one beam. Dantec uses a Bragg cell to do this.

The Doppler burst is focused on to an optical fiber and sent to a photo-multiplier

tube. The Dantec system continuously samples the detector voltage and writes it

in a round-robin fashion to buffers in a dedicated Burst Processor. A burst is

detected by continuously fitting for a DC envelope. When one is detected, the

envelope is subtracted out and the autocorrelation of the remainder is used to

determine the Doppler frequency. This method of detection requires no filtering

of data during analysis. The transit time of the tracer particle through the

measurement volume is obtained from the fit to the DC envelope.

The Flow-lite uses two lasers of different colors (red and green) to measure two

orthogonal velocity components. In Figure: 3.12, the second laser pair is oriented

in the plane perpendicular to the page. The two velocities can be measured in a

coincident mode where a valid measurement is generated only if a Doppler burst

for each laser occurs within a small time window. The window for our correlation

measurements was of order 10 µs.
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The Dantec probe head is mounted on a 3-axis traversing stage which is

controlled by the diagnostic software.

Calibration

Fringe spacing, dfringe, and propagation angle, θi, are constants internal to the

LDV measurement. No calibration of the velocity is required if the beams pass

normally through a window of constant index of refraction. This is because the

index of refraction appears in both the numerator and denominator of

Equation 3.1. The curved surfaces of the outer cylinder introduce position

dependencies in to the velocity measurement.These must be corrected as well as

the radial location of the measurement volume which is, in general, a function of

the changes in refractive index through which the beams travel.

Calibration for radially-acquired data

For profiles that were acquired with the probe head mounted radially, the beams

measuring azimuthal velocity pass through the curved surface of the acrylic (with

index of refraction of 1.49) outer cylinder as diagrammed in Figure: 3.11. The

curvature causes a change in beam angle of incidence as the probe head is

scanned radially. The beam bisector is centered on the experiment axis of rotation

and the beam separation is small compared to the outer cylinder radius,

db/2� r2, therefore the derivative of θi with radius is approximately small and

constant. Calibration of the data then involves linear corrections to radial location

and velocity.

Solidbody rotation is used for the calibration process because as long as the fluid

has been given sufficient time to equilibrate with the cylinders, the velocity

profile is known a priori:

v(r) = Ωr. (3.2)
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Figure 3.12: A: Components of a 1D-LDV measurement. B. Decomposition of the
Doppler burst into AC and DC components.
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Figure 3.13: Measurement volume defined by the region of interference of two
Gaussian laser beams.

Figure: 3.14 diagrams the determination of calibration parameters. The

calibrations for velocity and radius commute, but velocity correction requires a

calibrated radius, which we do not have. Therefore, the radial calibration is

performed first. Assuming the derivative of the radial error approaches zero as

the measurement volume approaches r2, the correct location of the i-th

measurement is:

ri = r2 − (y2 − yi) ·
r2 − r1

y2 − y1

, (3.3)

where y1(y2) is the location of the inner(outer) cylinder in the traverser

coordinates.

The cylinder walls are located by scanning the measurement volume across them,

see Figure: 3.15. As the inner cylinder enters the measurement volume the large

reflective area causes a jump in the data rate which peaks at the center of the

volume and goes to zero when the beams are interrupted before they intersect.

The beam intensity is Gaussian and the number of scatterers on the surface is

approximately constant, therefore as long as the data rate is not limited by the

burst processor pipeline the count rate is also Gaussian. The data rate and fit to it

are plotted in Figure: 3.16 for the October 2005 experiments. The mean is the

location of the inner cylinder and the length of the measurement volume is given
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by the FWHM. For the data shown r1 is located at y1 = 4.2 mm with a radial

extent of c0 = 1.7 mm. More details can be found in Appendix: A.

For the Flow-lite unit, the data rate is limited by laser intensity which was less

than 3 mW. Near the inner cylinder the intensity is such that the data rate is less

than 1 Hz. As the probe volume is scanned outward from the inner cylinder, the

data rate increases exponentially as fewer photons are lost due to scattering.

When the edge of the probe volume overlaps the outer cylinder the data rate

follows a new exponential curve. On the log-linear plot of Figure: 3.15 the

intersection of the two scalings shows the location of the outer cylinder at

x2 = 120.5 mm + 2c0/2 = 121.3 mm.

Applying the radius correction to the raw data yields curve 2 of Figure: 3.14A. A

least-squares fit to this line is used,

χ2 =
N∑
i=1

(
vmeas,i − (a+ bri)

σi

)2

,

to determine the coefficients a, b from ri, vmeas,i. Then, by Equation 3.2, the

calibrated velocity is,

v(r) = vmeas
Ωsbr

a+ br
. (3.4)

The solidbody data calibrated by this method is shown in curve 3 of Figure: 3.14A.

The upper limit for the runout was estimated from time series LDV data acquired

near the inner cylinder. During a calibration run, the measurement volume

slightly overlapped the inner cylinder. As the high spot swept through the

volume, the data rate changed substantially. The high and low data rates are

marked on Figure: 3.16 by the horizontal bars. The horizontal distance between

the intersections of the bars with the fit data-rate profile indicate that the runout is

a maximum of 0.76 mm.
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Figure 3.14: A. Steps employed to calibrate radius and velocity for radially-
acquired LDV data at a height of 76 mm. N.b. during set-up of the diagnostic,
the approximate location of the inner cylinder in the traverser coordinates was set
to 0. B. Residual error after application of the calibration routine to the two radial
scans used to perform the calibration. The large variance at the interior points are
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Figure 3.16: Scanning the LDV measurement volume across the inner cylinder
wall provides a measurement of the wall’s location in the traverser coordinates
(abscissa). The data rate (ordinate) is proportional to the intensity of the lasers.
The data rate is fit to a Gaussian, dotted line. The horizontal bars were used in a
measurement of the run-out of the inner cylinder.
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Calibration for axially-acquired data

It was originally assumed that in the axial orientation, the velocity data would not

require correction because the flat surface of the end cap and the probe head’s

normal orientation would allow the index of refraction effects to cancel out. In

turned out to be the case that a constant velocity offset was present in this

orientation: most likely due to an axial misalignment of the probe head. Angular

misalignment was less than 1◦ and cannot account for the magnitude of the offset.

Furthermore, the measurement of radial position of the probe head was

unreliable, so solidbody data could not be used for calibration. To correct the

velocity and position in this orientation relies upon the velocity profile for the

experiment running in the Ekman configuration where the end caps co-rotate

with the outer cylinder, see Chapter: 4. The procedure is diagrammed in

Figure: 3.17. Over the outer ring, the Ekman profile features a knee where

solidbody-like velocities near the outer cylinder transition to shear flow driven by

the inner cylinder. The profile is radially translated, and a constant offset added

to the velocity to align the linear portions of the data.

The result published in [Ji et al., 2006] using the original calibration states that the

data was acquired at a radius of 170 mm. The correct radius is 179 mm. The

essential results are independent of the magnitude of velocity and remain valid as

published.

3.5.2 Errors in LDV measurement

Particle entrainment and fluid loading

LDV is a reliable estimator of a fluid velocity if the tracer particles are well

coupled to the flow. A particle is considered to follow the fluid flow exactly when

the ratio of particle to fluid timescales is smaller than 0.01 [Rogers, 1991]. This
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Figure 3.17: An Ekman profile is used to calibrate the radial location and velocity
offset of LDV data acquired in the axial orientation.

ratio is the Stokes number,

Stokes number =
τp
τf
, (3.5)

where subscript ”p” refers to the particle and ”f” is the fluid. For the PRINCETON

MRI EXPERIMENT the LDV seed particles are silver-coated hollow glass beads

supplied by Potters Industries Inc. The beads have an average diameter,

dp = 15 µm and average density of ρp = 1.6 gm/cm3. For Stokes drag, a particle

timescale is:

τp =
ρp
ρf

d2
p

18ν
, (3.6)

where ν is the kinematic viscosity of the fluid. Using this formula, the particle

timescale for our seed particles is ∼ 10−5 s. For a choice of fluid timescale based

on either viscosity or Ekman effects, τf ≥ 1 s and the Stokes number satisfies the

entrainment criterion.

The particle mass loading is defined as the ratio of particle mass flux to fluid mass
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flux through a given volume. It is possible for the particle loading to alter the

properties of any turbulence that may be present if it exceeds about 1% [Rogers,

1991]. The fluid volume between the cylinders is ≈ 3× 107 mm3. The volume of

seed particles added to the flow was not well controlled but did not exceed

20 mm3. Therefore there is no impact on the fluid flow due to the presence of the

particles.

Errors for radially acquired LDV

The errors in the radially acquired LDV data are dominated by the optical defects

of the outer cylinder. The index of refraction of acrylic changes with local stress

and also the cylinder has a substantial deviation from circularity. Without careful

in situ measurements it is not possible to determine which of the two effects is

more important. They affect the data by introducing deviations into the

propagation vector, kb. Each deviation adds an offset to some number of samples

taken from the Gaussian velocity distribution inherent to LDV. By the Central

Limit Theorem, for a large enough number of samples the noise distribution will

also tend to a Gaussian which must be wider than that of the true LDV

measurement. A plot of the distribution of velocity measurements for a solidbody

profile is shown in Figure: 3.18.

In addition, defects at different spatial separations on the cylinder wall contribute

to the error as the probe is scanned radially. There is no reason to assume that the

acrylic defects maintain the linear corrections to radius and velocity that are the

foundation of the calibration procedure described above. However, insufficient

data was acquired to characterize fully the solidbody data’s deviation from a line.

The calibration averages over solidbody data acquired at several axial locations to

produce the constants used in Equation 3.4.



3.5 Diagnostics 77

-1.02 -1.00 -0.98 -0.96 -0.94 -0.92 -0.90
v (m/s)

10-1

100

101

c
o
u
n
t
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bin. The dashed line is a Gaussian fit to the data. Optical defects in the acrylic
outer cylinder wall cause individual Doppler bursts to be shifted by an arbitrary
amount.
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Errors for axially acquired LDV

Like the radial data, the axially acquired velocities also suffer from distortion due

to acrylic defects. The effect of broadening the distribution and introducing

extreme outliers is nearly identical to that shown by Figure: 3.18. The effect of the

optical defects could have been to decorrelate vr and vφ. If this were the case the

effect would have been extremely difficult to correct for, or even measure. Solid

body rotation has no gradient of angular velocity and therefore the velocity

correlations are identically zero. In this case, decorrelation by optical defects

would have mapped zero onto zero. Instead we found that solid body rotation

had non-zero correlation. This offset was used to correct correlations in flows

with non-zero shear.

Errors associated with flow properties

It is possible for the flow properties to introduce errors into the LDV

measurement [Albrecht et al., 2003]. In particular, a velocity gradient along the

length of the measurement volume will broaden the spread of velocity:

∆v = ∇v · c0,

where c0 is the length of the measurement volume, see Figure: 3.13. The

maximum shear in the absence of turbulence occurs at r1 on the Rayleigh stability

boundary: ∂vφ/∂r = −br−2. For 10% flow at the mid-radius ∆v/v̄φ is expected to

be 1.3%, for solid body rotation we measure σvφ/v̄φ ≈ 1.3%. Therefore spreading

due to the velocity gradient is less than the spreading due to optical defects.

Error estimation

The total velocity error involves both systematic and random errors. By shifting

and broadening the measurement distribution, the acrylic defects are the



3.5 Diagnostics 79

dominant contributor to both errors. From Figure: 3.18B, after calibration the

systematic error is less than 1% over most of the experimental volume. This

calibration error is not affected by the number of samples in a measurement. The

distribution of a measurement is broadened by the defects, but the error on the

estimate of the mean is still reduced by increased sample size. The combination of

the two error sources gives an estimate for the error on a measurement of a mean

quantity:

σtotal =
√
σ2
random + σ2

systematic, (3.7)

where σrandom = σv/
√
n. Here, σv is the standard deviation of velocity distribution

and n is the number of samples in the measurement.

For the correlation experiments, the systematic error appears as an offset which

can be eliminated by subtracting the correlation measured for solidbody rotation.

In this case we are left with only the random error associated with estimating

distribution properties from a finite sample population.

3.5.3 Magnetic Diagnostics

Magnetic Pick-up Coils

When the MRI is destabilized by an appropriate applied solenoidal field, its

signature is the amplification of radial and azimuthal fields. In the experimental

apparatus fluctuations of the radial component of the field will propagate

external to the outer cylinder and may be detected with diagnostics fixed to the

experiment frame. The simulations by Liu [Liu, 2007] for rotation at 45% of full

speed indicate that during the linear growth phase of the MRI, the radial field

component at the radius of the solenoid coils will have a time derivative on the

order of 0.1 G/s with a maximum amplitude of order 1 G. Pick-up coils were

chosen to measure this field for two reasons: 1) they are insensitive to the DC
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portion of the applied magnetic field. 2) because of reason 1, the coils do not need

to be precisely aligned - which would be extremely difficult to do in the confined

space between the outer cylinder and solenoid coils.

A photograph of a magnetic pick-up coil is shown in Figure: 3.19. There are 39

localized coils formed of 400 turns 36 gauge Cu wire on 7.6 mm diameter

fiberglass bobbins. They have an average effective area of 0.014 m2 and resistance

of 20 Ω. The effective areas were measured using a Helmholtz coil driven by an

audio amplifier. A typical calibration curve is shown in Figure: 3.22. The

arrangement of the coils around the fluid volume is diagrammed in Figure: 3.20.

In addition to the small pick-up coils a saddle coil with an effective area

comparable to the localized coils was wound on a 25 mm wide Kapton tape. This

coil was wound around the inner diameter of the solenoid coils, on the

experiment midplane. The effective area of the saddle coil is estimated to be

0.01 m2. The coil is largely immune to non-axisymmetric effects but is not circular

enough to completely eliminate them.

3.5.4 Pick-up coil amplifiers

To maximize the signal-to-noise ratio of the pick-up coil measurement each signal

is amplified before transmission to an Analog to Digital Converter (ADC) in the

PC. Figure: 3.23 shows the output of a prototype coil-amplifier combination. The

amplifier has a gain of 1000 and passband of DC – 15 kHz which is well above the

roll-off of the pick-up coil. The signal is dominated by ripple currents in the

solenoid coils at 60, 120, and 360 Hz.

To reduce sensitivity to the ripple currents and add the possibility of using gains

higher than 103 a filter-amplifier was developed around the Maxim MAX7401[url]

8th-order switched-capacitor Bessel filter. The circuit diagram for the filter is
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Figure 3.19: Left: Hall probes, Right: Pickup coils
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Figure 3.20: Arrangement of magnetic pick-up coils. 36 localized coils are
mounted on 4 vertically-oriented arrays. Three additional coils are located on the
experiment midplane at the indicated azimuthal angles.



3.5 Diagnostics 82

17.8mm35.1mm35.1mm35.1mm

9.1mm24.4mm98.5mm6.7mm 108.3mm 6.7mm

Mirnov Coils

Hall probe

boards

Axial

hall probe

Radial

hall probe

Hall probe

active area

Figure 3.21: Location of localized pick-up coils and Hall probes. Nine pick-up coils
are distributed vertically along the array. The full Hall probe array shown here is
only implemented on Array 2. Array 4 has Hall one axial and one radial Hall probe
mounted identically to the middle two probes.

0 1000 2000 3000 4000 5000 6000
w (rad/s)

0

1

2

3

4

5

6

7

Co
il 

ou
tp

ut
 (m

V)

Calibration of Array 4, Coil 1

Figure 3.22: Calibration data for pickup coil array #4, coil 1. The dashed line
is a fit to the linear portion of the curve, yielding the effective coil area. A
Helmholtz coil was used to provide a spatially-uniform magnetic field which
oscillated sinusoidally with frequency ω., the amplitude of the applied field is
approximately 5 G.
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shown in Figure: B.1. The MAX7401 is a single-supply filter with a

clock-selectable knee-frequency ranging from 1Hz to 5kHz. The pick-up coil

signal passes through an Analog Devices AD622 instrumentation amplifier with a

gain of 100. The output of the AD622 is referenced to +2.5 VDC to accommodate

the filter’s input voltage requirements. The filter output is sent to another AD622

with a gain of 10, and a ground-referenced output. The gains of the AD622s are

resistor selectable up to a gain of 1000, each. The selected gain of 1000 was chosen

as a good balance between sensitivity and dynamic range.

The data acquisition card in the PC is used to generate the clock signal for the

filter. The clock frequency is software selectable for each experiment shot. The

knee-frequency of the filter is the −3 dB point and its relation to the clock is

fknee = fclock/100. The filter-amplifier performance on a low frequency test signal

is shown in Figure: 3.24

Hall Probes

Eight Hall probes measure the applied field. Six Hall probes are vertically

positioned as diagrammed in Figure: 3.21. An additional two probes are located

180◦ from the others. Four Hall probes are oriented measure the vertical magnetic

field with a range of about 6 kG. The other four are radially oriented with a range

of ±1 kG. Calibration of the Hall probes mounted in the MRI experiment was

performed against a Gaussmeter.
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Figure 3.23: Output of Pickup coil after being amplified by 1000, sampled at 1 kHz.
No filtering has been done. Strong signals at 60, 120, and 360 Hz are due to rectifier
current ripple on the solenoid coils.
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Chapter 4

Hydrodynamic Experiments

The hydrodynamic experiments were conducted with a Dantec Flow-lite LDV

system between August 2005 and June 2006. The current apparatus was designed

to achieve a better approximation of ideal circular-Couette flow than the

prototype. The initial experimental goals were to meaure the success of the new

design in approximating the ideal flow. The measurements consisted of the radial

profile of angular velocity, and its scaling with Reynolds number.

Measurements of the radial profile of mean azimuthal velocity, v̄φ(r, z), under the

action of differentially rotating end rings were first reported by Burin [Burin et al.,

2006]. These results confirmed that the split end-ring design reduces the impact of

Ekman circulation on the bulk flow. We also inferred from the small fluctuation

levels, σvφ/v̄φ ∼ 1− 2%, there was no evidence of vortices driven by residual

boundary circulation.Such vortices were predicted by simulations which had

been highly successful in matching the qualitative flow properties of the

prototype experiment[Kageyama et al., 2004]. In addition, we found no evidence

of a Stewartson layer forming near the gap in the end rings, as was predicted by

Hollerbach and Fournier[Hollerbach and Fournier, 2004].

After optimization of the end ring speeds, the mean profile was found to be a

86
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significantly better approximation of the ideal circular-Couette solution than the

simulations predicted. Based on the simulations we expected the end rings to

disrupt the apparatus-filling two-cell structure of the Ekman circulation. The

residual Ekman circulation would then produce multiple smaller cells within the

flow.

Combined with the vertical access for optical diagnostics and a two-component

LDV system we saw that we could make a direct measurement of the φ̂-r̂

component of the Reynolds stress tensor. The hydrodynamic experiments were

therefore extended to look for evidence of Subcritical Hydrodynamic Instability

(SHI) in quasi-Keplerian flows. Prior to this the work of Richard [Richard, 2001]

was the only experimental investigation of the stability of quasi-Keplerian flows

near (but below) the Rayleigh stability line. Richard observed a qualitative

change in the flow using a Kalliroscope imaging method and also a jump in

fluctuation levels of vφ using single-component LDV. From these he inferred that

a hydrodynamic instability was present.This was interpreted as corroborating the

estimate by Richard and Zahn[Richard and Zahn, 1999] of astrophysically

relevant angular momentum transport due to SHI. That estimate, in turn, was

based on the torque measurements of Wendt[Wendt, 1933] and Taylor[Taylor,

1936] in the cyclonic regime. The flexibility of the MRI apparatus, combined with

the precision and the non-invasive nature of LDV provided us with a unique

opportunity to directly perform a sensitive transport measurement in the

quasi-Keplerian regime while able to distinguish effects due to the vertical

boundaries.

Finally, an unambiguous observation of the MRI requires detailed knowledge

about the hydrodynamic state of the background flow in which we wish to

observe it. The required knowledge consists of a measurement of the radial profile

of mean azimuthal velocity, the scaling of that profile with Re , and the presence
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of boundary flows which may interact with the applied magnetic field to obscure

or suppress the MRI. The set of experiments with the Dantec LDV provided us

this detail at sufficient precision to make a detection of the MRI unamiguous.

4.1 Profile nomenclature

For a given ratio of inner cylinder to outer cylinder speeds Ω1/Ω2, a wide range

of flow properties can be established through the choice of end ring speeds.

These flows are not well parameterized by the common dimensionless numbers

employed for discussion of rotating flow. Therefore, we employ an ad hoc naming

convention to distinguish the profiles. Table:4.1 lists the component speed ratios

relative to Ω2 for centrifugally-stable anticyclonic flows. Ekman refers to the

configuration in which both rings rotate with the outer cylinder. In the Split

configuration the inner ring rotates with the inner cylinder , and the outer ring

rotates with the outer cylinder .

The Ekman configuration was chosen to benchmark the apparatus’ performance

against hydrodynamic simulations which were successful in modeling the

prototype experiment [Kageyama et al., 2004]. The split configuration was chosen

in order to make a comparison to previous circular-Couette experiments in which

angular momentum transport was studied. Those experiments include

Wendt [Wendt, 1933], Taylor [Taylor, 1936] and Richard [Richard, 2001]. The

Keplerian profile is chosen to approximate the q = −∂ ln Ω/∂ ln r = 1.5 flow of

accretion disks. MRI labels the configurations with ring speeds optimized such

that the flow is most likely to be unstable to the MRI, q ∼ 1.9 while not

centrifugally unstable. Solidbody refers to the flow profile with zero angular

velocity shear, which provides a baseline from which calibration and

interpretation of velocity measurements are made. Centrifugally unstable and



4.1 Profile nomenclature 89

marginally stable profiles are abbreviated by CUS and MS , respectively.

Throughout the remainder of this thesis, flow profiles will be referred to by the

profile configuration followed by the outer cylinder speed as a percentage of the

full-scale speed , e.g. ”MRI 10%”. The process of determining the optimal ring

speeds for the MRI configuration was iterative. When referring to alternate

configurations, the iteration number will be appended, as in ”MRI a0 10%”.

Reynolds numbers of the profiles used in the hydrodynamic experiments are

diagrammed in Fig:4.1. Wendt[Wendt, 1933] and Taylor’s[Taylor, 1936]

observations of enhanced torque at large Re were made along the horizontal axis

of the figure, where the inner cylinder is at rest. In our apparatus observations in

this cyclonic circular-Couette regime are difficult to interpret due to the sensitivity

of the profile to end ring speeds. In addition cyclonic flows are of limited

relevance to accretion disks and those experiments will not be discussed herein.

Table 4.1: Component speeds used to produce various flow profiles. Speeds are
listed as a fraction of the outer cylinder speed, Ω2.Ω2,max is the maximum rotational
velocity of the outer cylinder, given in radians per second. The Ekman and Split
configurations do not have a well-defined Ω2,max because the maximum speed
is limitied by power dissipation in the seals. The experiment has a mechanical
maximum speed of Ω1 = 418.9 rad/s and Ω2 = 55.8 rad/s. To date the highest
speed tested is 60%.

Profile name Ω1 Ω3 Ω4 Ω2 Ω2,max(rad/s)

Ekman 7.50 1.00 1.00 1.00 n/a
MRI 7.50 2.74 0.77 1.00 55.8
MRI a0 7.50 3.60 1.22 1.00 55.8
Split 7.50 7.50 1.00 1.00 n/a
Keplerian 5.91 2.48 1.09 1.00 55.8
Solidbody 1.00 1.00 1.00 1.00 55.8
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Figure 4.1: Rotation profiles used in the hydrodynamic experiments. Reynolds
numbers of the cylinders are Recyl = Ωcylrcyl∆R/ν, where ∆R = R2 − R1. The
configurations are squares: Keplerian , diamonds: MRI , circles: Ekman ,
downward-triangles: Split , leftward-triangles: MRI with glycerol mix, cross:
marginal and centrifugally unstable with outer cylinder rotating, filled rightward
triangle: centrifugally unstable with the outer cylinder at rest. Solidbody profiles
(not shown) were used for calibration.
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4.2 Study of radial profile of azimuthal velocity

4.2.1 Profile control via end rings

Radial scans of profiles which are globally stable to the Rayleigh criterion are

plotted in Fig:4.2. The figure compares the Ekman , MRI and Split

configurations. The scans were performed at the apparatus quarter-height,

0.25h = 76mm, measured from the top surface of the lower end ring. For each

profile the measurement volume at the point r = 71.9mm is overlapping the inner

cylinder and should be interpreted as a measurement of the boundary speed. The

ideal circular-Couette solution for 10% in our geometry is plotted as the dotted

line. No fit has been attempted in this figure.

Surprisingly, the Ekman configuration produces a flow in which the azimuthal

velocity has everywhere a negative radial gradient . This is in contrast to the

profiles of both the prototype experiment [Kageyama et al., 2004] at

(η ≡ h/∆R ∼ 1, where h is the cylinder height) and Richard [Richard, 2001]

(η ∼ 25). Those experiments , at smaller and larger aspect ratio, respectively,

feature a radius at which ∂vφ/∂r changes sign for the Ekman configuration. This

transition indicates a region of the flow which rotates rigidly with the outer

cylinder.

The split configuration cannot be compared with the prototype because that

apparatus was only able to operate in the Ekman style. Richard found (see Fig:

4.2 of Ibid.) that the split style eliminated the change in sign of ∂vφ/∂r, though a

zero does appear at a radius two-thirds across the experimental volume,

r − r2 ' 0.6d. In our split configuration ∂vφ/∂r does change sign, but ∂Ω/∂r < 0

everywhere which satisfies the criterion for producing the MRI. However, there

are substantial secondary circulations driven by the boundaries, including a

centrifugally unstable layer which must exist between the point measured near
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195mm and the outer cylinder . Boundary layers and secondary circulation will

be discussed in Sections 4.2.4 and 4.4.1.

The MRI profile is the sixth iteration attempting to minimize the difference

between the ideal circular-Couette and the measured azimuthal velocity profiles.

Fine tuning of the profile is demonstrated in Fig:4.3. The initial attempt, a0, was

obtained through a trial and error optimization process using the simulation of

Kageyama et al [Kageyama et al., 2004].

Table 4.2: Fit to circular-Couette Profiles for MRI and Ekman 10%, Ω1,2 are fitting
parameters.

Configuration radial interval Ω1 RPM Ω2 RPM χ2/dof

MRI 72–200 403.0 51.6 2.2
Ekman 72-195 358.1 49.7 5.7

Table 4.3: χ2 for alternate MRI 5% profiles plotted in Figure:4.3. The inner (outer)
ring angular velocity Ω3(Ω4) is listed as a ratio to the outer cylinder speed.

Configuration Ω3/Ω2 Ω4/Ω2 χ2/dof

MRI 2.74 0.77 2.4
MRI a0 3.41 1.24 148.5
MRI a1 3.00 1.12 28.2
MRI a2 2.81 1.05 17.0
MRI a3 2.62 1.00 6.1
MRI a4 2.62 0.77 3.7
MRI a5 2.81 0.77 2.8

4.2.2 Reynolds scaling of mean profile

MHD experiments with the GaInSn alloy will be initiated without a velocity

diagnostic. The kinematic viscosity of the alloy is about one-third that of water.

Due to the speed limitations of the motor transmissions, a scaling of the mean
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Figure 4.2: Velocity profiles at 10%, measured at z = 76 mm. Error bars are
uncertainty based on the calibration. Dotted lines are the ideal circular-Couette
profile.
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profile with Reynolds number must be relied upon for our knowledge of the fluid

state for high-speed liquid metal experiments. A scan of the MRI configuration

was performed over the range Re ∼ 1 · 104 to 1.3 · 106. Fig:4.4A plots the results of

these scans. The profile remains a good approximation to the ideal

circular-Couette profile throughout the range of Reynolds number. To within

about 3%, doubling the component speeds results in a doubling of the mean

azimuthal velocity.
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4.2.3 Comparison to simulation

A primary goal of the PRINCETON MRI EXPERIMENT is to provide a laboratory

benchmark for codes used to simulate accretion disks. In pursuit of this goal,

three codes have been adapted or developed to simulate the experiment. The first

code is an incompressible, 2D, axisymmetric hydrodynamic solver. It was written

as part of the prototype experimental campaign. Details of the code and

experimental results can be found in [Kageyama et al., 2004]. The other two codes

include MHD effects, and were used to perform simulations of both

hydrodynamic and MHD experiments with the new PRINCETON MRI

EXPERIMENT apparatus. Wei Liu[Liu, 2007] adapted the 2D, axisymmetric,

compressible MHD code ZEUS-2D for use with the insulating and

partially-conducting boundary conditions of the experiment. The third code is a

3D spectral element solver developed by Fischer, Obabko and Cattaneo[Obabko

et al., 2006] Argonne National Laboratory and the University of Chicago.

Kageyama’s simulation of the prototype was extremely successful in reproducing

qualitative features of the experimental mean profile of azimuthal velocity. The

data of Figure 9 in [Kageyama et al., 2004] is reproduced in Figure: 4.5. The

overlap of the simulated and experimental data indicates that the simulation

captures the most important physics despite being reduced in Reynolds number

by a factor of more than 300 from that of the experiment and 2D.

Also plotted are simulated and experimental profiles of the new apparatus

operating in the Ekman configuration. The ZEUS 2-D code was used at Re ∼ 104

and the experiment performed at 105. The expectation was that the reduced

difference in Re would produce agreement at least as good as that achieved for

the prototype. Instead, there is no longer any region over which the simulated

and experimental profiles overlap. Comparison with the 3-D simulations as well
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Figure 4.5: Comparison of agreement between simulated and experimental
profiles for both the prototype and current apparatus. The excellent qualitative
agreement achieved for the prototype has been lost with the new apparatus.
Prototype velocity data is indicated by the crosses, which were measured via
Particle Tracking Velocimetry at Re ∼ 106. Simulation of the prototype used the
2D code by Kageyama[Kageyama et al., 2004] and was performed at Re = 3200.
Simulation of the new apparatus used the ZEUS 2-D code[Liu, 2007] at Re ∼ 104.
The Reynolds number of the experiment with the new apparatus is∼ 105. In panel
A, the profiles have been normalized to their respective ideal circular-Couette
profiles based on the speeds of the cylinders. Angular velocity is plotted in panel B,
normalized by the rotation rates of the cylinders.The experiments and simulations
are located near the quarter height of each apparatus.
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as ZEUS 2-D are shown in Figure: 4.6. The 3-D simulation agrees with the 2-D

results indicating that the discrepancy generated by the new apparatus is not

simply ”3-D effects” acting within the bulk of the flow. At the time of the

simulation, the model of the apparatus reflected our best knowledge of the

mechanics of the experiment.

To rule out the possibility that the discrepancy was due to effects not captured by

the lower Reynolds number of the simulations we replaced the water with a

Glycerol-water mixture. The Glycerol to water ratio was tailored to reduce the

experimental Re by a factor of 15.0 to coincide with that of the simulations (for

details of the mixture, see Sec:3.2). Though improved, the agreement was still not

comparable to that achieved for the prototype. The solution was hinted at when

the Chicago group [private communication] added to the inner cylinder boundary

condition a velocity white-noise with ∆v/v = 1% in order to approximate

possible effects due to the inner cylinder runout. Though the 3-D simulation was

designed to include few approximations of the physical apparatus to gain as

much insight as possible in to the physics of the flow, the white-noise prescription

was very successful in restoring agreement with the experiment.This indicated

that a disruption of the boundary flow was responsible for the performance of the

apparatus.

Knowing that the simulations could match the experiment by destroying the

coherence of the boundary layer flow, we needed to next identify where the

disruption was taking place in the apparatus. The performance of the experiment

in the Ekman configuration, where there was no attempt at optimization of the

flow, indicated that the improvement in approximation of ideal circular-Couette

flow was not due to a particular choice of end ring speeds. This pointed to

differential rotation of the inner ring with respect to the inner cylinder as the

source of disruption. To test this hypothesis, the ZEUS 2-D simulation was run for
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the Split case in order to compare it to the experimental Split profile. A

comparison of the simulation and measurement is shown in Figure: 4.6. Excellent

qualitative agreement has been restored, consistent with the interpretation that

the boundary layer is primarily disrupted at the transition from the inner ring to

the inner cylinder. The mechanism of disruption will be addressed in Section:

4.2.4.
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Figure 4.7: Operation in the Split configuration restores the agreement of the
simulation with the experimental profile. The simulation used here is the 2D
incompressible code of Kageyama. The Re of the simulation is ∼ 104 and that
of the experiment is ∼ 105. Rigid rotation of the inner ring with the inner cylinder
in the Split configuration does not disrupt the boundary layer.
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4.2.4 Disruption of Ekman circulation

In the analysis of the prototype experiment [Kageyama et al., 2004], the boundary

layer was seen to establish a large-scale poloidal circulation which efficiently

transported angular momentum from the inner cylinder to the outer cylinder.

Analysis of the simulations showed that at the end caps the layer was an

axially-thin, radially-inward flow. This flow then turned at the interface of the

inner cylinder to the end cap and became an axial flow which traveled to the

middle of the inner cylinder. At the cylinder midplane the oppositely-directed

axial flows from each end cap merged to form a radial jet. In this model, the

circulation volume for the flow generated by one end cap is then half of the

experimental volume.

From the experience with the prototype, if the PRINCETON MRI EXPERIMENT

apparatus featured no runout of the inner cylinder we should observe a velocity

profile in which at least two poloidal circulation cells are established within the

bulk flow, with one cell driven by each end cap. The runout therefore must either

reduce the size of the circulation regions, or prevent their formation.

The superior ideal circular-Couette approximation developed by our apparatus

when operating in the Ekman as opposed to the Split configuration is opposite

to that seen in other experiments, e.g. Richard’s Figure: 4.2[Richard, 2001]

comparing the two operation modes. In Section: 4.2.3 we demonstrated that

differential rotation of the inner cylinder with respect to the inner ring is the

source of the boundary layer disruption which underlies our experimental

success. When these components differentially rotate, the inner cylinder has a

large runout due to the oversize radial clearances of the submerged plain

bearings. The bearings must be the source of the runout because the cylindricity

of the inner cylinder surface and concentricity with respect to its axle are within
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the limits of standard machine practice. However, the bearings guarantee

concentricity of the inner cylinder to only about 0.25 mm. This is an order of

magnitude larger than the concentricity tolerance of journal or ball bearings used

in such experiments as those of Richard, Wendt and Lathrop [Richard,

2001],[Wendt, 1933],[Lathrop et al., 1992] where the tolerance can achieve

0.01 mm.

Under differential rotation of the inner cylinder with respect to the inner ring a

discontinuity in angular velocity occurs along the curve r → r1, z = 0 where z = 0

is the surface of the lower inner ring which faces the bulk flow (an identical

condition holds for the upper ring so no loss of generality occurs in discussing

only the lower ring). For the anti-cyclonic profiles (other than Split , which does

not feature differential rotation) explored here, the discontinuity is centrifugally

unstable within some region close to the component intersection. Within that

region a boundary layer roll develops, see Figure:4.8A. The radial and vertical

extent of the roll is determined by pressure balance between the roll and the

combined bulk flow and Ekman circulation.

For the PRINCETON MRI EXPERIMENT , the effect of the inner cylinder runout on

the roll is diagrammed in panel B of Fig:4.8. The runout of the cylinder is a

significant fraction of the groove width. As the high side of the cylinder passes it

sweeps the roll out of the groove, similar to an eccentric displacement pump. The

roll is ejected in to the flow near the ring as an eddy. The presence of these eddies

is hinted at in the 5 mm scan of Fig:4.11.

The 5 mm scan of Fig:4.11 has been reproduced in Fig:4.9. The original data is

replotted as solid triangles. The three points between 80 and 115 mm feature a

double-peaked velocity distribution, which has been included in the inset

histograms. The two peaks of each histogram have also been plotted with the

mean profile marked by the diamonds. The lower velocity peak is that of the bulk
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Figure 4.8: A) In experiments with insignificant runout of the inner cylinder,
when the end cap differentially rotates the poloidally-circulating boundary layer
separates from the inner ring then reattaches to the inner cylinder after passing
over a recirculation region. B) In the PRINCETON MRI EXPERIMENT , the runout
of the inner cylinder causes it to sweep a large fraction of the gap between it and
the inner ring. This sweeping motion ejects the roll from the gap preventing the
reattachment of the outer boundary layer.

MRI flow. The difference in arrival time for a velocity from each peak can be as

small as 3 ms which indicates that a velocity discontinuity may occupy the

measurement volume which is less than 2 mm in radial extent. This provides

strong evidence that the upper peaks are eddies being shed by the cylinder-ring

corner.Taking the difference in peak velocities as a measure of the eddy

circulation speed and width of the groove as a characteristic size gives an eddy

turn-over time of:

τeddy ∼
0.001m

0.37m/s
= 0.003s,

which is comparable to the arrival times of the eddies in the data.
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4.2.5 Keplerian profile

The Keplerian configuration was originally intended to produce a nominal

q = 1.5 profile that has an angular velocity shear that is as relevant to accretion

disks as our apparatus is capable. During the January 2006 LDV experiments, an

optimization process similar to that for the MRI profile was performed to

determine optimal end ring speeds.

A comparison of velocity, angular momentum and q for MRI and Keplerian

10% profiles are presented in Fig:4.10. The data were acquired during the third

experimental run with the Dantec diagnostic in January 2006. In the October 2005

data, the largest radius at which the profile was measured was 195 mm, here it is

200 mm. The dip in q at 200 mm for the MRI profile is due to this closer proximity

to the outer cylinder where the flow must transition to match the boundary.
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4.3 Axial Variation of Profile

4.3.1 Axial variation of mean profile

During the initial water experiments, a vertical scan of the mean profile produced

by the MRI a0 configuration was performed. The goal was to determine how deep

into the bulk flow any variation produced by the end rings was propagated. The

profiles are plotted in Figure: 4.11. In the left panel, to aid visual comparison the

profiles have been vertically offset by an arbitrary amount. The profile deviation

seen in the scan at z = 5 mm near the inner cylinder is due to the presence of

eddies (see Section: 4.2.4) shed by the inner cylinder- inner ring gap. The mean

profile within the bulk of the flow shows no significant axial deviation, though

enhanced fluctuation levels can be seen in the z = 5 mm scan.In the right panel of

Figure: 4.11 the effect of the eddies has been removed and the velocities

normalized by the ideal circular-Couette profile.

The consistent depression of the profile from the ideal circular-Couette case for

r ≤100mm indicates that angular momentum is being vertically transported

through the inner ring. Because the end ring speed is lower than the inner

cylinder, a centrifugally unstable layer is likely to exist in this region.

4.3.2 Fluctuations across the full radial volume

Relative fluctuation levels at an axial height of 76 mm for the full radial gap are

plotted in Figure: 4.12. The upper panel compares relative fluctuations in radial

scans of MRI 5,% 10% and 20% with solidbody, Ekman 5% and CUS 5% cases. The

centrifugally unstable case has component speed ratios of

[Ω1,Ω3,Ω4,Ω2]/Ω2 = [11.5, 3.5, 1.3, 1.0], corresponding to the MRI A0 5%

configuration with a faster inner cylinder speed. Solidbody and MRI 10% scans



4.3 Axial Variation of Profile 109

80 100 120 140 160 180 200
radius (mm)

v +
 a

rb
. o

ffs
et

5mm

35mm

70mm

105mm

140mm

60 80 100 120 140 160 180
radius (mm)

0.90

0.95

1.00

1.05

v/
v_

co
ue

tte

35.0mm
70.0mm
105.0mm
140.0mm
5.0mm

Figure 4.11: Left: Radial scans of azimuthal velocity for MRI 5% flow. Velocities
have been offset by an arbitrary amount to ease visual comparison. Dotted lines
are the ideal circular-Couette profile. Right: Azimuthal velocity normalized to
ideal Couette speed. 5 mm scan has had eddies removed from data over the inner
ring, see Section:4.2.4

from the January 2006 run (labeled r3) are also included. The scans were acquired

at an axial height of z = 74 mm. The scatter in fluctuation amplitude between the

inner cylinder and r ' 115 mm is due to low sample numbers. In the MRI 20%

data, optical defects which produced extreme velocity measurements have been

filtered out. ”Extreme” is defined as being displaced from the mean by more than

3 standard deviations, where the standard deviation is computed on all samples

in a measurement (relative to the standard deviation of the filtered data these

points lie in excess of 5 standard deviations from the mean). This filtering affected

only the points inside of 110 mm.

The departure from solidbody levels for the sheared-flow profiles at radii

between the inner cylinder surface and 100 mm is due to optical defects. This

effect is confirmed by comparison with the centrifugally unstable data.

The fluctuation levels near 118 mm are consistent with the inference based on
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Figure 4.12: Top: Relative fluctuations for MRI profiles at 5, 10, and 20%. The data
were acquired at z = 74 mm. Two scans from experimental run 3 (January 2006) are
labeled with the suffix ”r3”. The large scatter in fluctuation level between the inner
cylinder and r ' 100 mm is due to both low sample number and optical defects.
In run 3, January 2006, optical defects make the data acquired at 100 mm unusable
(σv̄φ ∼ v̄φ). Data from Ekman 5% and CUS 5% cases are included for additional
reference. In the MRI 5% data, the large fluctuations for the radius overlapping
the inner cylinder are caused by an oscillation of the boundary speed. During this
experiment Ω1 varied by about 2% on a 5-second timescale. Bottom: Radial scan of
relative fluctuations in MRI 5% profile at several axial locations. The three points
between 80 and 115 mm of the z = 5 mm scan exceed 7% due to the presence of
eddies. See Sec.4.2.4 for a discussion of the eddies.
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Figure: 4.13 that a boundary layer extends in to the bulk flow near 118 mm.

The elevated levels on the inner cylinder surface for the 5% cases are due to poor

speed control of the inner cylinder during the October 2005 experiments. In

particular, during the MRI 5% scan, Ω1 oscillated by about 2% over a 5-second

period. By Rayleigh’s centrifugal stability criterion this oscillation was too small

in magnitude to produce instability. The ability of the oscillation to elevate

fluctuation levels in the bulk flow would therefore be governed by the Ekman

time, τEkman ' 10s. Because it was slower than τEkman it is not responsible for the

elevated fluctuations seen for 115mm < r < 130 mm.

The fluctuation magnitude of one other radius must be pointed out. For the

January 2006 data, the scan grid included a point at r = 200 mm. In the figure the

fluctuation levels at that radius for an MRI 10% profile are the highest for the

figure, both in absolute value and relative to the solidbody profile. This may be

explained by the presence of a Rayleigh-stable boundary layer in the

measurement volume. Such a boundary layer must exist to transition the bulk

mean flow speed to the solidbody speed of the outer cylinder.

4.3.3 Fluctuations near the ring gap

During the October 2005 experiments, a detailed vertical scan of an MRI 5%

profile was made at four radii near the ring gap. The goal was to determine if a

Stewartson Layer[Stewartson, 1957] was being formed by the discontinuity in

speed at the ring gap and propagating vertically in to the experimental volume.

This effect was predicted to occur in our experiment by Hollerbach and Fournier

[Hollerbach and Fournier, 2004].

Stewartson layers are expected to form in regions where the Taylor-Proudman

theorem holds. For our geometry where all rotation is about the z-axis, the
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Taylor-Proudman theorem is simplified to:

∂v

∂z
= 0.

If Stewartson layers were formed in the experiment the effect would be to extend

the solidbody velocity of the end rings vertically through the bulk flow. Because

we always operate with the inner ring rotating faster than the outer ring, this

layer should give rise to a drop in azimuthal velocity as the LDV measurement

scans outward across the gap. Hollerbach and Fournier further predict that this

shear layer will be unstable to a Kelvin-Helmholtz instability and that this

instability will not ”break” the Taylor-Proudman theorem. If these predictions

hold in our experiment, we will observe enhanced fluctuation levels in some

annulus above the ring gap.

The results of our search for a Stewartson layer are plotted in Figure: 4.13.

Relative fluctuations for a solidbody profile are indicated by the vertical dotted

lines. Large effects due to the gap vertically propagate only about 40 mm after

which the fluctuations are roughly uniform. For the radii r = 129, 134, 140 mm,

the uniform level is close to that for solidbody. Detailed solidbody scans were not

performed, which limits our ability to further remark on residual discrepancies

between the profiles at these radii. This is illustrated by examination of the

measurement r = 129 mm, z = 76 mm. The velocity samples at this point were

filtered to remove a single measurement (out of more than 200 samples) which

was severely distorted by an optical defect in the outer cylinder. The removed

point lay more than ten standard deviations off the mean of the remaining data.

To illustrate the effect of that outlier, the fluctuation level including it is plotted

marked by the cross. Distortion by a single optical defect has increased σv/v̄ from

1.4% to about 4%.

At r = 123 mm the uniform fluctuation level above 40mm is clearly
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Figure 4.13: Axial scan of MRI 5% profile for four radii near the ring gap. The
listed radii are nominal values, the precise location of a measurement may be at
most 3 mm different. The ring gap is at 132 mm. The vertical axis is the height
at which the scan was performed, measured from the top side of the lower end
ring. The horizontal axis is the percentage relative fluctuation σvφ/v̄φ. Vertical
dotted lines indicate fluctuation levels for solidbody for a radial scan performed
at z = 74 mm. Detailed vertical scans for solidbody were not made. Gray
squares are data from an Ekman 5% profile. The MRI 5% data were filtered to
remove velocity measurements which lay more than 6 standard deviations from
the mean. An example of an unfiltered measurement has been marked by the × in
the r = 129 mm data. At that point, a single measurement (out of ≈ 200) raised the
fluctuation level to 4%.
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distinguishable from solidbody. Part of this is due to a reduced level for

solidbody, and part to an increased level for the MRI 5% case. To quantify the

increase, we compare it to r = 140 mm. To make the comparison we note that

optical defects do not act to reduce measurement noise. Therefore the low and

constant level of the fluctuations at 140 mm are not contaminated by any vertical

non-uniformity of defects. For the MRI 5% profile the uniform fluctuation level is

1.79± 0.05% at r = 123 mm and at r = 140 mm it is 1.41± 0.02%. The difference

between the two is 0.38± 0.05%. Two possible explanations for this increase are:

1. it is due to broadening of the measurement by an increase in the velocity

gradient between 140 and 123 mm.

2. For MRI profiles, the inner ring velocity matches that of the ideal

circular-Couette profile at r = 118 mm. The fluctuations may therefore be

due to the presence of a boundary layer extending vertically into the bulk.

Addressing the first of these possibilities, can a changing radial gradient of

velocity account for the increase in fluctuations? Ignoring the effect of optical

defects due to the cylinder walls, broadening of the sample distribution for an

LDV measurement arises through:

∆v = ∇v · c0, (4.1)

where the gradient is in the direction parallel to the length of the measurement

volume, c0. No measurement of c0 exists within the bulk flow so we use the value

of 1.7 mm measured on the inner cylinder surface as an approximation (the

measurement of c0 is detailed in Appendix:A). c0 is parallel to r̂ and using the

ideal circular-Couette flow∇rv = a+ br−2, we expect for r = 123 mm,

∆v/v̄ ≈ 1.3%. At 140 mm, ∆vφ/v̄φ ≈ 1.1%. For a solidbody profile this estimate

yields 1.4% and 1.2%, respectively. These levels are of the same order as the



4.3 Axial Variation of Profile 115

observed fluctuations, but do not include the effect of optical defects which must

increase them. It is therefore a poor approximation to use the measurement

volume on the inner cylinder surface to estimate its value in the fluid interior as

this overestimates velocity gradient broadening.

Turning from the use of Equation: 4.1, a more reliable comparison can be made

using the Ekman profile. Here, the velocity gradient differs from that for MRI by

only about 8%(see Figure: 4.2) while the end ring matches the bulk flow speed

only at the outer cylinder, and there is therefore no possibility of the proposed

boundary layer being present in the interior. Fluctuations for a radial scan of an

Ekman configuration taken at z = 76 mm have been plotted with the MRI

fluctuations in Figure: 4.13. The Ekman profile fluctuations are 1.41% at 123 mm

and 1.50% at 140 mm. This near constant fluctuation level indicates that any effect

due to the velocity gradient is insufficient to account for the MRI data at 123 mm.

Ruling out the velocity gradient as the source of the increased fluctuation levels at

r = 123 mm for the MRI case leaves the second possibility as the cause. The larger

fluctuations at r = 123 mm in the MRI profile are therefore due to the boundary

layer at r = 118 mm extending deep in to the bulk flow.
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4.4 Reynolds stress measurement

4.4.1 Subcritical Hydrodynamic Instability

This section is adapted from and modifies the results published in [Ji et al., 2006].

Based on observations of Wendt and Taylor, Richard and Zahn[Richard and Zahn,

1999] argue that anticyclonic shear flow undergoes a subcritical turbulent

transition when a Reynolds number based on the gradient of angular velocity

exceeds a critical value:

Re∗ =
r̃3

ν

∆Ω

∆r

(
r

∆r

)2

≈ 6× 105, (4.2)

where r̃ = (r1 + r2)/2 is the mid-radius of the cylinders and ∆r = r2 − r1. For our

apparatus r̃/∆r = 1 therefore our critical Reynolds number is expected to be

≈ 6× 105. In addition to exceeding this Reynolds number, perturbations present

in the experiment must be large enough to trigger the transition. Richard and

Zahn argue that the turbulence observed by Wendt and Taylor was triggered by

this subcritical transition. As discussed in Section:4.2.4, our apparatus is far more

perturbative to the fluid than those experiments, and should therefore easily

satisfy the finite-amplitude requirement.

The relation proposed by Richard and Zahn for the flux of angular momentum is:

ρr〈v′rv′φ〉 = −ρνtr2∂Ω

∂r
, (4.3)

where 〈v′rv′φ〉 is the mean fluctuating component of the Reynolds stress, and the

turbulent viscosity νt, is given by:

νt = β

∣∣∣∣∣r3∂Ω

∂r

∣∣∣∣∣ . (4.4)

In terms of q, this relation becomes β = −〈v′rv′φ〉/q2v2
φ.
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4.4.2 Radial profile of local angular velocity exponent and

angular momentum

Gradients of angular momentum and angular velocity may become sources of

free energy to drive turbulent angular momentum transport in circular-Couette

flow. Rayleigh’s centrifugal instability and the ideal-MHD limit of the MRI are

threshold instabilities in which the flow becomes linearly unstable when a critical

gradient is achieved. The threshold for instability of both the ideal MHD version

of MRI and centrifugal instability can be parameterized by the local exponent of

angular momentum, q ≡ −∂ ln Ω/∂ ln r. In MRI, the threshold (with a weak

magnetic field) is simply q > 0. Marginal centrifugal instability occurs for

constant angular momentum, Ω1r
2
1 = Ω2r

2
2, therefore the instability criterion

becomes q > 2.

The value of q also arises in the subcritical hydrodynamic transition proposed by

Richard and Zahn [Richard and Zahn, 1999], where β is related to the flow profile

by:

β ≡
〈v′rv′φ〉
q2v̄2

φ

. (4.5)

To measure β we need to determine q for the experimental profiles. For ideal

circular-Couette flow,

q = − r
Ω

∂

∂r

(
a+ br−2

)
=

2
a
b
r2 + 1

.

The PRINCETON MRI EXPERIMENT does not produce ideal circular-Couette flow,

and for some configurations an estimate based on the cylinder speeds can be

extremely misleading. Therefore we need to provide a measurement of q based on

the measured angular velocity profile.

To calculate q from the measured velocity profiles a central difference method is

used. To avoid errors associated with converting to angular velocity, the

derivative is performed on v:
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q = −r
2

v

∂vr−1

∂r
= 1− r

v

∂v

∂r

This is implemented as:

r̄ =
ri+1 + ri

2
, v̄ =

vi+1 + vi
2

,

∆r = ri+1 − ri, ∆v = vi+1 − vi,

q(r̄) = 1− r̄

v̄

vi+1 − vi
ri+1 − ri

. (4.6)

With the error in q given by:

σ2
r̄ = σ2

∆r = σ2
ri+1

+ σ2
ri

σ2
v̄ = σ2

∆v = σ2
vi+1

+ σ2
vi

σ2
q = σ2

r̄(
∆v

∆rr̄
)2[1 + (r̄∆r)2] + σ2

v̄(
r̄

∆rv̄
)2[1 + (v̄∆v)2] (4.7)

Profiles of q and l for Ekman , MRI and Split configurations are plotted in

Fig:4.14. For Split operation, the flattening of angular momentum profile over

the outer ring, with a steep negative gradient connecting to the outer cylinder

wall indicates that regions of turbulent transport are present in the apparatus.

The profiles of Lewis and Swinney (see Section: 2.1.2) showed that

circular-Couette flow which is fully saturated by centrifugal instability exhibits

two shear layers at the cylinder walls with negative angular momentum

gradients while the interior has a flat angular momentum profile.For MRI

operation, l appears to flatten over the outer ring. However, in this region a

direct measurement of the φ̂-r̂ component of the Reynolds stress tensor shows no

sign of an enhanced radial transport. Therefore, angular momentum must be

removed through the outer ring. The negative gradient of angular momentum in

a laminar state seen here contradicts the Rayleigh stability criterion. Scaling of the
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MRI profile with Re confirms that this is a characteristic of the MRI configuration,

see Figure: 4.15A. Variation of q with alternate MRI configurations is plotted in

Figure: 4.16. It is a consistent feature of all the variations that q ≥ 2 for some radii

above the outer ring.

According to the Rayleigh criterion linear instability occurs whenever the radial

gradient of angular momentum becomes negative. The Rayleigh criterion was

derived for the case in which angular momentum transport is purely radial in a

rotating inviscid fluid. Taylor [Taylor, 1923] proved that for a narrow gap

circular-Couette geometry with rigid cylinder walls, viscosity stabilizes finite, but

small, negative gradients of angular momentum. When the outer cylinder is at

rest the transition occurs for Re ∼ 10− 100, where Re is read as a measure of the

inner cylinder speed. The results shown above indicate that vertical transport of

angular momentum can give rise to a violation of the Rayleigh criterion where the

resulting negative radial gradient of angular momentum is stable.The analysis of

Taylor cannot be directly extended to our wide-gap geometry, so a proof of this

stability is an area for future research.

The values of q used in the angular momentum transport measurement of

Section: 4.4.1 are listed in Table: 4.5.
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Figure 4.14: Comparison of l and q profiles for 10% Ekman , MRI and Split
configurations. Angular momentum and q profiles for the ideal circular-Couette
solution are indicated by the dotted lines. In the q plots, the Rayleigh stability
criterion, q = 2 , is indicated by the dashed line. In the Split data, several points
near the ring gap have been substituted with data from a Stewartson layer study.
Several points in the original profile featured large errors in the mean azimuthal
velocity which were not observed in any other Split profiles. One data point
from the original profile remains, and is the source of the large discontinuity in q
near r = 140 mm.
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4.4.3 Determination of β from correlation measurement

Correlated LDV provides a nearly simultaneous measurement of two orthogonal

velocity components. During setup of the instrument these components are

aligned with the radial and azimuthal directions of the experiment. Solidbody

rotation is used to measure any residual misalignment which is then removed

from the data. Optical defects in the acrylic introduce a systematic error which is

similar in magnitude to the correlations observed while operating in the MRI

configuration. This error is removed by subtracting a normalized solidbody

signal from that of the sheared profile:

β ≡
〈v′rv′φ〉
q2v̄2

φ

=
1

q2

(
〈v′rv′φ〉p
v̄2
φ,p

−
〈v′rv′φ〉sb
v̄2
φ,sb

)
, (4.8)

where 〈v′rv′φ〉 is calculated via,

〈v′rv′φ〉 =
1

N

N∑
i

(vi,φ − v̄φ) (vi,r − v̄r) .

The error on β is,

σ2
β =

(
1

q2v̄2
φ,p

)2 σ2
〈v′
rv

′
φ
〉,p

Np − 1
+

(
1

q2v̄2
φ,sb

)2 σ2
〈v′
rv

′
φ
〉,sb

Nsb − 1
+

(
−2〈v′rv′φ〉p
q2v̄3

φ,p

)2 σ2
v̄φ,p

Np − 1
+

(
−2〈v′rv′φ〉sb
q2v̄3

φ,sb

)2 σ2
v̄φ,sb

Nsb − 1
+

(
−2β

q

)2

σ2
q (4.9)

Subscripts p and sb refer to the profile being measured and the solidbody

reference, respectively.

The dominant contribution to the error on β arises from the first two terms in

Equation4.9. This error is reduced by using large sample numbers, between 103

and 104. Overall sample number was limited by the data rate which varied from

10 Hz to < 1 Hz as oil entrained by a leaking seal would cause the fluid to cloud.
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Cleaning cycles between experiments removed accumulated oil and restored

consistent data rates. As published by Ji [Ji et al., 2006], no vertical variation in

beta was observed.

In addition to the profiles listed in Table:4.1, three additional profiles were

investigated. The speed ratios of these profiles are listed in Table:4.4. They were

chosen to lie at or above the Rayleigh centrifugal stability limit. MS refers to an

MRI configuration for which the end ring and inner cylinder speeds have been

scaled up to the marginal stability line, ∂l/∂r = 0. The CUS profiles are

centrifugally unstable by the Rayleigh criterion. In configuration CUS a1, the

speeds of the inner cylinder and the end rings have been scaled by the same

factor from the MRI configuration to correspond to a profile expected to be 15%

above the Rayleigh criterion. To make the flow even more unstable, the CUS a2

profile has had the outer end ring and outer cylinder speeds set to zero. Radial

profiles of v̄φ for the CUS cases were not measured. Figure: 4.20 presents angular

momentum and q profiles for two similar centrifugally unstable configurations

which were measured. As in the case of CUS a1, when the outer cylinder is

rotating, scaling the inner cylinder speed above the Rayleigh criterion does not

automatically produce a saturated state of nearly constant angular momentum.

Table 4.4: Component speeds used to produce marginal and unstable flow profiles.
Speeds are listed as a fraction of the Outer Cylinder speed, Ω2. MS is marginally
stable, CUS is unstable by the Rayleigh criterion.

Profile name Ω1 Ω3 Ω4 Ω2

MRI 7.50 2.74 0.77 1.00
MS 8.27 3.02 0.83 1.00
CUS a1 9.43 3.43 0.94 1.00
CUS a2 9.43 3.43 0.00 0.00

The transport levels for linearly-stable profiles are plotted in Figure:4.17, the data

used to produce the figure is summarized in Table:4.5. The optimized MRI and
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Keplerian configurations for Re > 106 are not consistent with the proposed

transport level. Averaging the results for the optimized configurations yields

β = 1.13± 1.15× 10−6 and β < 3.4× 10−6 at 2 standard deviations. Because

negative values for β would indicate inward transport of angular momentum, 2

standard deviations yields 98% confidence. The slight improvement of the

transport limit over the previously published result[Ji et al., 2006] is due to the use

of the local measurement of q (see Section:4.4.2) and the new calibration for vφ(see

3.5.1).

Also included in Fig:4.17 is a plot of βvisc = ν/r̄3|∂Ω/∂r| = ν/2b for water as the

working fluid. This is provided to indicate where turbulence would be expected

to dominate laminar viscosity in the the establishment of the equilibrium profile,

in the absence of boundary layer effects. Radial transport associated with the

Split configuration indicates that boundary layers cannot be assumed to be

negligible. In fact, the data for the linearly-unstable profiles plotted in Figure:4.19

show that transport due to the influence of the boundaries for Split operation

exceeds that for the unstable flow with rotating outer cylinder (CUS a1) by a factor

of 20. Given this level of transport, the observations by Richard [Richard, 2001]

are likely to be caused by the influence of the end rings extending throughout the

fluid volume.

The source of the higher levels of transport associated with the glycerol runs are

hinted at by the time-averaged radial velocities listed in Table:4.5. Of the MRI

configurations, only for these low Reynolds number experiments is there a radial

velocity which is distinguishable from zero. The velocity distributions for the

glycerol runs are compared to a solidbody profile in Figure:4.18. For the 5%

(Re = 2× 104) run, fluctuations are clearly present in the negative tail of the

distribution which cause the non-zero value of v̄r. At double the Reynolds

number, the fluctuations are more symmetric about the mean, the mean radial
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velocity has fallen by a factor of two andβ is already converging to the constant

level seen above Re ∼ 105. This convergence occurs an order of magnitude below

the estimate for the critical Reynolds number given in Equation:4.2, in

contradiction to the assertion that a transition exists in the intervening speed

range.
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Figure 4.17: β for stable quasi-Keplerian profiles. The estimate of β made by
Richard and Zahn [Richard and Zahn, 1999] is 1.5 ± 0.5 × 10−5. The dashed
lines represent the one standard deviation confidence interval for this estimate.
The solid line is βvisc = νlaminar/r̄

3 |∂Ω/∂r|. In terms of the Reynolds number,
Re = (Ω1 − Ω2)(r2 − r1)(r2 + r1)/2ν, βvisc = (r2

2 − r2
1)2/4Re(r2r1)2.
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Figure 4.18: Probability distributions of radial velocities for operation in the MRI
configuration with glycerol-water mix, Re ∼ 104. Measurement is at r = 180 mm,
z = 50 mm. Residual influence of the vertical boundaries is visible in the negative
tails of the distributions. Dashed lines are Gaussian distributions fit to the data,
vertical lines denote the 1st, 2nd and 3rd standard deviations of the distributions.
Mean velocities of the MRI profiles have been subtracted, for 10% the mean velocity
is v̄r = −1.26± 0.67 mm, for 5%, v̄r = −2.84± 0.35 mm
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Chapter 5

Discussion and future work

5.1 Summary

We have constructed a small aspect ratio, wide gap circular-Couette experiment.

The apparatus is compatible with both water and GaInSn. Control of vertical

angular momentum transport through the end caps is achieved through two pairs

of nested, differentially rotating rings. A variety of mechanical difficulties have

been surmounted in order to achieve successful operation at Re ∼ 106. The

primary challenges have been achieving proper sealing of the nested axles as they

extend out of the experiment and preventing premature wear of those seals. The

constraint that assembly of the apparatus proceed by sliding bearings along the

length of axles with poorly-controlled diametral tolerances has led to the most

successful innovation of the experiment: runout of the inner cylinder caused by

the excessive bearing clearances actively disrupts the Ekman circulation

generated at the end caps.

Operation in the MRI configuration produces an excellent approximation to the

ideal circular-Couette profile. The success of the approximation rests on the

ability to add and remove angular momentum through the end rings without

131
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establishing large advection cells. The contribution of the boundaries to the flow

is sketched in Figure: 5.1. The various regions of the flow are:

A Bulk flow in which β measurements indicate radial transport is not due to

turbulence. Advection transport is ruled out by the measurement of zero

average radial velocity (see Table: 4.5). Measurement of q demonstrates a

negative radial gradient in angular momentum above the outer ring. By

elimination of 〈vrvφ〉 and 〈vr〉 angular momentum must be removed through

a Reynolds stress: 〈vzvφ〉 (incompressibility rules out 〈vz〉 6= 0).

B The axial variation of fluctuations in 〈vφ〉 are detectable only up to 40 mm

into the fluid. The outer ring removes angular momentum from the bulk,

whereas the inner ring adds it for r > 120 mm and removes it for

r1 < r < 120 mm. At 120 mm, the ring corotates with the bulk flow and

fluctuations from the boundary penetrate vertically through the flow. Radial

velocities (if present) within the boundary regions are indicated by the

horizontal arrows. By the Taylor-Proudman theorem 〈vr〉 → 0 as z → 40 mm.

C From Figure: 4.10 the angular momentum at r =200 mm is 8% below that of

the outer cylinder at r2 = 203 mm. A sharp gradient must exist between to

transition the bulk flow to the cylinder wall. The gradient is centrifugally

stable.

D In this region the eddies ejected by the inner ring-inner cylinder groove are

detectable. A large-scale advective flow is prevented from forming by this

ejection.

E The innermost point of the q profiles, see Figure: 4.14, indicates a

centrifugally unstable region, due to the vertical presence of the inner ring,

exists near the inner cylinder. The radial extent is unknown.
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F The profile reconnects to the ideal circular-Couette profile by r = 90 mm, see

Figure 4.2.

Axially-oriented 2-component Laser Doppler Velocimetry has been used to

directly measure the r − φ component of the Reynolds stress. It appears that this

is the first application of LDV to measurement of the Reynolds stress in

circular-Couette flow.

5.2 Discussion of hydrodynamic results

5.2.1 Identification of control profile for MRI search

In the search for the MRI, we need to compare the behavior of unstable flows

against a quasi-Keplerian l profile which is either stable to the MRI or becomes

unstable only for higher magnetic field strengths or Re . This control profile will

provide information about the interaction of the magnetic field with any residual

boundary layer circulation. In the presence of a magnetic field, altered transport

through the end caps may allow the formation of Stewartson layers which can

then become Kelvin-Helmholtz unstable [Liu, 2007]. Alternately, the q ≈ 2 regions

that are ubiquitous in the MRI and Ekman configurations may become

centrifugally unstable due to enhanced transport through the end caps. Early in

the design phase, we assumed that operation of the experiment in the Ekman

configuration would produce profiles similar to that obtained in the prototype

experiment (see panel B of Figure:4.5). The flattening of the angular velocity

profile over the outer half of the experiment was expected to provide the stability

to the MRI that we require. As shown in Figure:4.14, Ekman operation with the

current apparatus is not sufficiently different from the MRI configuration to be

assured that it remains stable when the MRI profile is unstable: in particular, q ≈ 2
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Figure 5.1: Regions of flow within cylinder gap MRI operation, the lower half of the
apparatus is shown. A) bulk flow closely approximates the ideal circular-Couette
profile. B) Fluctuations generated by the vertical boundaries extend approximately
40 mm into the flow. The sign of radial circulation within the ”boundary zones”
are indicated by the horizontal arrows. Vertical arrows indicate whether angular
momentum is being added to or subtracted from the bulk flow. At a radius of
120 mm, the boundary corotates with the bulk flow. A vertical scan of fluctuations
indicates that the effects of the boundary propagate through the vertical extent of
the fluid. C) Centrifugally stable boundary which transitions from the bulk flow to
the outer cylinder. D) Region in which eddies shed by the inner cylinder-inner ring
gap are detectable. E) Measurement of q indicates a centrifugally-unstable region
exists between r1 ≤ 90 mm. F) Region of relaminarization.
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in the middle of the apparatus, see Figure: 4.14. The Keplerian profile satisfies

the requirements of producing a quasi-Keplerian flow while q < 2 throughout the

cylinder gap.

5.2.2 quasi-Keplerian turbulence

When operating in the MRI configuration we find no evidence enhanced angular

momentum transport due to the r − φ component of the stress tensor even at

Re ∼ 106. This is in conflict with the observations of Richard[Richard, 2001] in

which flow imaging demonstrated a turbulent transition inquasi-Keplerian flow

near Re ∼ 104. Richard attributes the turbulence to a subcritical transition but was

unable to measure a hysteresis associated with the transition [unpublished].

Hysteresis is a defining characteristic of finite-amplitude instability, so its

apparent absence casts doubt on the hypothesis. Wendt [Wendt, 1933] observed a

similar turbulence for flow on the Rayleigh stability line. Both cylinders were

rotating so no torque measurements were available.

Comparing Split operation in the PRINCETON MRI EXPERIMENT with the 2-D

simulations we can identify a plausible source for the turbulence. In this

configuration the Taylor-Proudman theorem applies in the vicinity of the inner

cylinder, which causes the development of a fluid layer which is in nearly rigid

rotation with the inner cylinder. This layer effectively reduces the gap width of

the experiment, and will therefore effectively rotate the Rayleigh line in to the

quasi-Keplerian regime.

In our apparatus, the peak of the layer occurs at a radius of rpeak ≈ 90 mm, or

normalized to the inner cylinder radius and gap width:

rpeak =
90 mm− r1

r2 − r1

≈ 0.15. (5.1)

To make an estimate of the location of the peak in Richard’s apparatus, we should
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scale by the radius ratio, 2(r2 − r1)/(r2 + r1). Our radius ratio is 1, so scaling our

peak location by Richard’s radius ratio of 0.35, we should find the peak in

Richard’s apparatus at:

rpeak = (0.15)(0.35)× (50 mm− 35 mm) + 35 mm = 35.8 mm. (5.2)

In cylinder speeds, the condition of marginal stability is Ω1/Ω2 = r2
2/r

2
1. Changing

the inner cylinder radius from 35 mm to 35.8 mm reduces the marginal stability

ratio to 1.95 from 2.04.

A mean profile from Richard’s quasi-Keplerian turbulent regime is plotted in the

top panel of Figure: 5.2. To facilitate comparison with an optimized flow from our

apparatus, the radius and velocity have been normalized. In this plot, the first

point measured by Richard occurs at r = 35.6 mm indicating that his solid body

layer is unresolved. However, fluctuations levels at that radius are higher than

the other points in the flow. This could be explained by the presence of the

fluctuations due to the an unstable layer within the LDV volume. The cylinder

speeds Richard published for this figure apparently contain a typographical error:

the speed ratio based on the caption is 2.2: exceeding greatly the Rayleigh

criterion.

Plotted in the lower panel of Figure: 5.2 is a comparison of the local value of q.
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5.2.3 Relevance to accretion disks

Reynolds stress measurements in the interval 2× 104 ≤ Re ≤ 2× 106 do not

indicate the presence of a turbulent transition. It is possible that the transition has

occurred, but the associated level of transport is too small to be detected with the

current technique. It is also possible that we have not reached the critical

Reynolds number for transition in our apparatus.

If we rely on the observations of pipe flow we may make an extrapolation to

astrophysical scales. In pipe flow the turbulent transition is sub-critical and

occurs at a critical Reynolds number Re∗ ≈ 2000. Above Re∗ the ”friction factor”

becomes independent of Reynolds number[Moody, 1944].Moody diagrams such

as that reproduced in Figure: 5.3 illustrate this empirical knowledge.

The following argument is due to Lesur and Longaretti[Lesur and Longaretti,

2005]. At Re∗ the laminar and turbulent viscosities must be equal, this implies the

scaling:

νT ∼
1

Re∗
(5.3)

The qualitative idea behind this comes from considering a Kolmogorov energy

spectrum for the turbulence. At the transition the inertial range is non-existent

and the dissipation and stirring scales are equal. Increasing the Reynolds number

causes the inertial range to expand while the dissipation scale remains fixed.

Therefore, β in a circumstellar disk with Re ∼ 1012[Hersant et al., 2005] should be

comparable to the value we measured at Re ≈ 2× 106: β < 3.4× 10−6.

Hueso and Guillot provide two β estimates for the protoplanetary disks DM Tau

and GM Aur[Hueso and Guillot, 2005]. For DM Tau they estimate

2× 10−5 < β < 10−4. For GM Aur, 2× 10−6 < β < 8× 10−5. Our limit on β

eliminates all but the lowest value from these ranges.
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5.3 Future work

The surprising result that the MRI profile effectively eliminates advective

transport from the bulk flow indicate directions for further inquiry. One question

that is open is the maximum stable negative angular velocity gradient in the

presence of vertical transport. To match the angular momentum of the outer

cylinder, the gradient of angular momentum must change sign, thereby forming a

shear layer above the outer ring. Is the decrease in angular momentum then

dependent on the stability of that shear layer to a Rayleigh or Kelvin-Helmholtz

instability?

Both the classical form of the Ekman layer as well as the Kageyama prescription

are inadequate to describe the boundary layers of the PRINCETON MRI

EXPERIMENT when operating in the MRI configuration. To see this, consider the

Reynolds number calculated based on the vertical speed differential of the end

ring and the bulk flow,

Revert =
2πr2

ν
|ΩcC − Ωring| =

2πr2

ν

∣∣∣a+ br2 − Ωring

∣∣∣ . (5.4)

is plotted for 10% Ekman , MRI and Split configurations in Figure: 5.4. In the

MRI configuration, the Re vert > 105 everywhere except for an annulus near

120 mm. Clearly it is not possible to describe the bulk flow as an infinitesimal

departure from the boundary speed, as in the classical prescription. In the

Kageyama prescription, small departures from the bulk flow are used but a

viscous boundary layer must be attached to the end rings. A turbulent boundary

layer model matching the end ring profile to the bulk flow should employed.

Townsend [Townsend, 1980] derives such a model for a turbulent Ekman layer for

a uniformly-rotating frame and states that the layer excites an evanescent

vertically-propagating wave.

A Kalliroscope [Matisse and Gorman, 1984] image of the PRINCETON MRI
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EXPERIMENT is presented in Figure: 5.5. Three 10% flows were imaged to gain

some insight into the qualitative structure of the flow. Kalliroscope particles are

anisotropic and so align with the local flow shear. In the centrifugally unstable

case with the outer cylinder at rest the Kalliroscope shows no large-scale

structure, which is consistent with fully-developed, isotropic turbulence. The

Ekman case shows the influence of the boundary extending vertically throughout

the flow, possibly consistent with a boundary layer penetrating deep in to the

flow. In the MRI configuration the influence of the end caps is localized near the

ends of the apparatus. This localization may be indicative of evanescent waves

produced by the turbulent Ekman layer, as discussed by Townsend. More

experimentation is needed to understand the detailed nature of the boundary

layers.

The centrifugally unstable flows of Lewis and Swinney, and Lathrop feature

positive angular momentum gradients within the bulk flow. Oscillations then

appear to be ubiquitous features of these flows. Does the PRINCETON MRI

EXPERIMENT contain similar wave motion in the centrifugally unstable regime?

Does the unstable layer, region ”E” in Figure: 5.1, excite waves in our

quasi-Keplerian flows? The data rates of our LDV apparatus were too low to

detect wave motion, in future work the data rates must be increased to allow

spectral analysis. If these waves are present, how will they interact with an

applied magnetic field? Lewis and Swinney’s results show decreasing wave

amplitude with a decreasing bulk angular momentum gradient (negative

gradients are restricted to shear layers at the walls). When the MRI increases the

angular momentum gradient will the radial magnetic field due to the MRI be

masked by a corresponding amplification of the waves? The possibility of

exciting subcritical hydrodynamic transition in the presence of a magnetic field

too weak to produce the MRI needs to be explored.
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Figure 5.5: Kalliroscope images of three 10% configurations. The leftmost panel
is centrifugally unstable, Ω1 = 42 rad/s,Ω2 = Ω3 = Ω4 = 0. Middle panel is an
Ekman configuration, and right panel is MRI . The apparatus is illuminated from
below the outer ring by a flashlight, the color has been inverted to improve the
contrast. The Kalliroscope flakes align with the local flow shear: ideal circular-
Couette flow the flakes would horizontal banding as seen in the bulk of the MRI
image. Dark patches near the boundaries in the MRI image show that the effects
of the boundary are localized to within about 40 mm of the end rings, consistent
with the fluctuation measurements of Figure: 4.12.
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Finally, we have empirically determined that the quasi-Keplerian profiles most

likely to be unstable to the MRI satisfy ∂q/∂r = 0. The global eigenmode

analysis [Goodman and Ji, 2002] should be repeated for this profile.

During the summer of 2007 the PRINCETON MRI EXPERIMENT was switched to

liquid metal operation. During initial magnetized operation with quasi-Keplerian

flows we found that the stainless steel plugs which mask the diagnostic ports of

the outer cylinder had a residual magnetizability, probably due to cold working

during machining. Also during this time, a seal began to fail and high speed

operation was restricted to prevent GaInSn leaks. At this time, operation is

suspended while these mechanical issues are addressed. When operation starts

up again, the we will work to extend the maximum operational Reynolds number

up to the full design speed.



Appendix A

LDV Shot Information, Error Analysis

A.1 Calibrations for Dantec radial measurements

Table A.1: Solidbody calibration shots

Shot Ω1 Ω3 Ω4 Ω2 Height (mm)

467 50 50 50 50 11, 141
486 53 53 53 53 76
487 53 53 53 53 76
512 50 50 50 50 76

Table A.2: Dantec Run 2 calibration parameters

y2 (mm) y1 (mm) intercept (mm) slope (m/s/mm)

121.30± 0.25 4.16± 0.16 0.121± 0.012 0.004840± 0.000045
121.30± 0.25 4.16± 0.16 0.114±? 0.004840±?

Table A.3: Dantec Run 3 calibration parameters

y2 (mm) y1 (mm) intercept (mm) slope (m/s/mm)

−212.20± 0.25 −94.03± 0.50 0.1406± 0.0051 0.005035± 0.000084

145
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A.2 Dantec measurement volume

TableA.4 lists the length measurement volume of the Dantec LDV. The laser

power is substantially reduced over the original factory value, which rules out

using the factory specification. Calculation of c0 from velocity gradient: For

solidbody rotation, the velocity gradient is δv/δr = Ω. If the standard deviation of

the velocity measurement is attributed to the extension of the measurement

volume along the velocity gradient, then

c0,i =
σv

δv/δr
,

c0 =
1

N

∑
i

nic0,i. (A.1)

Calculation from ratio of length to width: From the Dantec specs, c0 = 2.5mm,

b0 = 0.119mm corresponding to the FWHM along the two directions. From the

product of burst transit time τTT , with velocity an average b0 at various radii, ri,

can be made:

b0(ri) = τTT,ivi,

and the count-weighted sum is:

b0 =
1

N

∑
i

b0(ri)ni,

where ni is the number of bursts recorded at radius ri and N =
∑
ni

Table A.4: Length of Dantec Measurement Volume, c0, run 2.

Source c0 Note

Dantec spec. 2.5mm FWHM, air
Dantec spec. 1.9mm water, calculated
Velocity gradient 2.7mm weighted mean
Inner Cyl scan: 1.7mm FWHM, midplane
Length to width ratio: 1.7mm transit time
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Table A.5: Length of Dantec Measurement Volume, c0, run 3.

Source c0 Note

Dantec spec. 2.5mm FWHM, air
Dantec spec. 1.9mm water, calculated
Inner Cyl scan: 1.2mm FWHM, midplane
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Figure A.1: A. Velocity, B. angular velocity, C. specific angular momentum, D.
shear profile, ’q’.

A.3 Flow profile for solidbody rotation

Flow profiles measured at z = 76mm during the October 2005 Dantec run are

plotted in Fig:A.1.



Appendix B

Bessel filter amplifier schematic
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Figure B.1: Amplifier-filter used to amplify the the pick-up coil signals before
transmission to the PC.
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